[go: up one dir, main page]

CN105085838A - Preparation method of modified nanometer SiO2-AA-AM copolymer - Google Patents

Preparation method of modified nanometer SiO2-AA-AM copolymer Download PDF

Info

Publication number
CN105085838A
CN105085838A CN201410750934.7A CN201410750934A CN105085838A CN 105085838 A CN105085838 A CN 105085838A CN 201410750934 A CN201410750934 A CN 201410750934A CN 105085838 A CN105085838 A CN 105085838A
Authority
CN
China
Prior art keywords
sio
modified nano
copolymer
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410750934.7A
Other languages
Chinese (zh)
Inventor
赖南君
唐雷
叶仲斌
周庆
王锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201410750934.7A priority Critical patent/CN105085838A/en
Publication of CN105085838A publication Critical patent/CN105085838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及一种改性纳米SiO2-AA-AM共聚物的制备方法,所述制备方法包括以下步骤:(1)将改性纳米SiO2功能单体、丙烯酰胺以及丙烯酸混合,并用氢氧化钠调节pH值至6.0~7.5,加入蒸馏水配成单体总质量浓度为20.0~26.0%的水溶液;加入引发剂,通氮气保护,在温度为36.0~42.0℃条件下反应;反应产物经洗涤、粉碎、干燥后即可得到所述共聚物。本发明的共聚物将纳米SiO2引入到共聚物中,在纳米SiO2表面接上氨基进而接上双键,使其与丙烯酸以及丙烯酰胺聚合,合成出的共聚物具有空间网络结构,并且通过控制改性纳米SiO2功能单体表面的改性程度优化了共聚物的增黏性能。

The present invention relates to a kind of preparation method of modified nano-SiO 2 -AA-AM copolymer, and described preparation method comprises the following steps: (1) mix modified nano-SiO 2 functional monomer, acrylamide and acrylic acid, and oxidize with hydrogen Adjust the pH value to 6.0-7.5 with sodium, add distilled water to form an aqueous solution with a total monomer mass concentration of 20.0-26.0%; add an initiator, protect it with nitrogen, and react at a temperature of 36.0-42.0°C; the reaction product is washed, The copolymer can be obtained after crushing and drying. In the copolymer of the present invention, nano- SiO2 is introduced into the copolymer, amino groups are connected to the surface of nano- SiO2 and then double bonds are connected, and it is polymerized with acrylic acid and acrylamide. The synthesized copolymer has a space network structure, and through Controlling the degree of modification on the surface of the modified nano- SiO2 functional monomer optimizes the viscosity-increasing performance of the copolymer.

Description

改性纳米SiO2-AA-AM共聚物的制备方法Preparation method of modified nanometer SiO2-AA-AM copolymer

技术领域technical field

本发明涉及聚合物材料制备的技术领域,更具体地说,本发明涉及一种改性纳米SiO2-AA-AM共聚物的制备方法。The invention relates to the technical field of polymer material preparation, more specifically, the invention relates to a preparation method of modified nanometer SiO 2 -AA-AM copolymer.

背景技术Background technique

石油作为不可再生资源,在工业、国防等领域中具有举足轻重的重要地位。为了提高油田的开采期限、提高油田产量,采用聚合物驱是一项重要的技术。聚合物驱是指在注入水中加入少量的聚合物,依靠增大水相粘度和降低油层渗透率来起到提高波及系数以及提高采收率的作用。目前,聚合物驱在我国的大庆油田、胜利油田、大港油田、吉林油田、河南油田已经进入工业化阶段,取得较好的增油效果。As a non-renewable resource, petroleum plays an important role in the fields of industry and national defense. In order to increase the production life of the oil field and increase the output of the oil field, the use of polymer flooding is an important technology. Polymer flooding refers to adding a small amount of polymer to the injected water to improve the sweep coefficient and recovery factor by increasing the viscosity of the water phase and reducing the permeability of the oil layer. At present, polymer flooding has entered the stage of industrialization in my country's Daqing Oilfield, Shengli Oilfield, Dagang Oilfield, Jilin Oilfield, and Henan Oilfield, and has achieved good oil-increasing effects.

目前,聚合物驱广泛使用的聚合物是聚丙烯酰胺及其衍生物。这类聚合物在用于低温、低矿化度油藏时可以取得理想的增油效果,但是在用于高温高矿化度油藏时其提高采收率效果大幅度降低。超支化聚合物具有较强的抗剪切能力,在多孔介质中能够建立较高的阻力系数和残余阻力系数。目前,主要用有机物为内核来合成超支化聚合物,所合成的超支化聚合物的支链条数较少。虽然可以通过增加有机物内核的代数来增加支链的条数,但是内核的代数越高,分子尺寸将越大,超支化聚合物的注入性越差;此外,内核的代数越高,副反应就越多,内核的规整程度将难以控制,即使采用一系列的分离与提纯技术可以得到较规整的内核,但是内核的生产成本也会很高。At present, polyacrylamide and its derivatives are widely used in polymer flooding. This kind of polymer can achieve ideal oil enhancement effect when used in low-temperature and low-salinity reservoirs, but its enhanced oil recovery effect is greatly reduced when used in high-temperature and high-salinity reservoirs. Hyperbranched polymers have strong shear resistance and can establish high resistance coefficient and residual resistance coefficient in porous media. At present, hyperbranched polymers are mainly synthesized with organic matter as the inner core, and the number of branched chains of the synthesized hyperbranched polymers is small. Although the number of branch chains can be increased by increasing the algebra of the organic inner core, the higher the inner algebra, the larger the molecular size, and the poorer the injectability of hyperbranched polymers; in addition, the higher the inner algebra, the less side reactions The more it is, the regularity of the kernel will be difficult to control. Even if a series of separation and purification techniques can be used to obtain a more regular kernel, the production cost of the kernel will be high.

发明内容Contents of the invention

为了解决现有技术中存在的上述技术问题,本发明的目的在于提供一种改性纳米SiO2-AA-AM共聚物的制备方法。In order to solve the above-mentioned technical problems existing in the prior art, the object of the present invention is to provide a preparation method of modified nano-SiO 2 -AA-AM copolymer.

为了实现上述目的,本发明采用了以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于所述制备方法包括以下步骤:(1)将改性纳米SiO2功能单体、丙烯酰胺以及丙烯酸混合,并用氢氧化钠调节pH值至6.0~7.5,加入蒸馏水配成单体总质量浓度为20.0~26.0%的水溶液;加入引发剂,通氮气保护,在温度为36.0~42.0℃条件下反应;反应产物经洗涤、粉碎、干燥后即可得到所述共聚物。A preparation method of modified nano- SiO2 -AA-AM copolymer, characterized in that said preparation method comprises the following steps: (1) mixing modified nano- SiO2 functional monomers, acrylamide and acrylic acid, and oxidizing with hydrogen Adjust the pH value to 6.0-7.5 with sodium, add distilled water to form an aqueous solution with a total monomer mass concentration of 20.0-26.0%; add an initiator, protect it with nitrogen, and react at a temperature of 36.0-42.0°C; the reaction product is washed, The copolymer can be obtained after crushing and drying.

其中,所述共聚物的结构式如下:Wherein, the structural formula of described copolymer is as follows:

其中,所述引发剂为过硫酸铵和亚硫酸氢钠的混合物,并且二者的摩尔比为1∶1。Wherein, the initiator is a mixture of ammonium persulfate and sodium bisulfite, and the molar ratio of the two is 1:1.

其中,所述引发剂的质量为所述单体总质量的0.10~0.30wt%。Wherein, the mass of the initiator is 0.10-0.30 wt% of the total mass of the monomers.

其中,所述单体中丙烯酰胺与丙烯酸的质量比为1.86~4.00,改性纳米SiO2功能单体的含量为0.1~0.8wt%。Wherein, the mass ratio of acrylamide to acrylic acid in the monomer is 1.86-4.00, and the content of the modified nano- SiO2 functional monomer is 0.1-0.8 wt%.

其中,所述改性纳米SiO2功能单体采用包括以下步骤的方法制备得到:(1)利用纳米SiO2和3-氨丙基三乙氧基硅烷在80~100℃的无水甲苯溶液中,反应12h以上得到氨基改性的纳米SiO2,并通过控制3-氨丙基三乙氧基硅烷的添加量来控制纳米SiO2表面氨基的含量;(2)利用过量的顺丁烯二酸酐与氨基改性的纳米SiO2反应得到具有碳碳双键的改性纳米SiO2功能单体。Wherein, the modified nano- SiO2 functional monomer is prepared by a method comprising the following steps: (1) using nano- SiO2 and 3-aminopropyltriethoxysilane in anhydrous toluene solution at 80-100°C , react more than 12h to obtain amino-modified nano-SiO 2 , and control the content of amino groups on the surface of nano-SiO 2 by controlling the amount of 3-aminopropyltriethoxysilane added; (2) utilize excess maleic anhydride React with amino-modified nano- SiO2 to obtain modified nano- SiO2 functional monomer with carbon-carbon double bond.

其中,在步骤(2)包括以下操作:①在N,N-二甲基甲酰胺溶液中加入顺丁烯二酸酐,搅拌溶解完全得到混合溶液;②在氨基改性的纳米SiO2中加入N,N-二甲基甲酰胺搅拌均匀得到分散液;③然后将操作②得到的分散液滴加到操作①得到的混合溶液中,然后在70~80℃搅拌反应完全,得到的反应产物经过洗涤、过滤、干燥后可得接枝有具有碳碳双键的改性纳米SiO2Wherein, in step (2), comprise the following operations: 1. add maleic anhydride in N, N-dimethylformamide solution, stir and dissolve to obtain mixed solution completely; 2. add N in amino-modified nano-SiO , N-dimethylformamide was stirred evenly to obtain a dispersion; ③Then the dispersion obtained in operation ② was added dropwise to the mixed solution obtained in operation ①, and then stirred at 70-80°C to complete the reaction, and the obtained reaction product was washed , filtering, and drying to obtain the modified nano-SiO 2 grafted with carbon-carbon double bonds.

其中,所述氨基改性的纳米SiO2表面氨基摩尔量是改性前纳米SiO2表面羟基摩尔量的25~40%。Wherein, the molar weight of amino groups on the surface of the amino-modified nano-SiO 2 is 25-40% of the molar weight of hydroxyl groups on the surface of the nano-SiO 2 before modification.

与现有技术相比,本发明所述的三元共聚物驱油剂具有以下有益效果:Compared with the prior art, the terpolymer oil displacement agent of the present invention has the following beneficial effects:

本发明的共聚物将纳米SiO2引入到共聚物中,在纳米SiO2表面接上氨基进而接上双键,使其与丙烯酸以及丙烯酰胺聚合,合成出的共聚物具有空间网络结构,并且通过控制改性纳米SiO2功能单体表面的改性程度优化了共聚物的增黏性能。In the copolymer of the present invention, nano- SiO2 is introduced into the copolymer, amino groups are connected to the surface of nano- SiO2 and then double bonds are connected, and it is polymerized with acrylic acid and acrylamide. The synthesized copolymer has a space network structure, and through Controlling the degree of modification on the surface of the modified nano- SiO2 functional monomer optimizes the viscosity-increasing performance of the copolymer.

附图说明Description of drawings

图1为纳米SiO2改性程度对共聚物增黏性能的影响。Figure 1 shows the effect of the modification degree of nano-SiO 2 on the viscosity-increasing performance of the copolymer.

图2为改性纳米SiO2-AM-AA共聚物的红外谱线。Figure 2 is the infrared spectrum of the modified nano-SiO 2 -AM-AA copolymer.

图3为共聚物1的氢谱。Figure 3 is the hydrogen spectrum of copolymer 1.

图4为共聚物2的氢谱。FIG. 4 is the hydrogen spectrum of copolymer 2.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用于阐述本发明的技术方案,并不用于限定发明的保护范围。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to illustrate the technical solution of the present invention, and are not used to limit the protection scope of the invention.

实施例1改性纳米SiO2功能单体的制备Embodiment 1 Modified nanometer SiO The preparation of functional monomer

本实施例所述的改性纳米SiO2功能单体采用包括以下步骤的方法制备得到:(1)利用纳米SiO2和3-氨丙基三乙氧基硅烷(KH540)在80℃的无水甲苯溶液中,反应12h得到氨基改性的纳米SiO2,并通过控制3-氨丙基三乙氧基硅烷的添加量来控制纳米SiO2表面氨基的含量;(2)利用过量的顺丁烯二酸酐与氨基改性的纳米SiO2反应得到具有碳碳双键的改性纳米SiO2功能单体。在步骤(2)包括以下操作:①在N,N-二甲基甲酰胺溶液中加入顺丁烯二酸酐,搅拌溶解完全得到混合溶液;②在氨基改性的纳米SiO2中加入N,N-二甲基甲酰胺搅拌均匀得到分散液;③将操作②得到的分散液滴加到操作①得到的混合溶液中,然后在75℃搅拌反应完全,得到的反应产物经过洗涤、过滤、干燥后可得接枝有具有碳碳双键的改性纳米SiO2。其中,在步骤(2)中可以利用盐酸-乙醇非水滴定法判定氨基改性的纳米SiO2表面的氨基是否反应完全。在步骤(1)的反应之前采用格氏试剂滴定法测定纳米SiO2表面羟基数量,并在反应之后用盐酸-乙醇非水滴定法测定纳米SiO2表面氨基的含量。通过实施例1可以制备得到不同改性程度的纳米SiO2功能单体(可以利用氨基改性的纳米SiO2表面氨基的摩尔量占改性前纳米SiO2表面羟基的摩尔量的百分比来表示)。The modified nano- SiO2 functional monomer described in this embodiment is prepared by a method comprising the following steps: (1) using nano- SiO2 and 3-aminopropyltriethoxysilane (KH540) at 80°C in anhydrous In toluene solution, react for 12h to obtain amino-modified nano-SiO 2 , and control the content of amino groups on the surface of nano-SiO 2 by controlling the amount of 3-aminopropyltriethoxysilane added; (2) utilize excess maleic butene The dianhydride is reacted with amino-modified nano- SiO2 to obtain a modified nano- SiO2 functional monomer with carbon-carbon double bonds. Step (2) comprises the following operations: 1. in N, N-dimethylformamide solution, add maleic anhydride, stir and dissolve to obtain mixed solution completely; 2. add N, N in amino-modified nano-SiO -Stir the dimethylformamide evenly to obtain a dispersion; ③ Add the dispersion obtained in operation ② dropwise to the mixed solution obtained in operation ①, then stir at 75°C to complete the reaction, and the obtained reaction product is washed, filtered and dried Modified nano-SiO 2 grafted with carbon-carbon double bonds can be obtained. Wherein, in step (2), can utilize hydrochloric acid-ethanol non-aqueous titration method to judge the nano- SiO2 of amino modification Whether the amino group on the surface reacts completely. Before the reaction of step ( 1 ), adopt Grignard reagent titration method to measure nanometer SiO Surface hydroxyl number, and after reaction, use hydrochloric acid-ethanol non - aqueous titration method to measure nanometer SiO Content of surface amino group. Can prepare the nanometer SiO2 functional monomer of different modification degree by embodiment 1 (can utilize the nanometer SiO2 surface amino group of amino modification to account for the nanometer SiO2 surface hydroxyl molarity percentage before modification to represent) .

实施例2改性纳米SiO2-AA-AM共聚物的制备Preparation of Example 2 Modified Nano SiO 2 -AA-AM Copolymer

本实施例的改性纳米SiO2-AA-AM共聚物的制备方法,包括以下步骤:(1)将改性纳米SiO2功能单体、丙烯酰胺以及丙烯酸混合,并用氢氧化钠调节pH值至7.0,加入蒸馏水配成单体总质量浓度为25.0%的水溶液;温度升高至40℃时,加入引发剂,通氮气保护,在温度为40.0℃条件下反应;反应产物经洗涤、粉碎、干燥后即可得到所述共聚物。其中,引发剂的质量为所述单体总质量的0.20wt%,且所述引发剂为过硫酸铵和亚硫酸氢钠的混合物,二者的摩尔比为1∶1。所述单体中丙烯酰胺与丙烯酸的质量比为3.2,改性纳米SiO2功能单体的含量为0.50wt%。通过使用不同改性程度的纳米SiO2功能单体制备得到不同的共聚物来考察其对共聚物性能的影响。称取得到的共聚物粉末,分别用去离子水和5000mg/L氯化钠溶液配制成浓度为2000mg/L的聚合物溶液,用搅拌器(3600r/min)剪切20s,然后用BrookfiledDV-III黏度计在70.0℃下测定剪切后的聚合物溶液黏度,结果如图1所示。由图1可知,纳米SiO2的改性程度为30%和35%时,用去离子水和5000mg/L氯化钠溶液配制的共聚物溶液在剪切后具有较高的黏度,可见当纳米SiO2的改性程度为30%和35%时,所合成的共聚物具有更好的增黏性能。The preparation method of the modified nano- SiO2 -AA-AM copolymer of the present embodiment comprises the following steps: (1) mixing the modified nano- SiO2 functional monomer, acrylamide and acrylic acid, and adjusting the pH value to 7.0, add distilled water to make an aqueous solution with a total monomer mass concentration of 25.0%; when the temperature rises to 40°C, add an initiator, protect it with nitrogen, and react at a temperature of 40.0°C; the reaction product is washed, pulverized, and dried After that, the copolymer can be obtained. Wherein, the mass of the initiator is 0.20wt% of the total mass of the monomers, and the initiator is a mixture of ammonium persulfate and sodium bisulfite, and the molar ratio of the two is 1:1. The mass ratio of acrylamide to acrylic acid in the monomer is 3.2, and the content of the modified nano- SiO2 functional monomer is 0.50 wt%. Different copolymers were prepared by using nano- SiO2 functional monomers with different modification degrees to investigate its influence on the properties of the copolymers. Weigh the obtained copolymer powder, prepare the polymer solution with concentration of 2000mg/L with deionized water and 5000mg/L sodium chloride solution respectively, shear 20s with agitator (3600r/min), and then use BrookfieldDV-III The viscometer measures the viscosity of the polymer solution after shearing at 70.0°C, and the results are shown in Figure 1. It can be seen from Figure 1 that when the degree of modification of nano- SiO2 is 30% and 35%, the copolymer solution prepared with deionized water and 5000mg/L sodium chloride solution has a higher viscosity after shearing. It can be seen that when the nano-SiO2 When the modification degree of SiO2 is 30% and 35%, the synthesized copolymers have better viscosity-increasing properties.

改性纳米SiO2-AA-AM共聚物的表征Characterization of Modified Nano-SiO 2 -AA-AM Copolymer

1.红外光谱分析1. Infrared spectral analysis

①将合成出的聚合物在40.4℃下真空干燥48h;②取少量干燥后的KBr,用红外压片机压片;③用WQF-520型红外光谱仪进行红外光谱扫描,采集仪器本底;④取少量聚合物样品,加入KBr后混合均匀,KBr与样品的质量比约为50∶1;⑤把加有样品的KBr用红外压片机压片;⑥将制好的样品片用WQF-520型红外光谱仪进行红外光谱扫描。改性纳米SiO2-AM-AA共聚物1(纳米SiO2的改性程度为30%)及共聚物2(纳米SiO2的改性程度为35%)的红外谱图如图2所示。在3409.2cm-1附近的吸收峰是羟基的特征峰;在2931.4cm-1附近的吸收峰是亚甲基的特征峰;在1653.8cm-1附近的吸收峰是羰基的特征峰;在1112.1cm-1附近的吸收峰为Si-O-Si的非对称伸缩振动峰,在769.2cm-1附近的吸收峰为Si-O-Si的对称伸缩振动峰。以上结果表明合成出了目标共聚物。① Vacuum dry the synthesized polymer at 40.4°C for 48 hours; ② Take a small amount of dried KBr and press it into tablets with an infrared tablet press; ③ Scan the infrared spectrum with a WQF-520 infrared spectrometer to collect the background of the instrument; ④ Take a small amount of polymer sample, add KBr and mix evenly, the mass ratio of KBr to sample is about 50:1; ⑤Compress the KBr with sample with infrared tablet machine; ⑥Use the prepared sample tablet with WQF-520 An infrared spectrometer was used to scan the infrared spectrum. The infrared spectra of modified nano-SiO 2 -AM-AA copolymer 1 (the degree of modification of nano-SiO 2 is 30%) and copolymer 2 (the degree of modification of nano-SiO 2 is 35%) are shown in FIG. 2 . The absorption peak around 3409.2cm -1 is the characteristic peak of hydroxyl; the absorption peak around 2931.4cm -1 is the characteristic peak of methylene; the absorption peak around 1653.8cm -1 is the characteristic peak of carbonyl; at 1112.1cm The absorption peak near -1 is the asymmetric stretching vibration peak of Si-O-Si, and the absorption peak near 769.2cm -1 is the symmetrical stretching vibration peak of Si-O-Si. The above results indicated that the target copolymer was synthesized.

2.核磁共振分析2. NMR Analysis

①将合成出的共聚物加入到核磁管中;②向核磁管中加入重水,放置至溶解完全;③用BrukerAC-E200核磁共振谱仪扫描产品的氢谱,频率为200Hz。改性纳米SiO2-AM-AA共聚物1(纳米SiO2的改性程度为30%)及共聚物2(纳米SiO2的改性程度为35%)的氢谱分别如图3和图4所示,1.5ppm为-CH2-CH(COONa)-、-CH2-CH(CONH2)-、-CH(COONa)-CH(CONH-)-、-CH2-CH2-CH2-NH-质子的化学位移;2.1ppm为-CH2-CH(COONa)-、-CH2-CH(CONH2)-、-CH(COONa)-CH(CONH-)-质子的化学位移;3.4ppm为-CH2-CH2-CH2-NH-质子的化学位移。以上结果表明合成出了目标共聚物。① Add the synthesized copolymer to the NMR tube; ② Add heavy water to the NMR tube and let it dissolve completely; ③ Scan the hydrogen spectrum of the product with a Bruker AC-E200 NMR spectrometer at a frequency of 200 Hz. The hydrogen spectra of modified nano-SiO 2 -AM-AA copolymer 1 (the degree of modification of nano-SiO 2 is 30%) and copolymer 2 (the degree of modification of nano-SiO 2 is 35%) are shown in Figure 3 and Figure 4 respectively As shown, 1.5ppm is -CH 2 -CH(COONa)-, -CH 2 -CH(CONH 2 )-, -CH(COONa)-CH(CONH-)-, -CH 2 -CH 2 -CH 2 - NH-chemical shift of proton; 2.1ppm is -CH 2 -CH(COONa)-, -CH 2 -CH(CONH 2 )-, -CH(COONa)-CH(CONH-)-chemical shift of proton; 3.4ppm is the chemical shift of the -CH 2 -CH 2 -CH 2 -NH- proton. The above results indicated that the target copolymer was synthesized.

3.共聚物的绝对重均分子量测定3. Determination of the absolute weight average molecular weight of the copolymer

静态光散射测定共聚物分子量Determination of Copolymer Molecular Weight by Static Light Scattering

(1)静态光散射的实验步骤(1) Experimental steps of static light scattering

①用0.8μm滤膜过滤配制的聚合物溶液,对聚合物溶液进行除尘处理,制得样品,放置24h;②开启BI-200SM广角度动/静态激光散射仪和水浴(25.0℃),并让仪器预热30min以上;③开启处理器和激光发射器,如果发现杂质较多,打开过滤器过滤杂质至满足实验要求,并调整激光强度;④准备工作完成后,采用甲苯作为校准液,并扣除溶剂的影响,然后依次放入不同浓度的聚合物溶液样品进行测试。① Filter the prepared polymer solution with a 0.8 μm filter membrane, dedust the polymer solution, prepare samples, and place them for 24 hours; ② Turn on the BI-200SM wide-angle dynamic/static laser scattering instrument and water bath (25.0°C), and let Preheat the instrument for more than 30 minutes; ③ Turn on the processor and laser transmitter. If there are many impurities, open the filter to filter the impurities to meet the experimental requirements, and adjust the laser intensity; ④ After the preparation is completed, use toluene as the calibration solution, and deduct The influence of the solvent, and then put into the polymer solution samples with different concentrations in turn for testing.

(3)共聚物的分子量(3) Molecular weight of the copolymer

用0.8μm滤膜过滤去离子水,对去离子水进行除尘处理;再用经过除尘处理的去离子水配制一系列不同浓度(30、40、50、60、70mg/L)的聚合物溶液,然后用0.8μm滤膜过滤除尘。聚合物为AA/AM共聚物(HPAM)、改性纳米SiO2-AM-AA共聚物1以及共聚物2。在25.0℃下,通过静态光散射实验测定聚合物的绝对重均分子量以及回旋半径,利用双重外推法,当入射光角度以及聚合物溶液的浓度都趋近于零时,在Zimm图上面的交点的倒数即为共聚物的绝对重均分子量。共聚物的绝对重均分子量和回旋半径结果见表1。Filter deionized water with a 0.8 μm filter membrane, and dedust the deionized water; then prepare a series of polymer solutions with different concentrations (30, 40, 50, 60, 70mg/L) with the deionized water that has been dedusted. Then use a 0.8μm filter to remove dust. The polymers are AA/AM copolymer (HPAM), modified nano-SiO 2 -AM-AA copolymer 1 and copolymer 2. At 25.0°C, the absolute weight-average molecular weight and radius of gyration of the polymer were measured by static light scattering experiments. Using the double extrapolation method, when the incident light angle and the concentration of the polymer solution are close to zero, the above Zimm diagram The reciprocal of the intersection point is the absolute weight average molecular weight of the copolymer. The results of the absolute weight average molecular weight and radius of gyration of the copolymer are shown in Table 1.

表1Table 1

聚合物polymer 回旋半径(nm)Radius of gyration (nm) 绝对重均分子量(107g/mol)Absolute weight average molecular weight (10 7 g/mol) HPAMHPAM 129129 1.241.24 共聚物1Copolymer 1 9898 0.980.98 共聚物2Copolymer 2 9595 0.950.95

Claims (8)

1.一种改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于所述制备方法包括以下步骤:(1)将改性纳米SiO2功能单体、丙烯酰胺以及丙烯酸混合,并用氢氧化钠调节pH值至6.0~7.5,加入蒸馏水配成单体总质量浓度为20.0~26.0%的水溶液;加入引发剂,通氮气保护,在温度为36.0~42.0℃条件下反应;反应产物经洗涤、粉碎、干燥后即可得到所述共聚物。1. a kind of preparation method of modified nano-SiO 2 -AA-AM copolymer, it is characterized in that described preparation method comprises the following steps: (1) modified nano-SiO 2 functional monomer, acrylamide and acrylic acid are mixed, and use Adjust the pH value to 6.0-7.5 with sodium hydroxide, add distilled water to make an aqueous solution with a total monomer mass concentration of 20.0-26.0%; add an initiator, protect it with nitrogen, and react at a temperature of 36.0-42.0°C; the reaction product is passed through The copolymer can be obtained after washing, pulverizing and drying. 2.根据权利要求1所述的改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于所述共聚物的结构式如下:2. the preparation method of modified nano-SiO 2 -AA-AM copolymer according to claim 1, is characterized in that the structural formula of described copolymer is as follows: 3.根据权利要求1所述的改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于:所述引发剂为过硫酸铵和亚硫酸氢钠的混合物,并且二者的摩尔比为1∶1。3. the preparation method of modified nanometer SiO 2 -AA-AM copolymer according to claim 1 is characterized in that: described initiator is the mixture of ammonium persulfate and sodium bisulfite, and the mol ratio of the two It is 1:1. 4.根据权利要求3所述的改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于:所述引发剂的质量为所述单体总质量的0.10~0.30wt%。4. The method for preparing the modified nano-SiO 2 -AA-AM copolymer according to claim 3, characterized in that: the mass of the initiator is 0.10-0.30 wt% of the total mass of the monomers. 5.根据权利要求1所述的改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于:所述单体中丙烯酰胺与丙烯酸的质量比为1.86~4.00,改性纳米SiO2功能单体的含量为0.1~0.8wt%。5. The preparation method of modified nano-SiO 2 -AA-AM copolymer according to claim 1, characterized in that: the mass ratio of acrylamide to acrylic acid in the monomer is 1.86-4.00, and the modified nano-SiO 2 The content of the functional monomer is 0.1-0.8wt%. 6.根据权利要求1所述的改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于:所述改性纳米SiO2功能单体采用包括以下步骤的方法制备得到:1)利用纳米SiO2和3-氨丙基三乙氧基硅烷在80~100℃的无水甲苯溶液中,反应12h以上得到氨基改性的纳米SiO2,并通过控制3-氨丙基三乙氧基硅烷的添加量来控制纳米SiO2表面氨基的含量;2)利用过量的顺丁烯二酸酐与氨基改性的纳米SiO2反应得到具有碳碳双键的改性纳米SiO2功能单体。6. the preparation method of modified nano-SiO 2 -AA-AM copolymer according to claim 1 is characterized in that: described modified nano-SiO 2 functional monomer adopts the method comprising the following steps to prepare: 1) utilize Nano-SiO 2 and 3-aminopropyltriethoxysilane were reacted in anhydrous toluene solution at 80-100°C for more than 12 hours to obtain amino-modified nano-SiO 2 , and controlled 3-aminopropyltriethoxy The amount of addition of silane is used to control the content of amino groups on the surface of nano-SiO 2 ; 2) the reaction of excessive maleic anhydride and amino-modified nano-SiO 2 is obtained to have a modified nano-SiO 2 functional monomer with carbon-carbon double bonds. 7.根据权利要求6所述的改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于:在步骤2)包括以下操作:①在N,N-二甲基甲酰胺溶液中加入顺丁烯二酸酐,搅拌溶解完全得到混合溶液;②在氨基改性的纳米SiO2中加入N,N-二甲基甲酰胺搅拌均匀得到分散液;③然后将操作②得到的分散液滴加到操作①得到的混合溶液中,然后在70~80℃搅拌反应完全,得到的反应产物经过洗涤、过滤、干燥后可得接枝有具有碳碳双键的改性纳米SiO27. The preparation method of modified nanometer SiO 2 -AA-AM copolymer according to claim 6 is characterized in that: in step 2) comprises the following operations: 1. in N, N-dimethylformamide solution, add Maleic anhydride, stirred and dissolved completely to obtain a mixed solution; ②Add N,N-dimethylformamide to the amino-modified nano- SiO2 and stir evenly to obtain a dispersion; ③Then add the dispersion obtained in operation ② dropwise Put it into the mixed solution obtained in operation ①, and then stir it at 70-80°C to complete the reaction. After the obtained reaction product is washed, filtered and dried, the modified nano-SiO 2 with carbon-carbon double bond can be obtained. 8.根据权利要求7所述的改性纳米SiO2-AA-AM共聚物的制备方法,其特征在于:所述氨基改性的纳米SiO2表面氨基摩尔量是改性前纳米SiO2表面羟基摩尔量的25~40%。8. The preparation method of modified nano- SiO2 -AA-AM copolymer according to claim 7, characterized in that: the nano- SiO2 surface amino molar weight of the amino-modified nano-SiO2 is the nano- SiO2 surface hydroxyl group before modification 25-40% of the molar weight.
CN201410750934.7A 2014-12-09 2014-12-09 Preparation method of modified nanometer SiO2-AA-AM copolymer Pending CN105085838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410750934.7A CN105085838A (en) 2014-12-09 2014-12-09 Preparation method of modified nanometer SiO2-AA-AM copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410750934.7A CN105085838A (en) 2014-12-09 2014-12-09 Preparation method of modified nanometer SiO2-AA-AM copolymer

Publications (1)

Publication Number Publication Date
CN105085838A true CN105085838A (en) 2015-11-25

Family

ID=54567230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410750934.7A Pending CN105085838A (en) 2014-12-09 2014-12-09 Preparation method of modified nanometer SiO2-AA-AM copolymer

Country Status (1)

Country Link
CN (1) CN105085838A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761930A (en) * 2015-01-15 2015-07-08 西南石油大学 Modified nanometer silica functional monomer for oil-displacement polymer
CN106749898A (en) * 2017-03-03 2017-05-31 中海石油(中国)有限公司 A kind of preparation method of the temperature-resistant anti-salt flooding polymers containing nano particle
CN111406754A (en) * 2020-04-28 2020-07-14 浙江禾本科技股份有限公司 Hexythiazox water suspending agent and preparation method thereof
CN111548782A (en) * 2020-04-30 2020-08-18 长江大学 Nano-enhanced supermolecule clean fracturing fluid and preparation method thereof
CN111662408A (en) * 2020-07-14 2020-09-15 中海石油(中国)有限公司 Oil displacement system suitable for high-temperature high-salt oil reservoir
CN113185657A (en) * 2021-03-31 2021-07-30 宁波锋成先进能源材料研究院有限公司 Nano material and preparation method and application thereof
CN114592689A (en) * 2022-02-11 2022-06-07 瑞洲建设集团有限公司 Fabricated building construction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399269A (en) * 1992-04-13 1995-03-21 Phillips Petroleum Company Gelation of water soluble polymers
CN102161736A (en) * 2011-01-04 2011-08-24 武汉理工大学 Method for preparing micro/nanocomposite photocurable resin
CN102485830A (en) * 2010-12-02 2012-06-06 北京化工大学 A core-shell inorganic/organic polymer composite microsphere profile control and oil displacement agent
CN103160268A (en) * 2013-04-01 2013-06-19 西南石油大学 A kind of nano silica/polymer oil displacement agent and its synthesis method
CN103709341A (en) * 2013-12-23 2014-04-09 河北工业大学 Preparation method of magnetic zinc ion surface-imprinted polymer
CN103725278A (en) * 2013-12-10 2014-04-16 郑州正佳能源环保科技有限公司 Preparation method of temperature-resistant and salt-tolerant nano oil displacement agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399269A (en) * 1992-04-13 1995-03-21 Phillips Petroleum Company Gelation of water soluble polymers
CN102485830A (en) * 2010-12-02 2012-06-06 北京化工大学 A core-shell inorganic/organic polymer composite microsphere profile control and oil displacement agent
CN102161736A (en) * 2011-01-04 2011-08-24 武汉理工大学 Method for preparing micro/nanocomposite photocurable resin
CN103160268A (en) * 2013-04-01 2013-06-19 西南石油大学 A kind of nano silica/polymer oil displacement agent and its synthesis method
CN103725278A (en) * 2013-12-10 2014-04-16 郑州正佳能源环保科技有限公司 Preparation method of temperature-resistant and salt-tolerant nano oil displacement agent
CN103709341A (en) * 2013-12-23 2014-04-09 河北工业大学 Preparation method of magnetic zinc ion surface-imprinted polymer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姚润琪: ""MMA-MAn-APTES共聚物/SiO2杂化材料的制备和表征"", 《当代化工》 *
高跃岳 等: ""马来酸酐改性有机硅氧烷树脂的合成研究"", 《齐齐哈尔大学学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761930A (en) * 2015-01-15 2015-07-08 西南石油大学 Modified nanometer silica functional monomer for oil-displacement polymer
CN106749898A (en) * 2017-03-03 2017-05-31 中海石油(中国)有限公司 A kind of preparation method of the temperature-resistant anti-salt flooding polymers containing nano particle
CN106749898B (en) * 2017-03-03 2018-12-14 中海石油(中国)有限公司 A kind of preparation method of the temperature-resistant anti-salt flooding polymers containing nano particle
CN111406754A (en) * 2020-04-28 2020-07-14 浙江禾本科技股份有限公司 Hexythiazox water suspending agent and preparation method thereof
CN111548782A (en) * 2020-04-30 2020-08-18 长江大学 Nano-enhanced supermolecule clean fracturing fluid and preparation method thereof
CN111548782B (en) * 2020-04-30 2023-01-24 长江大学 Nano-enhanced supermolecule clean fracturing fluid and preparation method thereof
CN111662408A (en) * 2020-07-14 2020-09-15 中海石油(中国)有限公司 Oil displacement system suitable for high-temperature high-salt oil reservoir
CN113185657A (en) * 2021-03-31 2021-07-30 宁波锋成先进能源材料研究院有限公司 Nano material and preparation method and application thereof
CN114592689A (en) * 2022-02-11 2022-06-07 瑞洲建设集团有限公司 Fabricated building construction method

Similar Documents

Publication Publication Date Title
CN105085838A (en) Preparation method of modified nanometer SiO2-AA-AM copolymer
CN104762077B (en) The polymer oil-displacing agent of high temperature resistant salt resistance
Ye et al. Hydrophobically associating acrylamide‐based copolymer for chemically enhanced oil recovery
CN104744647B (en) Preparation method of modified nano-SiO2 graft copolymer
CN103710008A (en) Filtrate loss reducer for high temperature resistant drilling fluid and preparation method thereof
An et al. Nano-fluid loss agent based on an acrylamide based copolymer “grafted” on a modified silica surface
CN102433108A (en) Temperature-resistant salt-resistant filtrate reducer for drilling fluid and preparation method thereof
CN105085836A (en) Modified Nano-SiO2 Graft Copolymer
CN105085837A (en) Modified Nano SiO2-AA-AM Copolymer
Bai et al. Synthesis and application of temperature‐sensitive polymer as a novel plugging agent for water‐based drilling fluids
CN105949386A (en) Temperature-resistant and salt-resistant amphoteric hydrophobic association polymer and preparation method thereof
El-Hoshoudy et al. Investigation of Optimum Polymerization Conditions for Synthesis of Cross‐Linked Polyacrylamide‐Amphoteric Surfmer Nanocomposites for Polymer Flooding in Sandstone Reservoirs
Lai et al. Preparation and properties of hyperbranched polymer containing functionalized Nano-SiO 2 for low-moderate permeability reservoirs
CN107513140A (en) The preparation method of aerogel composite based on silica
CN105085839A (en) Preparation method of water-soluble AM-AA-modified nano-SiO2 functional monomer terpolymer oil displacement agent
Yang et al. Investigation of TPEG comb polymer as filtration and rheological additives for high-temperature water-based drilling fluid
CN118894960B (en) Acidizing steering agent, preparation method thereof and self-assembled steering acid
CN106046251B (en) Water-base drilling fluid temperature resistance salt tolerant polymer filtrate reducer and preparation method thereof
CN105566583A (en) Highly-impact-resistant highly-light-transmitting highly-heat-insulating polymethylmethacrylate composite material and preparation method thereof
CN104760962A (en) Modification degree-measurable nanometer silicon dioxide surface hydroxyl modification method
CN104804715B (en) A kind of drilling well modified hydroxyethylcellulosadsorbing tackifier and preparation method thereof
CN105419765B (en) A kind of glycosyl the moon nand-type surfactant and preparation method thereof
Lai et al. Synthesis and rheological property of various modified nano-SiO 2/AM/AA hyperbranched polymers for oil displacement
CN105092447B (en) Simulation test method for improving interlayer heterogeneity of copolymers
Jie et al. Design of degradable hybrid dual-crosslinked polymer for high-efficiency profile control in high temperature reservoirs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151125