CN105084778B - 一种绿色低辐射镀膜玻璃及其制备方法 - Google Patents
一种绿色低辐射镀膜玻璃及其制备方法 Download PDFInfo
- Publication number
- CN105084778B CN105084778B CN201410185860.7A CN201410185860A CN105084778B CN 105084778 B CN105084778 B CN 105084778B CN 201410185860 A CN201410185860 A CN 201410185860A CN 105084778 B CN105084778 B CN 105084778B
- Authority
- CN
- China
- Prior art keywords
- film layer
- glass
- film
- silico
- nichrome
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
本发明公开了一种绿色低辐射镀膜玻璃及其制备方法,所述绿色低辐射镀膜玻璃包括依次紧密叠合的玻璃基片、第一镍铬合金膜;第二硅铝合金膜;第三锌铝合金膜;第四银层;第五镍铬合金膜;第六氧化锌铝合金膜;第七硅铝金属膜,所述制备方法包括步骤:1)烧结靶材;2)玻璃的预处理;3)镀膜处理。本发明是在普通无色透明浮法玻璃基片上通过各种金属材料对光的干涉制得的低辐射镀膜玻璃,在阳光下反射色呈绿色,可达到良好的装饰、节能效果;产品可异地加工,降低加工企业制造成本;也可制成中空玻璃,达到更好的控光、节能效果。
Description
技术领域
本发明涉及一种镀膜玻璃制备方法及由该方法制备的镀膜玻璃,特别涉及一种低辐射镀膜玻璃的制备方法及其制备的低辐射镀膜玻璃。
背景技术
镀膜玻璃(Reflective glass)也称反射玻璃。镀膜玻璃是在玻璃表面涂镀一层或多层金属、合金或金属化合物薄膜,以改变玻璃的光学性能,满足某种特定要求。镀膜玻璃按产品的不同特性,可分为以下几类:热反射玻璃、低辐射玻璃(Low-E)、导电膜玻璃等。
镀膜玻璃的生产方法很多,如真空磁控溅射法、真空蒸发法、化学气相沉积法以及溶胶-凝胶法等。磁控溅射镀膜玻璃利用磁控溅射技术可以设计制造多层复杂膜系,可在白色玻璃基片上镀出多种颜色,膜层的耐腐蚀和耐磨性能较好,是目前生产和使用最多的技术。真空蒸发镀膜玻璃的品种和质量与磁控溅射镀膜玻璃相比均存在一定差距,已逐步被真空溅射法取代。化学气相沉积法是在浮法玻璃生产线上通入反应气体在灼热的玻璃表面分解,均匀地沉积在玻璃表面形成镀膜玻璃的技术。该方法的设备投入少、易调控,产品成本低、化学稳定性好、可热加工,是目前最有发展前途的生产方法之一。溶胶-凝胶法生产镀膜玻璃工艺简单,稳定性好,不足之处是产品光透射比太高,装饰性较差。
磁控溅射法是目前世界范围内应用最多、工艺最稳定、性能最好(辐射率E值≤0.12)、品种最丰富、能源需求相对较低的镀膜玻璃生产工艺。由于这种生产工艺不需要与浮法玻璃生产线捆绑在一起使用,即可以将浮法玻璃生产与玻璃镀膜工艺分开进行,有效的降低了玻璃深加工企业重复建设浮法玻璃生产线、减少了二氧化碳排放量及相关的能源消耗。
磁控溅射镀膜的原理是在被溅射的靶极(阴极)与阳极之间加一个正交磁场和电场,在高真空室中充入所需要的惰性气体(通常为Ar气),永久磁铁在靶材料表面形成250~350高斯的磁场,同高压电场组成正交电磁场。在电场的作用下,氩气电离成正离子和电子,在靶上加有一定的负高压,从靶极发出的电子受磁场的作用与工作气体的电离几率增大,在阴极附近形成高密度的等离子体,Ar离子在洛仑兹力的作用下加速飞向靶面,以很高的速度轰击靶面,靶上被溅射出来的原子以较高的动能脱离靶面飞向玻璃基片并淀积成膜。
目前应用最多的热反射玻璃和低辐射玻璃基本上采用真空磁控溅射法和化学气相沉积法生产。国际上比较著名的真空磁控溅射法设备生产厂家有BOC公司(美国)和莱宝公司(德国);化学气相沉积法设备厂家有皮尔金顿公司(英国)等。目前,我国已经出现数百家镀膜玻璃生产厂家,在行业中影响较大的真空磁控溅射法生产厂家有中国南玻集团公司和上海阳光镀膜玻璃公司等,化学气相沉积法生产厂家有山东蓝星玻璃公司和长江浮法玻璃公司等。
目前对绿色镀膜玻璃的生产研究不多,解决了生产绿色镀膜玻璃需要提前大量采购预先在玻璃中添加了色的干涉剂三氧化二铁的绿色玻璃做完镀膜玻璃原片,而目前添加了色的干涉剂三氧化二铁的绿色玻璃的生产量少,生产次数少,生产周期长,不能在玻璃原片生产后15天内进行镀膜处理,镀膜用玻璃原片一般要求在生产后15天内使用,可以避免镀膜时出现膜层质量问题。一般生产绿色镀膜玻璃是在长期储存的绿色玻璃原片上进行镀膜处理,因此生产出来的绿色镀膜玻璃的膜层质量容易出现质量问题,降低绿色镀膜玻璃的使用寿命和控光节能效果。本发明选用特定的镍铬、硅铝、氧化锌铝、银为溅射靶材制作的绿色低辐射镀膜玻璃,色彩鲜艳且容易调节、质量稳定、制作效率高,但是,该方法制作的是低辐射镀膜玻璃(LOW-E玻璃),仅对波长在4.5-25微米范围内的远红外线有较高的反射比,适宜长期使用。
发明内容
本发明的首要目的是针对上述现有镀膜玻璃制备技术存在的问题提供一种绿色低辐射镀膜玻璃的制备方法及制备的绿色低辐射镀膜玻璃。本发明方法制备的绿色低辐射镀膜玻璃在阳光下呈绿色,可达到良好的装饰效果;可见光透过率低、室外可见光反射率高、太阳能的透过率低、太阳能反射率高;并且本发明的绿色低辐射控制玻璃传热系数低、遮阳系数低、热工性能良好,能有效阻止热能进入室内,降低制冷能耗;也可制成中空玻璃,控光节能效果更佳。
为实现本发明的目的,本发明一方面提供一种绿色低辐射镀膜玻璃,包括依次紧密叠合的玻璃基片和金属膜层:
玻璃基片;
第一膜层,位于玻璃基片的表面,所述第一膜层为镍铬合金膜;
第二膜层,位于所述第一膜层的表面,所述第二膜层为硅铝合金膜;
第三膜层,位于所述第二膜层的表面,所述第三膜层为锌铝合金膜;
第四膜层,位于所述第三膜层的表面,所述第四膜层为银膜;
第五膜层,位于所述第四膜层的表面,所述第五膜层为镍铬合金膜;
第六膜层,位于所述第五膜层的表面,所述第六膜层为氧化锌铝合金膜;
第七膜层,位于所述第六膜层的表面,所述第七膜层为硅铝合金膜。
其中,所述第一镍铬合金膜层的厚度为6.0-7.0nm,优选为6.5-6.8nm;所述第二硅铝合金膜层的厚度为80.0-95.0nm,优选为84.0-91.0nm;所述第三锌铝合金膜层的厚度为40.0-55.0nm,优选为46.0-50.0nm;所述第四银膜层的厚度为11.0-12.5nm,优选为11.5-12.0nm;所述第五镍铬合金膜层的厚度为3.0-4.0nm,优选为3.2-3.6nm;所述第六氧化锌铝合金膜层的厚度为9.5-11.0nm,优选为9.8-10.2nm;所述第七硅铝合金膜层的厚度为14.0-20.0nm,优选为16.0-18.0nm。
特别是,在所述玻璃基片的一个表面自下而上依次叠合所述第一镍铬合金膜层、第二硅铝合金膜层、第三锌铝合金膜层、第四银膜层、第五镍铬合金膜层、第六氧化锌铝合金膜层、第七硅铝合金膜层。
其中,绿色低辐射镀膜玻璃膜面反射颜色值70≤L*≤75,-8≤a*≤0,-7≤b*≤0之间。
本发明另一方面提供一种绿色低辐射镀膜玻璃的制备方法,包括如下顺序进行的步骤:
1)烧结靶材
将镍铬合金、硅铝合金、锌铝合金、银、氧化锌铝合金分别烧结在玻璃镀膜机的真空溅射室的靶位上,备用;
2)玻璃的预处理
将待镀膜处理的玻璃置于真空状态下,对待镀膜处理的玻璃进行排湿、脱气处理,降低玻璃表面沉积的水和气体,制得排湿、脱气玻璃;
3)镀膜处理
将排湿、脱气玻璃送入玻璃镀膜机的真空磁控溅射室内,在排湿、脱气玻璃的表面自下而上依次镀覆第一镍铬合金膜层、第二硅铝合金膜层、第三锌铝合金膜层、第四银膜层、第五镍铬合金膜层、第六氧化锌铝合金膜层、第七硅铝合金膜层。
其中,步骤1)中所述的镍铬合金选择烧结纯度为≥99.7%、密度为≥8.5g/cm3、熔点为1420℃的镍铬合金,其中Cr含量为20±1wt%,其余为Ni;所述的硅铝合金选择烧结纯度为≥99.5%、密度为≥2.1g/cm3、熔点为580℃的硅铝合金,Al含量为8-12±2wt%,其余为Si;所述的锌铝合金选择烧结纯度为≥99.9%、密度为≥6.9g/cm3、熔点为410℃的锌铝合金,其中Al含量为(2-8)±1wt%,其余为Zn;所述银选择烧结纯度为≥99.99%,密度为≥10.5g/cm3;熔点为960℃的银金属;所述的氧化锌铝合金选择2wt%的Al2O3和98wt%的ZnO组成、密度为≥5.3g/cm3、热膨胀系数为5.17×10-6/K。
特别是,所述镍铬合金的烧结时间为60min;所述硅铝合金的烧结时间为90min;所述锌铝合金的烧结时间为60min。所述银的烧结时间为60min;所述氧化锌铝合金的烧结时间为60min。
尤其是,所述硅铝合金符合国家行业标准JC/T2068-2011中硅铝靶的成分要求;所述镍铬合金符合国家行业标准JC/T2068-2011中镍铬靶的成分要求;所述银符合国家行业标准JC/T2068-2011中银靶的成分要求;所述锌铝合金符合国家行业标准JC/T2068-2011中锌铝靶的成分要求;氧化锌铝合金符合国家行业标准JC/T2068-2011中氧化锌铝靶的成分要求。
其中,步骤2)中所述排湿、脱气处理是将待镀膜玻璃分2个处理阶段降低玻璃表面沉积的水份和气体,制得所述的排湿、脱气玻璃.
特别是,所述排湿、脱气处理过程中第一处理阶段中的绝对压力高于第二处理阶段中的绝对压力。
尤其是,第1处理阶段过程中的绝对压力为5.0-6.0×10-2mbar;第2处理阶段过程中的绝对压力为3.0-6.0×10-3mbar。
特别是,第1处理阶段的处理温度为-135~-145℃,玻璃处理速度为1.5-2.5m/min,优选为1.8-2.1m/min,进一步优选为2.0m/min;第2处理阶段的处理温度为80-100℃,玻璃处理速度为1.5-2.5m/min,优选为1.8-2.1m/min,进一步优选为2.0m/min。
尤其是,第一排湿、脱气处理阶段的处理时间为40-50s,优选为45s;第二排湿、脱气处理阶段的处理时间为80-100s,优选为90s。
特别是,还包括步骤2A):对待镀膜处理的玻璃进行去离子水清洗处理后再进行所述的排湿、脱气处理。
尤其是,所述去离子水中矿物质的含量≤5μ/cm/m2;温度为35-40℃;清洗速度为1.5-2.5m/min,优选为1.8-2.1m/min。
特别是,步骤3)所述镀膜处理过程中真空磁控溅射室内的绝对压力保持为2.0-4.0×10-3mbar,优选为3.0×10-3mbar;镀覆的速度为1.8-2.1m/min,优选为2.0m/min;温度为80-100℃。
其中,步骤3)中所述第一镍铬合金膜层的镀覆过程中真空磁控溅射电压为407-420V,优选为410.2-416.6V;电流为6.0-7.5A,优选为6.5-6.9A;功率为26-30Kw,优选为27-29kW。
特别是,第一镍铬合金膜层的镀膜处理过程中真空磁控溅射室内的气氛为氩气。
尤其是,所述氩气的流量为1200sc/cm。
特别是,所述第一镍铬合金膜层的镀膜厚度为6.0-7.0nm,优选为6.5-6.8nm。
其中,步骤3)中所述第二硅铝合金膜层分两次镀覆处理而成。
特别是,所述第二硅铝合金膜层的镀膜过程中第一次镀覆处理过程中真空磁控溅射电压为480-499V,优选为485.0-494.6V;电流为80-86A,优选为82.0-84.3A;功率为30-40Kw,优选为35.0-37.0Kw。所述第二硅铝合金膜层的镀膜过程中第二次镀覆处理过程中真空磁控溅射电压为540-550V,优选为542-548V;电流为104-110A,优选为106-110A;功率为47-55Kw,优选为50-53Kw。
其中,所述第二硅铝合金膜层的第一、第二镀覆处理过程中真空磁控溅射室内的气氛为氮气和氩气的混合气体。
特别是,所述气氛中氮气与氩气的体积之比为11:6.3-7。
尤其是,所述第二硅铝合金膜层的镀膜过程中第一次镀覆处理过程中真空磁控溅射室内氮气与氩气的体积之比为11:7。
特别是,所述氮气的流量为1100sc/cm,氩气的流量为700sc/cm。
尤其是,所述第二硅铝合金膜层的镀膜过程中第二次镀覆处理过程中真空磁控溅射室内氮气与氩气的体积之比为11:6.3。
特别是,所述氮气的流量为1100sc/cm,氩气的流量为630sc/cm。
特别是,所述第二硅铝合金膜的第一次镀覆处理的厚度为30.0-40.0nm,优选为34.0-38.0nm。所述第二硅铝合金膜的第二次镀覆处理的厚度为50.0-55.0nm,优选为50.0-53.0nm。
其中,步骤3)中所述第三锌铝合金膜层的镀膜处理过程中真空磁控溅射电压为375-390V,优选为380-385V;电流为145-155A,优选为148.4-150.0A;功率为44-50Kw,优选为45.3-48.1Kw。
特别是,所述第三锌铝合金膜层的镀膜处理过程中真空溅射室内的气氛为氧气和氩气的混合气体。
特别是,所述气氛中氧气与氩气的体积之比为5:2-3,优选为5:3。
尤其是,所述氧气的流量为1000sc/cm,氩气的流量为600sc/cm。
特别是,所述第三锌铝合金膜层的镀膜厚度为40.0-55.0nm,优选为46.0-50.0nm。
其中,步骤3)中所述第四银膜层的镀膜处理过程中,真空磁控溅射电压为350-365V,优选为356-360V;电流为10.5-12.5A,优选为11.4-11.9A;功率为4-5Kw,优选为4.2-4.5Kw。
特别是,所述第四银膜层的镀膜处理过程中真空磁控溅射室内的气氛为氩气。
尤其是,所述氩气的流量为1000sc/cm。
特别是,所述第四银膜层的镀膜厚度为11.0-12.5nm,优选为11.5-12.0nm。
其中,步骤3)中所述第五镍铬合金膜层的镀膜处理过程中,真空磁控溅射电压为280-292V,优选为286-289V;电流为3-4A,优选为3.5-3.8A;功率为0.7-1.5Kw,优选为1.0-1.2Kw。
特别是,所述第五镍铬合金膜层的镀膜处理过程中真空磁控溅射室内的气氛为氩气。
尤其是,所述氩气的流量为1300sc/cm。
特别是,所述第五镍铬合金膜层的镀膜厚度为3.0-4.0nm,优选为3.2-3.6nm。
其中,步骤3)中所述第六氧化锌铝合金膜层的镀膜处理过程中,真空磁控溅射电压为480-495V,优选为486-490V;电流为22.5-24.0A,优选为23.2-23.5A;功率为9.5-10.5Kw,优选为9.7-10.0Kw。
特别是,所述第六氧化锌铝合金膜层的镀膜处理过程中真空磁控溅射室内的气氛为氩气。
尤其是,所述氩气的流量为1300sc/cm。
特别是,所述第六氧化锌铝合金膜层的厚度为9.5-11.0nm,优选为9.8-10.2nm。
其中,步骤3)中所述第七硅铝合金膜层的镀膜处理过程中,真空磁控溅射电压为470-485V,优选为475-480V;电流为41.0-42.5A,优选为41.5-41.9A;功率为15-20Kw,优选为16.0-19.0Kw。
特别是,所述第七硅铝合金膜层的镀膜处理过程中真空磁控溅射室内的气氛为氮气和氩气的混合气体。
特别是,所述气氛中氮气与氩气的体积之比为3:1-2,优选为3:2。
尤其是,所述氮气的流量为900sc/cm,氩气的流量为600sc/cm。
特别是,所述第七硅铝合金膜层的厚度为14.0-20.0nm,优选为16.0-18.0nm
特别是,还包括步骤4)缓冲处理,将经过镀膜处理的玻璃从真空磁控溅射室输送至压力缓冲室内,逐渐提高缓冲室内的压力,直至达到常压;降低缓冲室内的温度,使室内温度达20-35℃。
本发明另一方面提供一种按照上述方法制备而成的绿色低辐射镀膜玻璃。
本发明的制备方法和制备的产品绿色低辐射镀膜玻璃具有如下优点:
1、本发明制备的绿色低辐射镀膜玻璃采用在真空状态下通过磁控溅射在玻璃的表面依次镀覆第一镍铬合金膜、第二硅铝合金膜、第三锌铝合金膜、第四银膜、第五镍铬合金膜、第六氧化锌铝合金膜、第七硅铝合金膜,玻璃表面的复合膜在室外阳光下显示为绿色,采用价格低廉的硅铝合金、镍铬合金、银为靶材和普通无色透明浮法玻璃基片,克服了现有绿色低辐射镀膜玻璃通常采用大量绿色本体着色浮法玻璃基片,生产成本昂贵,生产效率低的缺陷,本发明的绿色低辐射镀膜玻璃的生产成本低廉,利于低辐射玻璃的推广使用。
2、本发明方法制备的绿色低辐射镀膜玻璃反射颜色呈绿色,是目前建筑等行业内设计师或业主欣赏的外观颜色,其主要视觉物理参数在L*=70~75,a*=-8~0,b*=-7~0之内,其在室外呈绿色,炫彩、亮丽、美观,可广泛应用于各种建筑中,具有良好的装饰效果。
3、本发明制备的绿色低辐射镀膜玻璃,其光学性能技术参数值符合GB/T18915.1-2002《镀膜玻璃第2部分:低辐射镀膜玻璃》的标准,可见光透射比允许偏差最大值小,远远低于国家标准的3.0%,达到见光透射比允许偏差最大值低于0.5%;颜色均匀性高,小于2.0CIELAB。
4、本发明制备的绿色低辐射镀膜玻璃制成的中空玻璃,可见光透过率大于40%,室外可见光反射率小于20%,太阳能的透过率低于25%,太阳能反射率高于15%,适于营造光明舒适的室内和室外光环境;同时,其传热系数冬季低于1.70W/m2·K,夏季低于1.65W/m2·K,遮阳系数(Sc)低于0.35。太阳能的总透过率低于30%,相对热增低于230w/m2,热工性能良好,能有效阻挡阳光热量向室内辐射,节能性能好,降低制冷能耗,控光节能效果更佳。
5、本发明的绿色低辐射镀膜玻璃在制备过程中可以通过改变各镀膜膜层的厚度获得不同光学和热学性能的绿色低辐射镀膜玻璃,也可制成不同类型的中空玻璃,以适应市场不同需求。
6、本发明制备的绿色低辐射镀膜玻璃的热稳定性高,可以实现异地热处理加工。
7、本发明制备绿色低辐射镀膜玻璃的方法是在无色透明白玻上实现颜色绿色的变化,解决了市场上对绿色玻璃的高度依赖(绿色玻璃存在生产周期、新鲜度、库存资金压力等问题),成本较低,方便可靠。
附图说明
图1为本发明绿色低辐射镀膜玻璃的剖面示意图。
附图标记:1、玻璃基片;2、第一镍铬合金膜层;3、第二硅铝合金膜层;4、第三锌铝合金膜层;5、第四金属银膜层;6、第五镍铬合金膜层,7、第七氧化锌铝合金膜层,8、第七为硅铝合金膜层。
具体实施方式
下面通过实施例对本发明进行进一步说明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
如图1所示,本发明的绿色低辐射镀膜玻璃依次由玻璃基片1、第一膜层2、第二膜层3、第三膜层4、第四膜层5、第五膜层6、第六膜层7、第七膜层组成。第一膜层2紧密贴合在玻璃基片1的表面上,第二膜层3紧密贴合在第一膜层2上,第三膜层4紧密贴合在第二膜层3上,第四膜层5紧密贴合在第三膜层4上,第五膜层6紧密贴合在第四膜层5上,第六膜层7紧密贴合在第五膜层6上,第七膜层8紧密贴合在第六膜层7上。第一膜层为镍铬合金膜,第二膜层为硅铝合金膜,第三膜层为锌铝合金膜,第四膜层为银膜,第五膜层为镍铬合金膜,第六膜层为氧化锌铝合金膜,第七膜层为硅铝合金膜。第一镍铬合金膜层的厚度为6.5-7.2nm,优选为6.5-6.8nm;第二硅铝合金膜层的厚度为80-95nm(分两次镀膜),优选为84-91nm;第三锌铝合金膜层厚度为45-53nm,优选为46-50nm;第四膜银膜层的厚度为10-13nm,优选为11.5-12nm;第五镍铬合金膜层的厚度为3.0-5.0nm,优选为3.2-3.6nm;第六氧化锌铝合金膜的厚度为9-12nm,优选为9.8-10nm;第七硅铝合金膜层的厚度为15-20nm,优选为16-18nm。
实施例1
1、靶材烧结
在真空磁控溅射镀膜机(福建省新福兴玻璃有限公司,型号:XFXDM-01D)的第一至第八靶室内,将预压成型的靶材分别烧结在第一至第八靶室的相应靶位上,其中:烧结在第一、第六靶室靶位上的靶材为镍铬合金选择烧结纯度为≥99.7%、密度为≥8.5g/cm3、熔点为1420℃的镍铬合金,其中Cr含量为20±1wt%,其余为Ni;烧结在第二、第三、第八靶室靶位上的靶材为烧结纯度为≥99.5%、密度为≥2.1g/cm3、熔点为580℃的硅铝合金靶材,其中Al含量为8-12±2wt%,其余为Si;烧结在第四靶室靶位上的靶材为烧结纯度为≥99.9%、密度为≥6.9g/cm3、熔点为410℃的锌铝合金,其中Al含量为(2-8)±1wt%,其余为Zn;烧结在第五靶室靶位上的靶材为烧结纯度为≥99.99%,密度为≥10.5g/cm3;熔点为960℃的银靶材;烧结在第七靶室靶位上的靶材为氧化锌铝合金靶材,选择2wt%的Al2O3和98wt%的ZnO组成、密度为≥5.3g/cm3、热膨胀系数为5.17×10-6/K。
其中,硅铝合金的烧结时间为90min;镍铬合金的烧结时间为90min;银的烧结时间为60min;氧化锌铝合金的烧结时间为60min。
硅铝合金符合国家标准JC/T2068-2011中硅铝靶的成分要求;所述镍铬合金符合国家标准JC/T2068-2011中镍铬靶的成分要求;所述氧化锌铝合金符合国家标准JC/T2068-2011中镍铬靶的成分要求;所述银符合国家标准镍铬中银靶的成分要求。2、清洗玻璃
2A)将厚度为6.0mm的浮法玻璃原片置于玻璃镀膜清洗机(德国GTA公司生产,型号:GTA01-M)中,采用温度为37℃、矿物质的含量≤5μ/cm/m2的去离子水进行清洗处理,清洗速度为4m/min;
本发明中的玻璃原片除了选用厚度为6mm的浮法玻璃原片(即白玻)之外,其他厚度的玻璃原片也适用于本发明。采用去离子水清洗玻璃,不仅能去除玻璃表面的油污或其他杂质,也避免了用自来水清洗引入其他金属离子的问题。
2B)将清洗后的浮法玻璃在50℃下进行干燥处理,其中干燥速度为4m/min,去除玻璃表面的水滴,制得干玻璃原片。
3、排湿、脱气处理
3A)将干玻璃原片用输送辊道传送至真空磁控溅射镀膜机的第一真空室,对干玻璃原片进行第一次排湿、脱气处理,其中第一次排湿、脱气处理的时间为45s,传动速度为2m/min;第一次排湿、脱气处理的温度为-140℃,绝对压力为5.0×10-2mbar;
3B)将经过第一次排湿、脱气处理的干玻璃原片输送至第二真空室,进行第二次排湿、脱气处理,其中第二次排湿、脱气处理的时间为90s;传动速度为2m/min;第二次排湿、脱气处理的温度为90℃,绝对压力为3.5×10-3mbar,制得待镀膜玻璃;
本发明中玻璃传动速度以2.0m/min为例进行说明,玻璃传动速度为1.8-2.1m/min均适用于本发明。
在对浮法玻璃原片进行的多次排湿、脱气处理的过程中,处理温度逐渐升高,相对压力依次降低,尤其是在第二排湿、脱气处理阶段相应延长处理时间,排除了沉积在玻璃表面的水气和气体,使得待镀膜浮法玻璃的表面洁净,增加了玻璃表面和镀膜层间的附着力,使所镀膜层不易脱落;同时,2次排湿、脱气处理,使浮法玻璃原片处在与磁控溅射时相同的环境条件下,便于后续操作的进行,缩短了玻璃镀膜时间,提供了玻璃镀膜的效率。
4、镀膜处理
4A)开启真空磁控溅射镀膜机的溅射室的电源,加热,使溅射室(包括第一至第八靶室)内的温度达到80-100℃,绝对压力降低为2.0-4.0×10-3mbar(本发明实施例中绝对压力以3.0×10-3mbar为例进行说明),待镀膜玻璃从第一至第八靶室依次进行磁控溅射镀膜处理;
4B)将经过2次排湿、脱气处理制得的待镀膜玻璃以2m/min的传送速度依次送入镀膜溅射室的第一至第八靶室内,进行镀膜处理,制得镀膜玻璃,工艺参数如表1所示,其中:
待镀膜玻璃原片在第一靶室内进行第一次镀膜处理,即进行第一镍铬合金膜的镀覆处理,第一靶室内通入氩气,氩气的流量为1200sc/cm,电压为411.7V,电流为6.7A,功率为28Kw,第一靶室内的绝对压力为2.0-4.0×10-3mbar之内;第一靶室靶位上烧结的镍铬合金靶材的金属原子从靶材的表面溅射出,沉积在浮法玻璃玻璃原片的表面,第一镍铬合金膜层的镀覆厚度为6.7nm,制得第一镀膜玻璃;
第一镀膜玻璃在第二靶室内进行第二次镀膜处理,即进行第二硅铝合金膜层的第一次镀覆处理,第二靶室内通入氮气、氩气,氮气的流量为1100sc/cm,氩气的流量为700sc/cm(即控制氧气和氩气的体积之比为11:7),电压为488V,电流为84.3A,功率为36Kw,控制第二靶室内的绝对压力为2.0-4.0×10-3mbar(选择3.0×10-3mbar)之内;第二靶室靶位上烧结的硅铝合金靶材的金属原子从靶材的表面溅射出,沉积在第一镀膜玻璃的表面,控制第二硅铝合金膜层的第一次镀覆厚度为36.0nm,制得第二镀膜玻璃;
第二镀膜玻璃在第三靶室内进行第三次镀膜处理,即进行第二硅铝合金膜层的第二次镀覆处理,第三靶室内通入氮气、氩气,氮气的流量为1100sc/cm,氩气的流量为630sc/cm(即控制氧气和氩气的体积之比为11:6.3),电压为546V,电流为107A,功率为51Kw,控制第三靶室内绝对压力为2.0-4.0×10-3mbar(3.0×10-3mbar)之内;第三靶室靶位上烧结的硅铝合金靶材的原子从靶材的表面射出,沉积在第二镀膜玻璃的表面,控制第二硅铝合金膜层的第二次镀覆厚度为51nm,形成厚度为87nm的第二硅铝合金膜层,制得第三镀膜玻璃;
第三镀膜玻璃在第四靶室内进行第四次镀膜处理,即进行第三锌铝合金膜层的镀覆处理,第四靶室内通入氧气和氩气,氧气的流量为1000sc/cm,氩气的流量为600sc/cm,电压为381V,电流为149.1A,功率为46.6Kw,控制第四靶室内的绝对压力为2.0-4.0×10-3mbar(3.0×10-3mbar)之内;第四靶室靶位上烧结的锌铝合金靶材的金属原子从靶材的表面射出,沉积在第三镀膜玻璃的表面,控制第三锌铝合金膜层的镀覆厚度为48nm,制得第四镀膜玻璃。
第四镀膜玻璃在第五靶室内进行第五次镀膜处理,即进行第四银膜层的镀覆处理,第五靶室内通入氩气,氩气的流量为1000sc/cm,电压为358V,电流为11.6A,功率为4.2Kw,控制第五靶室内的绝对压力为2.0-4.0×10-3mbar(3.0×10-3mbar)之内;第五靶室靶位上烧结的银靶材的原子从靶材的表面射出,沉积在第四镀膜玻璃的表面,形成厚度为11.8nm的第四银膜层,制得第五镀膜玻璃。
第五镀膜玻璃在第六靶室内进行第六次镀膜处理,即进行第五镍铬合金膜层的镀覆处理,第六靶室内通入氩气,氩气的流量为1300sc/cm,电压为288V,电流为3.5A,功率为1.2Kw,控制第六靶室内的绝对压力为2.0-4.0×10-3mbar(3.0×10-3mbar)之内;第六靶室靶位上烧结的镍铬合金靶材的原子从靶材的表面射出,沉积在第五镀膜玻璃的表面,形成厚度为3.5nm的第五镍铬合金膜层,制得第六镀膜玻璃。
第六镀膜玻璃在第七靶室内进行第七次镀膜处理,即进行第六氧化锌铝合金膜层的镀覆处理,第七靶室内通入氩气,氩气的流量为1300sc/cm,电压为489V,电流为23.4A,功率为9.9Kw,控制第七靶室内的绝对压力为2.0-4.0×10-3mbar(3.0×10-3mbar)之内;第七靶室靶位上烧结的氧化锌铝合金靶材的原子从靶材的表面射出,沉积在第六镀膜玻璃的表面,控制第六氧化锌铝合金膜层的镀覆厚度为10nm,即形成后的未10nm的第六氧化锌铝合金膜层,制得第七镀膜玻璃。
第七镀膜玻璃在第八靶室内进行第八次镀膜处理,即进行第七硅铝合金膜层的镀覆处理,第八靶室内通入氮气、氩气,氮气的流量为900sc/cm,氩气的流量为600sc/cm(即控制氧气和氩气的体积之比为3:2),电压为477V,电流为41.7A,功率为17Kw,控制第八靶室内的绝对压力为2.0-4.0×10-3mbar(3.0×10-3mbar)之内;第八靶室靶位上烧结的硅铝合金靶材的原子从靶材的表面射出,沉积在第七镀膜玻璃的表面,控制第七硅铝合金膜层的镀覆厚度为17nm,形成后的为17nm的第七硅铝合金膜层,即得第八镀膜玻璃。
其中,镀覆第一镍铬合金膜层使得在玻璃原片的表面形成与玻璃表面结合牢固的基础层,并对玻璃颜色的形成铺垫作用;镀覆第二硅铝合金膜层提高了玻璃颜色的亮度,对第二硅铝合金膜层进行两次磁控溅射镀覆处理解决了一次镀覆能量消耗大、镀膜厚度不均匀的缺陷;在硅铝合金膜层上沉积锌铝合金膜层,对第四银膜层起到保护作用,放置银膜层长时间使用过程中发生氧化反应,造成玻璃颜色发生变化;在锌铝合金膜层上沉积的银膜层是本发明绿色低辐射镀膜玻璃的功能层,锌铝合金膜层为铺垫层,保护银层,增加产品的亮度;在银膜层的表面沉积第五镍铬合金膜层保护银层,防止银层在长时间使用过程中因为发生氧化而导致玻璃颜色发生改变的缺陷;在镍铬合金膜层的表面沉积氧化锌铝合金膜层调节颜色、起银层与硅铝合金层的粘接作用;在第六氧化锌铝合金膜层的表面沉积的第七硅铝合金膜层主要是硬质保护层,在产品的深加工过程中起到保护作用,同时具有光干涉作用,使得产品呈现绿色。
实施例1中镀膜处理的工艺参数如表1所示。
表1实施例1镀膜处理的工艺参数表
5、缓冲处理
将第八镀膜玻璃从溅射室输送到压力缓冲室内,逐渐提高缓冲室内的压力和降低缓冲室内的温度,当缓冲室内的压力最终达到常压,缓冲室内温度达20-35℃时,将第八镀膜玻璃排出,入库,即得到绿色低辐射镀膜玻璃。
6、制成中空玻璃
将制备的单片绿色低辐射镀膜玻璃制成结构为6-绿色低辐射镀膜玻璃(glass)+12-Air+6-glass(白玻)的中空玻璃。
实施例2
1、靶材烧结
与实施例1相同。
2、清洗玻璃
除了清洗用的去离子水温度为35℃,清洗速度为3m/min,干燥温度为45℃之外,其余与实施例1相同;
3、排湿、脱气处理
除第一次排湿、脱气处理的温度为-135℃,绝对压力为6.0×10-2mbar;第二次排湿、脱气处理的温度为80℃,绝对压力为6.0×10-3mbar之外,其余与实施例1相同。
4、镀膜处理
除了镀膜处理的工艺参数与实施例1不同之外,其余与实施例1相同,其中镀膜处理的工艺参数如表2所示。
表2实施例2镀膜处理的工艺参数表
5、缓冲处理
与实施例1相同。
6、制成中空玻璃
与实施例1相同。
实施例3
1、靶材烧结
与实施例1相同。
2、清洗玻璃
除了清洗用去离子水温度为40℃,清洗速度为5m/min,干燥温度为55℃之外,其余与实施例1相同;
3、排湿、脱气处理
除了第一次排湿、脱气处理的温度为-145℃,第二次排湿、脱气处理的温度为100℃,绝对压力为3.0×10-3mbar之外,其余与实施例1相同。
4、镀膜处理
除了镀膜处理的工艺参数与实施例1不同之外,其余与实施例1相同,其中镀膜处理的工艺参数如表3所示。
表3实施例3镀膜处理的工艺参数表
5、缓冲处理
与实施例1相同。
6、制成中空玻璃
与实施例1相同。
对照例1
将实施例1-3所述的经玻璃预处理的浮法玻璃原片制成结构为6-glass(白玻)+12Air+6-glass(白玻)的中空玻璃作为对照例1。
对照例2
将实施例1-3所述的经玻璃预处理的浮法玻璃原片作为对照例2。
试验例1颜色、耐磨性、辐射率试验
按照GB/T2680-94《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线投射比及有关窗玻璃参数的测定》和GB/T18915.2-2002《镀膜玻璃第2部分:低辐射镀膜玻璃》标准,对实施例1-3和对照例1-5制得的玻璃的颜色参数进行测定,测定结果如表4所示。
表4性能参数测定结果
本发明制备的绿色低辐射镀膜单片玻璃及其中空玻璃,其主要视觉物理参数在70≤L*≤75,-8≤a*≤0,-7≤b*≤0之间,其在室外呈绿色,炫彩、亮丽、美观,可广泛应用于各种建筑中。
试验例2光学性能试验
按照GB/T2680-94《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线投射比及有关窗玻璃参数的测定》对实施例1-3和对照例1-2制得的玻璃进行光学性能的测定,测试结果如表5所示。
表5光学性能测试结果
表5的测定结果表明:
1、本发明由绿色低辐射镀膜玻璃制备的中空玻璃的可见光透过率小于42.01%,远低于普通单片白玻璃及由普通玻璃制备的中空玻璃,说明本发明能有效控制可见光的射入,避免了室内眩光或过亮现象;可见光室外反射比小于19.9%,高于普通单片白玻璃及其制备的中空玻璃,说明本发明的镀膜玻璃在室外能大量反射室外光线;而其可见光室内反射比与普通单片白玻璃及其中空玻璃差距不大。
2、本发明制备的绿色低辐射镀膜玻璃制备的中空玻璃,其太阳能透射率低于22.72%,远低于普通单片白玻璃及由普通玻璃制备的中空玻璃,说明本发明的绿色低辐射镀膜玻璃有效的控制了太阳光的射入,减少了太阳光中蕴含的大量热量进入室内;其太阳光室外反射率大于16.76%,远高于普通单片白玻璃及由普通玻璃制备的中空玻璃的太阳光室外反射率,说明本发明的镀膜玻璃室外反射亮度高,颜色好;并且太阳光吸收率高于60.46%,显著高于普通玻璃及由普通玻璃制备的中空玻璃,说明本发明的镀膜玻璃可以通过自身热的调控,维护室内和室外的光、热环境的能力较强。
3、本发明制备的绿色低辐射镀膜玻璃制备的中空玻璃,其紫外线的K氏透过率、ISO透过率和透过率,均显著低于普通玻璃及由普通玻璃制备的中空玻璃,紫外线具有较强的杀菌褪色功能,透射比越低,表明本发明的镀膜玻璃阻挡紫外线的能力强,避免了紫外线对室内物品的损伤。
4、本发明制备的绿色低辐射镀膜玻璃的光学性能技术参数值符合GB/T18915.2-2002《镀膜玻璃第2部分:低辐射镀膜玻璃》的标准,可见光透射比允许偏差最大值小,远远低于国家标准的2.0%,达到可见光透射比允许偏差最大值低于0.5%;颜色均匀性高,小于2.0CIELAB。
因此,本发明单片绿色低辐射镀膜玻璃及有其制备的中空玻璃更有利于营造光明舒适的室内和室外光环境,单片使用即能达到良好的效果,制成中空玻璃的使用效果更佳。
试验例3热工性能试验
对实施例1-3和对照例1-2制得的玻璃进行热工性能的测定。
按照国标GB/T2680-94《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线投射比及有关窗玻璃参数的测定》进行测定,通过WINDOW6.2窗户幕墙热工性能模拟软件进行计算。
试验条件为:冬季晚上:室外温度-18℃,室内温度21℃,风速5.5m/s,无阳光;夏季白天:室外温度32℃,室内温度24℃,风速2.8m/s,太阳照射强度为783w/m2。测定结果如表6所示。
表6热工性能测试结果
表6的测定结果表明:
1、本发明制备的绿色低辐射镀膜玻璃制备的中空玻璃的传热系数K值,无论是夏季白天还是冬季晚上的传热系数K值均低于普通单片玻璃和由普通玻璃制备的中空玻璃,表明本发明制备的阳光控制镀膜玻璃能减少温差传热。
2、本发明绿色低辐射镀膜玻璃制备的中空玻璃,其遮阳系数小于0.341;太阳能总透射比低于30.1%,均显著低于普通玻璃及由普通玻璃制作的中空玻璃,遮阳系数和太阳能总透射比都是建筑节能计算中的重要参考因素,其值越小,阻挡太阳光辐射的性能越好,因此表明本发明制备的绿色低辐射镀膜玻璃及由其制备的中空玻璃能有效阻止太阳能进入室内转化为热能,从而降低制冷能耗。
3、本发明绿色低辐射镀膜玻璃制备的中空玻璃的相对热增小于229W/m2,显著低于普通玻璃及由普通玻璃制备的中空玻璃的相对热增,相对热增是综合考虑温差传热和太阳辐射对室内的影响,通过玻璃获得和散失的热量之和,相对热增值越小,则表明通过玻璃进入室内的热量越少,越有利于降低制冷能耗,本发明的绿色绿色低辐射镀膜玻璃的相对热增值小,表明本发明制备的绿色低辐射镀膜玻璃具有良好的节能效果。
总之,本发明制备的绿色低辐射镀膜玻璃,比普通玻璃及其中空玻璃更能有效阻止热能进入室内,降低制冷能耗的同时,达到了节能环保的目的,制成中空玻璃后效果更佳。
综上所述,本发明制备的绿色低辐射镀膜玻璃,较之试验例:不仅外形美观,色彩亮丽,具有装饰效果;而且有利于形成舒适宜人的光热环境,特别适用于夏季或南方气温较高的城市。制成中空玻璃均有比较理想的效果。
Claims (8)
1.一种绿色低辐射镀膜玻璃,由依次叠合的玻璃基片和金属膜层组成,其特征是:
玻璃基片(1);
第一膜层,位于玻璃基片的表面,所述第一膜层为镍铬合金膜,其厚度为6.0-7.0nm;
第二膜层,位于所述第一膜层的表面,所述第二膜层为硅铝合金膜,其厚度为80.0-95.0nm;
第三膜层,位于所述第二膜层的表面,所述第三膜层为锌铝合金膜,其厚度为40.0-55.0nm;
第四膜层,位于所述第三膜层的表面,所述第四膜层为银膜,其厚度为11.0-12.5nm;
第五膜层,位于所述第四膜层的表面,所述第五膜层为镍铬合金膜,其厚度为3.0-4.0nm;
第六膜层,位于所述第五膜层的表面,所述第六膜层为氧化锌铝合金膜,其厚度为9.5-11.0nm;
第七膜层,位于所述第六膜层的表面,所述第七膜层为硅铝合金膜,其厚度为14-20nm;
其中,在玻璃基片(1)的一个表面自下而上依次叠合所述第一镍铬合金膜层(2)、第二硅铝合金膜层(3)、第三锌铝合金膜层(4)、第四银膜层(5)、第五镍铬合金膜层(6)、第六氧化锌铝合金膜层(7)、第七硅铝合金膜层(8)。
2.一种如权利要求1所述绿色低辐射镀膜玻璃的制备方法,包括如下顺序进行的步骤:
1)烧结靶材
将镍铬合金、硅铝合金、锌铝合金、银、氧化锌铝分别烧结在玻璃镀膜机的真空溅射室的靶位上,备用;
2)玻璃的预处理
将待镀膜处理的玻璃置于真空状态下,对待镀膜处理的玻璃进行排湿、脱气处理,降低玻璃表面沉积的水分和气体,制得排湿、脱气玻璃;
3)镀膜处理
将排湿、脱气玻璃送入玻璃镀膜机的真空磁控溅射室内,在排湿、脱气玻璃的表面自下而上依次镀覆一镍铬合金膜层、第二硅铝合金膜层、第三锌铝合金膜层、第四银膜、第五镍铬合金膜层、第六氧化锌铝合金膜层和第七硅铝合金膜层。
3.如权利要求2所述的制备方法,其特征是步骤3)中所述第一镍铬合金膜层的镀覆过程中真空磁控溅射电压为407.0-420.0V,电流为6.0-7.5A,功率为26.0-30.0Kw;所述第三锌铝合金膜层的镀膜处理过程中真空磁控溅射电压为375.0-390.0V,电流为145.0-155.0A,功率为44.0-50.0Kw;所述第四银膜层的镀膜处理过程中真空磁控溅射电压为350.0-365.0V,电流为10.5-12.5A,功率为4.0-5.0Kw;所述第五镍铬合金膜层的镀覆过程中真空磁控溅射电压为280.0-292.0V,电流为3.0-4.0A,功率为0.7-1.5Kw;所述第六氧化锌铝合金膜层的镀膜处理过程中真空磁控溅射电压为480.0-495.0V,电流为22.5-24.0A,功率为9.5-10.5Kw;所述第七硅铝合金膜层的镀膜处理过程中真空磁控溅射电压为470.0-485.0V,电流为41.0-42.5A,功率为15.0-20.0Kw。
4.如权利要求2所述的制备方法,其特征是步骤3)中所述第二硅铝合金膜层分两次镀覆处理而成。
5.如权利要求4所述的制备方法,其特征是所述第二硅铝合金膜层的第一次镀覆处理过程中真空磁控溅射电压为480.0-499.0V,电流为80.0-86.0A,功率为30.0-40.0Kw;第二次镀覆处理过程中真空磁控溅射电压为540.0-550.0V,电流为104.0-110.0A,功率为47.0-55.0Kw。
6.如权利要求2或3所述的制备方法,其特征是步骤2)中所述排湿、脱气处理是将待镀膜玻璃分2个处理阶段降低玻璃表面沉积的水分和气体,制得所述的 排湿、脱气玻璃。
7.如权利要求6所述的制备方法,其特征是,所述排湿、脱气处理过程中第一处理阶段中的绝对压力高于第二处理阶段中的绝对压力。
8.如权利要求7所述的制备方法,其特征是第一处理阶段过程中的绝对压力5.0-6.0×10-2mbar;第二处理阶段过程中的绝对压力为3.0-6.0×10-3mbar。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410185860.7A CN105084778B (zh) | 2014-05-05 | 2014-05-05 | 一种绿色低辐射镀膜玻璃及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410185860.7A CN105084778B (zh) | 2014-05-05 | 2014-05-05 | 一种绿色低辐射镀膜玻璃及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105084778A CN105084778A (zh) | 2015-11-25 |
CN105084778B true CN105084778B (zh) | 2018-02-16 |
Family
ID=54566223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410185860.7A Active CN105084778B (zh) | 2014-05-05 | 2014-05-05 | 一种绿色低辐射镀膜玻璃及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105084778B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201908621YA (en) * | 2017-05-04 | 2019-10-30 | Apogee Enterprises Inc | Low emissivity coatings, glass surfaces including the same, and methods for making the same |
EP3759058B1 (en) * | 2018-02-28 | 2024-03-27 | AGC Glass Europe | Glass composition with nickel to reduce energy consumption during its melting step |
CN109212645A (zh) * | 2018-10-18 | 2019-01-15 | 苏州文迪光电科技有限公司 | 一种新型梯形滤光片 |
CN110221630A (zh) * | 2019-06-04 | 2019-09-10 | 吴江南玻华东工程玻璃有限公司 | 一种建筑玻璃镀膜参数自动调整控制系统 |
CN110255922B (zh) * | 2019-06-05 | 2023-09-08 | 新福兴玻璃工业集团有限公司 | 一种双银低辐射镀膜玻璃及其制备方法 |
CN110818280A (zh) * | 2019-12-02 | 2020-02-21 | 惠州市万合玻璃科技有限公司 | 多层镀膜玻璃生产工艺 |
CN112125535A (zh) * | 2020-09-25 | 2020-12-25 | 山西隆腾机电科技有限公司 | 一种低辐射镀膜玻璃及其制备方法 |
CN113045219A (zh) * | 2021-04-24 | 2021-06-29 | 苏州晶博特镀膜玻璃有限公司 | 玻璃镀膜工艺及采用该工艺制得的镀膜玻璃 |
CN114380513B (zh) * | 2021-12-29 | 2023-07-18 | 凯盛信息显示材料(黄山)有限公司 | 一种玻璃镀膜工艺及采用该工艺制得的镀膜玻璃 |
CN114634315A (zh) * | 2022-03-21 | 2022-06-17 | 新福兴玻璃工业集团有限公司 | 一种节能型低辐射镀膜玻璃及其制备方法 |
CN114634314A (zh) * | 2022-03-21 | 2022-06-17 | 新福兴玻璃工业集团有限公司 | 一种功能型可钢化低辐射镀膜玻璃及其制备方法 |
CN114656163A (zh) * | 2022-03-31 | 2022-06-24 | 新福兴玻璃工业集团有限公司 | 一种功能型双银低辐射镀膜玻璃及其制备方法 |
CN116444174A (zh) * | 2023-02-16 | 2023-07-18 | 苏州耀昆玻璃有限公司 | 一种低辐射镀膜玻璃及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101925552A (zh) * | 2007-11-23 | 2010-12-22 | 北美Agc平板玻璃公司 | 具有低太阳热得热系数、增强的化学和机械性能的低发射率涂层和其生产方法 |
CN102615877A (zh) * | 2012-03-29 | 2012-08-01 | 江苏奥蓝工程玻璃有限公司 | 离线可钢低辐射镀膜玻璃及其制造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593721B2 (ja) * | 1979-10-29 | 1984-01-25 | 大阪府 | 反射防止膜 |
-
2014
- 2014-05-05 CN CN201410185860.7A patent/CN105084778B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101925552A (zh) * | 2007-11-23 | 2010-12-22 | 北美Agc平板玻璃公司 | 具有低太阳热得热系数、增强的化学和机械性能的低发射率涂层和其生产方法 |
CN102615877A (zh) * | 2012-03-29 | 2012-08-01 | 江苏奥蓝工程玻璃有限公司 | 离线可钢低辐射镀膜玻璃及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105084778A (zh) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105084778B (zh) | 一种绿色低辐射镀膜玻璃及其制备方法 | |
CN110255922B (zh) | 一种双银低辐射镀膜玻璃及其制备方法 | |
CN105084781B (zh) | 一种金色低辐射镀膜玻璃及其制备方法 | |
CN105084779B (zh) | 一种高透型双银低辐射镀膜玻璃及其制备方法 | |
CN105084780B (zh) | 一种遮阳型双银低辐射镀膜玻璃及其制备方法 | |
CN104609740B (zh) | 可单片使用阳光控制镀膜玻璃及其制备方法 | |
CN107663029B (zh) | 一种欧洲灰低辐射镀膜玻璃 | |
CN102092960A (zh) | 一种低辐射玻璃 | |
CN102079629A (zh) | 镀有复合电介质层和复合减反层的高透射镀膜玻璃及生产工艺 | |
CN205838842U (zh) | 离线欧洲灰低辐射镀膜玻璃 | |
CN105082670B (zh) | 一种绿色遮阳型镀膜玻璃及其制备方法 | |
CN105084776B (zh) | 一种金色阳光控制玻璃及其制备方法 | |
CN108002711A (zh) | 一种高透过中性色双银低辐射镀膜玻璃及制备方法 | |
CN204727775U (zh) | 可单片使用阳光控制镀膜玻璃 | |
CN114656164B (zh) | 一种热稳定型单银低辐射镀膜玻璃及其制备方法 | |
CN207845496U (zh) | 一种高透过中性色双银低辐射镀膜玻璃 | |
CN202344934U (zh) | 可异地加工四银低辐射镀膜玻璃 | |
CN203472227U (zh) | 低遮阳系数的单银低辐射镀膜玻璃 | |
CN204382744U (zh) | 一种高透过低辐射的双银镀膜玻璃 | |
CN209010387U (zh) | 一种中透灰色可钢双银低辐射镀膜玻璃 | |
CN114656163A (zh) | 一种功能型双银低辐射镀膜玻璃及其制备方法 | |
CN119683872A (zh) | 镀膜玻璃及其制备方法 | |
CN119683870A (zh) | 低辐射镀膜玻璃及其制备方法 | |
CN118908592A (zh) | 高性能可钢化高透三银低辐射镀膜玻璃及其制备方法 | |
CN114634315A (zh) | 一种节能型低辐射镀膜玻璃及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 350314 Yan Dou village, Yuan Hong Industrial Zone, Fuqing City, Fuzhou, Fujian Patentee after: Xinfuxing Glass Industry Group Co., Ltd. Address before: Fuxing Industrial Park, 350314 Fujian city of Fuzhou province Fuqing City Yuanhong Investment Zone Patentee before: Fujian Xinfuxing Glass Co., Ltd. |
|
CP03 | Change of name, title or address |