[go: up one dir, main page]

CN105126714A - Functional nano particle composite microsphere, preparation and applications thereof - Google Patents

Functional nano particle composite microsphere, preparation and applications thereof Download PDF

Info

Publication number
CN105126714A
CN105126714A CN201510471940.3A CN201510471940A CN105126714A CN 105126714 A CN105126714 A CN 105126714A CN 201510471940 A CN201510471940 A CN 201510471940A CN 105126714 A CN105126714 A CN 105126714A
Authority
CN
China
Prior art keywords
peg
cds
zns
nanoparticle composite
microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510471940.3A
Other languages
Chinese (zh)
Other versions
CN105126714B (en
Inventor
李万万
冷远逵
武卫杰
孙康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Orient Gene Biotech Co Ltd
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN201510471940.3A priority Critical patent/CN105126714B/en
Publication of CN105126714A publication Critical patent/CN105126714A/en
Application granted granted Critical
Publication of CN105126714B publication Critical patent/CN105126714B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种功能性纳米颗粒复合微球,所述功能性纳米颗粒复合微球为功能性纳米颗粒复合PEG微球,所述功能性纳米颗粒复合PEG微球包含功能性纳米颗粒和含有PEG链段的聚合物,所述功能性纳米颗粒复合PEG微球的平均粒径为0.1~1000μm,粒径分布变异系数小于10%。本发明通过将功能性纳米颗粒和接枝PEG链段的聚合物制备成粒径均一的复合微球,其PEG链段成分能有效地起到非特异性吸附抑制剂的作用,在生物检测和生物医药领域具备广阔的应用前景。

The invention discloses a functional nanoparticle composite microsphere, the functional nanoparticle composite microsphere is a functional nanoparticle composite PEG microsphere, and the functional nanoparticle composite PEG microsphere contains functional nanoparticles and The polymer of the PEG chain segment, the average particle diameter of the functional nanoparticle composite PEG microsphere is 0.1-1000 μm, and the variation coefficient of particle size distribution is less than 10%. The present invention prepares composite microspheres with a uniform particle size by preparing functional nanoparticles and polymers grafted with PEG segments, and its PEG segment components can effectively act as non-specific adsorption inhibitors, and can be used in biological detection and biological The field of medicine has broad application prospects.

Description

一种功能性纳米颗粒复合微球及其制备与应用A kind of functional nanoparticle composite microsphere and its preparation and application

技术领域technical field

本发明涉及微纳米材料制备与应用领域,尤其涉及功能性纳米颗粒复合微球及其应用。The invention relates to the field of preparation and application of micro-nano materials, in particular to functional nanoparticle composite microspheres and applications thereof.

背景技术Background technique

功能性纳米颗粒复合微球是指通过某种方法将功能性纳米颗粒与微球结合在一起所得到的一种功能性复合微球。现阶段通过各种途径制备的纳米颗粒具备各种特殊的光、电、磁及生物学等特性,因此在与微球结合后往往会将这些特性赋予到微球本身。而微球也为这些纳米颗粒提供了支承载体和有效保护。同时,微球自身的化学和物理性能如光敏感性、pH响应性、温度敏感性、吸附特性以及表面活性官能团也为纳米颗粒在各种复杂领域的应用提供可能。具备不同特殊功能的纳米颗粒复合微球在生物医药、工业催化、化工合成、电子信息、建筑材料等领域具有巨大的应用潜力。Functional nanoparticle composite microsphere refers to a functional composite microsphere obtained by combining functional nanoparticles and microspheres by a certain method. At present, nanoparticles prepared by various methods have various special optical, electrical, magnetic and biological characteristics, so these characteristics are often endowed to the microsphere itself after being combined with the microsphere. Microspheres also provide support and effective protection for these nanoparticles. At the same time, the chemical and physical properties of the microspheres themselves, such as light sensitivity, pH responsiveness, temperature sensitivity, adsorption properties, and surface active functional groups, also provide possibilities for the application of nanoparticles in various complex fields. Nanoparticle composite microspheres with different special functions have great application potential in the fields of biomedicine, industrial catalysis, chemical synthesis, electronic information, and building materials.

现阶段,功能性纳米颗粒复合聚合物微球已被应用于各个领域:Nie研究小组通过采用溶胀渗透法将半导体纳米颗粒量子点包埋进多孔微球,利用微球表面羧基官能团将DNA链段连接在微球表面作为探针,进行了DNA特异性检测。JunLin小组制备上转换颗粒水凝胶核壳结构微球NaYF4:Yb3+/Er3+Hydrogel,并利用荧光上转换纳米颗粒的荧光性能实现近红外激发细胞成像,同时在壳层中封装药物并利用水凝胶的pH响应性达到药物控释的目的。ChunhuiDeng小组合成磁性聚合物复合微球Fe3O4SiO2PMMA,并将其成功用于生物分子核酸和蛋白的磁分离富集,该技术在质谱分析等领域具有重要应用价值。At this stage, functional nanoparticle composite polymer microspheres have been applied in various fields: Nie's research team embedded semiconductor nanoparticle quantum dots into porous microspheres by using the swelling infiltration method, and used the carboxyl functional groups on the surface of the microspheres to bind DNA segments Linked to the surface of the microsphere as a probe, DNA-specific detection was carried out. JunLin's group prepared up-conversion particle hydrogel core-shell structure microspheres NaYF4:Yb 3+ /Er 3+ Hydrogel, and used the fluorescence properties of fluorescent up-conversion nanoparticles to realize near-infrared excitation cell imaging, while encapsulating drugs in the shell and The pH responsiveness of the hydrogel is used to achieve the purpose of controlled drug release. ChunhuiDeng's group synthesized magnetic polymer composite microspheres Fe 3 O 4 SiO 2 PMMA, and successfully used it for the magnetic separation and enrichment of biomolecular nucleic acids and proteins. This technology has important application value in the fields of mass spectrometry and other fields.

其中,在诸如靶向成像、药物靶向控释、免疫检测、免疫磁分离等应用领域需要微球具有抑制非特异性吸附从而提高应用的效果。各种天然聚合物如壳聚糖,白蛋白被证明能充当有效的非特异性抑制剂。然而天然聚合物具有明显的缺陷,即可能含有无法预知的病毒,而且在很多情况下其非特异性吸附抑制效果不佳。因此合成聚合物刷子(polymerbrushes)充当非特异性吸附抑制剂受到越来越多的关注。Among them, in application fields such as targeted imaging, targeted drug release, immunoassay, and immunomagnetic separation, microspheres are required to have the effect of inhibiting non-specific adsorption so as to improve the application effect. Various natural polymers such as chitosan, albumin have been shown to act as potent non-specific inhibitors. However, natural polymers have obvious disadvantages, that is, they may contain unpredictable viruses, and in many cases, their non-specific adsorption inhibition effect is not good. Therefore, synthetic polymer brushes (polymer brushes) acting as non-specific adsorption inhibitors have received increasing attention.

目前尚未见纳米颗粒复合微球表面非特异性吸附的相关报道。So far, there have been no reports on non-specific adsorption on the surface of nanoparticle composite microspheres.

发明内容Contents of the invention

有鉴于现有技术的缺陷,本发明提供了一种功能性纳米颗粒复合微球,所采用的技术方案如下:In view of the defects of the prior art, the present invention provides a functional nanoparticle composite microsphere, and the adopted technical scheme is as follows:

一种功能性纳米颗粒复合微球,所述功能性纳米颗粒复合微球为功能性纳米颗粒复合PEG微球,所述功能性纳米颗粒复合PEG微球包含功能性纳米颗粒和含有PEG链段的聚合物,所述功能性纳米颗粒复合PEG微球的平均粒径为0.1~1000μm,粒径分布变异系数小于10%。PEG即聚乙二醇;粒径分布变异系数是衡量各颗粒粒径变异程度的一个统计量。A functional nanoparticle composite microsphere, the functional nanoparticle composite microsphere is a functional nanoparticle composite PEG microsphere, and the functional nanoparticle composite PEG microsphere includes functional nanoparticles and PEG chain segments For the polymer, the average particle size of the functional nanoparticle composite PEG microsphere is 0.1-1000 μm, and the variation coefficient of particle size distribution is less than 10%. PEG is polyethylene glycol; the coefficient of variation of particle size distribution is a statistic to measure the degree of variation in the particle size of each particle.

进一步地,所述功能性纳米颗粒是下列中的一种或几种:量子点、磁性纳米颗粒、荧光纳米颗粒、金属纳米颗粒、金属氧化物纳米颗粒和半导体纳米颗粒;所述量子点是下列中的一种或几种:CdS、HgS、CdSe、CdTe、ZnSe、HgSe、ZnTe、ZnO、PbSe、HgTe、CaAs、InP、InCaAs、CdSe/CdS、CdSe/ZnS、CdSe/ZnSe、CdS/ZnS、Cd/Ag2S、CdS/Cd(OH)2、CdTe/ZnS、CdTe/CdS、CdSe/ZnSe、CdS/HgS、CdS/HgS/CdS、ZnS/CdS、ZnS/CdS/ZnS、ZnS/HgS/ZnS/CdS、CdSe/CuSe、CdSeTe、CdSeTe/CdS/ZnS、CdSe/CdS/ZnS、CuInS2、CuInSe2、CuInS2/ZnS、CuInSe2/ZnS,以及掺杂量子点CdS:Mn、CdS:Mn、CdS:Cu、ZnS:Cu、CdS:Tb、ZnS:Tb。Further, the functional nanoparticles are one or more of the following: quantum dots, magnetic nanoparticles, fluorescent nanoparticles, metal nanoparticles, metal oxide nanoparticles and semiconductor nanoparticles; the quantum dots are the following One or more of: CdS, HgS, CdSe, CdTe, ZnSe, HgSe, ZnTe, ZnO, PbSe, HgTe, CaAs, InP, InCaAs, CdSe/CdS, CdSe/ZnS, CdSe/ZnSe, CdS/ZnS, Cd/Ag 2 S, CdS/Cd(OH) 2 , CdTe/ZnS, CdTe/CdS, CdSe/ZnSe, CdS/HgS, CdS/HgS/CdS, ZnS/CdS, ZnS/CdS/ZnS, ZnS/HgS/ ZnS/CdS, CdSe/CuSe, CdSeTe, CdSeTe/CdS/ZnS, CdSe/CdS/ZnS, CuInS 2 , CuInSe 2 , CuInS 2 /ZnS, CuInSe 2 /ZnS, and doped quantum dots CdS:Mn, CdS:Mn , CdS:Cu, ZnS:Cu, CdS:Tb, ZnS:Tb.

进一步地,所述PEG链段接枝于下列聚合物中的一种或几种:聚苯乙烯、聚丙烯酸、聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚酰胺、聚丙烯腈、聚碳酸酯、聚己内酯、聚氨酯、聚乳酸、壳聚糖、白蛋白、胶原、聚苯乙烯马来酸酐共聚物、聚乙酸乙酯、聚苯乙烯丙烯酸共聚物、聚苯乙烯甲基丙烯酸共聚物或聚苯乙烯-甲基丙烯酸甲酯共聚物,聚(苯乙烯-二乙烯基苯-甲基丙烯酸)和马来酸酐-1-十八烯共聚物。所述的含有PEG链段的聚合物可以是以下两种可能:其一为成球前在聚合物上接枝PEG链段,然后与纳米颗粒复合成球;其二为先将聚合物和纳米颗粒复合成球,然后在微球表面接枝PEG链段。Further, the PEG segment is grafted to one or more of the following polymers: polystyrene, polyacrylic acid, polymethacrylic acid, polymethylmethacrylate, polyethylmethacrylate, polyamide , polyacrylonitrile, polycarbonate, polycaprolactone, polyurethane, polylactic acid, chitosan, albumin, collagen, polystyrene maleic anhydride copolymer, polyethyl acetate, polystyrene acrylic acid copolymer, poly Styrene methacrylic acid copolymer or polystyrene-methyl methacrylate copolymer, poly(styrene-divinylbenzene-methacrylic acid) and maleic anhydride-1-octadecene copolymer. The polymer containing the PEG segment can be the following two possibilities: one is to graft the PEG segment on the polymer before forming into a ball, and then compound it with nanoparticles to form a ball; the other is to first combine the polymer and the nano The particles are composited into spheres, and then PEG segments are grafted on the surface of the microspheres.

进一步地,所述PEG链段包括分子量在500~10000Da范围内的PEG或PEG衍生物,所述PEG衍生物包括单功能PEG、均一型双功能PEG、异(基)双功能PEG、多臂PEG、Y型结构PEG、枝状结构PEG或其混合物。Further, the PEG segment includes PEG or PEG derivatives with a molecular weight in the range of 500 to 10,000 Da, and the PEG derivatives include monofunctional PEG, homogeneous bifunctional PEG, hetero(base) bifunctional PEG, and multi-arm PEG. , Y-shaped structure PEG, dendritic structure PEG or a mixture thereof.

进一步地,所述功能性纳米颗粒复合PEG微球经表面改性连有官能团;所述表面改性是下列中的一种或几种:水解、化学接枝或磺化;所述官能团是下列中的一种或几种:羧基、氨基、磺酸根基、硝基、羟基、巯基、氯基或酯基。Further, the functional nanoparticle composite PEG microspheres are surface-modified with functional groups; the surface modification is one or more of the following: hydrolysis, chemical grafting or sulfonation; the functional groups are the following One or more of: carboxyl, amino, sulfonate, nitro, hydroxyl, mercapto, chlorine or ester.

进一步地,所述官能团上还连接有以下连接物中的一种或几种:N-羟基琥珀亚酰胺、生物素、亲和素和抗生蛋白链菌素。Further, one or more of the following linkers are connected to the functional group: N-hydroxysuccinimide, biotin, avidin and streptavidin.

进一步地,所述制备方法包括溶胀法、微流控法和膜乳化-乳液溶剂挥发法。溶胀法:即事先合成具备孔结构的交联微球,之后微球在良溶剂中被溶胀,表面微孔得到扩张,此时加入功能性纳米颗粒,在浓度差或疏水作用下功能性纳米颗粒通过孔结构渗透进微球并吸附在微球内壁,当外部溶剂去除后,微球收缩,从而将功能性纳米颗粒包埋进入微球。微流控法:若制备的功能性纳米颗粒复合微球所用的纳米颗粒和聚合物均为疏水性的,则事先将聚合物和纳米颗粒溶于非极性有机溶剂中,该聚合物流体在微流控通道中被一定流速的水相打碎而乳化形成液滴,形成的液滴经溶剂挥发而固化成球。膜乳化-乳液溶剂挥发法:若制备的功能性纳米颗粒复合微球所用的纳米颗粒和聚合物均为疏水性的,则事先将聚合物和纳米颗粒溶于非极性有机溶剂中作为分散相,而含表面活性剂的水溶液作为连续相,将分散相和连续相置于具有刚性多孔膜两侧,分散相在一定氮气压力作用下通过多孔膜上均一的微孔结构被压入到连续相中而形成均匀液滴,这时,连续相内稳定剂会吸附在液滴表面,而起到降低表面张力、稳定液滴的作用,随后形成的液滴经溶剂挥发而固化成球。Further, the preparation method includes swelling method, microfluidic method and membrane emulsification-emulsion solvent evaporation method. Swelling method: that is, cross-linked microspheres with a pore structure are synthesized in advance, and then the microspheres are swollen in a good solvent, and the surface micropores are expanded. At this time, functional nanoparticles are added, and the functional nanoparticles can Penetrate into the microspheres through the pore structure and adsorb on the inner wall of the microspheres. When the external solvent is removed, the microspheres shrink, thereby embedding functional nanoparticles into the microspheres. Microfluidic method: If the nanoparticles and polymers used in the preparation of functional nanoparticle composite microspheres are hydrophobic, the polymers and nanoparticles are dissolved in a non-polar organic solvent in advance, and the polymer fluid is In the microfluidic channel, the water phase at a certain flow rate is broken and emulsified to form droplets, and the formed droplets are solidified into balls after the solvent volatilizes. Membrane emulsification-emulsion solvent evaporation method: If the nanoparticles and polymers used in the preparation of functional nanoparticle composite microspheres are hydrophobic, the polymers and nanoparticles are dissolved in non-polar organic solvents in advance as the dispersed phase , and the aqueous solution containing surfactant is used as the continuous phase, the dispersed phase and the continuous phase are placed on both sides of the rigid porous membrane, and the dispersed phase is pressed into the continuous phase through the uniform microporous structure on the porous membrane under a certain nitrogen pressure. At this time, the stabilizer in the continuous phase will be adsorbed on the surface of the droplet to reduce the surface tension and stabilize the droplet, and then the formed droplet will be solidified into a ball after the solvent volatilizes.

所述功能性纳米颗粒复合微球在检测样品中一种或多种目标物中的应用。Application of the functional nanoparticle composite microsphere in detecting one or more target objects in a sample.

一种基于功能性纳米颗粒复合微球的生物检测探针,所述生物检测探针包括根据权利要求1-7任意一项所述的功能性纳米颗粒复合PEG微球和偶联在所述功能性纳米颗粒复合PEG微球表面的探针分子;所述探针分子选自下列中的一种或几种:蛋白质、蛋白质片段和核酸。A biological detection probe based on functional nanoparticle composite microspheres, said biological detection probe comprising functional nanoparticle composite PEG microspheres according to any one of claims 1-7 and coupling in said functional Probe molecules on the surface of the nanoparticle composite PEG microsphere; the probe molecules are selected from one or more of the following: proteins, protein fragments and nucleic acids.

所述生物检测探针在检测样品中一种或多种目标物中的应用。The application of the biological detection probe in the detection of one or more target objects in a sample.

以下将结合附图对本发明作进一步说明,以充分说明本发明的目的、技术特征和技术效果。The present invention will be further described below in conjunction with the accompanying drawings, in order to fully illustrate the purpose, technical features and technical effects of the present invention.

附图说明Description of drawings

图1是实施例4的复合PEG微球扫描电镜照片;Fig. 1 is the composite PEG microsphere scanning electron micrograph of embodiment 4;

图2是实施例8的复合PEG微球激光共聚焦显微镜照片;Fig. 2 is the composite PEG microsphere laser confocal micrograph of embodiment 8;

图3是实施例9的生物检测探针检测肿瘤标志物AFP的结果,以及与基于非PEG微球生物探针的检测结果的对比;Fig. 3 is the result that the biodetection probe of embodiment 9 detects tumor marker AFP, and the comparison with the detection result based on non-PEG microsphere bioprobe;

图4是图3的局部放大图。FIG. 4 is a partially enlarged view of FIG. 3 .

具体实施方式Detailed ways

下面结合附图对本发明提供的具体实施方式作详细说明。The specific embodiments provided by the present invention will be described in detail below in conjunction with the accompanying drawings.

复合微球表面羧基的1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)活化、探针分子的连接、抗原如甲胎蛋白(AFP)的藻红蛋白标记等操作均为临床免疫检测诊断的基本操作,具体可参照《临床免疫学检验实验指导》,作者:吕世静,出版社:中国医药科学出版社。1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC) activation of carboxyl groups on the surface of composite microspheres, attachment of probe molecules, phycoerythrin labeling of antigens such as alpha-fetoprotein (AFP) Such operations are the basic operations of clinical immunological detection and diagnosis. For details, please refer to "Guidelines for Clinical Immunological Testing and Experiments", author: Lu Shijing, publisher: China Medical Science Press.

实施例1:PEG接枝聚合物的制备(一)Embodiment 1: the preparation of PEG graft polymer (one)

将1g聚苯乙烯马来酸酐共聚物(PSMA)和2g分子量为1000的聚乙二醇单甲醚(mPEG1000)溶于20ml二甲基甲酰胺(DMF)中,并加入100mg催化剂对甲苯磺酸,常温溶解2h混合均匀后,在氮气保护下加热至100摄氏度反应12h。反应完成后加入无水乙醚将所得聚合物PSMA-PEG沉淀出来,反复离心洗涤三次后将聚合物冷冻干燥待用。Dissolve 1 g of polystyrene maleic anhydride copolymer (PSMA) and 2 g of polyethylene glycol monomethyl ether (mPEG1000) with a molecular weight of 1000 in 20 ml of dimethylformamide (DMF), and add 100 mg of catalyst p-toluenesulfonic acid , dissolved at room temperature for 2 hours, mixed evenly, and heated to 100 degrees Celsius under nitrogen protection for 12 hours. After the reaction was completed, anhydrous ether was added to precipitate the obtained polymer PSMA-PEG, and the polymer was freeze-dried after repeated centrifugation and washing for three times.

实施例2:PEG接枝聚合物的制备(二)Embodiment 2: the preparation of PEG graft polymer (two)

将1g聚苯乙烯丙烯酸共聚物和5g分子量为5000的端羧基聚乙二醇单甲醚(mPEG-COOH)溶于30ml氯仿,加入数滴浓硫酸在N2保护条件下加热冷凝回流12h,反应完成后加入无水乙醚将聚合物沉淀出来,反复离心洗涤三次后将聚合物冷冻干燥待用。Dissolve 1g of polystyrene acrylic acid copolymer and 5g of carboxy-terminated polyethylene glycol monomethyl ether (mPEG-COOH) with a molecular weight of 5000 in 30ml of chloroform, add a few drops of concentrated sulfuric acid, heat and condense under N2 protection conditions and reflux for 12h, react After completion, anhydrous ether was added to precipitate the polymer, and after repeated centrifugation and washing three times, the polymer was freeze-dried for use.

实施例3:PEG接枝聚合物的制备(三)Embodiment 3: the preparation of PEG graft polymer (three)

将马来酸酐/1-十八碳烯交替共聚物(PMAO)与10g分子量为2000一端氨基封端PEG(mPEG-NH2)溶于30ml氯仿,搅拌24h后,加入无水乙醇将聚合物沉淀出来,并除去未反应的PEG分子,反复离心洗涤三次后将聚合物冷冻干燥待用。Dissolve maleic anhydride/1-octadecene alternating copolymer (PMAO) and 10 g of one-end amino-terminated PEG (mPEG-NH 2 ) with a molecular weight of 2000 in 30 ml of chloroform, stir for 24 hours, then add absolute ethanol to precipitate the polymer out, and remove the unreacted PEG molecules, centrifuge and wash three times, and freeze-dry the polymer for use.

实施例4:复合PEG微球粉末的制备(一)Embodiment 4: the preparation of composite PEG microsphere powder (one)

本例中所使用的膜乳化装置为压力式膜乳化装置,购自日本SPGtechnology公司;具体过程是将实施例1中的PSMA-PEG和发射波长518nm的CdS/ZnS量子点溶于甲苯中,聚合物浓度为1.5g/mL,量子点浓度为2nM/L,以之作为分散相。采用孔径为5μm的SPG多孔膜,利用压力为15KPa的氮气将分散相挤压过膜,进入含有乳化剂SDS浓度为1wt.%的水连续相,连续相的流速是0.35m/s,得到液滴粒径均一的水包油乳液。于25℃和350rpm磁力搅拌下进行搅拌挥发,待溶液中甲苯完全挥发后,对得到的量子点标记荧光微球悬浮液进行离心收集。之后经去离子水离心洗涤3次,无水乙醇离心洗涤3次,冷冻干燥得到量子点复合微球的固体粉末。The membrane emulsification device used in this example is a pressure type membrane emulsification device, which is purchased from Japan SPGtechnology company; the specific process is to dissolve the PSMA-PEG in Example 1 and the CdS/ZnS quantum dots with an emission wavelength of 518nm in toluene, polymerize The concentration of quantum dots is 1.5g/mL, and the concentration of quantum dots is 2nM/L, which is used as the dispersed phase. The SPG porous membrane with a pore diameter of 5 μm is adopted, and the dispersed phase is extruded through the membrane by nitrogen gas with a pressure of 15KPa, and enters a water continuous phase containing an emulsifier SDS concentration of 1wt.%. The flow velocity of the continuous phase is 0.35m/s, and the liquid is obtained. Oil-in-water emulsion with uniform particle size. Stir and volatilize at 25° C. and 350 rpm under magnetic stirring. After the toluene in the solution is completely volatilized, the obtained suspension of quantum dot-labeled fluorescent microspheres is collected by centrifugation. After that, it was centrifuged and washed three times with deionized water and three times with absolute ethanol, and freeze-dried to obtain the solid powder of quantum dot composite microspheres.

经扫描电镜观察,所制备的量子点复合荧光微球为表面光滑的球形颗粒,平均粒径为7.1μm,粒径分布变异系数CV为9.7%左右,单分散性较好,见附图1。Observation by scanning electron microscope shows that the prepared quantum dot composite fluorescent microspheres are spherical particles with smooth surface, the average particle size is 7.1 μm, the coefficient of variation of particle size distribution CV is about 9.7%, and the monodispersity is good, see Figure 1.

实施例5:复合PEG微球粉末的制备(二)Embodiment 5: the preparation of composite PEG microsphere powder (two)

本例中所使用的为自制带T型接头的微流控装置,具体过程为将实施例2中的PEG接枝聚苯乙烯丙烯酸共聚物和Fe3O4溶于氯中,聚合物浓度为1g/mL,Fe3O4浓度为1nM/L,以之作为分散相;将含浓度为0.5wt.%乳化剂PVA和浓度为0.5wt.%SDS的水溶液作为连续相,并将分散相从不同通道注入在T型接口处汇合、乳化。分散相流速为30mL/h,连续相的流速是1L/h,得到液滴粒径均一的水包油乳液。于25℃和350rpm磁力搅拌下进行搅拌挥发,待溶液中氯仿完全挥发后,对得到的磁珠悬浮液进行磁分离收集。之后经洗涤3次,无水乙醇洗涤3次,冷冻干燥得到磁珠的固体粉末。What used in this example is a self-made microfluidic device with a T-shaped joint. The specific process is that the PEG - grafted polystyrene acrylic acid copolymer and Fe in Example 2 are dissolved in chlorine, and the concentration of the polymer is 1g/mL, Fe 3 O 4 concentration is 1nM/L, with it as dispersed phase; Containing the aqueous solution that concentration is 0.5wt.% emulsifier PVA and concentration is 0.5wt.% SDS as continuous phase, and dispersed phase from The injections from different channels converge and emulsify at the T-shaped interface. The flow rate of the dispersed phase was 30 mL/h, and the flow rate of the continuous phase was 1 L/h, to obtain an oil-in-water emulsion with uniform droplet size. Stir and volatilize at 25° C. and 350 rpm under magnetic stirring. After the chloroform in the solution is completely volatilized, collect the obtained magnetic bead suspension by magnetic separation. After that, it was washed 3 times, washed 3 times with absolute ethanol, and freeze-dried to obtain solid powder of magnetic beads.

经扫描电镜观察,所制备的量子点复合荧光微球为表面光滑的球形颗粒,平均粒径为300μm,粒径分布变异系数CV为8.7%左右,单分散性较好。Observed by scanning electron microscope, the prepared quantum dot composite fluorescent microspheres are spherical particles with smooth surface, the average particle size is 300 μm, the variation coefficient CV of particle size distribution is about 8.7%, and the monodispersity is good.

实施例6复合PEG微球粉末的制备(三)The preparation of embodiment 6 composite PEG microsphere powder (three)

将实例3中的PMAO-PEG和激发波长为980nm的NaYF4稀土纳米颗粒溶于甲苯中,PMAO-PEG共聚物浓度为2g/mL,NaYF4稀土纳米颗粒浓度为1nM/L,以之作为分散相。采用孔径为3μm的SPG多孔膜,利用压力为20KPa的氮气将分散相挤压过膜,进入含有乳化剂SDS浓度为1wt.%的水连续相,连续相的流速是0.40m/s,得到液滴粒径均一的水包油乳液。于25℃和350rpm磁力搅拌下进行搅拌挥发。待溶液中甲苯完全挥发后,对得到的稀土纳米颗粒复合荧光微球悬浮液进行离心收集。之后经去离子水离心洗涤3次,无水乙醇离心洗涤3次,冷冻干燥得到稀土纳米颗粒复合荧光微球的固体粉末。The PMAO-PEG among the example 3 and the NaYF4 rare earth nanoparticle that excitation wavelength is 980nm are dissolved in toluene, PMAO-PEG copolymer concentration is 2g/mL, NaYF4 rare earth nanoparticle concentration is 1nM/L, with it as dispersed phase . The SPG porous membrane with a pore diameter of 3 μm is adopted, and the dispersed phase is extruded through the membrane by nitrogen gas with a pressure of 20KPa, and enters a water continuous phase containing an emulsifier SDS concentration of 1wt.%. The flow velocity of the continuous phase is 0.40m/s, and the liquid is obtained. Oil-in-water emulsion with uniform particle size. Stir and volatilize at 25° C. and 350 rpm magnetic stirring. After the toluene in the solution is completely volatilized, the obtained rare earth nanoparticle composite fluorescent microsphere suspension is collected by centrifugation. Afterwards, it was centrifuged and washed three times with deionized water and three times with absolute ethanol, and freeze-dried to obtain solid powder of rare earth nanoparticle composite fluorescent microspheres.

经扫描电镜观察,所制备的量子点复合荧光微球为表面光滑的球形颗粒,平均粒径为4.1μm,粒径分布变异系数CV值为6.2%左右,单分散性较好。Observed by scanning electron microscope, the prepared quantum dot composite fluorescent microspheres are spherical particles with smooth surface, the average particle size is 4.1 μm, the CV value of the particle size distribution variation coefficient is about 6.2%, and the monodispersity is good.

实施例7复合PEG微球粉末的制备(四)The preparation of embodiment 7 composite PEG microsphere powder (four)

先制备多孔聚合物微球,第一步为制备种子聚苯乙烯(PS)微球,即将2g聚乙烯吡咯烷酮(PVP)溶于100g连续相中(无水乙醇与乙二醇甲醚的混合溶剂);然后加入含有油溶性引发剂AIBN的苯乙烯单体,在速度120rpm的磁力搅拌下,通氮气15分钟后升温到70℃,氮气保护反应12小时。最后将得到的种子聚苯乙烯(PS)微球悬浮液用4000rpm离心分离,用去离子水和乙醇各冼涤三次,冷冻干燥后保存待用。Prepare porous polymer microspheres first, and the first step is to prepare seed polystyrene (PS) microspheres, which is to dissolve 2g polyvinylpyrrolidone (PVP) in 100g continuous phase (mixed solvent of absolute ethanol and ethylene glycol methyl ether) ); Then add the styrene monomer containing the oil-soluble initiator AIBN, under the magnetic stirring at a speed of 120rpm, the temperature is raised to 70° C. after passing nitrogen for 15 minutes, and the reaction is carried out under nitrogen protection for 12 hours. Finally, the obtained seed polystyrene (PS) microsphere suspension was centrifuged at 4000 rpm, washed with deionized water and ethanol three times each, freeze-dried and stored for later use.

将0.2gPS种子微球和0.1mL氯代十二烷(CD,作为活化剂)分别加入到25mL溶有0.25wt.%的十二烷基硫酸钠(SDS)水溶液中,各自超声分散5分钟后将二者混合,之后再超声10分钟后于30℃磁力搅拌下溶胀12小时。再将溶有0.06gBPO的混合单体(包括苯乙烯单体,功能性单体甲基丙烯酸MAA,交联剂二乙烯基苯DVB)加入到50mL溶有0.25wt.%SDS的水溶液中,超声分散15分钟,之后与活化的种子微球溶液混合溶胀12小时。然后再加入PVA,浓度为整体溶液的1wt.%,通氮气15分钟后升温至70℃,氮气保护反应12小时。将反应后得到的微球悬浮液用4000rpm离心分离,用去离子水和乙醇各冼涤三次,之后冷冻干燥得到表面羧基化的聚苯乙烯微球。最后在索式提取器中,用二氯甲烷对微球进行48小时的抽提,待微球内的线形PS分子被抽提出来后,即得到多孔的单分散聚(苯乙烯-二乙烯基苯-甲基丙烯酸)(PSDM)微球。Add 0.2g of PS seed microspheres and 0.1mL of chlorododecane (CD, as an activator) to 25mL of 0.25wt.% sodium dodecyl sulfate (SDS) aqueous solution, and ultrasonically disperse them for 5 minutes. Mix the two, and then sonicate for 10 minutes and then swell for 12 hours under magnetic stirring at 30°C. Then the mixed monomer (comprising styrene monomer, functional monomer methacrylic acid MAA, crosslinking agent divinylbenzene DVB) that is dissolved with 0.06gBPO is added in the aqueous solution that is dissolved with 0.25wt.%SDS, ultrasonic Disperse for 15 minutes, then mix with the activated seed microsphere solution and swell for 12 hours. Then add PVA, the concentration is 1wt.% of the whole solution, and then heat up to 70° C. after 15 minutes of blowing nitrogen, and react under nitrogen protection for 12 hours. The microsphere suspension obtained after the reaction was centrifuged at 4000 rpm, washed three times with deionized water and ethanol, and then freeze-dried to obtain surface carboxylated polystyrene microspheres. Finally, in the Soxhlet extractor, the microspheres were extracted with dichloromethane for 48 hours. After the linear PS molecules in the microspheres were extracted, the porous monodisperse poly(styrene-divinyl benzene-methacrylic acid) (PSDM) microspheres.

将0.5mL10.0nM的TiO2的三氯甲烷溶液加入到1mL含有107个PSDM多孔微球的三氯甲烷溶液之中,之后瓶口密封,在400rpm磁力搅拌下对微球溶胀2小时。然后去除封口,于室温下继续对溶液进行搅拌,随着溶液中三氯甲烷的挥发,溶液内部的量子点逐渐被浓缩,TiO2在微球内外浓度差的作用下不断渗透进入到微球的孔结构之中,待溶液内三氯甲烷完全挥发后停止搅拌。利用二甲苯、乙醇、水分别对微球进行4000rpm离心洗涤,以去除掉残留在微球外部的量子点,最后离心收集到的微球经真空冻干后以固体粉末状态进行保存待用。Add 0.5 mL of 10.0 nM TiO 2 in chloroform to 1 mL of chloroform containing 10 7 PSDM porous microspheres, seal the bottle, and swell the microspheres for 2 hours under magnetic stirring at 400 rpm. Then remove the seal, and continue to stir the solution at room temperature. With the volatilization of chloroform in the solution, the quantum dots inside the solution are gradually concentrated, and TiO2 continuously penetrates into the microsphere under the effect of the concentration difference between the inside and outside of the microsphere. In the pore structure, stop stirring after the chloroform in the solution is completely volatilized. The microspheres were centrifuged and washed at 4000rpm with xylene, ethanol and water respectively to remove the quantum dots remaining on the outside of the microspheres. Finally, the microspheres collected by centrifugation were vacuum freeze-dried and stored in a solid powder state for later use.

将所得到的TiO2/PSDM微球表面羧基在EDC活化下,连接上N一羟基琥珀亚酰胺,然后再连接分子量为1000一端氨基封端的PEG和分子量为2000两端氨基封端的PEG,两种PEG分子摩尔比为3:1。Under the activation of EDC, the carboxyl groups on the surface of the obtained TiO 2 /PSDM microspheres were connected to N-hydroxysuccinimide, and then connected to PEG with a molecular weight of 1000 and PEG with a molecular weight of 2000. The molar ratio of PEG molecules is 3:1.

经扫描电镜观察,所制备的量子点复合荧光微球为表面光滑的球形颗粒,平均粒径为6μm,粒径分布变异系数CV为5.7%左右,单分散性较好。Observed by scanning electron microscope, the prepared quantum dot composite fluorescent microspheres are spherical particles with smooth surface, the average particle size is 6 μm, the variation coefficient CV of particle size distribution is about 5.7%, and the monodispersity is good.

实施例8复合PEG微球粉末的制备(五)The preparation of embodiment 8 composite PEG microsphere powder (five)

将实施例1中的PSMA-PEG和发射波长为680nm的CuInS2/ZnS量子点和Fe3O4磁性纳米颗粒溶于甲苯中,PSMA-PEG浓度为2g/mL,量子点浓度为1nM/L,Fe3O4磁性纳米颗粒浓度为1nM/L,以之作为分散相。采用孔径为5μm的SPG多孔膜,利用压力为20KPa的氮气将分散相挤压过膜,进入含有乳化剂SDS浓度为1wt.%的水连续相,连续相的流速是0.40m/s,得到液滴粒径均一的水包油乳液。于25℃和350rpm磁力搅拌下进行搅拌挥发。待溶液中甲苯完全挥发后,对得到的量子点标记荧光微球悬浮液用磁力进行分离收集。并用去离子水离心洗涤3次,无水乙醇离心洗涤3次,冷冻干燥得到表面带有羧基的量子点/Fe3O4复合荧光磁性微球的固体粉末。经电镜扫描观察,制得的量子点/Fe3O4复合荧光磁性微球为表面光滑的球形颗粒,平均粒径为6.8μm,粒径分布变异系数CV为9%左右,单分散性较好。The PSMA-PEG in Example 1 and CuInS 2 /ZnS quantum dots and Fe 3 O 4 magnetic nanoparticles with an emission wavelength of 680nm were dissolved in toluene, the concentration of PSMA-PEG was 2g/mL, and the concentration of quantum dots was 1nM/L , the concentration of Fe 3 O 4 magnetic nanoparticles is 1nM/L, which is used as the dispersed phase. The SPG porous membrane with a pore size of 5 μm is adopted, and the dispersed phase is extruded through the membrane by nitrogen gas with a pressure of 20KPa, and enters a water continuous phase containing an emulsifier SDS concentration of 1wt.%. The flow velocity of the continuous phase is 0.40m/s, and the liquid is obtained. Oil-in-water emulsion with uniform particle size. Stir and volatilize at 25° C. and 350 rpm magnetic stirring. After the toluene in the solution is completely volatilized, the obtained suspension of quantum dot-labeled fluorescent microspheres is separated and collected by magnetic force. Then centrifuge washing with deionized water for 3 times and absolute ethanol for 3 times, and freeze-dry to obtain the solid powder of quantum dots/Fe 3 O 4 composite fluorescent magnetic microspheres with carboxyl groups on the surface. Observation by scanning electron microscope, the prepared quantum dots/Fe 3 O 4 composite fluorescent magnetic microspheres are spherical particles with smooth surface, the average particle size is 6.8 μm, the variation coefficient CV of particle size distribution is about 9%, and the monodispersity is good. .

经激光共聚焦观察,微球内部量子点分布均匀,见图2。Through laser confocal observation, the distribution of quantum dots inside the microspheres is uniform, as shown in Figure 2.

实施例9基于功能性纳米颗粒复合PEG微球的生物检测探针(一)Example 9 Biodetection probe based on functional nanoparticles composite PEG microspheres (1)

将实施例8所制备的量子点/Fe3O4复合PEG微球的表面羧基在EDC化下,连接上N-羟基琥珀亚酰胺,然后再连接甲胎蛋白抗体AFP-Ab作为探针分子。量子点复合荧光微球在表面连接AFP-Ab后形成特异性检测甲胎蛋白AFP的生物检测探针。将这种生物检测探针投入到含有甲胎蛋白AFP中的样品中反应后,再将探针上连接的目标物甲胎蛋白AFP用异硫氰酸荧光素标记。最后反应后的生物检测探针在激光激发下发出荧光信号,通过微球内部量子点荧光信号和探针分子上所连接的目标物的标记荧光信号强度对样品内的甲胎蛋白AFP进行定性与定量分析。同时,进行对照组实验,对照组实验所采用的是羧基化的聚苯乙烯-马来酸酐微球(非PEG微球),其内部纳米颗粒浓度及生物探针实验均保持一致。检测结果见附图3,从图中可以看出,两种微球均能对甲胎蛋白进行高灵敏的定量检测,而PEG微球探针检测灵敏度约高一个数量级,其在低浓度下标记荧光信号强度明显更低,表明其抑制非特异性吸附的效果。The surface carboxyl groups of the quantum dots/Fe 3 O 4 composite PEG microspheres prepared in Example 8 were connected to N-hydroxysuccinimide under EDC, and then connected to the alpha-fetoprotein antibody AFP-Ab as a probe molecule. The quantum dot composite fluorescent microsphere forms a biological detection probe for specific detection of alpha-fetoprotein AFP after the surface is connected with AFP-Ab. After the biological detection probe is put into the sample containing alpha-fetoprotein AFP for reaction, the target alpha-fetoprotein AFP connected to the probe is labeled with fluorescein isothiocyanate. The biodetection probe after the final reaction emits a fluorescent signal under laser excitation, and the alpha-fetoprotein AFP in the sample is qualitatively compared with the fluorescent signal of the quantum dot inside the microsphere and the labeled fluorescent signal intensity of the target object connected to the probe molecule. quantitative analysis. At the same time, a control group experiment was carried out. The control group experiment used carboxylated polystyrene-maleic anhydride microspheres (non-PEG microspheres), and its internal nanoparticle concentration and biological probe experiments were consistent. The test results are shown in Figure 3. It can be seen from the figure that the two types of microspheres can perform highly sensitive quantitative detection of alpha-fetoprotein, while the detection sensitivity of the PEG microsphere probe is about an order of magnitude higher. The fluorescent signal intensity was significantly lower, indicating its effect in suppressing non-specific adsorption.

实施例10基于功能性纳米颗粒复合PEG微球的生物检测探针(二)Example 10 Biodetection probe based on functional nanoparticles composite PEG microspheres (2)

将实施例6所制备的稀土纳米颗粒复合PEG微球在EDC活化下,连接上序列为5’-TCAAGGCTCAGTTCGAATGCACCATA-3’的DNA链段作为探针分子,形成特异性检测DNA的生物检测探针。将这种生物检测探针投入到含有5’-TATGGTGCATTCGAACTGAGCCTTGA-3’的DNA链段的样品中反应后,再将探针上所连接的目标物,即序列为5’-TATGGTGCATTCGAACTGAGCCTTGA-3’的DNA链段用Cascade蓝标记。最后经处理过的稀土纳米颗粒复合微球在红外激光激发下发出荧光信号,通过微球内部稀土纳米颗粒荧光信号和探针分子上所连接的目标物的标记荧光信号对5’-TATGGTGCATTCGAACTGAGCCTTGA-3’的DNA链段进行定性与定量分析。The rare earth nanoparticle composite PEG microsphere prepared in Example 6 was activated by EDC, and a DNA segment with the sequence 5'-TCAAGGCTCAGTTCGAATGCACCATA-3' was connected as a probe molecule to form a biological detection probe for specific detection of DNA. Put this biological detection probe into the sample containing the DNA segment of 5'-TATGGTGCATTCGAACTGAGCCTTGA-3' for reaction, and then the target connected to the probe, that is, the DNA with the sequence of 5'-TATGGTGCATTCGAACTGAGCCTTGA-3' Segments are labeled with Cascade blue. Finally, the treated rare earth nanoparticle composite microsphere emits a fluorescent signal under the excitation of infrared laser. The fluorescent signal of the rare earth nanoparticle inside the microsphere and the labeled fluorescent signal of the target connected to the probe molecule are paired with 5'-TATGGTGCATTCGAACTGAGCCTTGA-3 'Qualitative and quantitative analysis of DNA segments.

实施例11基于功能性纳米颗粒复合PEG微球的生物检测探针(三)Example 11 Biodetection probe based on functional nanoparticles composite PEG microspheres (3)

将实施例3所制备的量子点复合PEG微球的表面羧基在EDC活化下,连接上N-羟基琥珀亚酰胺。然后,518nm量子点复合微球进一步连接抗甲胎蛋白抗体AFP-Ab作为检测探针分子。518nm量子点复合微球在表面连接甲胎蛋白抗体AFP-Ab后形成特异性检测甲胎蛋白AFP的生物检测探针。680nm量子点复合微球连接抗癌胚抗原抗体CEA-Ab作为检测探针分子。680nm量子点复合微球在表面连接抗体CEA-Ab后形成特异性检测癌胚抗原CEA的生物检测探针。将这两种生物检测探针一起投入到同时含有甲胎蛋白AFP和癌胚抗原CEA中的样品中反应后,将探针上连接的目标物再用藻红蛋白标记。反应后的生物检测探针在激光激发下发出荧光信号,微球内部量子点荧光在518nm的为AFP检测结果,微球内部量子点荧光在680nm的为CEA检测结果,再通过探针分子上所连接的目标物的标记荧光强度对样品内AFP和CEA各自进行定量分析。The surface carboxyl groups of the quantum dot composite PEG microspheres prepared in Example 3 were linked with N-hydroxysuccinimide under the activation of EDC. Then, the 518nm quantum dot composite microsphere is further connected with the anti-alpha-fetoprotein antibody AFP-Ab as the detection probe molecule. The 518nm quantum dot composite microsphere forms a biological detection probe for specific detection of alpha-fetoprotein AFP after the surface is connected with alpha-fetoprotein antibody AFP-Ab. The 680nm quantum dot composite microsphere is connected with the anti-carcinoembryonic antigen antibody CEA-Ab as the detection probe molecule. The 680nm quantum dot composite microsphere forms a biological detection probe for specific detection of carcinoembryonic antigen CEA after the surface is connected with antibody CEA-Ab. After the two biological detection probes are put into a sample containing both alpha-fetoprotein AFP and carcinoembryonic antigen CEA for reaction, the target connected to the probe is then labeled with phycoerythrin. The reacted biological detection probe emits a fluorescent signal under laser excitation. The quantum dot fluorescence inside the microsphere at 518nm is the detection result of AFP, and the quantum dot fluorescence inside the microsphere at 680nm is the detection result of CEA. The labeled fluorescence intensity of the attached target was quantified for each of AFP and CEA within the sample.

针对上述实施例1-8,需要说明的是,上述实施例并非穷举,所属技术领域的技术人员应当知道,所述的功能性纳米颗粒还可以是半导体纳米颗粒,金属纳米粒子;所述的功能性纳米颗粒还可以是以下量子点:HgS、CdSe、CdTe、ZnSe、HgSe、ZnTe、ZnO、PbSe、HgTe、CaAs、InP、InCaAs、CdSe/CdS、CdSe/ZnS、CdSe/ZnSe、CdS/ZnS、Cd/Ag2S、CdS/Cd(OH)2、CdTe/ZnS、CdTe/CdS、CdSe/ZnSe、CdS/HgS、CdS/HgS/CdS、ZnS/CdS、ZnS/CdS/ZnS、ZnS/HgS/ZnS/CdS、CdSe/CuSe、CdSeTe、CdSeTe/CdS/ZnS、CdSe/CdS/ZnS、CuInS2、CuInSe2、CuInSe2/ZnS,以及掺杂量子点CdS:Mn、CdS:Mn、CdS:Cu、ZnS:Cu、CdS:Tb、ZnS:Tb等;所用的聚合物还可以是聚苯乙烯、聚丙烯酸、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚酰胺、聚丙烯腈、聚碳酸酯、聚己内酯、聚氨酯、聚乳酸、壳聚糖、白蛋白、胶原、聚乙酸乙酯、聚苯乙烯丙烯酸共聚物、聚苯乙烯甲基丙烯酸共聚物或聚苯乙烯-甲基丙烯酸甲酯共聚物等;所用的PEG衍生物还可以是包多臂PEG,Y型结构,枝状结构,PEG混合体系及其它衍生物;所用的表面改性的方法还可以是磺化等,经表面改性还可连接有以下官能团中的一种或几种:氨基、磺酸根基、硝基、羟基、巯基、氯基或酯基等,并可通过官能团连接以下连接物:生物素、亲和素或抗生蛋白链菌素等。For the above-mentioned embodiments 1-8, it should be noted that the above-mentioned embodiments are not exhaustive, and those skilled in the art should know that the functional nanoparticles can also be semiconductor nanoparticles or metal nanoparticles; Functional nanoparticles can also be the following quantum dots: HgS, CdSe, CdTe, ZnSe, HgSe, ZnTe, ZnO, PbSe, HgTe, CaAs, InP, InCaAs, CdSe/CdS, CdSe/ZnS, CdSe/ZnSe, CdS/ZnS , Cd/Ag 2 S, CdS/Cd(OH) 2 , CdTe/ZnS, CdTe/CdS, CdSe/ZnSe, CdS/HgS, CdS/HgS/CdS, ZnS/CdS, ZnS/CdS/ZnS, ZnS/HgS /ZnS/CdS, CdSe/CuSe, CdSeTe, CdSeTe/CdS/ZnS, CdSe/CdS/ZnS, CuInS 2 , CuInSe 2 , CuInSe 2 /ZnS, and doped quantum dots CdS:Mn, CdS:Mn, CdS:Cu , ZnS:Cu, CdS:Tb, ZnS:Tb, etc.; the polymer used can also be polystyrene, polyacrylic acid, polymethyl methacrylate, polyethyl methacrylate, polyamide, polyacrylonitrile, poly Carbonate, polycaprolactone, polyurethane, polylactic acid, chitosan, albumin, collagen, polyethyl acetate, polystyrene-acrylic acid copolymer, polystyrene-methacrylic acid copolymer, or polystyrene-methacrylic acid Methyl ester copolymers, etc.; the PEG derivatives used can also include multi-arm PEG, Y-shaped structure, branched structure, PEG mixed system and other derivatives; the surface modification method used can also be sulfonation, etc., after Surface modification can also be connected with one or more of the following functional groups: amino group, sulfonate group, nitro group, hydroxyl group, mercapto group, chlorine group or ester group, etc., and the following linkers can be connected through functional groups: biotin, hydrophilic And prime or streptavidin, etc.

本发明的基于功能性纳米颗粒复合PEG微球的生物检测探针可用于检测样品中一种或多种目标物,如用于疾病诊断中检测细胞因子、过敏原和自身免疫反应、HLA分型、SNP检测、肿瘤特异抗原定量检测、多重微生物运量检测等;或用于基础研究中如基因分型、蛋白表达分型、酶-底物分析、核酸研究等;还可运用到食品安全、农兽药残留多重定量检测和司法鉴定等领域。The biological detection probe based on functional nanoparticle composite PEG microspheres of the present invention can be used to detect one or more targets in a sample, such as detecting cytokines, allergens and autoimmune reactions, HLA typing in disease diagnosis , SNP detection, tumor-specific antigen quantitative detection, multiple microbial transport detection, etc.; or used in basic research such as genotyping, protein expression typing, enzyme-substrate analysis, nucleic acid research, etc.; can also be applied to food safety, Fields such as multiple quantitative detection of pesticide and veterinary drug residues and forensic identification.

具体地,采用本发明的基于复合PEG微球的生物检测探针检测样品中一种或多种目标物的方法是:Specifically, the method for using the biological detection probe based on composite PEG microspheres of the present invention to detect one or more target objects in a sample is:

(1)将本发明的生物检测探针中的一种或多种组合投入到含有目标物的样品中,探针分子与目标物特异性成键;(1) Put one or more combinations of the biological detection probes of the present invention into a sample containing a target, and the probe molecule is specifically bonded to the target;

(2)对连接在生物检测探针上的目标物进一步用荧光物质进行荧光标记;(2) further fluorescently labeling the target object connected to the biological detection probe with a fluorescent substance;

(3)利用仪器对生物探针检测结果进行分析。(3) Analyzing the detection results of the biological probes with the instrument.

步骤(1)中所述的目标物包括蛋白质、蛋白质片段或核酸;步骤(2)中所述的荧光物质包括:异硫氰酸荧光素(FITC)、藻红蛋白(PE)、碘化丙啶(PI)、化青素(CY5)、叶绿素蛋白(preCP)、藻红蛋白-德克萨斯红、Cascade蓝及表面改性量子点;步骤(3)中,利用仪器对生物探针检测结果进行分析指的是利用仪器,通过对微球内部纳米颗粒性能的测定来对检测样品中的目标物进行定性分析,同时通过对生物检测探针上所连接的目标物标记荧光强度来对检测样品中的目标物进行定量分析;用于检测的常用仪器包括:流式细胞仪、Luminex悬浮式阵列检测系统(美国Luminex公司)、荧光分光光度计、光纤光谱仪、激光共聚焦显微镜、荧光显微镜、震动样品磁强计。Targets described in step (1) include proteins, protein fragments or nucleic acids; fluorescent substances described in step (2) include: fluorescein isothiocyanate (FITC), phycoerythrin (PE), propidium iodide Pyridine (PI), cyanidin (CY5), chlorophyll protein (preCP), phycoerythrin-Texas Red, Cascade blue, and surface-modified quantum dots; in step (3), use the instrument to detect the biological probe The analysis of the results refers to the use of instruments to qualitatively analyze the target in the test sample by measuring the properties of the nanoparticles inside the microsphere, and at the same time to measure the detection by marking the fluorescence intensity of the target connected to the biological detection probe. Quantitative analysis of the target in the sample; commonly used instruments for detection include: flow cytometer, Luminex suspension array detection system (Luminex, USA), fluorescence spectrophotometer, fiber optic spectrometer, laser confocal microscope, fluorescence microscope, Shake the sample magnetometer.

对生物探针检测结果进行分析进一步包括:利用本发明的复合PEG微球内部纳米颗粒性能的测定来对检测样品中的目标物进行定性分析;通过生物检测探针上所连接的目标物标记荧光的强度来对检测样品中的目标物进行定量分析,其中生物检测探针上所连接的目标物标记荧光的强度与检测样品中的目标物浓度成正比关系。Analyzing the detection results of the biological probe further includes: using the determination of the properties of the nanoparticles inside the composite PEG microsphere of the present invention to qualitatively analyze the target in the detection sample; The intensity of the target substance in the detection sample is quantitatively analyzed, wherein the intensity of the fluorescent label of the target substance attached to the biological detection probe is directly proportional to the concentration of the target substance in the detection sample.

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred specific embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning or limited experiments on the basis of the prior art shall be within the scope of protection defined by the claims.

Claims (10)

1.一种功能性纳米颗粒复合微球,其特征在于,所述功能性纳米颗粒复合微球为功能性纳米颗粒复合PEG微球,所述功能性纳米颗粒复合PEG微球包含功能性纳米颗粒和含有PEG链段的聚合物,所述功能性纳米颗粒复合PEG微球的平均粒径为0.1~1000μm,粒径分布变异系数小于10%。1. A functional nanoparticle composite microsphere, characterized in that, the functional nanoparticle composite microsphere is a functional nanoparticle composite PEG microsphere, and the functional nanoparticle composite PEG microsphere comprises a functional nanoparticle As for the polymer containing PEG chain segments, the average particle diameter of the functional nanoparticle composite PEG microsphere is 0.1-1000 μm, and the variation coefficient of particle diameter distribution is less than 10%. 2.根据权利要求1所述的功能性纳米颗粒复合微球,其特征在于,所述功能性纳米颗粒是下列中的一种或几种:量子点、磁性纳米颗粒、荧光纳米颗粒、金属纳米颗粒、金属氧化物纳米颗粒和半导体纳米颗粒;其中所述量子点是下列中的一种或几种:CdS、HgS、CdSe、CdTe、ZnSe、HgSe、ZnTe、ZnO、PbSe、HgTe、CaAs、InP、InCaAs、CdSe/CdS、CdSe/ZnS、CdSe/ZnSe、CdS/ZnS、Cd/Ag2S、CdS/Cd(OH)2、CdTe/ZnS、CdTe/CdS、CdSe/ZnSe、CdS/HgS、CdS/HgS/CdS、ZnS/CdS、ZnS/CdS/ZnS、ZnS/HgS/ZnS/CdS、CdSe/CuSe、CdSeTe、CdSeTe/CdS/ZnS、CdSe/CdS/ZnS、CuInS2、CuInSe2、CuInS2/ZnS、CuInSe2/ZnS,以及掺杂量子点CdS:Mn、CdS:Mn、CdS:Cu、ZnS:Cu、CdS:Tb、ZnS:Tb。2. The functional nanoparticle composite microsphere according to claim 1, wherein the functional nanoparticle is one or more of the following: quantum dots, magnetic nanoparticles, fluorescent nanoparticles, metal nanoparticles Particles, metal oxide nanoparticles and semiconductor nanoparticles; wherein the quantum dots are one or more of the following: CdS, HgS, CdSe, CdTe, ZnSe, HgSe, ZnTe, ZnO, PbSe, HgTe, CaAs, InP , InCaAs, CdSe/CdS, CdSe/ZnS, CdSe/ZnSe, CdS/ZnS, Cd/Ag 2 S, CdS/Cd(OH) 2 , CdTe/ZnS, CdTe/CdS, CdSe/ZnSe, CdS/HgS, CdS /HgS/CdS, ZnS/CdS, ZnS/CdS/ZnS, ZnS/HgS/ZnS/CdS, CdSe/CuSe, CdSeTe, CdSeTe/CdS/ZnS, CdSe/CdS/ZnS, CuInS 2 , CuInSe 2 , CuInS 2 / ZnS, CuInSe 2 /ZnS, and doped quantum dots CdS:Mn, CdS:Mn, CdS:Cu, ZnS:Cu, CdS:Tb, ZnS:Tb. 3.根据权利要求1所述的功能性纳米颗粒复合微球,其特征在于,所述PEG链段接枝于下列聚合物中的一种或几种:聚苯乙烯、聚丙烯酸、聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚酰胺、聚丙烯腈、聚碳酸酯、聚己内酯、聚氨酯、聚乳酸、壳聚糖、白蛋白、胶原、聚苯乙烯马来酸酐共聚物、聚乙酸乙酯、聚苯乙烯丙烯酸共聚物、聚苯乙烯甲基丙烯酸共聚物或聚苯乙烯-甲基丙烯酸甲酯共聚物,聚(苯乙烯-二乙烯基苯-甲基丙烯酸)和马来酸酐-1-十八烯共聚物。3. The functional nanoparticle composite microsphere according to claim 1, wherein the PEG segment is grafted to one or more of the following polymers: polystyrene, polyacrylic acid, polymethyl Acrylic, polymethyl methacrylate, polyethyl methacrylate, polyamide, polyacrylonitrile, polycarbonate, polycaprolactone, polyurethane, polylactic acid, chitosan, albumin, collagen, polystyrene horse Anhydride copolymer, polyethyl acetate, polystyrene acrylic acid copolymer, polystyrene methacrylic acid copolymer or polystyrene-methyl methacrylate copolymer, poly(styrene-divinylbenzene-methyl acrylic acid) and maleic anhydride-1-octadecene copolymer. 4.根据权利要求1所述的功能性纳米颗粒复合微球,其特征在于,所述PEG链段包括分子量在500~10000Da范围内的PEG或PEG衍生物,所述PEG衍生物包括单功能PEG、均一型双功能PEG、异(基)双功能PEG、多臂PEG、Y型结构PEG、枝状结构PEG或其混合物。4. The functional nanoparticle composite microsphere according to claim 1, wherein the PEG segment includes PEG or PEG derivatives with a molecular weight in the range of 500 to 10,000 Da, and the PEG derivatives include monofunctional PEG , homogeneous bifunctional PEG, hetero(base) bifunctional PEG, multi-arm PEG, Y-shaped structure PEG, branched structure PEG or a mixture thereof. 5.根据权利要求1所述的功能性纳米颗粒复合微球,其特征在于,所述功能性纳米颗粒复合PEG微球经表面改性连有官能团;所述表面改性是下列中的一种或几种:水解、化学接枝或磺化;所述官能团是下列中的一种或几种:羧基、氨基、磺酸根基、硝基、羟基、巯基、氯基或酯基。5. functional nanoparticle composite microsphere according to claim 1, is characterized in that, described functional nanoparticle composite PEG microsphere is connected with functional group through surface modification; Described surface modification is a kind of in following or several: hydrolysis, chemical grafting or sulfonation; the functional group is one or more of the following: carboxyl, amino, sulfonate, nitro, hydroxyl, mercapto, chlorine or ester. 6.根据权利要求5所述的功能性纳米颗粒复合微球,其特征在于,所述官能团上还连接有以下连接物中的一种或几种:N-羟基琥珀亚酰胺、生物素、亲和素和抗生蛋白链菌素。6. The functional nanoparticle composite microsphere according to claim 5, characterized in that, the functional group is also connected with one or more of the following linkers: N-hydroxysuccinimide, biotin, affinity and streptavidin. 7.根据权利要求1-6任意一项所述的功能性纳米颗粒复合微球的制备方法,其特征在于,所述制备方法包括溶胀法、微流控法和膜乳化-乳液溶剂挥发法。7. The preparation method of functional nanoparticle composite microsphere according to any one of claims 1-6, characterized in that the preparation method comprises swelling method, microfluidic method and membrane emulsification-emulsion solvent evaporation method. 8.根据权利要求1-6任意一项所述的功能性纳米颗粒复合微球在检测样品中一种或多种目标物中的应用。8. Use of the functional nanoparticle composite microsphere according to any one of claims 1-6 in detecting one or more target objects in a sample. 9.一种基于功能性纳米颗粒复合微球的生物检测探针,其特征在于,所述生物检测探针包括根据权利要求1-6任意一项所述的功能性纳米颗粒复合PEG微球和偶联在所述功能性纳米颗粒复合PEG微球表面的探针分子;所述探针分子选自下列中的一种或几种:蛋白质、蛋白质片段和核酸。9. A biological detection probe based on functional nanoparticle composite microspheres, characterized in that, said biological detection probe comprises functional nanoparticle composite PEG microspheres according to any one of claims 1-6 and A probe molecule coupled to the surface of the functional nanoparticle composite PEG microsphere; the probe molecule is selected from one or more of the following: protein, protein fragment and nucleic acid. 10.根据权利要求9所述的生物检测探针在检测样品中一种或多种目标物中的应用。10. Use of the biological detection probe according to claim 9 in detecting one or more target substances in a sample.
CN201510471940.3A 2015-08-05 2015-08-05 Functional nano-particle composite microsphere and preparation and application thereof Active CN105126714B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510471940.3A CN105126714B (en) 2015-08-05 2015-08-05 Functional nano-particle composite microsphere and preparation and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510471940.3A CN105126714B (en) 2015-08-05 2015-08-05 Functional nano-particle composite microsphere and preparation and application thereof

Publications (2)

Publication Number Publication Date
CN105126714A true CN105126714A (en) 2015-12-09
CN105126714B CN105126714B (en) 2020-04-14

Family

ID=54712489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510471940.3A Active CN105126714B (en) 2015-08-05 2015-08-05 Functional nano-particle composite microsphere and preparation and application thereof

Country Status (1)

Country Link
CN (1) CN105126714B (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105477643A (en) * 2015-12-19 2016-04-13 杜文红 Organism siRNA drug carrier system marked by quantum dots
CN106053432A (en) * 2016-06-01 2016-10-26 清华大学深圳研究生院 Microspheres for coding and decoding and coding and decoding method and decoding system thereof
CN106479483A (en) * 2016-09-23 2017-03-08 北京海岸鸿蒙标准物质技术有限责任公司 A kind of streaming Fluorescent Microsphere Standards matter and preparation method thereof
CN106943968A (en) * 2017-03-30 2017-07-14 清华大学深圳研究生院 A kind of preparation method of coding microball
CN107389913A (en) * 2017-06-26 2017-11-24 清华大学 Biology sensor and biological detecting method
CN108431607A (en) * 2015-12-21 2018-08-21 生物梅里埃公司 Reagent dilutions agent
CN109187960A (en) * 2018-09-10 2019-01-11 浙江理工大学 A method of the detection Ancient Silk Textile based on immunochromatography technique
WO2019019472A1 (en) * 2017-07-24 2019-01-31 Wwhs Biotech, Inc Near-infrared ii polymer fluorescent microsphere and method for preparing same
CN109520803A (en) * 2018-12-29 2019-03-26 中翰盛泰生物技术股份有限公司 A kind of method and application reducing microballoon non-specific adsorption
CN109985583A (en) * 2019-03-12 2019-07-09 清华大学深圳研究生院 A kind of preparation method and applications of magnetic fluorescent coding microsphere
CN110270350A (en) * 2019-05-05 2019-09-24 中国科学技术大学 A kind of metal-doped indium sulfide nanometer sheet, preparation method and application
CN110408298A (en) * 2019-06-12 2019-11-05 李珍莲 A kind of preparation method of wooden bridge pier shaft surface reinforcing agent
CN110408041A (en) * 2019-08-28 2019-11-05 海南省妇幼保健院 A kind of preparation method of C18-PMH-PEG compound
CN110433738A (en) * 2019-08-15 2019-11-12 四川朴澜医疗科技有限公司 The polystyrene microsphere of anti-non-specific binding, preparation method and storage method
CN110628419A (en) * 2018-05-31 2019-12-31 北京大学 Luminescent nanoparticles that can be enriched in animal skin and preparation method thereof
WO2020252871A1 (en) * 2019-06-21 2020-12-24 博阳生物科技(上海)有限公司 Receptor reagent for homogeneous chemiluminescent assay, and application thereof
WO2021104435A1 (en) * 2019-11-30 2021-06-03 康码(上海)生物科技有限公司 Biomagnetic microsphere and preparation method therefor and use thereof
CN113125419A (en) * 2019-12-31 2021-07-16 博阳生物科技(上海)有限公司 Donor reagent and application thereof
CN113289575A (en) * 2020-09-15 2021-08-24 贵州省材料产业技术研究院 Zinc-loaded biochar composite material and preparation method and application thereof
CN113607682A (en) * 2021-07-30 2021-11-05 复旦大学 Coding microcarrier material and application thereof
CN113730580A (en) * 2020-05-29 2021-12-03 湖南大学 Application of PD-L1 inhibitor in preparation of medicine or kit
CN113945653A (en) * 2021-09-27 2022-01-18 深圳职业技术学院 Chip type living body solid phase micro-extraction device system and method for nano-drug pharmacokinetics precise analysis by using same
CN114460047A (en) * 2021-12-20 2022-05-10 上海中医药大学 Artificial modified 3D photo-crosslinking probe and method for fishing Chinese herbal medicine active small-molecule synthetase
CN115144582A (en) * 2022-05-25 2022-10-04 江苏硕世生物科技股份有限公司 Immune composition for detecting circulating tumor cells
CN115400210A (en) * 2022-07-15 2022-11-29 暨南大学 Antigen nano-particle, preparation method thereof and application of vaccine preparation
CN114249909B (en) * 2020-09-24 2024-05-03 中国科学院理化技术研究所 Micro-nano magnetic polymer microsphere with surface topological structure and preparation method thereof
WO2025067399A1 (en) * 2023-09-28 2025-04-03 康码(上海)生物科技有限公司 Dna microsphere, preparation method therefor, and use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356713A (en) * 1989-03-31 1994-10-18 Rhone-Poulenc Chimie Magnetizable composite microspheres of hydrophobic crosslinked polymer, process for preparing them and their application in biology
CN1560633A (en) * 2004-02-19 2005-01-05 上海交通大学 Preparation method of quantum dot microspheres used as biomedical fluorescent probes
WO2007044784A3 (en) * 2005-10-11 2007-10-04 Luna Innovations Inc Self-decontaminating surface coatings and articles prepared therefrom
CN101368943A (en) * 2007-08-15 2009-02-18 苏州市长三角系统生物交叉科学研究院有限公司 Quantum point biological probe and preparation method thereof, and microcurrent control protein chip based on the same
CN101899161A (en) * 2010-07-26 2010-12-01 东南大学 Preparation method of polyethylene glycol-modified iron oxide nanoprobe
CN102908961A (en) * 2012-09-10 2013-02-06 上海交通大学医学院附属新华医院 Functional nanometer particle composite non-crosslinking microspheres and preparation method and application thereof
CN103191680A (en) * 2013-03-26 2013-07-10 厦门大学 PH-sensitive composite hollow microsphere and preparation method thereof
CN103801241A (en) * 2014-02-27 2014-05-21 东华大学 Method for preparing developing photonic crystal microspheres by using micro-reaction device and applied magnetic field

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356713A (en) * 1989-03-31 1994-10-18 Rhone-Poulenc Chimie Magnetizable composite microspheres of hydrophobic crosslinked polymer, process for preparing them and their application in biology
CN1560633A (en) * 2004-02-19 2005-01-05 上海交通大学 Preparation method of quantum dot microspheres used as biomedical fluorescent probes
WO2007044784A3 (en) * 2005-10-11 2007-10-04 Luna Innovations Inc Self-decontaminating surface coatings and articles prepared therefrom
CN101368943A (en) * 2007-08-15 2009-02-18 苏州市长三角系统生物交叉科学研究院有限公司 Quantum point biological probe and preparation method thereof, and microcurrent control protein chip based on the same
CN101899161A (en) * 2010-07-26 2010-12-01 东南大学 Preparation method of polyethylene glycol-modified iron oxide nanoprobe
CN102908961A (en) * 2012-09-10 2013-02-06 上海交通大学医学院附属新华医院 Functional nanometer particle composite non-crosslinking microspheres and preparation method and application thereof
CN103191680A (en) * 2013-03-26 2013-07-10 厦门大学 PH-sensitive composite hollow microsphere and preparation method thereof
CN103801241A (en) * 2014-02-27 2014-05-21 东华大学 Method for preparing developing photonic crystal microspheres by using micro-reaction device and applied magnetic field

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梅兴国: "《微载体药物递送系统》", 30 November 2009, 华中科学技术大学出版社 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105477643A (en) * 2015-12-19 2016-04-13 杜文红 Organism siRNA drug carrier system marked by quantum dots
CN108431607A (en) * 2015-12-21 2018-08-21 生物梅里埃公司 Reagent dilutions agent
CN106053432A (en) * 2016-06-01 2016-10-26 清华大学深圳研究生院 Microspheres for coding and decoding and coding and decoding method and decoding system thereof
CN106479483A (en) * 2016-09-23 2017-03-08 北京海岸鸿蒙标准物质技术有限责任公司 A kind of streaming Fluorescent Microsphere Standards matter and preparation method thereof
CN106943968B (en) * 2017-03-30 2019-06-21 清华大学深圳研究生院 A kind of preparation method of coding microball
CN106943968A (en) * 2017-03-30 2017-07-14 清华大学深圳研究生院 A kind of preparation method of coding microball
CN107389913A (en) * 2017-06-26 2017-11-24 清华大学 Biology sensor and biological detecting method
US11668706B2 (en) 2017-07-24 2023-06-06 WWHS BIOTECH, Inc. Near-infrared II polymer fluorescent microsphere and method for preparing same
WO2019019472A1 (en) * 2017-07-24 2019-01-31 Wwhs Biotech, Inc Near-infrared ii polymer fluorescent microsphere and method for preparing same
CN110628419A (en) * 2018-05-31 2019-12-31 北京大学 Luminescent nanoparticles that can be enriched in animal skin and preparation method thereof
CN110628419B (en) * 2018-05-31 2020-11-03 北京大学 A kind of luminescent nanoparticle that can be enriched in animal skin and preparation method thereof
CN109187960A (en) * 2018-09-10 2019-01-11 浙江理工大学 A method of the detection Ancient Silk Textile based on immunochromatography technique
CN109520803A (en) * 2018-12-29 2019-03-26 中翰盛泰生物技术股份有限公司 A kind of method and application reducing microballoon non-specific adsorption
CN109985583A (en) * 2019-03-12 2019-07-09 清华大学深圳研究生院 A kind of preparation method and applications of magnetic fluorescent coding microsphere
CN109985583B (en) * 2019-03-12 2021-09-21 清华大学深圳研究生院 Preparation method and application of magnetic fluorescent coding microspheres
CN110270350A (en) * 2019-05-05 2019-09-24 中国科学技术大学 A kind of metal-doped indium sulfide nanometer sheet, preparation method and application
CN110270350B (en) * 2019-05-05 2021-10-01 中国科学技术大学 A metal-doped indium sulfide nanosheet, its preparation method and application
CN110408298A (en) * 2019-06-12 2019-11-05 李珍莲 A kind of preparation method of wooden bridge pier shaft surface reinforcing agent
WO2020252871A1 (en) * 2019-06-21 2020-12-24 博阳生物科技(上海)有限公司 Receptor reagent for homogeneous chemiluminescent assay, and application thereof
CN110433738A (en) * 2019-08-15 2019-11-12 四川朴澜医疗科技有限公司 The polystyrene microsphere of anti-non-specific binding, preparation method and storage method
CN110433738B (en) * 2019-08-15 2021-11-19 四川微康朴澜医疗科技有限责任公司 Non-specific binding resistant polystyrene microsphere, preparation method and storage method thereof
CN110408041A (en) * 2019-08-28 2019-11-05 海南省妇幼保健院 A kind of preparation method of C18-PMH-PEG compound
WO2021104435A1 (en) * 2019-11-30 2021-06-03 康码(上海)生物科技有限公司 Biomagnetic microsphere and preparation method therefor and use thereof
CN113125419A (en) * 2019-12-31 2021-07-16 博阳生物科技(上海)有限公司 Donor reagent and application thereof
CN113730580B (en) * 2020-05-29 2023-05-26 湖南大学 Use of PD-L1 inhibitors in preparation of drugs or kits
CN113730580A (en) * 2020-05-29 2021-12-03 湖南大学 Application of PD-L1 inhibitor in preparation of medicine or kit
CN113289575A (en) * 2020-09-15 2021-08-24 贵州省材料产业技术研究院 Zinc-loaded biochar composite material and preparation method and application thereof
CN114249909B (en) * 2020-09-24 2024-05-03 中国科学院理化技术研究所 Micro-nano magnetic polymer microsphere with surface topological structure and preparation method thereof
CN113607682A (en) * 2021-07-30 2021-11-05 复旦大学 Coding microcarrier material and application thereof
CN113945653B (en) * 2021-09-27 2023-08-18 深圳职业技术学院 A chip-type in vivo solid-phase microextraction device system and its analysis method
CN113945653A (en) * 2021-09-27 2022-01-18 深圳职业技术学院 Chip type living body solid phase micro-extraction device system and method for nano-drug pharmacokinetics precise analysis by using same
CN114460047A (en) * 2021-12-20 2022-05-10 上海中医药大学 Artificial modified 3D photo-crosslinking probe and method for fishing Chinese herbal medicine active small-molecule synthetase
CN115144582A (en) * 2022-05-25 2022-10-04 江苏硕世生物科技股份有限公司 Immune composition for detecting circulating tumor cells
CN115144582B (en) * 2022-05-25 2023-11-07 江苏硕世生物科技股份有限公司 Immune composition for detecting circulating tumor cells
CN115400210A (en) * 2022-07-15 2022-11-29 暨南大学 Antigen nano-particle, preparation method thereof and application of vaccine preparation
WO2025067399A1 (en) * 2023-09-28 2025-04-03 康码(上海)生物科技有限公司 Dna microsphere, preparation method therefor, and use thereof

Also Published As

Publication number Publication date
CN105126714B (en) 2020-04-14

Similar Documents

Publication Publication Date Title
CN105126714A (en) Functional nano particle composite microsphere, preparation and applications thereof
CN102908961B (en) Functional nanometer particle composite non-crosslinking microspheres and preparation method and application thereof
CN111771126B (en) Single-molecule quantitative detection method and detection system
CN102908960A (en) Functional nano-particle compound cross-linking microsphere powder as well as preparation method and application thereof
Ozkan Quantum dots and other nanoparticles: what can they offer to drug discovery?
US9797840B2 (en) Highly fluorescent polymer nanoparticle
US8535644B2 (en) Tunable hydrogel microparticles
CN110333347A (en) The reactor that substrate for bioassay mediates
EP3054283B1 (en) Method for detecting target substance
JP6080164B2 (en) Fluorescently labeled particles
Wang et al. Efficient incorporation of quantum dots into porous microspheres through a solvent-evaporation approach
ES2932020T3 (en) Quantum dot-doped nanoparticles, method for their production and bioplatform comprising quantum dot-doped nanoparticles
Sankova et al. Spectrally encoded microspheres for immunofluorescence analysis
Li et al. An efficient method for preparing high-performance multifunctional polymer beads simultaneously incorporated with magnetic nanoparticles and quantum dots
Maeda et al. DNA‐Mediated, On‐Membrane Sequential Assembly of Conjugated Polymer Nanoparticles for Sensitive Detection of Cell Surface Markers
WO2014040353A1 (en) Functional nanoparticle composite microsphere powder and preparation method and use therefor
KR102430149B1 (en) Quantum dot-containing nanoparticles and method for producing the same
JP4245415B2 (en) Method for producing molecular recognition phosphor
WO2018194151A1 (en) Method for detecting specimen substance using multiphase polymer fine particles
Potluri et al. Linker-protein G mediated functionalization of polystyrene-encapsulated upconversion nanoparticles for rapid gene assay using convective PCR
WO2011143128A2 (en) Multi-phasic nanostructures for imaging and therapy
KR101514321B1 (en) Methods of preparing biosensor for multiplexing detection system by using anisotropic biohybrid microparticles and their applications
Ke Recent patents on quantum dot engineering for biomedical application
Behrendt et al. Quantum dot–polymer bead composites for biological sensing applications
Pethkar et al. Nanotechnology in immunodiagnostics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190429

Address after: 313300 East Section of Sunshine Avenue, Dipu Street, Huzhou City, Zhejiang Province, 3787

Applicant after: Zhejiang Oriental gene biological products Limited by Share Ltd

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Applicant before: Shanghai Jiao Tong University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant