[go: up one dir, main page]

CN105098067B - Semiconductor structure, resistive memory cell structure and manufacturing method of semiconductor structure - Google Patents

Semiconductor structure, resistive memory cell structure and manufacturing method of semiconductor structure Download PDF

Info

Publication number
CN105098067B
CN105098067B CN201410217468.6A CN201410217468A CN105098067B CN 105098067 B CN105098067 B CN 105098067B CN 201410217468 A CN201410217468 A CN 201410217468A CN 105098067 B CN105098067 B CN 105098067B
Authority
CN
China
Prior art keywords
layer
metal oxide
barrier layer
hole
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410217468.6A
Other languages
Chinese (zh)
Other versions
CN105098067A (en
Inventor
林昱佑
李峰旻
李明修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN201410217468.6A priority Critical patent/CN105098067B/en
Publication of CN105098067A publication Critical patent/CN105098067A/en
Application granted granted Critical
Publication of CN105098067B publication Critical patent/CN105098067B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开了一种半导体结构、电阻式存储单元结构及半导体结构的制造方法。半导体结构包括绝缘结构、阻挡层(stop layer)、金属氧化物层、电阻结构(resistance structure)以及电极材料层。绝缘结构具有通孔(via),阻挡层形成于通孔中。金属氧化物层形成于阻挡层上。电阻结构形成于金属氧化物层的一外壁的一底部。电极材料层形成于金属氧化物层上。

The present invention discloses a semiconductor structure, a resistive memory cell structure and a method for manufacturing the semiconductor structure. The semiconductor structure includes an insulating structure, a stop layer, a metal oxide layer, a resistance structure and an electrode material layer. The insulating structure has a via, and the stop layer is formed in the via. The metal oxide layer is formed on the stop layer. The resistance structure is formed at a bottom of an outer wall of the metal oxide layer. The electrode material layer is formed on the metal oxide layer.

Description

半导体结构、电阻式存储单元结构及半导体结构的制造方法Semiconductor structure, resistive memory cell structure and method for manufacturing the semiconductor structure

技术领域technical field

本发明是有关于一种半导体结构、电阻式存储单元结构及半导体结构的制造方法,且特别是有关于一种良好特性的半导体结构、电阻式存储单元结构及半导体结构的制造方法。The present invention relates to a semiconductor structure, a resistive memory unit structure and a manufacturing method of the semiconductor structure, and in particular to a semiconductor structure with good characteristics, a resistive memory unit structure and a manufacturing method of the semiconductor structure.

背景技术Background technique

随着半导体技术的发展,各式半导体元件不断推陈出新。举例来说,存储器、晶体管、二极管等元件已广泛使用于各式电子装置中。With the development of semiconductor technology, various semiconductor components are constantly being introduced. For example, components such as memories, transistors, and diodes have been widely used in various electronic devices.

在存储器技术的发展中,研究人员不断的进行各种类型的研发与改善,其中电阻式存储器为其中的一种类型。因此,研究人员均致力于研究如何能够令电阻式存储器的电阻值能获得良好的控制以达到良好的特性。In the development of memory technology, researchers continue to carry out various types of R&D and improvement, among which resistive memory is one type. Therefore, researchers are devoting themselves to studying how to control the resistance value of the resistive memory to achieve good characteristics.

发明内容Contents of the invention

本发明是有关于一种半导体结构、电阻式存储单元结构及半导体结构的制造方法。实施例中,半导体结构的阻挡层可以阻挡氧化工艺的过度氧化,进而可以令半导体结构具有较佳的特性。The invention relates to a semiconductor structure, a resistive memory unit structure and a manufacturing method of the semiconductor structure. In an embodiment, the blocking layer of the semiconductor structure can block excessive oxidation of the oxidation process, thereby enabling the semiconductor structure to have better characteristics.

根据本发明的一实施例,是提出一种半导体结构。半导体结构包括绝缘结构、阻挡层(stop layer)、金属氧化物层、电阻结构(resistance structure)以及电极材料层。绝缘结构具有一通孔(via),阻挡层形成于通孔中。金属氧化物层形成于阻挡层上。电阻结构形成于金属氧化物层的一外壁的一底部。电极材料层形成于金属氧化物层上。According to an embodiment of the present invention, a semiconductor structure is provided. The semiconductor structure includes an insulating structure, a stop layer, a metal oxide layer, a resistance structure and an electrode material layer. The insulating structure has a via, and the blocking layer is formed in the via. A metal oxide layer is formed on the barrier layer. The resistance structure is formed on a bottom of an outer wall of the metal oxide layer. The electrode material layer is formed on the metal oxide layer.

根据本发明的另一实施例,是提出一种电阻式存储单元结构。电阻式存储单元结构包括绝缘结构、阻挡层、存储元件(memory element)、电阻结构以及顶电极层。绝缘结构具有通孔,阻挡层形成于通孔中。存储元件形成于阻挡层上。电阻结构形成于存储元件的一外壁的一底部。顶电极层形成于存储元件上。According to another embodiment of the present invention, a resistive memory cell structure is proposed. The resistive memory cell structure includes an insulating structure, a barrier layer, a memory element, a resistive structure, and a top electrode layer. The insulating structure has a through hole, and the barrier layer is formed in the through hole. The memory element is formed on the blocking layer. The resistance structure is formed on a bottom of an outer wall of the memory element. A top electrode layer is formed on the memory element.

根据本发明的再一实施例,是提出一种半导体结构的制造方法。半导体结构的制造方法包括以下步骤:形成一绝缘结构,具有一通孔(via);形成一阻挡层于该通孔中及该通孔的一侧壁上;形成一金属层于该阻挡层上;移除位于该通孔的该内壁上的一部份该阻挡层;进行一氧化工艺以氧化该金属层以形成一金属氧化物层于该阻挡层上以及形成一电阻结构于该金属氧化物层的一外壁的一底部;以及形成一电极材料层于该金属氧化物层上。According to yet another embodiment of the present invention, a method for manufacturing a semiconductor structure is provided. The manufacturing method of the semiconductor structure includes the following steps: forming an insulating structure with a through hole (via); forming a barrier layer in the through hole and on a side wall of the through hole; forming a metal layer on the barrier layer; removing a part of the barrier layer on the inner wall of the through hole; performing an oxidation process to oxidize the metal layer to form a metal oxide layer on the barrier layer and form a resistance structure on the metal oxide layer a bottom of an outer wall; and forming an electrode material layer on the metal oxide layer.

为了对本发明的上述及其他方面有更佳的了解,下文特举较佳实施例,并配合所附图式,作详细说明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the preferred embodiments are specifically cited below, together with the attached drawings, and are described in detail as follows:

附图说明Description of drawings

图1绘示依照本发明的一实施例的半导体结构的剖面示意图。FIG. 1 is a schematic cross-sectional view of a semiconductor structure according to an embodiment of the present invention.

图2绘示依照本发明的另一实施例的半导体结构的剖面示意图。FIG. 2 is a schematic cross-sectional view of a semiconductor structure according to another embodiment of the present invention.

图3绘示依照本发明的又一实施例的半导体结构的剖面示意图。FIG. 3 is a schematic cross-sectional view of a semiconductor structure according to yet another embodiment of the present invention.

图4A~图4D绘示依照本发明的一实施例的半导体结构的制造方法的流程图。4A-4D are flowcharts of a method for manufacturing a semiconductor structure according to an embodiment of the present invention.

图5A~图5F绘示依照本发明的另一实施例的半导体结构的制造方法的流程图。5A-5F are flow charts illustrating a method for manufacturing a semiconductor structure according to another embodiment of the present invention.

图6A~图6G绘示依照本发明的又一实施例的半导体结构的制造方法的流程图。6A-6G are flow charts illustrating a method for manufacturing a semiconductor structure according to another embodiment of the present invention.

图7绘示依照本发明的一实施例及一比较例的半导体结构的电阻-电压曲线图。FIG. 7 shows resistance-voltage curves of semiconductor structures according to an embodiment of the present invention and a comparative example.

【符号说明】【Symbol Description】

100、200、300:半导体结构100, 200, 300: Semiconductor Structures

110、210:绝缘结构110, 210: insulation structure

110a、130a、130a’、140a、150a-1、150b-1、210a、340a、440a:顶表面110a, 130a, 130a', 140a, 150a-1, 150b-1, 210a, 340a, 440a: top surface

110r:上部部分110r: upper part

110s:侧壁110s: side wall

110v、210v:通孔110v, 210v: through hole

120、220:导电结构120, 220: conductive structure

220a:导电材料层220a: layer of conductive material

130、130’:阻挡层130, 130': barrier layer

140:金属氧化物层140: metal oxide layer

140s:外壁140s: outer wall

150:电阻结构150: Resistance structure

150a:金属氧化物结构150a: Metal oxide structure

150b:空隙150b: void

160:电极材料层160: electrode material layer

210s:内壁210s: inner wall

211:间隙壁211: gap wall

213:层间介电层213: interlayer dielectric layer

213r:穿孔213r: perforated

340、340’、440:金属层340, 340’, 440: metal layer

413:层间介电材料层413: interlayer dielectric material layer

D1:深度D1: Depth

H1:高度H1: Height

I、II:曲线I, II: curve

T1、T2:厚度T1, T2: Thickness

W1、W2:宽度W1, W2: Width

具体实施方式detailed description

在此发明的实施例中,是提出一种半导体结构、电阻式存储单元结构及半导体结构的制造方法。实施例中,半导体结构的阻挡层可以阻挡氧化工艺的过度氧化,进而可以令半导体结构具有较佳的特性。然而,实施例仅用以作为范例说明,并不会限缩本发明欲保护的范围。此外,实施例中的图式是省略部份要的元件,以清楚显示本发明的技术特点。In the embodiment of the invention, a semiconductor structure, a resistive memory cell structure and a method for manufacturing the semiconductor structure are provided. In an embodiment, the blocking layer of the semiconductor structure can block excessive oxidation of the oxidation process, thereby enabling the semiconductor structure to have better characteristics. However, the embodiments are only used for illustration and shall not limit the scope of protection of the present invention. In addition, the drawings in the embodiments omit some important components to clearly show the technical characteristics of the present invention.

图1绘示依照本发明的一实施例的半导体结构100的剖面示意图。半导体结构100包括绝缘结构110、阻挡层(stop layer)130、金属氧化物层140、电阻结构(resistancestructure)150以及电极材料层160。绝缘结构110具有通孔(via)110v,阻挡层130形成于通孔110v中。金属氧化物层140形成于阻挡层130上。电阻结构150形成于金属氧化物层140的外壁140s的底部,电极材料层160形成于金属氧化物层140上。FIG. 1 is a schematic cross-sectional view of a semiconductor structure 100 according to an embodiment of the present invention. The semiconductor structure 100 includes an insulating structure 110 , a stop layer 130 , a metal oxide layer 140 , a resistance structure 150 and an electrode material layer 160 . The insulating structure 110 has a via 110v, and the barrier layer 130 is formed in the via 110v. A metal oxide layer 140 is formed on the barrier layer 130 . The resistance structure 150 is formed on the bottom of the outer wall 140 s of the metal oxide layer 140 , and the electrode material layer 160 is formed on the metal oxide layer 140 .

实施例中,绝缘结构110的材质可包括绝缘材料,例如是氮化硅(SiN)和/或氧化硅。然而,前述的绝缘结构110的材质可以依照实际应用做适当选择,并不以前述例子为限。In an embodiment, the material of the insulating structure 110 may include an insulating material, such as silicon nitride (SiN) and/or silicon oxide. However, the material of the aforementioned insulating structure 110 can be properly selected according to practical applications, and is not limited to the aforementioned examples.

实施例中,阻挡层130具有高导电性且难以被氧化的特性,可以用于阻挡用以形成金属氧化物层140的氧化工艺的过度氧化,例如是阻挡氧化工艺氧化半导体结构100的其他元件,进而可以令半导体结构100具有较佳的特性。In an embodiment, the barrier layer 130 has high conductivity and is difficult to be oxidized, and can be used to prevent excessive oxidation of the oxidation process used to form the metal oxide layer 140, for example, to prevent the oxidation process from oxidizing other elements of the semiconductor structure 100, Furthermore, the semiconductor structure 100 can have better characteristics.

实施例中,阻挡层130可包括金属氮化物或惰性金属(inert metal)的至少其中之一。举例而言,阻挡层130的材质可包括氮化钛(TiN)、氮化钽(TaN)、氮化钨(WN)、金(Au)和铂(Pt)的至少其中之一。然而,前述的材料的选用可以依照实际应用做适当选择,并不以前述例子为限。In an embodiment, the barrier layer 130 may include at least one of metal nitride or inert metal. For example, the material of the barrier layer 130 may include at least one of titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), gold (Au) and platinum (Pt). However, the selection of the aforementioned materials can be properly selected according to practical applications, and is not limited to the aforementioned examples.

实施例中,阻挡层130的厚度T1例如是约金属氧化物层140的厚度T2例如是约 In an embodiment, the thickness T1 of the barrier layer 130 is, for example, about The thickness T2 of the metal oxide layer 140 is, for example, about

实施例中,金属氧化物层140的材质可包括氧化钨(WOx)、氮化钛(TiN)、氮化钽(TaN)和气化铪(Hf02)的至少其中之一。In an embodiment, the material of the metal oxide layer 140 may include at least one of tungsten oxide (WO x ), titanium nitride (TiN), tantalum nitride (TaN) and hafnium oxide (HfO 2 ).

实施例中,半导体结构100更可包括一导电结构120。如图1所示,导电结构120形成于阻挡层130和金属氧化物层140之间。导电结构120的材质可包括一导电性材料,例如是钨金属(W)。然而,前述的导电结构120的材质可以依照实际应用做适当选择,并不以前述例子为限。In an embodiment, the semiconductor structure 100 may further include a conductive structure 120 . As shown in FIG. 1 , the conductive structure 120 is formed between the barrier layer 130 and the metal oxide layer 140 . The material of the conductive structure 120 may include a conductive material, such as tungsten metal (W). However, the material of the aforementioned conductive structure 120 can be properly selected according to practical applications, and is not limited to the aforementioned examples.

根据本发明的实施例,如图1所示,电阻结构150形成于金属氧化物层140的外壁140s的底部,换言之,电阻结构150的顶表面系低于金属氧化物层140的顶表面140a。更进一步来说,具有高电阻值的电阻结构150可形成于金属氧化物层140的外壁140s和通孔110v的侧壁110s之间,如此一来,可以令电极材料层160和其他位于电阻结构150之下的导电元件之间具有更良好的绝缘性,更进一步防止电极材料层160和其他导电元件之间发生短路。举例而言,具有高电阻值的电阻结构150可以令导电结构120和电极材料层160之间具有更良好的绝缘性,更进一步防止导电结构120和电极材料层160之间发生短路。According to an embodiment of the present invention, as shown in FIG. 1 , the resistive structure 150 is formed at the bottom of the outer wall 140s of the metal oxide layer 140 , in other words, the top surface of the resistive structure 150 is lower than the top surface 140a of the metal oxide layer 140 . Furthermore, the resistance structure 150 with a high resistance value can be formed between the outer wall 140s of the metal oxide layer 140 and the side wall 110s of the through hole 110v. In this way, the electrode material layer 160 and other resistance structures located The conductive elements under 150 have better insulation, further preventing short circuit between the electrode material layer 160 and other conductive elements. For example, the resistance structure 150 with a high resistance value can provide better insulation between the conductive structure 120 and the electrode material layer 160 , further preventing short circuit between the conductive structure 120 and the electrode material layer 160 .

如图1所示,电阻结构150可包括金属氧化物结构150a或空隙(void)150b的至少其中之一。换言之,电阻结构150可包括金属氧化物结构150a、或空隙150b,或同时包括金属氧化物结构150a和空隙150b。实施例中,金属氧化物结构150a的顶表面150a-1及空隙150b的顶表面150b-1均低于金属氧化物层140的顶表面140a。As shown in FIG. 1 , the resistance structure 150 may include at least one of a metal oxide structure 150a or a void 150b. In other words, the resistance structure 150 may include the metal oxide structure 150a, or the void 150b, or both the metal oxide structure 150a and the void 150b. In an embodiment, the top surface 150 a - 1 of the metal oxide structure 150 a and the top surface 150 b - 1 of the void 150 b are lower than the top surface 140 a of the metal oxide layer 140 .

实施例中,金属氧化物结构150a可以是任何具有高电阻值的金属氧化物,例如是氮氧化钛(TiON);空隙150b例如是空气间隙(air gap),同样具有高电阻值的性质。然而,前述的电阻结构150的类型可以依照实际应用做适当选择,并不以前述例子为限。In an embodiment, the metal oxide structure 150a may be any metal oxide with high resistance, such as titanium oxynitride (TiON); the gap 150b is, for example, an air gap, which also has high resistance. However, the type of the aforementioned resistive structure 150 can be properly selected according to practical applications, and is not limited to the aforementioned examples.

实施例中,电极材料层160的材质包括一导电性材料,例如可以是钨(W)、铂(Pt)、氮化钽(TaN)和镍(Ni)的至少其中之一。然而,前述的电极材料层160的材质可以依照实际应用做适当选择,只要可应用于电极即可,并不以前述例子为限。In an embodiment, the material of the electrode material layer 160 includes a conductive material, such as at least one of tungsten (W), platinum (Pt), tantalum nitride (TaN) and nickel (Ni). However, the material of the aforementioned electrode material layer 160 can be appropriately selected according to actual applications, as long as it can be applied to electrodes, and is not limited to the aforementioned examples.

图2绘示依照本发明的另一实施例的半导体结构200的剖面示意图。本实施例中与前述实施例相同的元件是沿用同样的元件标号,且相同元件的相关说明请参考前述,在此不再赘述。FIG. 2 is a schematic cross-sectional view of a semiconductor structure 200 according to another embodiment of the present invention. The elements in this embodiment that are the same as those in the previous embodiments use the same element numbers, and for related descriptions of the same elements, please refer to the above, and details will not be repeated here.

如图2所示,半导体结构200包括绝缘结构110、导电结构220、阻挡层130、金属氧化物层140、电阻结构150以及电极材料层160。绝缘结构110具有通孔110v,导电结构220形成于通孔110v中。阻挡层130形成于导电结构220上,金属氧化物层140形成于阻挡层130上。电阻结构150形成于金属氧化物层140的外壁140s的底部,电极材料层160形成于金属氧化物层140上。As shown in FIG. 2 , the semiconductor structure 200 includes an insulating structure 110 , a conductive structure 220 , a barrier layer 130 , a metal oxide layer 140 , a resistive structure 150 and an electrode material layer 160 . The insulating structure 110 has a through hole 110v, and the conductive structure 220 is formed in the through hole 110v. The barrier layer 130 is formed on the conductive structure 220 , and the metal oxide layer 140 is formed on the barrier layer 130 . The resistance structure 150 is formed on the bottom of the outer wall 140 s of the metal oxide layer 140 , and the electrode material layer 160 is formed on the metal oxide layer 140 .

实施例中,导电结构220的材质可包括一导电性材料,例如是钨金属(W)。然而,前述的导电结构220的材质可以依照实际应用做适当选择,并不以前述例子为限。In an embodiment, the material of the conductive structure 220 may include a conductive material, such as tungsten metal (W). However, the material of the aforementioned conductive structure 220 can be appropriately selected according to practical applications, and is not limited to the aforementioned examples.

实施例中,阻挡层130具有高导电性且难以被氧化的特性,可以用于阻挡用以形成金属氧化物层140的氧化工艺的过度氧化,例如是阻挡氧化工艺氧化导电结构220,而可以于工艺中较佳地控制金属氧化物层140的厚度,使得金属氧化物层140的厚度具有较佳的均匀性,进而可以令半导体结构100具有较佳的特性。并且,阻挡层130亦可以增加金属氧化物层140和导电结构220的接着性(adhesion)。In an embodiment, the barrier layer 130 has high conductivity and is difficult to be oxidized, and can be used to block excessive oxidation of the oxidation process used to form the metal oxide layer 140, for example, to prevent the oxidation process of the conductive structure 220 from oxidation, and can be used in The thickness of the metal oxide layer 140 is preferably controlled during the process, so that the thickness of the metal oxide layer 140 has better uniformity, and thus the semiconductor structure 100 can have better characteristics. Moreover, the barrier layer 130 can also increase the adhesion between the metal oxide layer 140 and the conductive structure 220 .

一实施例中,阻挡层130的材质为氮化钛,可以增加材质为钨的导电结构220与材质为氧化钨的金属氧化物层140之间的接着性。In one embodiment, the barrier layer 130 is made of titanium nitride, which can increase the adhesion between the conductive structure 220 made of tungsten and the metal oxide layer 140 made of tungsten oxide.

根据本发明的实施例,如图2所示,电阻结构150形成于金属氧化物层140的外壁140s的底部。更进一步来说,具有高电阻值的电阻结构150可形成于金属氧化物层140的外壁140s和通孔110v的侧壁110s之间,如此一来,可以令导电结构220和电极材料层160之间具有更良好的绝缘性,更进一步防止导电结构220和电极材料层160之间发生短路。According to an embodiment of the present invention, as shown in FIG. 2 , the resistive structure 150 is formed at the bottom of the outer wall 140s of the metal oxide layer 140 . Furthermore, the resistance structure 150 with a high resistance value can be formed between the outer wall 140s of the metal oxide layer 140 and the sidewall 110s of the through hole 110v, so that the conductive structure 220 and the electrode material layer 160 can be formed There is better insulation between them, further preventing short circuit between the conductive structure 220 and the electrode material layer 160 .

实施例中,半导体结构200更可包括一衬垫层(未绘示于图式),衬垫层形成于导电结构220和绝缘结构110之间。实施例中,衬垫层的材质可包括氮化钛。In an embodiment, the semiconductor structure 200 may further include a liner layer (not shown in the drawing), and the liner layer is formed between the conductive structure 220 and the insulating structure 110 . In an embodiment, the material of the liner layer may include titanium nitride.

图3绘示依照本发明的又一实施例的半导体结构300的剖面示意图。本实施例中与前述实施例相同的元件是沿用同样的元件标号,且相同元件的相关说明请参考前述,在此不再赘述。FIG. 3 is a schematic cross-sectional view of a semiconductor structure 300 according to yet another embodiment of the present invention. The components in this embodiment that are the same as those in the preceding embodiments use the same component numbers, and for related descriptions of the same components, please refer to the above, and details will not be repeated here.

如图3所示,半导体结构300包括一绝缘结构210、导电结构220、阻挡层130、金属氧化物层140、电阻结构150以及电极材料层160。绝缘结构210具有一通孔(via)210v,导电结构220形成于通孔210v中。阻挡层130形成于导电结构220上,金属氧化物层140形成于阻挡层130上。电阻结构150形成于金属氧化物层140的外壁140s的底部,电极材料层160形成于金属氧化物层140上。如图3所示,电阻结构150可包括金属氧化物结构150a或空隙150b的至少其中之一。As shown in FIG. 3 , the semiconductor structure 300 includes an insulating structure 210 , a conductive structure 220 , a barrier layer 130 , a metal oxide layer 140 , a resistive structure 150 and an electrode material layer 160 . The insulating structure 210 has a via 210v, and the conductive structure 220 is formed in the via 210v. The barrier layer 130 is formed on the conductive structure 220 , and the metal oxide layer 140 is formed on the barrier layer 130 . The resistance structure 150 is formed on the bottom of the outer wall 140 s of the metal oxide layer 140 , and the electrode material layer 160 is formed on the metal oxide layer 140 . As shown in FIG. 3 , the resistance structure 150 may include at least one of a metal oxide structure 150 a or a void 150 b.

实施例中,如图3所示,绝缘结构210可包括间隙壁211以及层间介电层213。间隙壁211环绕导电结构220,层间介电层213形成于间隙壁211上,且间隙壁211与层间介电层213共同形成通孔210v。In an embodiment, as shown in FIG. 3 , the insulating structure 210 may include a spacer 211 and an interlayer dielectric layer 213 . The spacer 211 surrounds the conductive structure 220 , the interlayer dielectric layer 213 is formed on the spacer 211 , and the spacer 211 and the interlayer dielectric 213 together form a via hole 210v.

通孔210v对应于间隙壁211具有第一宽度W1,通孔210v对应于层间介电层213具有第二宽度W2,第一宽度W1和第二宽度W2可以相同或不同。一实施例中,如图2所示,第一宽度W1大于第二宽度W2。于其他实施例中,第一宽度W1也可以等于或小于第二宽度W2。The through hole 210 v has a first width W1 corresponding to the spacer 211 , and the through hole 210 v has a second width W2 corresponding to the interlayer dielectric layer 213 , and the first width W1 and the second width W2 may be the same or different. In one embodiment, as shown in FIG. 2 , the first width W1 is greater than the second width W2 . In other embodiments, the first width W1 may also be equal to or smaller than the second width W2.

实施例中,半导体结构300更可包括衬垫层(未绘示于图式),衬垫层形成于导电结构220和绝缘结构210之间,例如是导电结构220和间隙壁211之间。实施例中,衬垫层的材质可包括氮化钛。In an embodiment, the semiconductor structure 300 may further include a liner layer (not shown in the drawing), and the liner layer is formed between the conductive structure 220 and the insulating structure 210 , such as between the conductive structure 220 and the spacer 211 . In an embodiment, the material of the liner layer may include titanium nitride.

根据本发明的实施例,半导体结构100/200/300例如是一种接触式电阻式存储单元(Contact-type resistive random access memory unit)结构,导电结构120/220例如是一接触结构(contact structure),金属氧化物层140例如是一存储元件(memoryelement),电极材料层160例如是一顶电极层。举例而言,接触结构、存储元件及顶电极层可构成一个金属/绝缘层/金属的多层存储单元结构,其电阻值可经由外加偏压而改变,使存储元件可具有高电阻及低电阻两种状态,用以表达数字讯号的「0」和「1」,而执行存储单元结构的写入与擦除的功能。详细来说,当施加外加偏压时,在金属/绝缘层/金属的多层存储单元结构的绝缘层中形成丝状传导路径,而使得存储元件转变为低电阻状态。当电流通过之后,丝状传导路径断裂,则使得存储元件转变为高电阻状态。According to an embodiment of the present invention, the semiconductor structure 100/200/300 is, for example, a contact-type resistive random access memory unit structure, and the conductive structure 120/220 is, for example, a contact structure. The metal oxide layer 140 is, for example, a memory element, and the electrode material layer 160 is, for example, a top electrode layer. For example, the contact structure, the storage element and the top electrode layer can constitute a metal/insulator/metal multilayer memory cell structure, and its resistance value can be changed by applying a bias voltage, so that the memory element can have high resistance and low resistance The two states are used to express the "0" and "1" of the digital signal, and perform the functions of writing and erasing the memory cell structure. In detail, when an external bias voltage is applied, a filamentary conduction path is formed in the insulating layer of the metal/insulating layer/metal multilayer memory cell structure, so that the memory element turns into a low-resistance state. When the current passes, the filamentary conduction path is broken, which makes the storage element change to a high resistance state.

当金属氧化物层140的厚度具有良好的均匀性,换言之,存储元件的绝缘层的厚度具有高均匀性,则存储元件的电阻值能获得较佳的控制,进而令接触式电阻式存储单元结构具有较佳的特性。When the thickness of the metal oxide layer 140 has good uniformity, in other words, the thickness of the insulating layer of the memory element has high uniformity, the resistance value of the memory element can be better controlled, and then the contact resistive memory cell structure Has better characteristics.

请参照图4A~图4D,其绘示依照本发明的一实施例的半导体结构100的制造方法的流程图。Please refer to FIG. 4A to FIG. 4D , which illustrate a flow chart of a manufacturing method of the semiconductor structure 100 according to an embodiment of the present invention.

如图4A所示,形成具有通孔110v的绝缘结构110,形成阻挡层130于通孔110v中,以及形成一金属层440于阻挡层130上。实施例中,阻挡层130形成于通孔110V的侧壁110s上。实施例中,阻挡层130和金属层440例如是形成于并填满通孔110v。As shown in FIG. 4A , an insulating structure 110 having a via hole 110v is formed, a barrier layer 130 is formed in the via hole 110v , and a metal layer 440 is formed on the barrier layer 130 . In an embodiment, the barrier layer 130 is formed on the sidewall 110s of the via hole 110V. In an embodiment, the barrier layer 130 and the metal layer 440 are formed in and fill up the via hole 110v, for example.

实施例中,可进一步对阻挡层130和金属层440进行一平坦化工艺,以平坦化阻挡层130和金属层440的表面。实施例中,平坦化工艺例如是化学机械研磨工艺(CMPprocess)。平坦化之后,如图4A所示,阻挡层130的顶表面130a和金属层440的顶表面440a齐平且等平面。平坦化之后,阻挡层130的顶表面130a和金属层440的顶表面440a可以和绝缘结构110的顶表面110a是齐平且等平面或者非等平面。实施例中,如图4A所示,顶表面130a以及顶表面440a和绝缘结构110的顶表面110a是非等平面。In an embodiment, a planarization process may be further performed on the barrier layer 130 and the metal layer 440 to planarize the surfaces of the barrier layer 130 and the metal layer 440 . In an embodiment, the planarization process is, for example, a chemical mechanical polishing process (CMP process). After planarization, as shown in FIG. 4A , the top surface 130a of the barrier layer 130 and the top surface 440a of the metal layer 440 are flush and equiplanar. After planarization, the top surface 130a of the barrier layer 130 and the top surface 440a of the metal layer 440 may be flush and equiplanar or non-equalplanar with the top surface 110a of the insulating structure 110 . In an embodiment, as shown in FIG. 4A , the top surface 130a and the top surface 440a are not equiplanar to the top surface 110a of the insulating structure 110 .

如图4B所示,移除位于通孔110v的内壁110s上的一部份阻挡层130。此步骤之后,阻挡层130的顶表面130a'和金属层440的顶表面440a是非等平面。实施例中,例如是经由一刻蚀工艺移除位于通孔110v的110s内壁上的此部份阻挡层130,并且采用对于阻挡层130和金属层440具有高选择比的刻蚀液进行刻蚀,使得仅部分阻挡层130被刻蚀移除,而金属层440的结构实质上并未被刻蚀破坏。As shown in FIG. 4B , a portion of the barrier layer 130 on the inner wall 110 s of the via hole 110 v is removed. After this step, the top surface 130a' of the barrier layer 130 and the top surface 440a of the metal layer 440 are not equiplanar. In an embodiment, for example, the part of the barrier layer 130 located on the inner wall of the through hole 110v 110s is removed through an etching process, and etching is performed using an etchant having a high selectivity to the barrier layer 130 and the metal layer 440, Only part of the barrier layer 130 is etched away, and the structure of the metal layer 440 is not substantially damaged by the etching.

如图4C所示,进行一氧化工艺以氧化金属层440以形成金属氧化物层140于阻挡层130上、以及形成电阻结构150于金属氧化物层140的外壁140s的底部。实施例中,金属层440的一部份被氧化而形成金属氧化物层140,未被氧化的部分则形成导电结构120。As shown in FIG. 4C , an oxidation process is performed to oxidize the metal layer 440 to form the metal oxide layer 140 on the barrier layer 130 and the resistive structure 150 at the bottom of the outer wall 140 s of the metal oxide layer 140 . In an embodiment, a part of the metal layer 440 is oxidized to form the metal oxide layer 140 , and the non-oxidized part forms the conductive structure 120 .

如图4D所示,形成电极材料层160于金属氧化物层140上。至此,形成于图4D(图1)所示的半导体结构100。As shown in FIG. 4D , an electrode material layer 160 is formed on the metal oxide layer 140 . So far, the semiconductor structure 100 shown in FIG. 4D ( FIG. 1 ) is formed.

于氧化工艺中,金属层440被氧化而其体积膨胀,因此形成如图4D所示的金属氧化物层140,其中膨胀的金属氧化物层140,其外壁140s朝向通孔110v的侧壁110s延伸。此外,电阻结构150,例如是空隙150b可能形成于金属氧化物层140的外壁140s和通孔110v的侧壁110s之间。实施例中,空隙150b例如是形成于金属氧化物层140的外壁140s的底部。此步骤中,由于阻挡层130的顶表面130a'低于金属层440的顶表面440a,因此所形成的空隙150b的顶表面150b-1亦低于金属氧化物层140的顶表面140a。In the oxidation process, the metal layer 440 is oxidized and its volume expands, thus forming the metal oxide layer 140 as shown in FIG. . In addition, the resistive structure 150, such as the void 150b, may be formed between the outer wall 140s of the metal oxide layer 140 and the sidewall 110s of the via 110v. In an embodiment, the void 150b is formed, for example, at the bottom of the outer wall 140s of the metal oxide layer 140 . In this step, since the top surface 130 a ′ of the barrier layer 130 is lower than the top surface 440 a of the metal layer 440 , the top surface 150 b - 1 of the formed void 150 b is also lower than the top surface 140 a of the metal oxide layer 140 .

实施例中,氧化工艺例如可以是等离子体氧化工艺(plasma oxidationprocess)、快速热氧化工艺(rapid thermal oxidation process)或光化学氧化工艺(photo-chemical oxidation process)。然而,前述的氧化工艺的类型可以依照实际应用做适当选择,并不以前述例子为限。In an embodiment, the oxidation process may be, for example, a plasma oxidation process, a rapid thermal oxidation process or a photo-chemical oxidation process. However, the type of the aforementioned oxidation process can be properly selected according to practical applications, and is not limited to the aforementioned examples.

再者,于氧化工艺中,一暴露部份的阻挡层130可能也会被氧化而形成电阻结构150,例如是金属氧化物结构150a。举例而言,阻挡层130暴露于金属层440之外的表面的一部份可以于氧化工艺中被氧化而形成金属氧化物结构150a。实施例中,金属氧化物结构150a的材质例如包括阻挡层130的氧化物。举例而言,当阻挡层130的材质为氮化钛,则金属氧化物结构150a的材质可包括氮氧化钛。此步骤中,由于阻挡层130的顶表面130a'低于金属层440的顶表面440a,因此所形成的金属氧化物结构150a的顶表面150a-1亦低于金属氧化物层140的顶表面140a。Furthermore, during the oxidation process, an exposed portion of the barrier layer 130 may also be oxidized to form a resistive structure 150, such as a metal oxide structure 150a. For example, a portion of the surface of the barrier layer 130 exposed to the metal layer 440 may be oxidized in an oxidation process to form the metal oxide structure 150a. In an embodiment, the material of the metal oxide structure 150 a includes, for example, the oxide of the barrier layer 130 . For example, when the material of the barrier layer 130 is titanium nitride, the material of the metal oxide structure 150a may include titanium oxynitride. In this step, since the top surface 130a' of the barrier layer 130 is lower than the top surface 440a of the metal layer 440, the top surface 150a-1 of the formed metal oxide structure 150a is also lower than the top surface 140a of the metal oxide layer 140. .

请参照图5A~图5F,其绘示依照本发明的另一实施例的半导体结构200的制造方法的流程图。Please refer to FIG. 5A to FIG. 5F , which illustrate a flowchart of a manufacturing method of the semiconductor structure 200 according to another embodiment of the present invention.

如图5A~图5B所示,形成具有一通孔110v的绝缘结构110,以及形成导电结构220于通孔110v中。形成导电结构220于通孔110v中的制造方法例如包括以下步骤。As shown in FIGS. 5A-5B , an insulating structure 110 having a through hole 110v is formed, and a conductive structure 220 is formed in the through hole 110v. The manufacturing method of forming the conductive structure 220 in the through hole 110v includes the following steps, for example.

如图5A所示,填入一导电材料层220a于通孔110v中。接着,如图5B所示,移除一部分导电材料层220a以成导电结构220于通孔110v中,并暴露出通孔110v的一上部部分(upper portion)110r。换句话说,导电结构220并未填至通孔110v的上部部分110r。As shown in FIG. 5A , a conductive material layer 220 a is filled in the through hole 110 v. Next, as shown in FIG. 5B , a part of the conductive material layer 220a is removed to form a conductive structure 220 in the via hole 110v, and an upper portion 110r of the via hole 110v is exposed. In other words, the conductive structure 220 does not fill up to the upper portion 110r of the via hole 110v.

实施例中,更可选择性地形成衬垫层(未绘示于图式)于导电材料层220a和绝缘结构110之间。举例而言,先形成衬垫层于绝缘结构110的内壁上,接着形成导电材料层220a于衬垫层上。本实施例中,移除部分导电材料层220a时,一并移除部分的衬垫层,使得留下的衬垫层只位于导电结构220和绝缘结构110之间。In an embodiment, a liner layer (not shown in the drawing) can be optionally formed between the conductive material layer 220 a and the insulating structure 110 . For example, a liner layer is firstly formed on the inner wall of the insulating structure 110, and then the conductive material layer 220a is formed on the liner layer. In this embodiment, when part of the conductive material layer 220 a is removed, part of the liner layer is also removed, so that the remaining liner layer is only located between the conductive structure 220 and the insulating structure 110 .

实施例中,例如是经由一刻蚀工艺移除部分导电材料层220a,移除之后,留下导电结构220以及未填充导电结构220的上部部分110r。如图5B所示,此上部部分110r系以一凹陷呈现。实施例中,此上部部分110r形成的凹陷具有的深度D1大约为后续形成的阻挡层的厚度和金属氧化物层的厚度的加总,例如是然而此深度D1可以依照实际应用做适当选择,例如是元件的电阻等的特性的需要,并不以前述范围为限。In an embodiment, for example, a portion of the conductive material layer 220a is removed through an etching process, and after removal, the conductive structure 220 and the upper portion 110r of the conductive structure 220 are left unfilled. As shown in FIG. 5B, the upper portion 110r is presented as a depression. In an embodiment, the depth D1 of the depression formed by the upper portion 110r is approximately the sum of the thickness of the subsequently formed barrier layer and the thickness of the metal oxide layer, for example, However, the depth D1 can be properly selected according to practical applications, such as the requirements of characteristics such as the resistance of the element, and is not limited to the aforementioned range.

如图5C所示,形成一阻挡层130’于导电结构220上及通孔110v的侧壁110s上,以及形成一金属层340’于阻挡层130’上。实施例中,阻挡层130’和金属层340’例如是形成于并填满通孔110v的上部部分110r形成的凹陷中。As shown in FIG. 5C, a barrier layer 130' is formed on the conductive structure 220 and the sidewall 110s of the via 110v, and a metal layer 340' is formed on the barrier layer 130'. In an embodiment, the barrier layer 130' and the metal layer 340' are, for example, formed in and fill up the recess formed by the upper portion 110r of the via hole 110v.

如图5D所示,对阻挡层130’和金属层340’进行一平坦化工艺,以平坦化阻挡层130’和金属层340’的表面,而形成阻挡层130和金属层340。实施例中,平坦化工艺例如是化学机械研磨工艺(CMP process)。平坦化之后,如图5D所示,阻挡层130的顶表面130a和金属层340的顶表面340a齐平且等平面。平坦化之后,阻挡层130的顶表面130a和金属层340的顶表面340a可以和绝缘结构110的顶表面110a系齐平且等平面或者非等平面。实施例中,如图5D所示,顶表面130a以及顶表面340a和绝缘结构110的顶表面110a是非等平面。As shown in FIG. 5D, a planarization process is performed on the barrier layer 130' and the metal layer 340' to planarize the surfaces of the barrier layer 130' and the metal layer 340' to form the barrier layer 130 and the metal layer 340. In an embodiment, the planarization process is, for example, a chemical mechanical polishing process (CMP process). After planarization, as shown in FIG. 5D , the top surface 130a of the barrier layer 130 and the top surface 340a of the metal layer 340 are flush and equiplanar. After planarization, the top surface 130a of the barrier layer 130 and the top surface 340a of the metal layer 340 may be flush and equiplanar or non-equalplanar with the top surface 110a of the insulating structure 110 . In an embodiment, as shown in FIG. 5D , the top surface 130a and the top surface 340a are not equiplanar to the top surface 110a of the insulating structure 110 .

如图5E所示,移除位于通孔110v的内壁110s上的一部份阻挡层130。此步骤之后,阻挡层130的顶表面130a'和金属层340的顶表面340a是非等平面。实施例中,例如是经由一刻蚀工艺移除此部分阻挡层130,并且采用对于阻挡层130和金属层340具有高选择比的刻蚀液进行刻蚀,使得仅部分阻挡层130被刻蚀移除,而金属层340的结构实质上并未被刻蚀破坏。As shown in FIG. 5E , a portion of the barrier layer 130 on the inner wall 110 s of the via hole 110 v is removed. After this step, the top surface 130a' of the barrier layer 130 and the top surface 340a of the metal layer 340 are not equiplanar. In an embodiment, for example, this part of the barrier layer 130 is removed through an etching process, and etching is performed with an etchant having a high selectivity ratio to the barrier layer 130 and the metal layer 340, so that only part of the barrier layer 130 is etched and removed. However, the structure of the metal layer 340 is not substantially damaged by etching.

如图5F所示,进行一氧化工艺以氧化金属层340以形成金属氧化物层140于阻挡层130上、以及形成电阻结构150于金属氧化物层140的外壁140s的底部,以及形成电极材料层160于金属氧化物层140上。实施例中,由于阻挡层130可以阻止氧的深入,使得氧化工艺对于金属层340的氧化会被阻挡在阻挡层130之上,因此氧化的深度不会往下扩散至导电结构220,如此一来可以较佳地控制金属氧化物层140的厚度,金属氧化物层140的厚度也可以较均匀。As shown in FIG. 5F, an oxidation process is performed to oxidize the metal layer 340 to form a metal oxide layer 140 on the barrier layer 130, and to form a resistance structure 150 at the bottom of the outer wall 140s of the metal oxide layer 140, and to form an electrode material layer. 160 on the metal oxide layer 140 . In the embodiment, since the barrier layer 130 can prevent the penetration of oxygen, the oxidation of the metal layer 340 by the oxidation process will be blocked on the barrier layer 130, so the depth of oxidation will not diffuse down to the conductive structure 220, so that The thickness of the metal oxide layer 140 can be better controlled, and the thickness of the metal oxide layer 140 can also be relatively uniform.

实施例中,如图5F所示,电极材料层160亦形成于绝缘结构110的顶表面110a上。In an embodiment, as shown in FIG. 5F , the electrode material layer 160 is also formed on the top surface 110 a of the insulating structure 110 .

于氧化工艺中,金属层340被氧化而其体积膨胀,因此形成如图5F所示的金属氧化物层140,其中膨胀的金属氧化物层140,其外壁140s朝向通孔110v的侧壁110s延伸。此外,电阻结构150,例如是空隙150b可能形成于金属氧化物层140的外壁140s和通孔110v的侧壁110s之间。实施例中,空隙150b例如是形成于金属氧化物层140的外壁140s的底部。此步骤中,由于阻挡层130的顶表面130a'低于金属层340的顶表面340a,因此所形成的空隙150b的顶表面150b-1亦低于金属氧化物层140的顶表面140a。In the oxidation process, the metal layer 340 is oxidized and its volume expands, thus forming the metal oxide layer 140 as shown in FIG. . In addition, the resistive structure 150, such as the void 150b, may be formed between the outer wall 140s of the metal oxide layer 140 and the sidewall 110s of the via 110v. In an embodiment, the void 150b is formed, for example, at the bottom of the outer wall 140s of the metal oxide layer 140 . In this step, since the top surface 130 a ′ of the barrier layer 130 is lower than the top surface 340 a of the metal layer 340 , the top surface 150 b - 1 of the formed void 150 b is also lower than the top surface 140 a of the metal oxide layer 140 .

再者,于氧化工艺中,一暴露部份的阻挡层130可能也会被氧化而形成电阻结构150,例如是金属氧化物结构150a。举例而言,阻挡层130暴露于金属层340之外的表面的一部份可以于氧化工艺中被氧化而形成金属氧化物结构150a。实施例中,金属氧化物结构150a的材质例如包括阻挡层130的氧化物。举例而言,当阻挡层130的材质为氮化钛,则金属氧化物结构150a的材质可包括氮氧化钛。此步骤中,由于阻挡层130的顶表面130a'低于金属层340的顶表面340a,因此所形成的金属氧化物结构150a的顶表面150a-1亦低于金属氧化物层140的顶表面140a。Furthermore, during the oxidation process, an exposed portion of the barrier layer 130 may also be oxidized to form a resistive structure 150, such as a metal oxide structure 150a. For example, a portion of the surface of the barrier layer 130 exposed to the metal layer 340 may be oxidized in an oxidation process to form the metal oxide structure 150a. In an embodiment, the material of the metal oxide structure 150 a includes, for example, the oxide of the barrier layer 130 . For example, when the material of the barrier layer 130 is titanium nitride, the material of the metal oxide structure 150a may include titanium oxynitride. In this step, since the top surface 130a' of the barrier layer 130 is lower than the top surface 340a of the metal layer 340, the top surface 150a-1 of the formed metal oxide structure 150a is also lower than the top surface 140a of the metal oxide layer 140. .

至此,形成于图5F(图2)所示的半导体结构200。综上所述,本实施例中,金属氧化物层140的厚度T2可经由调控通孔110v的上部部分110r形成的凹陷的深度D1、阻挡层130的厚度T1及金属层340’的平坦化工艺来良好地调控。并且,上述工艺更具有与现有的互补式金属氧化物半导体(CMOS)工艺相容的优点。So far, the semiconductor structure 200 shown in FIG. 5F ( FIG. 2 ) is formed. To sum up, in this embodiment, the thickness T2 of the metal oxide layer 140 can be controlled by adjusting the depth D1 of the depression formed by the upper part 110r of the through hole 110v, the thickness T1 of the barrier layer 130 and the planarization process of the metal layer 340' to control well. Moreover, the above-mentioned process has the advantage of being compatible with existing complementary metal-oxide-semiconductor (CMOS) processes.

请参照图6A~图6G,其绘示依照本发明的又一实施例的半导体结构300的制造方法的流程图。Please refer to FIGS. 6A-6G , which illustrate a flow chart of a manufacturing method of the semiconductor structure 300 according to another embodiment of the present invention.

如图6A~图6C所示,形成具有一通孔210v的绝缘结构210,以及形成导电结构220于通孔210v中。形成绝缘结构210的制造方法例如包括以下步骤。As shown in FIGS. 6A-6C , an insulating structure 210 having a through hole 210v is formed, and a conductive structure 220 is formed in the through hole 210v. The manufacturing method for forming the insulating structure 210 includes the following steps, for example.

如图6A所示,形成间隙壁211,其中导电结构220是填入于间隙壁211中,以使得间隙壁211环绕导电结构220。As shown in FIG. 6A , a spacer 211 is formed, wherein the conductive structure 220 is filled in the spacer 211 such that the spacer 211 surrounds the conductive structure 220 .

实施例中,更可选择性地形成衬垫层(未绘示于图式)于导电结构220和绝缘结构210之间。举例而言,先形成衬垫层于绝缘结构210的内壁上,接着形成导电结构220于衬垫层上。In an embodiment, a liner layer (not shown in the drawing) can be optionally formed between the conductive structure 220 and the insulating structure 210 . For example, a liner layer is formed on the inner wall of the insulating structure 210 first, and then the conductive structure 220 is formed on the liner layer.

接着,如图6B所示,形成一层间介电材料层413于间隙壁211上及导电结构220上。Next, as shown in FIG. 6B , an interlayer dielectric material layer 413 is formed on the spacer 211 and the conductive structure 220 .

然后,如图6C所示,移除位于导电结构220上的一部分层间介电材料层413以形成层间介电层213于间隙壁211上,其中间隙壁211与层间介电层213共同形成通孔210v。实施例中,例如是以掩模刻蚀工艺移除位于导电结构220上的部分层间介电材料层413,而形成穿孔213r,穿孔213r贯穿层间介电层213而连接至导电结构220。实施例中,例如是采用对于层间介电材料层413和导电结构220具有高选择比的刻蚀液进行刻蚀,使得仅部分层间介电材料层413被刻蚀移除,而导电结构220的结构实质上并未被刻蚀破坏。如图6C所示,对应于层间介电层213的穿孔213r与对应于间隙壁211用以容置导电结构220的空间共同形成绝缘结构210的通孔210v。实施例中,层间介电层213(穿孔213r)具有的高度H1大约为后续形成的阻挡层的厚度和金属氧化物层的厚度的加总,例如是然而此高度H1可以依照实际应用做适当选择,例如是元件的电阻等的特性的需要,并不以前述范围为限。Then, as shown in FIG. 6C , a portion of the interlayer dielectric material layer 413 located on the conductive structure 220 is removed to form an interlayer dielectric layer 213 on the spacer 211 , wherein the spacer 211 and the interlayer dielectric layer 213 are in common A via hole 210v is formed. In an embodiment, for example, a part of the interlayer dielectric material layer 413 on the conductive structure 220 is removed by a mask etching process to form the through hole 213r, and the through hole 213r penetrates the interlayer dielectric layer 213 and is connected to the conductive structure 220. In the embodiment, for example, an etchant having a high selectivity ratio to the interlayer dielectric material layer 413 and the conductive structure 220 is used for etching, so that only part of the interlayer dielectric material layer 413 is etched and removed, while the conductive structure The structure of 220 is not substantially damaged by etching. As shown in FIG. 6C , the through hole 213 r corresponding to the interlayer dielectric layer 213 and the space corresponding to the spacer 211 for accommodating the conductive structure 220 together form a via hole 210 v of the insulating structure 210 . In an embodiment, the height H1 of the interlayer dielectric layer 213 (the through hole 213r) is approximately the sum of the thickness of the subsequently formed barrier layer and the thickness of the metal oxide layer, for example, However, the height H1 can be properly selected according to practical applications, such as the requirements of characteristics such as the resistance of the element, and is not limited to the aforementioned range.

本实施例中,经由沉积层间介电层213的方式进一步形成穿孔213r,由于薄膜沉积工艺对于膜厚的均匀度具有高控制力,因此穿孔213r的高度H1具有高均匀性,进而使得后续形成于其中的金属氧化物层140的厚度具有高均匀性。根据本发明的实施例,以半导体结构300是接触式电阻式存储单元结构为例,存储元件的绝缘层的厚度具有高均匀性,则存储元件的电阻值能获得较佳的控制,进而令电阻式存储单元结构具有较佳的特性。In this embodiment, the through hole 213r is further formed by depositing the interlayer dielectric layer 213. Since the thin film deposition process has a high control force on the uniformity of the film thickness, the height H1 of the through hole 213r has a high uniformity, which in turn makes the subsequent formation The thickness of the metal oxide layer 140 therein has high uniformity. According to an embodiment of the present invention, taking the semiconductor structure 300 as an example of a contact resistive memory cell structure, the thickness of the insulating layer of the memory element has high uniformity, and the resistance value of the memory element can be better controlled, thereby making the resistance The memory cell structure has better characteristics.

如图6D所示,形成一阻挡层130’于导电结构220上及通孔110v的侧壁110s上,以及形成一金属层340’于阻挡层130’上。实施例中,阻挡层130’和金属层340’例如是形成于并填满穿孔213r中。As shown in FIG. 6D, a barrier layer 130' is formed on the conductive structure 220 and the sidewall 110s of the via 110v, and a metal layer 340' is formed on the barrier layer 130'. In an embodiment, the barrier layer 130' and the metal layer 340' are formed and filled in the through hole 213r, for example.

如图6E所示,对阻挡层130’和金属层340’进行一平坦化工艺,以平坦化阻挡层130’和金属层340’的表面,而形成阻挡层130和金属层340。实施例中,平坦化工艺例如是化学机械研磨工艺。平坦化之后,如图6E所示,阻挡层130的顶表面130a和金属层340的顶表面340a齐平且等平面。平坦化之后,阻挡层130的顶表面130a和金属层340的顶表面340a可以和绝缘结构210的顶表面210a系齐平且等平面或者非等平面。实施例中,如图6E所示,顶表面130a以及顶表面340a和绝缘结构210的顶表面210a系等平面。As shown in FIG. 6E, a planarization process is performed on the barrier layer 130' and the metal layer 340' to planarize the surfaces of the barrier layer 130' and the metal layer 340' to form the barrier layer 130 and the metal layer 340. In an embodiment, the planarization process is, for example, a chemical mechanical polishing process. After planarization, as shown in FIG. 6E , the top surface 130 a of the barrier layer 130 and the top surface 340 a of the metal layer 340 are flush and equiplanar. After planarization, the top surface 130a of the barrier layer 130 and the top surface 340a of the metal layer 340 may be flush and equiplanar or non-equalplanar with the top surface 210a of the insulating structure 210 . In an embodiment, as shown in FIG. 6E , the top surface 130 a and the top surface 340 a are equiplanar with the top surface 210 a of the insulating structure 210 .

如图6F所示,移除位于通孔210v的内壁210s上的一部份阻挡层130。此步骤之后,阻挡层130的顶表面130a'和金属层340的顶表面340a系非等平面。实施例中,例如是经由一刻蚀工艺移除此部分阻挡层130,并且采用对于阻挡层130和金属层340具有高选择比的刻蚀液进行刻蚀,使得仅部分阻挡层130被刻蚀移除,而金属层340的结构实质上并未被刻蚀破坏。As shown in FIG. 6F , a portion of the barrier layer 130 on the inner wall 210 s of the via hole 210 v is removed. After this step, the top surface 130a' of the barrier layer 130 and the top surface 340a of the metal layer 340 are not equiplanar. In an embodiment, for example, this part of the barrier layer 130 is removed through an etching process, and etching is performed with an etchant having a high selectivity ratio to the barrier layer 130 and the metal layer 340, so that only part of the barrier layer 130 is etched and removed. However, the structure of the metal layer 340 is not substantially damaged by etching.

如图6G所示,进行一氧化工艺以氧化金属层340以形成金属氧化物层140于阻挡层130上、以及形成电阻结构150于金属氧化物层140的外壁140s的底部,以及形成电极材料层160于金属氧化物层140上。实施例中,由于阻挡层130可以阻止氧的深入,使得氧化工艺对于金属层340的氧化会被阻挡在阻挡层130之上,因此氧化的深度不会往下扩散至导电结构220,如此一来可以较佳地控制金属氧化物层140的厚度,金属氧化物层140的厚度也可以较均匀。As shown in FIG. 6G, an oxidation process is performed to oxidize the metal layer 340 to form a metal oxide layer 140 on the barrier layer 130, and to form a resistance structure 150 at the bottom of the outer wall 140s of the metal oxide layer 140, and to form an electrode material layer. 160 on the metal oxide layer 140 . In the embodiment, since the barrier layer 130 can prevent the penetration of oxygen, the oxidation of the metal layer 340 by the oxidation process will be blocked on the barrier layer 130, so the depth of oxidation will not diffuse down to the conductive structure 220, so that The thickness of the metal oxide layer 140 can be better controlled, and the thickness of the metal oxide layer 140 can also be relatively uniform.

实施例中,如图6G所示,电极材料层160亦形成于绝缘结构210的顶表面210a上。In an embodiment, as shown in FIG. 6G , the electrode material layer 160 is also formed on the top surface 210 a of the insulating structure 210 .

于氧化工艺中,金属层340被氧化而其体积膨胀,因此形成如图6G所示的金属氧化物层140,其中膨胀的金属氧化物层140,其外壁140s朝向通孔210v的侧壁210s延伸。此外,电阻结构150,例如是空隙150b可能形成于金属氧化物层140的外壁140s和通孔210v的侧壁210s之间。实施例中,空隙150b例如是形成于金属氧化物层140的外壁140s的底部。In the oxidation process, the metal layer 340 is oxidized and its volume expands, thus forming the metal oxide layer 140 as shown in FIG. . In addition, the resistive structure 150, such as the void 150b, may be formed between the outer wall 140s of the metal oxide layer 140 and the sidewall 210s of the via 210v. In an embodiment, the void 150b is formed, for example, at the bottom of the outer wall 140s of the metal oxide layer 140 .

再者,于氧化工艺中,一暴露部份的阻挡层130可能也会被氧化而形成电阻结构150,例如是金属氧化物结构150a。举例而言,阻挡层130暴露于金属层340之外的表面的一部份可以于氧化工艺中被氧化而形成金属氧化物结构150a。实施例中,金属氧化物结构150a的材质例如包括阻挡层130的氧化物。举例而言,当阻挡层130的材质为氮化钛,则金属氧化物结构150a的材质可包括氮氧化钛。Furthermore, during the oxidation process, an exposed portion of the barrier layer 130 may also be oxidized to form a resistive structure 150, such as a metal oxide structure 150a. For example, a portion of the surface of the barrier layer 130 exposed to the metal layer 340 may be oxidized in an oxidation process to form the metal oxide structure 150a. In an embodiment, the material of the metal oxide structure 150 a includes, for example, the oxide of the barrier layer 130 . For example, when the material of the barrier layer 130 is titanium nitride, the material of the metal oxide structure 150a may include titanium oxynitride.

至此,形成于图6G(图3)所示的半导体结构300。综上所述,本实施例中,金属氧化物层140的厚度T2可经由调控层间介电层213的高度H1、阻挡层130的厚度T1及金属层340’的平坦化工艺来良好地调控。并且,上述工艺更具有与现有的互补式金属氧化物半导体工艺兼容的优点。So far, the semiconductor structure 300 shown in FIG. 6G ( FIG. 3 ) is formed. In summary, in this embodiment, the thickness T2 of the metal oxide layer 140 can be well regulated by adjusting the height H1 of the interlayer dielectric layer 213, the thickness T1 of the barrier layer 130 and the planarization process of the metal layer 340' . Moreover, the above process has the advantage of being compatible with the existing CMOS process.

图7绘示依照本发明的一实施例及一比较例的半导体结构的电阻-电压曲线图。实施例中,以半导体结构100为例,移除位于通孔110v的内壁110s上的一部份阻挡层130后,接着进行的氧化工艺可形成电阻结构150(例如金属氧化物结构150a和空隙150b)于金属氧化物层140的外壁140s的底部。相对地,比较例的半导体结构并未进行移除位于通孔110v的内壁110s上的一部份阻挡层130的工艺,因此氧化工艺仅会氧化阻挡层130的顶表面,且此氧化的顶表面与金属氧化物层140的顶表面共表面,因此比较例的半导体结构中,不可能形成电阻结构150于金属氧化物层140的外壁140s的底部。相较于比较例的半导体结构仅具有一层薄氧化层于阻挡层130的顶表面,实施例的半导体结构100中的电阻结构150具有较大的深度,因此可以更有效地隔离电极材料层160和导电结构120,降低电极材料层160和导电结构120之间的电性干扰,进而提高实施例的半导体结构100的崩溃电压。FIG. 7 shows resistance-voltage curves of semiconductor structures according to an embodiment of the present invention and a comparative example. In the embodiment, taking the semiconductor structure 100 as an example, after removing a part of the barrier layer 130 on the inner wall 110s of the via hole 110v, the subsequent oxidation process can form the resistance structure 150 (such as the metal oxide structure 150a and the void 150b ) at the bottom of the outer wall 140s of the metal oxide layer 140 . In contrast, the semiconductor structure of the comparative example does not perform the process of removing a part of the barrier layer 130 on the inner wall 110s of the via hole 110v, so the oxidation process only oxidizes the top surface of the barrier layer 130, and the oxidized top surface It is co-surfaced with the top surface of the metal oxide layer 140 , so in the semiconductor structure of the comparative example, it is impossible to form the resistance structure 150 at the bottom of the outer wall 140 s of the metal oxide layer 140 . Compared with the semiconductor structure of the comparative example, which only has a thin oxide layer on the top surface of the barrier layer 130, the resistance structure 150 in the semiconductor structure 100 of the embodiment has a larger depth, so the electrode material layer 160 can be isolated more effectively. and the conductive structure 120 , reducing electrical interference between the electrode material layer 160 and the conductive structure 120 , thereby increasing the breakdown voltage of the semiconductor structure 100 of the embodiment.

如图7所示,曲线I表示比较例的半导体结构的电阻-电压曲线,曲线II表示实施例的半导体结构100的电阻-电压曲线。如图7所示,比较例的半导体结构的崩溃电压大约为5.5~6V,而实施例的半导体结构100可具有至少8V以上的崩溃电压,远高于比较例的半导体结构的崩溃电压。As shown in FIG. 7 , curve I represents the resistance-voltage curve of the semiconductor structure of the comparative example, and curve II represents the resistance-voltage curve of the semiconductor structure 100 of the embodiment. As shown in FIG. 7 , the breakdown voltage of the semiconductor structure of the comparative example is about 5.5-6V, while the semiconductor structure 100 of the embodiment may have a breakdown voltage of at least 8V, which is much higher than the breakdown voltage of the semiconductor structure of the comparative example.

综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。To sum up, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (10)

1.一种半导体结构,包括:1. A semiconductor structure comprising: 绝缘结构,具有一通孔(via);The insulating structure has a through hole (via); 阻挡层(stop layer),形成于该通孔中;a stop layer formed in the through hole; 金属氧化物层,形成于该阻挡层上;a metal oxide layer formed on the barrier layer; 电阻结构(resistance structure),形成于该金属氧化物层的一外壁的一底部;以及a resistance structure formed at a bottom of an outer wall of the metal oxide layer; and 电极材料层,形成于该金属氧化物层上;an electrode material layer formed on the metal oxide layer; 其中,该电阻结构包括金属氧化物结构或空隙的至少其中之一。Wherein, the resistance structure includes at least one of a metal oxide structure or a void. 2.根据权利要求1所述的半导体结构,更包括:2. The semiconductor structure according to claim 1, further comprising: 导电结构,形成于该通孔中,其中该阻挡层形成于该导电结构上。A conductive structure is formed in the through hole, wherein the barrier layer is formed on the conductive structure. 3.根据权利要求1所述的半导体结构,其中该阻挡层的厚度为该金属氧化物层的厚度为 3. The semiconductor structure according to claim 1, wherein the barrier layer has a thickness of The thickness of the metal oxide layer is 4.根据权利要求1所述的半导体结构,其中该阻挡层包括金属氮化物或惰性金属(inert metal)的至少其中之一。4. The semiconductor structure of claim 1, wherein the barrier layer comprises at least one of a metal nitride or an inert metal. 5.一种电阻式存储单元(Resistive random access memory unit)结构,包括:5. A resistive random access memory unit (Resistive random access memory unit) structure, comprising: 绝缘结构,具有一通孔(via);The insulating structure has a through hole (via); 阻挡层,形成于该通孔中;a barrier layer formed in the through hole; 存储元件(memory element),形成于该阻挡层上;a storage element (memory element), formed on the barrier layer; 电阻结构,形成于该存储元件的一外壁的一底部;以及a resistive structure formed at a bottom of an outer wall of the memory element; and 顶电极层,形成于该存储元件上;a top electrode layer formed on the memory element; 其中,该电阻结构包括金属氧化物结构或空隙的至少其中之一。Wherein, the resistance structure includes at least one of a metal oxide structure or a void. 6.根据权利要求5所述的电阻式存储单元结构,更包括:6. The resistive memory cell structure according to claim 5, further comprising: 接触结构(contact structure),形成于该通孔中,其中该阻挡层形成于该接触结构上。A contact structure is formed in the through hole, wherein the barrier layer is formed on the contact structure. 7.根据权利要求5所述的电阻式存储单元结构,其中该阻挡层包括氮化钛(TiN)、氮化钽(TaN)、氮化钨(WN)、金(Au)和铂(Pt)的至少其中之一。7. The resistive memory cell structure according to claim 5, wherein the barrier layer comprises titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), gold (Au) and platinum (Pt) at least one of the . 8.一种半导体结构的制造方法,包括:8. A method of fabricating a semiconductor structure, comprising: 形成一绝缘结构,具有一通孔(via);forming an insulating structure with a through hole (via); 形成一阻挡层于该通孔中及该通孔的一侧壁上;forming a barrier layer in the through hole and on a side wall of the through hole; 形成一金属层于该阻挡层上;forming a metal layer on the barrier layer; 移除位于该通孔的一内壁上的一部份该阻挡层;removing a portion of the barrier layer on an inner wall of the through hole; 进行一氧化工艺以氧化该金属层以形成一金属氧化物层于该阻挡层上以及形成一电阻结构于该金属氧化物层的一外壁的一底部;以及performing an oxidation process to oxidize the metal layer to form a metal oxide layer on the barrier layer and to form a resistance structure at a bottom of an outer wall of the metal oxide layer; and 形成一电极材料层于该金属氧化物层上;forming an electrode material layer on the metal oxide layer; 其中,进行该氧化工艺以更氧化一暴露部份的该阻挡层以形成该电阻结构。Wherein, the oxidation process is performed to further oxidize an exposed portion of the barrier layer to form the resistance structure. 9.根据权利要求8所述的半导体结构的制造方法,更包括:9. The method for manufacturing a semiconductor structure according to claim 8, further comprising: 形成一导电结构于该通孔中,其中该阻挡层更形成于该导电结构上。A conductive structure is formed in the through hole, wherein the blocking layer is further formed on the conductive structure. 10.根据权利要求8所述的半导体结构的制造方法,其中是经由一刻蚀工艺移除位于该通孔的该内壁上的该部份阻挡层。10. The manufacturing method of the semiconductor structure according to claim 8, wherein the part of the barrier layer on the inner wall of the through hole is removed through an etching process.
CN201410217468.6A 2014-05-22 2014-05-22 Semiconductor structure, resistive memory cell structure and manufacturing method of semiconductor structure Active CN105098067B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410217468.6A CN105098067B (en) 2014-05-22 2014-05-22 Semiconductor structure, resistive memory cell structure and manufacturing method of semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410217468.6A CN105098067B (en) 2014-05-22 2014-05-22 Semiconductor structure, resistive memory cell structure and manufacturing method of semiconductor structure

Publications (2)

Publication Number Publication Date
CN105098067A CN105098067A (en) 2015-11-25
CN105098067B true CN105098067B (en) 2017-10-17

Family

ID=54578062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410217468.6A Active CN105098067B (en) 2014-05-22 2014-05-22 Semiconductor structure, resistive memory cell structure and manufacturing method of semiconductor structure

Country Status (1)

Country Link
CN (1) CN105098067B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876400B (en) * 2017-02-28 2021-01-08 中国科学院微电子研究所 Conductive bridge semiconductor device and method of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034927A (en) * 2009-09-25 2011-04-27 中芯国际集成电路制造(上海)有限公司 Impedance memorizer and manufacture method thereof
CN102136547A (en) * 2010-01-25 2011-07-27 旺宏电子股份有限公司 Programmable metallization device with ion buffer layer and method of making same
CN102142442A (en) * 2009-11-17 2011-08-03 三星电子株式会社 Semiconductor device and method of forming the same
CN103035837A (en) * 2012-05-11 2013-04-10 上海华虹Nec电子有限公司 Structure and manufacturing method of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897951B2 (en) * 2007-07-26 2011-03-01 Unity Semiconductor Corporation Continuous plane of thin-film materials for a two-terminal cross-point memory
US7382647B1 (en) * 2007-02-27 2008-06-03 International Business Machines Corporation Rectifying element for a crosspoint based memory array architecture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034927A (en) * 2009-09-25 2011-04-27 中芯国际集成电路制造(上海)有限公司 Impedance memorizer and manufacture method thereof
CN102142442A (en) * 2009-11-17 2011-08-03 三星电子株式会社 Semiconductor device and method of forming the same
CN102136547A (en) * 2010-01-25 2011-07-27 旺宏电子股份有限公司 Programmable metallization device with ion buffer layer and method of making same
CN103035837A (en) * 2012-05-11 2013-04-10 上海华虹Nec电子有限公司 Structure and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
CN105098067A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
CN102484113B (en) Semiconductor memory device and production method thereof
CN102217067B (en) Non-volatile memory device and method for producing same
CN102449763B (en) Nonvolatile memory element and method for manufacturing same
JP4937413B2 (en) Resistance change element and nonvolatile semiconductor memory device using the same
US9853215B1 (en) Resistance switching memory device and method of manufacturing the same
JP5324724B2 (en) Method for manufacturing nonvolatile memory device
CN102696107A (en) Resistance-varying element and process for production thereof
US20120256152A1 (en) Semiconductor device and method for manufacturing the same
CN108321293A (en) Variable resistance memory and forming method
TW202042418A (en) Memory device, programmable metallization cell and manufacturing method thereof
CN103682093A (en) Resistive memory cell, resistive memory array and forming method thereof
CN102630340A (en) Process for manufacture of non-volatile semiconductor storage element
TWI644421B (en) Semiconductor memory device
CN101796640A (en) Nonvolatile storage element, and method for manufacturing nonvolatile storage element or nonvolatile storage device
TWI582954B (en) Capped contact structure with variable adhesion layer thickness
JP5555821B1 (en) Nonvolatile memory element and manufacturing method thereof
CN105098067B (en) Semiconductor structure, resistive memory cell structure and manufacturing method of semiconductor structure
US9859336B1 (en) Semiconductor device including a memory cell structure
US20170077122A1 (en) Integrated circuit device and method for manufacturing same
TWI570851B (en) Semiconductor structure, resistive random access memory unit structure, and manufacturing method of the semiconductor structure
CN114695656A (en) Memory device and method of making memory device
US9190612B1 (en) Semiconductor structure, resistive random access memory unit structure, and manufacturing method of the semiconductor structure
US10490744B2 (en) Contact hole structure method for fabricating the same and applications thereof
TWI641096B (en) Contact hole structure mrthod for fabricting the same and applications thereof
TWI607592B (en) semiconductor device INCLUDING A MEMORY CELL STRUCTURE

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant