[go: up one dir, main page]

CN105083276B - Hybrid vehicle energy-conservation forecast Control Algorithm based on decentralised control - Google Patents

Hybrid vehicle energy-conservation forecast Control Algorithm based on decentralised control Download PDF

Info

Publication number
CN105083276B
CN105083276B CN201510410042.7A CN201510410042A CN105083276B CN 105083276 B CN105083276 B CN 105083276B CN 201510410042 A CN201510410042 A CN 201510410042A CN 105083276 B CN105083276 B CN 105083276B
Authority
CN
China
Prior art keywords
msub
mrow
vehicle
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510410042.7A
Other languages
Chinese (zh)
Other versions
CN105083276A (en
Inventor
余开江
许孝卓
谭兴国
刘巍
荆鹏辉
谢贝贝
胡治国
王莉
王允建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201510410042.7A priority Critical patent/CN105083276B/en
Publication of CN105083276A publication Critical patent/CN105083276A/en
Application granted granted Critical
Publication of CN105083276B publication Critical patent/CN105083276B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本发明公开了一种基于分散控制的混合动力汽车节能预测控制方法,包括以下步骤:从全球定位系统、车间通信系统、车路通信系统和智能交通系统获取实时自车、前车和后车交通信息作为系统输入;建立混合动力汽车队列行驶分散控制数学模型作为预测未来车辆状态的依据;定义混合动力汽车分散控制队列行驶最优控制问题,提供求解最优控制量的函数方程;实时反馈最优控制,求解最优控制量,运用行星齿轮机构为电子无极变速器,发动机工作于最佳工作点,运用道路交通信息,预测前车和后车行驶状态,在线调整混合动力汽车能量流动,达到节能减排的目标,大大减少了计算时间,提高了车辆的实时控制特性。

The invention discloses a hybrid electric vehicle energy-saving predictive control method based on decentralized control, comprising the following steps: obtaining real-time traffic of the own vehicle, the vehicle in front and the vehicle behind from the global positioning system, the inter-vehicle communication system, the vehicle-road communication system and the intelligent transportation system Information is used as system input; a mathematical model of hybrid vehicle platooning decentralized control is established as the basis for predicting the future vehicle state; the optimal control problem of hybrid vehicle platooning control is defined, and the function equation for solving the optimal control quantity is provided; real-time feedback is optimal Control, solve the optimal control amount, use the planetary gear mechanism as the electronic continuously variable transmission, the engine works at the best working point, use the road traffic information to predict the driving status of the vehicle in front and behind, and adjust the energy flow of the hybrid vehicle online to achieve energy saving and reduction. platoon objectives, greatly reducing the computation time and improving the real-time control characteristics of the vehicle.

Description

基于分散控制的混合动力汽车节能预测控制方法Energy saving predictive control method for hybrid electric vehicles based on distributed control

技术领域technical field

本发明涉及一种基于分散控制的混合动力汽车节能预测控制方法,特别涉及一种实时最优的混合动力汽车控制方法。The invention relates to a distributed control-based energy-saving predictive control method for a hybrid electric vehicle, in particular to a real-time optimal control method for a hybrid electric vehicle.

背景技术Background technique

全球能源与环境形势的日益严峻,特别是汽车保有量的迅速增长,推动新能源汽车和智能交通系统的发展。为解决交通拥堵,环境恶化和交通事故三大问题,本发明提出了基于队列行驶的混合动力汽车节能预测控制方法。车辆队列行驶技术指多个车辆以较小的车间距离以一个队列行驶的技术。这种技术可以极大改善车辆周围的气动特性,减少其空气阻力,增强交通安全性,并可有效提高车辆的燃油经济性。另一方面,与传统汽车相比,混合动力汽车具有电池和燃油双系统驱动的冗余性,运用这种冗余性可以调节驱动装置工作点到最优位置,从而实现节能减排目标。预计未来汽车的主流将是这种混合动力汽车。由于混合动力汽车可以回收伴随车辆减速产生的再生制动能量;利用驱动系统的冗余性(发动机和电机)优化驱动装置工作点,因此可以极大地发挥节能减排效用。但是最优工作点随发动机的特性,周围车辆的行驶状态,道路交通条件的改变而时刻改变着。而且,旋转系(发动机和电机)具有转速转矩极限,电池具有荷电状态极限,超出这些极限对于车辆关键零部件的性能影响很大。因此,混合动力汽车的节能减排效果很大程度上依赖于其能量管理策略(满足约束条件)。而其关键技术为能量管理中央控制器中的实时最优化,以期实现控制策略的商业化,产业化。The increasingly severe global energy and environmental situation, especially the rapid growth of car ownership, promotes the development of new energy vehicles and intelligent transportation systems. In order to solve the three major problems of traffic congestion, environmental deterioration and traffic accidents, the present invention proposes an energy-saving predictive control method for hybrid electric vehicles based on queue driving. The vehicle platoon driving technology refers to the technology in which multiple vehicles travel in a platoon with a small inter-vehicle distance. This technology can greatly improve the aerodynamic characteristics around the vehicle, reduce its air resistance, enhance traffic safety, and effectively improve the fuel economy of the vehicle. On the other hand, compared with traditional vehicles, hybrid vehicles have the redundancy of battery and fuel dual system drive. Using this redundancy can adjust the operating point of the driving device to the optimal position, so as to achieve the goal of energy saving and emission reduction. It is expected that the mainstream of future cars will be such hybrid cars. Since hybrid electric vehicles can recover the regenerative braking energy generated with vehicle deceleration and optimize the operating point of the drive device by using the redundancy of the drive system (engine and motor), it can greatly play the role of energy saving and emission reduction. However, the optimal operating point changes all the time with the characteristics of the engine, the driving state of the surrounding vehicles, and the change of road traffic conditions. Moreover, the rotating system (engine and electric motor) has speed and torque limits, and the battery has state-of-charge limits, and exceeding these limits has a great impact on the performance of key vehicle components. Therefore, the energy saving and emission reduction effect of HEV largely depends on its energy management strategy (satisfying constraints). And its key technology is the real-time optimization in the energy management central controller, in order to realize the commercialization and industrialization of the control strategy.

混合动力汽车能量管理系统的控制策略是其研发的技术核心和设计难点。目前已经提出的控制策略大致可以分为4类:数值最优控制,解析最优控制,瞬时最优控制和启发式控制。数值最优控制的典型代表是动态规划和模型预测控制。解析最优控制的典型代表是庞特里亚金极小值原理控制策略。瞬时最优控制的典型代表是瞬时等效油耗最低控制策略。启发式控制策略的典型代表是基于规则的控制策略。传统的全局最优控制算法动态规划和庞特里亚金极小值原理控制方法,由于需要事先知道未来全部工况信息,无法实现实时最优。传统的基于规则的控制策略无法实现效率最大化。一般的前馈型控制(假定车辆速度模式一定)无法实现实时最优。传统的瞬时最优控制参数受未来车辆工况变化影响太大,无法满足控制性能。同时,混合动力汽车的队列行驶同样能够大幅度提高车辆的燃油经济性。传统的混合动力汽车队列行驶采用集中控制方法,中央控制器控制所有车辆。这种控制方法存在操作难点大,计算量大等缺点。而本发明提出的分散控制策略由于只控制自车,运用车间通信技术、车路通信技术、全球定位系统和智能交通系统测取前车和后车位置、速度和加速度等信息,大大减小了操作难度和计算量,提高了实时控制性能。The control strategy of HEMS is the technical core and design difficulty of its research and development. The control strategies that have been proposed so far can be roughly divided into four categories: numerical optimal control, analytical optimal control, instantaneous optimal control and heuristic control. Typical representatives of numerical optimal control are dynamic programming and model predictive control. A typical representative of analytical optimal control is the Pontryagin minimum principle control strategy. The typical representative of instantaneous optimal control is the minimum instantaneous equivalent fuel consumption control strategy. The typical representative of the heuristic control strategy is the rule-based control strategy. The traditional global optimal control algorithm dynamic programming and the Pontryagin minimum principle control method cannot achieve real-time optimization because they need to know all future working conditions in advance. Traditional rule-based control strategies cannot maximize efficiency. The general feed-forward control (assuming that the vehicle speed mode is constant) cannot achieve real-time optimization. The traditional instantaneous optimal control parameters are too affected by changes in future vehicle operating conditions and cannot meet the control performance. At the same time, the platoon driving of hybrid electric vehicles can also greatly improve the fuel economy of the vehicles. Traditional hybrid vehicle platooning adopts a centralized control method, and the central controller controls all vehicles. This control method has disadvantages such as difficult operation and large amount of calculation. And the distributed control strategy that the present invention proposes owing to only controls self-vehicle, utilizes vehicle-to-vehicle communication technology, vehicle-road communication technology, global positioning system and intelligent transportation system to measure information such as the position, speed and acceleration of the front vehicle and the rear vehicle, greatly reducing The difficulty of operation and the amount of calculation have improved the real-time control performance.

自20世纪90年代初以来,世界各国对混合动力汽车和智能交通系统的研发给予了高度重视,并取得了一些重大的成果和进展。1997年,在由美国交通部主办的智能交通系统展示会上,展示了由8辆车组成的队列行驶技术。日本丰田汽车公司于1997年实现了混合动力汽车的量产化,2012年实现了插电式混合动力汽车的量产化。美国总统奥巴马2009年宣布了下一代先进蓄电池和插电式混合动力汽车计划。在国内,国家“十一五”863计划设立了节能与新能源汽车重大项目。申请者在日本九州大学攻读博士学位期间,掌握了日本企业和大学普遍采用的模型预测控制算法以及日本学者大塚敏之提出的C/GMRES快速解法。这两种方法的结合解决了模型预测控制这种先进算法的实际应用问题。Since the early 1990s, countries around the world have paid great attention to the research and development of hybrid electric vehicles and intelligent transportation systems, and have achieved some significant results and progress. In 1997, at the intelligent transportation system exhibition sponsored by the US Department of Transportation, the platoon driving technology composed of 8 vehicles was demonstrated. Japan's Toyota Motor Corporation realized the mass production of hybrid electric vehicles in 1997, and realized the mass production of plug-in hybrid electric vehicles in 2012. In 2009, US President Barack Obama announced plans for the next generation of advanced batteries and plug-in hybrid vehicles. In China, the national "Eleventh Five-Year" 863 plan has set up major projects for energy saving and new energy vehicles. During the doctoral study at Kyushu University, Japan, the applicant has mastered the model predictive control algorithm commonly used by Japanese companies and universities and the C/GMRES fast solution method proposed by Japanese scholar Toshiyuki Otsuka. The combination of these two methods solves the practical application problem of the advanced algorithm of model predictive control.

在此背景下,提高能源利用效率,减少汽车对环境的污染和增强交通安全已成为当今汽车工业发展的首要任务。同时,利用道路交通信息,进一步提高驱动装置效率也成为当今社会发展的现实需要。为了解决上述问题,需要设计出一种基于分散控制的可产业化的混合动力汽车模型预测控制方法,从而实现节能减排目标。In this context, improving energy utilization efficiency, reducing automobile pollution to the environment and enhancing traffic safety have become the primary tasks for the development of today's automobile industry. At the same time, using road traffic information to further improve the efficiency of driving devices has become a realistic need for the development of today's society. In order to solve the above problems, it is necessary to design an industrialized hybrid electric vehicle model predictive control method based on decentralized control, so as to achieve the goal of energy saving and emission reduction.

发明内容Contents of the invention

针对上述问题,本发明的目的是提供一种能够对未来车辆工况进行实时预测的基于分散控制的混合动力汽车模型预测方法,以达到最大限度地节能减排,产业化混合动力汽车能量管理中央控制器。In view of the above problems, the object of the present invention is to provide a hybrid electric vehicle model prediction method based on decentralized control that can predict future vehicle operating conditions in real time, so as to achieve maximum energy saving and emission reduction, and industrialize hybrid electric vehicle energy management center controller.

为实现上述目的,本发明采取以下技术方案:To achieve the above object, the present invention takes the following technical solutions:

一种基于分散控制的混合动力汽车节能预测控制方法,其特征在于:包括以下步骤:A method for energy-saving predictive control of hybrid electric vehicles based on decentralized control, characterized in that: comprising the following steps:

步骤1)信息采集:由全球定位系统采集前车、后车和自车的位置信息,作为实时车辆状态反馈,由车载雷达测速装置采集前方车辆速度,后方车辆速度,用于跟踪控制,由智能交通系统、车路通信系统和车间通信系统采集交通信号信息,实时路况信息以及自车、后车和前车速度,加速度信息,用于智能交通控制,由卡尔曼滤波器利用采集的蓄电池信息对蓄电池荷电状态进行测定;Step 1) Information collection: the position information of the front vehicle, the rear vehicle and the own vehicle is collected by the global positioning system as real-time vehicle status feedback, and the speed of the front vehicle and the rear vehicle are collected by the on-board radar speed measuring device for tracking control. The traffic system, the vehicle-road communication system and the vehicle-to-vehicle communication system collect traffic signal information, real-time road condition information, and the speed and acceleration information of the own vehicle, the vehicle behind and the vehicle in front, which are used for intelligent traffic control. The Kalman filter utilizes the collected battery information to Determination of battery state of charge;

步骤2)车辆建模:行星齿轮式混联混合动力汽车包含5大动态部件,它们是发动机、蓄电池、2个发电电动一体机和车轮,行星齿轮作为动力分配装置既有速度耦合器的作用,又有电子无极变速器作用,根据车辆机械耦合和电子耦合关系,列写系统动力学方程,对动力学方程解耦,获得系统的状态空间模型,如式(1)所示:Step 2) Vehicle modeling: The planetary gear type hybrid electric vehicle contains five dynamic components, which are the engine, battery, two electric generators and wheels. It also has the function of electronic continuously variable transmission. According to the vehicle mechanical coupling and electronic coupling relationship, the system dynamic equation is written, and the dynamic equation is decoupled to obtain the state space model of the system, as shown in formula (1):

x=[pp vp p2 v2 SOC2 pf vf]x=[p p v p p 2 v 2 SOC 2 p f v f ]

u=[u2 Pbatt2]u=[u 2 P batt2 ]

式中,x为状态量,u为控制量,参数pp、vp、pf和vf为前车位置、前车速度、后车位置和后车速度,参数p2、v2和SOC2为自车的位置、速度和蓄电池荷电状态,参数u2和Pbatt2为自车的驱动加速度和自车蓄电池的充放电功率,参数ρ、CD2、A2、m2、g、μ和θ2是空气密度、自车空气阻力系数、自车迎风面积、自车质量、重力加速度、滚动阻力系数和自车道路坡度,VOC、Rbatt和Qbatt是蓄电池开路电压、内阻和容量,预测区间内由于车辆的惯性、假设前方车辆加速度一定,如果前行车速度大于最大值或者小于一定值,则前行车加速度为0,如果前方遭遇交通信号灯红灯,则假定一辆速度为0的前行车停在交通信号灯位置处,车辆的启动和停止速度模式采用实验曲线,运用实际驾驶员的特性测取;In the formula, x is the state quantity, u is the control quantity, the parameters p p , v p , p f and v f are the front vehicle position, the front vehicle speed, the rear vehicle position and the rear vehicle speed, and the parameters p 2 , v 2 and SOC 2 is the position, speed and state of charge of the battery, the parameters u 2 and P batt2 are the driving acceleration of the vehicle and the charging and discharging power of the battery of the vehicle, and the parameters ρ, C D2 , A 2 , m 2 , g, μ and θ 2 are air density, air resistance coefficient of self-vehicle, windward area of self-vehicle, mass of self-vehicle, acceleration of gravity, rolling resistance coefficient and road gradient of self-vehicle, V OC , R batt and Q batt are battery open circuit voltage, internal resistance and Capacity, due to the inertia of the vehicle in the prediction interval, it is assumed that the acceleration of the vehicle ahead is constant. If the speed of the vehicle ahead is greater than the maximum value or less than a certain value, the acceleration of the vehicle ahead is 0. If the traffic light is red in front, the speed of the vehicle is assumed to be 0. The vehicle in front stops at the position of the traffic signal light, and the speed mode of the vehicle's start and stop adopts the experimental curve and is measured by the characteristics of the actual driver;

车辆的燃油经济性评价采用威兰氏线性模型,如式(2)所示:The fuel economy evaluation of the vehicle adopts the Weilan linear model, as shown in formula (2):

式中mf为燃油消耗率,参数Preq为车辆需求功率,cf为常数参数;In the formula, m f is the fuel consumption rate, the parameter P req is the required power of the vehicle, and c f is a constant parameter;

步骤3)公式化控制策略:基于分散控制的混合动力汽车能量管理模型预测最优控制策略的步骤为:首先检测自车、后车和前车状态,包括位置、速度和加速度信息,其次运用所建立的数学模型和公式化控制策略求解最优控制问题,最后应用所求得的最优控制序列的第一个控制量于系统,由于模型预测控制为区间最优控制,其求得的最优控制量是数量为预测区间除以采样间隔的序列,最优控制序列的第一个控制量与实际状态最接近,所以采用它来作为实际的控制量;Step 3) Formulate control strategy: The steps of predicting the optimal control strategy based on the energy management model of hybrid electric vehicles based on decentralized control are as follows: first, detect the state of the own vehicle, the rear vehicle and the front vehicle, including position, speed and acceleration information, and then use the established The mathematical model and formulaic control strategy are used to solve the optimal control problem, and finally the first control quantity of the optimal control sequence is applied to the system. Since the model predictive control is an interval optimal control, the optimal control quantity obtained by it is is the sequence whose quantity is the prediction interval divided by the sampling interval. The first control quantity of the optimal control sequence is the closest to the actual state, so it is used as the actual control quantity;

最优控制问题定义如式(3)所示:The definition of the optimal control problem is shown in formula (3):

subject to Pbatt2min≤Pbatt2(τ|t)≤Pbatt2max (3)subject to P batt2min ≤P batt2 (τ|t) ≤P batt2max (3)

u2min≤u2(τ|t)≤u2max u 2min ≤u 2 (τ|t)≤u 2max

式中T为预测区间,参数Pbatt2min、Pbatt2max、u2max和u2min为控制量约束;In the formula, T is the prediction interval, and the parameters P batt2min , P batt2max , u 2max and u 2min are control quantity constraints;

评价函数定义如式(4)所示:The definition of the evaluation function is shown in formula (4):

L=wxLx+wyLy+wzLz+wdLd+weLe+wfLf+wrLr+wsLs L=w x L x +w y L y +w z L z +w d L d +w e L e +w f L f +w r L r +w s L s

Ly=(v2-vd)2/2L y =(v 2 -v d ) 2 /2

Ld=(SOC2-SOCd)2 (4)L d =(SOC 2 −SOC d ) 2 (4)

Le=(m2*w2*v2/1000-Pbatt2)2/2L e =(m 2 *w 2 *v 2 /1000-P batt2 ) 2 /2

Lf=(-ln[SOC2-0.6]-ln[0.8-SOC2])L f =(-ln[SOC 2 -0.6]-ln[0.8-SOC 2 ])

Lr=-ln(df-dd)-ln(dp-dd)L r =-ln(d f -d d )-ln(d p -d d )

Ls=(ap)2/2+(af)2/2L s =(a p ) 2 /2+(a f ) 2 /2

式中SOCd是目标蓄电池荷电状态,vd是车辆目标速度,它取值为车辆最优等速燃油经济性速度,wx、wy、wz、wd、we、wf、wr和ws是权重系数,dd为最低车辆间距,评价函数设置使其在最低车辆间距以上浮动,从而增加控制自由度,提高车辆燃油经济性,障碍函数用于处理系统状态约束,df为后车和自车间距,dp为前车和自车间距;In the formula, SOC d is the state of charge of the target battery, v d is the target speed of the vehicle, and its value is the optimal constant speed fuel economy speed of the vehicle, w x , w y , w z , w d , we e , w f , w r and w s are weight coefficients, d d is the minimum vehicle distance, the evaluation function is set to float above the minimum vehicle distance, so as to increase the control degree of freedom and improve vehicle fuel economy, and the barrier function is used to deal with system state constraints, d f is the distance between the rear vehicle and its own vehicle, d p is the distance between the front vehicle and its own vehicle;

步骤4)在线最优控制:为保证系统的实时最优性能,运用基于哈密顿方程的数值快速求解方法来求解上述最优控制问题,运用极小值原理将最优控制问题转化为两点边值问题,在处理哈密顿函数相关的微分方程组和代数方程组时采用部分空间法求解,这是一种GMRES解法;Step 4) Online optimal control: In order to ensure the real-time optimal performance of the system, the numerical fast solution method based on the Hamiltonian equation is used to solve the above optimal control problem, and the minimum value principle is used to convert the optimal control problem into a two-point edge When dealing with the differential equations and algebraic equations related to the Hamiltonian function, the partial space method is used to solve the value problem, which is a GMRES solution method;

在每个采样时刻,首先测取前车位置、自车位置、后车位置、前车速度、自车速度、后车速度、前车加速度、自车加速度、后车加速度和自车蓄电池荷电状态实时状态信号,其次利用全球定位系统、车间通信系统、车路通信系统和智能交通系统预测未来一定区间车辆及周围环境的状态,包括前车加速度、后车加速度、前车与自车间距、后车与自车间距,再次根据建立的车辆模型和最优控制问题,利用上述数值快速解法求解预测区间内的最优控制序列,应用预测区间内的最优控制序列的第一个控制量于车辆,之后在下一个采样时刻,将预测区间向前推进一步,如此循环往复,实现在线最优控制。At each sampling moment, first measure the front vehicle position, self-vehicle position, rear vehicle position, front vehicle speed, self-vehicle speed, rear vehicle speed, front-vehicle acceleration, self-vehicle acceleration, rear-vehicle acceleration, and self-vehicle battery charge Status real-time status signal, secondly use global positioning system, vehicle-to-vehicle communication system, vehicle-road communication system and intelligent transportation system to predict the status of vehicles and surrounding environment in a certain range in the future, including the acceleration of the front vehicle, the acceleration of the rear vehicle, the distance between the front vehicle and the vehicle, The distance between the following vehicle and the self-vehicle is again based on the established vehicle model and the optimal control problem, using the above numerical fast solution method to solve the optimal control sequence in the prediction interval, and applying the first control quantity of the optimal control sequence in the prediction interval to Then, at the next sampling time, the vehicle advances the prediction interval one step forward, and this cycle repeats to achieve online optimal control.

本发明由于采取以上技术方案,其具有以下优点:The present invention has the following advantages due to the adoption of the above technical scheme:

1)本控制策略能够综合利用前车、自车和后车信息,以及交通信号灯信息,对混合动力汽车速度模式和充放电模式进行同时进行最优化,不同于传统方法中只优化充放电模式的情况。1) This control strategy can comprehensively utilize the information of the vehicle in front, the vehicle behind, and the vehicle behind, as well as the information of traffic lights, to simultaneously optimize the speed mode and charge-discharge mode of the hybrid electric vehicle, which is different from the traditional method that only optimizes the charge-discharge mode Condition.

2)控制策略考虑交通信号灯信息,在需要停车以及再启动的情况下,运用实际测得的停车和启动车辆的速度模式,使所提出的控制策略更加接近实际情况,不同于传统方法中只考虑车辆巡航时的控制。2) The control strategy considers the information of traffic lights. In the case of stopping and restarting, the actual measured speed mode of parking and starting the vehicle is used to make the proposed control strategy closer to the actual situation, which is different from the traditional method that only considers Control while the vehicle is cruising.

3)提出了基于队列行驶的混合动力汽车分散控制模型,为混合动力汽车队列行驶的模型化提供了通用方法指导。3) A decentralized control model of hybrid electric vehicles based on platooning is proposed, which provides a general method guidance for the modeling of platooning of hybrid electric vehicles.

运用本方法能够大幅度提高混合动力汽车燃油经济性,排放性能和安全性能。By using the method, the fuel economy, emission performance and safety performance of the hybrid electric vehicle can be greatly improved.

附图说明Description of drawings

图1是本发明行星齿轮式混联混合动力汽车驱动系统结构示意图。Fig. 1 is a schematic structural diagram of a drive system of a planetary gear hybrid hybrid vehicle according to the present invention.

图2是基于分散控制的混合动力汽车节能预测控制方法流程图。Fig. 2 is a flowchart of a method for energy-saving predictive control of a hybrid electric vehicle based on decentralized control.

图3是基于分散控制的混合动力汽车节能预测控制器结构图。Figure 3 is a structural diagram of a hybrid electric vehicle energy-saving predictive controller based on decentralized control.

图1中:1、发动机;2、动力分配器;3、发电机;4、蓄电池;5、逆变器;6电动机;7、主减速器。In Fig. 1: 1. Engine; 2. Power splitter; 3. Generator; 4. Storage battery; 5. Inverter; 6. Electric motor; 7. Final reducer.

具体实施方式detailed description

以下结合技术方案和附图详细叙述本发明的具体实施方式。The specific embodiments of the present invention will be described in detail below in conjunction with the technical solutions and accompanying drawings.

本发明公开了一种基于分散控制的混合动力汽车节能预测控制方法,包括以下步骤:从全球定位系统、车间通信系统、车路通信系统和智能交通系统获取实时自车、前车和后车交通信息作为系统输入;建立混合动力汽车队列行驶分散控制数学模型作为预测未来车辆状态的依据;定义混合动力汽车分散控制队列行驶最优控制问题,提供求解最优控制量的函数方程;实时反馈最优控制,求解最优控制量。本发明在满足车辆之间安全间距的情况下,采用一种基于分散控制的混合动力汽车节能预测控制方法,根据全球定位系统,雷达,智能交通系统,车路通信系统和车间通信系统获得的信息在线调整优化混合动力汽车能量流动,进而可以获得混合动力汽车系统最优性能。该方法运用行星齿轮机构作为电子无极变速器,使发动机始终工作于其最佳工作点。同时,运用道路交通信息,预测前车和后车行驶状态,在线调整混合动力汽车能量流动,达到节能减排的目标。另外,本发明不同于传统的集中控制方法,大大减少了计算时间,提高了车辆的实时控制特性,为混合动力汽车能量管理系统中央控制器性能提高提供了一种新途径。The invention discloses a hybrid electric vehicle energy-saving predictive control method based on decentralized control, comprising the following steps: obtaining real-time traffic of the own vehicle, the vehicle in front and the vehicle behind from the global positioning system, the inter-vehicle communication system, the vehicle-road communication system and the intelligent transportation system Information is used as system input; a mathematical model of hybrid vehicle platooning decentralized control is established as the basis for predicting the future vehicle state; the optimal control problem of hybrid vehicle platooning control is defined, and the function equation for solving the optimal control quantity is provided; real-time feedback is optimal control, to find the optimal control quantity. In the case of satisfying the safety distance between vehicles, the present invention adopts a hybrid electric vehicle energy-saving predictive control method based on decentralized control, according to the information obtained from the global positioning system, radar, intelligent transportation system, vehicle-road communication system and vehicle-to-vehicle communication system On-line adjustment optimizes the energy flow of the hybrid electric vehicle, and then the optimal performance of the hybrid electric vehicle system can be obtained. This method uses the planetary gear mechanism as an electronic continuously variable transmission to make the engine always work at its optimum working point. At the same time, it uses road traffic information to predict the driving status of the vehicle in front and behind, and adjusts the energy flow of hybrid electric vehicles online to achieve the goal of energy saving and emission reduction. In addition, the present invention is different from the traditional centralized control method, which greatly reduces the calculation time, improves the real-time control characteristics of the vehicle, and provides a new way to improve the performance of the central controller of the energy management system of the hybrid electric vehicle.

图1为本发明控制方法的研究对象的结构图。在车辆建模过程中使用本结构图分析系统机械和电气耦合关系。结构图中包含混合动力汽车包含5大动态部件。它们是发动机,蓄电池,2个发电电动一体机和车轮。电动机通过主减速器与车轮相连,传递系统动力。行星齿轮作为动力分配装置既有速度耦合器的作用,又有电子无极变速器作用。行星齿轮机械耦合发动机和2个发电电动一体机。逆变器电气耦合蓄电池和2个发电电动一体机。通过对系统机械耦合和电气耦合解耦获得独立的3自由度系统模型。本发明控制方法为系统软件,图1所示为系统硬件。Fig. 1 is a structural diagram of the research object of the control method of the present invention. Use this block diagram during vehicle modeling to analyze system mechanical and electrical coupling relationships. The structure diagram contains five dynamic components of the hybrid vehicle. They are the engine, battery, 2 electric generators and wheels. The electric motor is connected to the wheels through the final reducer to transmit the power of the system. As a power distribution device, the planetary gear not only functions as a speed coupling, but also as an electronic continuously variable transmission. The planetary gear is mechanically coupled to the engine and 2 electric generators. The inverter is electrically coupled to the storage battery and 2 electric generators. An independent 3-DOF system model is obtained by decoupling the mechanical coupling and electrical coupling of the system. The control method of the present invention is system software, and Fig. 1 shows system hardware.

图2揭示了整个控制方法的过程。采集的信息作为系统模型的输入。由车载雷达测速装置采集前方车辆速度和后方车辆速度,用于跟踪控制。由智能交通系统、车间通信系统、车路通信系统采集交通信号信息以及实时路况信息,用于智能交通控制。由卡尔曼滤波器利用采集的蓄电池信息对蓄电池荷电状态进行估计。车辆建模为公式化模型预测控制策略提供预测未来车辆状态所需要的模型。公式化控制策略为在线最优控制提供需要求解的函数方程。Figure 2 reveals the process of the whole control method. The collected information is used as input to the system model. The speed of the front vehicle and the speed of the rear vehicle are collected by the on-board radar speed measuring device for tracking control. Traffic signal information and real-time road condition information are collected by the intelligent transportation system, vehicle-to-vehicle communication system, and vehicle-road communication system for intelligent traffic control. The battery state of charge is estimated by the Kalman filter using the collected battery information. Vehicle modeling provides the models needed to predict future vehicle states for formulating model predictive control strategies. The formulated control strategy provides the functional equations to be solved for online optimal control.

图3为本发明具体控制结构图。由全球定位系统、车载雷达装置、智能交通系统、车间通信系统、车路通信系统采集自车位置,前车位置,后车位置,自车速度,前车速度,后车速度,自车加速度,前车加速度和后车加速度。由全球定位系统通过车辆位置查询得到车辆所在位置的道路坡度。根据道路坡度产生目标蓄电池荷电状态。测取的车辆状态,道路坡度信息,前方和后方车辆位置和速度以及交通信息,目标蓄电池荷电状态,目标车辆速度输入模型预测控制器,模型预测控制器根据车辆系统模型,求解最优控制问题,得到最优控制量,并作用于车辆。Fig. 3 is a specific control structure diagram of the present invention. The location of the vehicle, the position of the front vehicle, the position of the rear vehicle, the speed of the vehicle, the speed of the front vehicle, the speed of the rear vehicle, and the acceleration of the vehicle are collected by the global positioning system, vehicle-mounted radar device, intelligent transportation system, vehicle-to-vehicle communication system, and vehicle-road communication system. Front vehicle acceleration and rear vehicle acceleration. The road gradient of the vehicle location is obtained by the global positioning system through the vehicle location query. Generates a target battery state of charge based on road grade. The measured vehicle state, road slope information, the position and speed of the front and rear vehicles, and traffic information, the target battery charge state, and the target vehicle speed are input into the model predictive controller, and the model predictive controller solves the optimal control problem according to the vehicle system model , get the optimal control amount, and act on the vehicle.

实施例:以行星齿轮式混联混合动力驱动系统为例进行说明,如图1所示,本发明公开了一种基于分散控制的混合动力汽车节能预测控制方法,第一步为信息采集,第二步为车辆建模,第三步为公式化控制策略,第四步为在线最优控制。该方法的原理如图2所示,具体控制方法包括以下步骤:Embodiment: Taking the planetary gear type hybrid hybrid drive system as an example for illustration, as shown in Figure 1, the present invention discloses a hybrid electric vehicle energy-saving predictive control method based on decentralized control, the first step is information collection, the second The second step is the vehicle modeling, the third step is the formulation of the control strategy, and the fourth step is the online optimal control. The principle of the method is shown in Figure 2, and the specific control method includes the following steps:

步骤1)信息采集:Step 1) Information collection:

由全球定位系统采集前车、后车和自车的位置信息,作为实时车辆状态反馈,由车载雷达测速装置采集前方车辆速度,后方车辆速度,用于跟踪控制,由智能交通系统、车路通信系统和车间通信系统采集交通信号信息、实时路况信息以及自车、后车和前车速度、加速度信息,用于智能交通控制;由卡尔曼滤波器利用采集的蓄电池4信息对蓄电池4荷电状态进行估计。The global positioning system collects the position information of the front vehicle, the rear vehicle and the own vehicle as real-time vehicle status feedback, and the vehicle-mounted radar speed measuring device collects the speed of the front vehicle and the speed of the rear vehicle for tracking control. Intelligent transportation system, vehicle-road communication The system and the vehicle-to-vehicle communication system collect traffic signal information, real-time road condition information, and the speed and acceleration information of the own vehicle, the rear vehicle and the front vehicle for intelligent traffic control; the Kalman filter uses the collected battery information to determine the state of charge of the battery. Make an estimate.

步骤2)车辆建模:行星齿轮式混联混合动力汽车包含5大动态部件,它们是发动机1,蓄电池4,发电机3,电动机6和车轮。动力分配器2作为动力分配装置既有速度耦合器的作用,又有电子无极变速器作用。根据车辆机械耦合和电子耦合关系,可以列写系统动力学方程。对动力学方程解耦,最终可以获得系统的状态空间模型,如式(1)所示:Step 2) Vehicle modeling: The planetary gear type hybrid electric vehicle contains five dynamic components, which are engine 1, battery 4, generator 3, motor 6 and wheels. As a power distribution device, the power splitter 2 not only functions as a speed coupling, but also as an electronic continuously variable transmission. According to the vehicle mechanical coupling and electronic coupling relationship, the system dynamic equation can be written. By decoupling the dynamic equations, the state space model of the system can be finally obtained, as shown in formula (1):

x=[pp vp p2 v2 SOC2 pf vf]x=[p p v p p 2 v 2 SOC 2 p f v f ]

u=[u2 Pbatt2]u=[u 2 P batt2 ]

式中,x为状态量,u为控制量。参数pp,vp,pf和vf为前车位置,前车速度,后车位置和后车速度。参数p2,v2和SOC2为自车的位置,速度和蓄电池4荷电状态。参数u2和Pbatt2为自车的驱动加速度和自车蓄电池4的充放电功率。参数ρ,CD2,A2,m2,g,μ和θ2是空气密度,自车空气阻力系数,自车迎风面积,自车质量,重力加速度,滚动阻力系数和自车道路坡度。VOC,Rbatt和Qbatt是蓄电池4开路电压,内阻和容量。预测区间内由于车辆的惯性,假设前方车辆加速度一定。如果前行车速度大于最大值或者小于一定值,则前行车加速度为0。如果前方遭遇交通信号灯红灯,则假定一辆速度为0的前行车停在交通信号灯位置处。车辆的启动和停止速度模式采用实验曲线,运用实际驾驶员的特性测取。In the formula, x is the state quantity, and u is the control quantity. The parameters p p , v p , p f and v f are the position of the front vehicle, the speed of the front vehicle, the position of the rear vehicle and the speed of the rear vehicle. The parameters p 2 , v 2 and SOC 2 are the position, speed and state of charge of the battery 4 of the own vehicle. The parameters u 2 and P batt2 are the driving acceleration of the own vehicle and the charging and discharging power of the battery 4 of the own vehicle. The parameters ρ, C D2 , A 2 , m 2 , g, μ and θ 2 are air density, ego vehicle air resistance coefficient, ego vehicle frontal area, ego vehicle mass, gravitational acceleration, rolling resistance coefficient and ego vehicle road gradient. V oc , R batt and Q batt are the open circuit voltage, internal resistance and capacity of the battery 4 . Due to the inertia of the vehicle in the prediction interval, it is assumed that the acceleration of the vehicle in front is constant. If the speed of the front vehicle is greater than the maximum value or less than a certain value, the acceleration of the front vehicle is 0. If a red traffic light is encountered ahead, it is assumed that a front vehicle with a speed of 0 stops at the position of the traffic light. The starting and stopping speed mode of the vehicle adopts the experimental curve and is measured by the characteristics of the actual driver.

车辆的燃油经济性评价采用威兰氏线性模型,如式(2)所示:The fuel economy evaluation of the vehicle adopts the Weilan linear model, as shown in formula (2):

式中mf为燃油消耗率。参数Preq为车辆需求功率。cf为常数参数。Where m f is the fuel consumption rate. The parameter P req is the required power of the vehicle. c f is a constant parameter.

步骤3)公式化控制策略:Step 3) Formulate the control strategy:

基于分散控制的混合动力汽车能量管理模型预测最优控制策略的步骤为:首先检测自车、后车和前车状态,包括位置,速度和加速度信息,其次运用所建立的数学模型和公式化控制策略求解最优控制问题,最后应用所求得的最优控制序列的第一个控制量于系统。由于模型预测控制为区间最优控制,所以其求得的最优控制量是数量为预测区间除以采样间隔的序列。最优控制序列的第一个控制量与实际状态最接近,所以一般采用它来作为实际的控制量。The steps of predicting the optimal control strategy based on the distributed control hybrid electric vehicle energy management model are as follows: firstly detect the state of the own vehicle, the rear vehicle and the front vehicle, including position, speed and acceleration information, and then use the established mathematical model and formulaic control strategy Solve the optimal control problem, and finally apply the first control quantity of the obtained optimal control sequence to the system. Since the model predictive control is an interval optimal control, the optimal control quantity obtained by it is a sequence whose quantity is the prediction interval divided by the sampling interval. The first control quantity of the optimal control sequence is the closest to the actual state, so it is generally used as the actual control quantity.

模型预测控制的基本原理为:在每一个采样时刻,根据预测模型对系统未来代价函数进行预测,通过对未来预测区间内的性能指标进行优化,并根据实测对象的输出进行反馈校正,将控制策略设计转化为优化过程,通过求解相应预测区间的优化问题得到控制序列,并将序列的第一个控制量作用于系统,实现反馈控制,之后在下一个采样时刻,将预测区间向前推进一步,不断重复该过程。总结来说其包括三部分:预测模型,滚动优化和反馈控制。通过对未来系统输入的预测可以实现对系统的实时最优控制。The basic principle of model predictive control is: at each sampling moment, predict the future cost function of the system according to the prediction model, optimize the performance index in the future prediction interval, and perform feedback correction according to the output of the measured object, and the control strategy The design is transformed into an optimization process. The control sequence is obtained by solving the optimization problem of the corresponding prediction interval, and the first control quantity of the sequence is applied to the system to realize feedback control. Then, at the next sampling time, the prediction interval is pushed forward one step, continuously Repeat the process. In summary, it includes three parts: predictive model, rolling optimization and feedback control. The real-time optimal control of the system can be realized by predicting the future system input.

本控制策略的特色有两点。第一,本控制策略能够综合利用前车、自车和后车信息,以及交通信号灯信息,对混合动力汽车速度模式和充放电模式进行最优化。第二,控制策略考虑交通信号灯信息,在需要停车以及再启动的情况下,运用实际测得的停车和启动车辆的速度模式,使所提出的控制策略更加接近实际情况。上述两大特色在控制策略设计中评价函数里有相应体现,为混合动力汽车系统性能提高提供了更大可能性。There are two characteristics of this control strategy. First, this control strategy can comprehensively utilize the information of the vehicle in front, the vehicle behind, and the vehicle behind, as well as the information of traffic lights, to optimize the speed mode and charging and discharging mode of the hybrid electric vehicle. Second, the control strategy considers the information of traffic lights, and uses the actual measured speed patterns of stopping and starting the vehicle when it needs to stop and restart, so that the proposed control strategy is closer to the actual situation. The above two characteristics are reflected in the evaluation function in the design of the control strategy, which provides a greater possibility for the performance improvement of the hybrid electric vehicle system.

预测模型在已在上部分论述。Predictive models have been discussed in the previous section.

最优控制问题定义如式(3)所示:The definition of the optimal control problem is shown in formula (3):

subject to Pbatt2min≤Pbatt2(τ|t)≤Pbatt2max (3)subject to P batt2min ≤P batt2 (τ|t) ≤P batt2max (3)

u2min≤u2(τ|t)≤u2max u 2min ≤u 2 (τ|t)≤u 2max

式中T为预测区间。参数Pbatt2min,Pbatt2max,u2max和u2min为控制量约束。where T is the prediction interval. The parameters P batt2min , P batt2max , u 2max and u 2min are control quantity constraints.

评价函数定义如式(4)所示:The definition of the evaluation function is shown in formula (4):

L=wxLx+wyLy+wzLz+wdLd+weLe+wfLf+wrLr+wsLs L=w x L x +w y L y +w z L z +w d L d +w e L e +w f L f +w r L r +w s L s

Ly=(v2-vd)2/2L y =(v 2 -v d ) 2 /2

Ld=(SOC2-SOCd)2 (4)L d =(SOC 2 −SOC d ) 2 (4)

Le=(m2*w2*v2/1000-Pbatt2)2/2L e =(m 2 *w 2 *v 2 /1000-P batt2 ) 2 /2

Lf=(-ln[SOC2-0.6]-ln[0.8-SOC2])L f =(-ln[SOC 2 -0.6]-ln[0.8-SOC 2 ])

Lr=-ln(df-dd)-ln(dp-dd)L r =-ln(d f -d d )-ln(d p -d d )

Ls=(ap)2/2+(af)2/2L s =(a p ) 2 /2+(a f ) 2 /2

式中SOCd是目标蓄电池4荷电状态。vd是车辆目标速度,它取值为车辆最优等速燃油经济性速度。wx,wy,wz,wd,we,wf,wr和ws是权重系数。dd为最低车辆间距,评价函数设置使其在最低车辆间距以上浮动,从而增加控制自由度,提高车辆燃油经济性。障碍函数用于处理系统状态约束等。df为后车和自车间距,dp为前车和自车间距。In the formula, SOC d is the state of charge of the target battery 4 . v d is the target speed of the vehicle, and its value is the optimal constant speed fuel economy speed of the vehicle. w x , w y , w z , w d , w e , w f , w r and w s are weight coefficients. d d is the minimum distance between vehicles, and the evaluation function is set to make it float above the minimum distance between vehicles, so as to increase the degree of freedom of control and improve the fuel economy of vehicles. Barrier functions are used to deal with system state constraints, etc. d f is the distance between the rear vehicle and its own vehicle, and d p is the distance between the front vehicle and its own vehicle.

步骤4)在线最优控制:Step 4) Online optimal control:

为保证系统的实时最优性能,运用基于哈密顿方程的数值快速求解方法来求解上述最优控制问题。由于其只需有限几次迭代就可以计算出数值方程的最优解,这种方法的在线性能很好。而且由于其基于哈密顿方程,这种解法的稳定性可以得到保证。解法具体来说,运用极小值原理将最优控制问题转化为两点边值问题,在处理哈密顿函数相关的微分方程组和代数方程组时采用部分空间法求解,这是一种GMRES解法。In order to ensure the real-time optimal performance of the system, a fast numerical solution method based on the Hamiltonian equation is used to solve the above optimal control problems. Since it only needs a limited number of iterations to calculate the optimal solution of the numerical equation, the online performance of this method is very good. And because it is based on the Hamiltonian equation, the stability of this solution can be guaranteed. Solution Specifically, the optimal control problem is transformed into a two-point boundary value problem using the minimum value principle, and the partial space method is used to solve the differential equations and algebraic equations related to the Hamiltonian function. This is a GMRES solution. .

在每个采样时刻,首先,测取前车位置,自车位置,后车位置,前车速度,自车速度,后车速度,前车加速度,自车加速度,后车加速度和自车蓄电池荷电状态等实时状态信号,其次,利用全球定位系统、车间通信系统、车路通信系统和智能交通系统预测未来一定区间车辆及周围环境的状态,包括前车加速度,后车加速度,前车与自车间距,后车与自车间距等。再次,根据建立的车辆模型和最优控制问题,利用上述数值快速解法求解预测区间内的最优控制序列。应用预测区间内的最优控制序列的第一个控制量于车辆。之后在下一个采样时刻,将预测区间向前推进一步,如此循环往复,实现在线最优控制。At each sampling moment, firstly, measure the front vehicle position, self-vehicle position, rear vehicle position, front vehicle speed, self-vehicle speed, rear vehicle speed, front-vehicle acceleration, self-vehicle acceleration, rear-vehicle acceleration and self-vehicle battery charge Second, use the global positioning system, vehicle-to-vehicle communication system, vehicle-road communication system and intelligent transportation system to predict the state of vehicles and the surrounding environment in a certain range in the future, including the acceleration of the front vehicle, the acceleration of the rear vehicle, and the relationship between the vehicle in front and the vehicle. Inter-vehicle distance, the distance between the following vehicle and the self-vehicle, etc. Thirdly, according to the established vehicle model and the optimal control problem, the optimal control sequence in the prediction interval is solved by using the above numerical fast solution method. Apply the first control quantity of the optimal control sequence within the prediction interval to the vehicle. Then at the next sampling time, the prediction interval is pushed forward one step, and this cycle repeats to realize online optimal control.

本发明同样适用于其他形式混合动力汽车驱动系统,具体建模方法与控制过程与行星齿轮式混联混合动力汽车驱动系统一致,在此不再赘述。The present invention is also applicable to drive systems of other forms of hybrid electric vehicles, and the specific modeling method and control process are consistent with the drive systems of planetary gear hybrid hybrid electric vehicles, which will not be repeated here.

Claims (1)

1.一种基于分散控制的混合动力汽车节能预测控制方法,其特征在于:包括以下步骤:1. a hybrid electric vehicle energy-saving predictive control method based on distributed control, is characterized in that: comprise the following steps: 步骤1)信息采集:由全球定位系统采集前车、后车和自车的位置信息,作为实时车辆状态反馈,由车载雷达测速装置采集前方车辆速度,后方车辆速度,用于跟踪控制,由智能交通系统、车路通信系统和车间通信系统采集交通信号信息,实时路况信息以及自车、后车和前车速度、加速度信息,用于智能交通控制,由卡尔曼滤波器利用采集的蓄电池信息对蓄电池荷电状态进行测定;Step 1) Information collection: the position information of the front vehicle, the rear vehicle and the own vehicle is collected by the global positioning system as real-time vehicle status feedback, and the speed of the front vehicle and the rear vehicle are collected by the on-board radar speed measuring device for tracking control. The traffic system, the vehicle-road communication system and the vehicle-to-vehicle communication system collect traffic signal information, real-time road condition information, and the speed and acceleration information of the vehicle, the vehicle behind and the vehicle in front for intelligent traffic control, and the Kalman filter utilizes the collected battery information to Determination of battery state of charge; 步骤2)车辆建模:行星齿轮式混联混合动力汽车包含5大动态部件,它们是发动机、蓄电池、2个发电电动一体机和车轮,行星齿轮作为动力分配装置既有速度耦合器的作用,又有电子无极变速器作用,根据车辆机械耦合和电子耦合关系,列写系统动力学方程,对动力学方程解耦,获得系统的状态空间模型,如式(1)所示:Step 2) Vehicle modeling: The planetary gear type hybrid electric vehicle contains five dynamic components, which are the engine, battery, two electric generators and wheels. It also has the function of electronic continuously variable transmission. According to the vehicle mechanical coupling and electronic coupling relationship, the system dynamic equation is written, and the dynamic equation is decoupled to obtain the state space model of the system, as shown in formula (1): <mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <mtable> <mtr> <mtd> <msub> <mi>p</mi> <mi>p</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>p</mi> </msub> </mtd> <mtd> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> <mtd> <mrow> <msub> <mi>SOC</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>p</mi> <mi>f</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>u</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;rho;C</mi> <mrow> <mi>D</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mn>2</mn> </msub> <msup> <msub> <mi>v</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>9.8</mn> <mi>&amp;mu;</mi> <mo>-</mo> <mn>9.8</mn> <msub> <mi>sin&amp;theta;</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>max</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msqrt> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>max</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> </mrow> </msqrt> </mrow> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>f</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>a</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>p</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>p</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>max</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>a</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>f</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>f</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>max</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <mtable> <mtr> <mtd> <msub> <mi>p</mi> <mi>p</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>p</mi> </msub> </mtd> <mtd> <msub> <mi>p</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> <mtd> <mrow> <msub> <mi>SOC</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>p</mi> <mi>f</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>u</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;rho;C</mi> <mrow> <mi>D</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mn>2</mn> </msub> <msup> <msub> <mi>v</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>9.8</mn> <mi>&amp;mu;</mi> <mo>-</mo> <mn>9.8</mn> <msub> <mi>sin&amp;theta;</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>max</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msqrt> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>max</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> </mrow> </msqrt> </mrow> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>f</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>a</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>p</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>p</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>max</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>a</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>f</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>f</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>max</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> 式中,x为状态量,u为控制量,参数pp、vp、pf和Vf为前车位置、前车速度、后车位置和后车速度,参数p2、v2和SOC2为自车的位置、速度和蓄电池荷电状态,参数u2和Pbatt2为自车的驱动加速度和自车蓄电池的充放电功率,参数ρ、CD2、A2、m2、g、μ和θ2是空气密度、自车空气阻力系数、自车迎风面积、自车质量、重力加速度、滚动阻力系数和自车道路坡度,VOC、Rbatt和Qbatt是蓄电池开路电压、内阻和容量,预测区间内由于车辆的惯性、假设前方车辆加速度一定,如果前行车速度大于最大值或者小于一定值,则前行车加速度为0,如果前方遭遇交通信号灯红灯,则假定一辆速度为0的前行车停在交通信号灯位置处,车辆的启动和停止速度模式采用实验曲线,运用实际驾驶员的特性测取;In the formula, x is the state quantity, u is the control quantity, the parameters p p , v p , p f and V f are the front vehicle position, the front vehicle speed, the rear vehicle position and the rear vehicle speed, and the parameters p 2 , v 2 and SOC 2 is the position, speed and state of charge of the battery, the parameters u 2 and P batt2 are the driving acceleration of the vehicle and the charging and discharging power of the battery of the vehicle, and the parameters ρ, C D2 , A 2 , m 2 , g, μ and θ 2 are air density, air resistance coefficient of self-vehicle, windward area of self-vehicle, mass of self-vehicle, acceleration of gravity, rolling resistance coefficient and road gradient of self-vehicle, V OC , R batt and Q batt are battery open circuit voltage, internal resistance and Capacity, due to the inertia of the vehicle in the prediction interval, it is assumed that the acceleration of the vehicle ahead is constant. If the speed of the vehicle ahead is greater than the maximum value or less than a certain value, the acceleration of the vehicle ahead is 0. If the traffic light is red in front, the speed of the vehicle is assumed to be 0. The vehicle in front stops at the position of the traffic signal light, and the speed mode of the vehicle's start and stop adopts the experimental curve and is measured by the characteristics of the actual driver; 车辆的燃油经济性评价采用威兰氏线性模型,如式(2)所示:The vehicle's fuel economy evaluation adopts the Weilan's linear model, as shown in formula (2): <mrow> <msub> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msub> <mi>c</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msub> <mi>c</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> 式中mf为燃油消耗率,参数Preq为车辆需求功率,cf为常数参数;In the formula, m f is the fuel consumption rate, the parameter P req is the required power of the vehicle, and c f is a constant parameter; 步骤3)公式化控制策略:基于分散控制的混合动力汽车能量管理模型预测最优控制策略的步骤为:首先检测自车、后车和前车状态,包括位置、速度和加速度信息,其次运用所建立的数学模型和公式化控制策略求解最优控制问题,最后应用所求得的最优控制序列的第一个控制量于系统,由于模型预测控制为区间最优控制,其求得的最优控制量是数量为预测区间除以采样间隔的序列,最优控制序列的第一个控制量与实际状态最接近,所以采用它来作为实际的控制量;Step 3) Formulate control strategy: The steps of predicting the optimal control strategy based on the energy management model of hybrid electric vehicles based on decentralized control are as follows: first, detect the state of the own vehicle, the rear vehicle and the front vehicle, including position, speed and acceleration information, and then use the established The mathematical model and formulaic control strategy are used to solve the optimal control problem, and finally the first control quantity of the optimal control sequence is applied to the system. Since the model predictive control is an interval optimal control, the optimal control quantity obtained by it is is the sequence whose quantity is the prediction interval divided by the sampling interval. The first control quantity of the optimal control sequence is the closest to the actual state, so it is used as the actual control quantity; 最优控制问题定义如式(3)所示:The definition of the optimal control problem is shown in formula (3): <mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mi>min</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> </mtd> <mtd> <mrow> <mi>J</mi> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mi>t</mi> <mrow> <mi>t</mi> <mo>+</mo> <mi>T</mi> </mrow> </msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>(</mo> <mrow> <mi>&amp;tau;</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> <mo>,</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>&amp;tau;</mi> <mo>|</mo> <mi>t</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> <mi>j</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mi> </mi> <mi>t</mi> <mi>o</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> <mi>min</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>|</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> <mi>max</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mn>2</mn> <mi>min</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>|</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mn>2</mn> <mi>max</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mi>min</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> </mtd> <mtd> <mrow> <mi>J</mi> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mi>t</mi> <mrow> <mi>t</mi> <mo>+</mo> <mi>T</mi> </mrow> </msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>(</mo> <mrow> <mi>&amp;tau;</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> <mo>,</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>&amp;tau;</mi> <mo>|</mo> <mi>t</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> <mi>j</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mi> </mi> <mi>t</mi> <mi>o</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> <mi>min</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>|</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> <mi>max</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mn>2</mn> <mi>min</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>|</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mn>2</mn> <mi>max</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> 式中T为预测区间,参数Pbatt2min、Pbatt2max、u2max和u2min为控制量约束;In the formula, T is the prediction interval, and the parameters P batt2min , P batt2max , u 2max and u 2min are control quantity constraints; 评价函数定义如式(4)所示:The definition of the evaluation function is shown in formula (4): <mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mi>L</mi> <mo>=</mo> <msub> <mi>w</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>y</mi> </msub> <msub> <mi>L</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>z</mi> </msub> <msub> <mi>L</mi> <mi>z</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>e</mi> </msub> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>f</mi> </msub> <msub> <mi>L</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>r</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>x</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;rho;C</mi> <mrow> <mi>D</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mn>2</mn> </msub> <msup> <msub> <mi>v</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>9.8</mn> <mo>*</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>y</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>z</mi> </msub> <mo>=</mo> <mn>0.0874</mn> <mo>*</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>/</mo> <mn>1000</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mn>0.5</mn> <mo>*</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>/</mo> <mn>1000</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>SOC</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>SOC</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>/</mo> <mn>1000</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>f</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>ln</mi> <mo>&amp;lsqb;</mo> <msub> <mi>SOC</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>0.6</mn> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>ln</mi> <mo>&amp;lsqb;</mo> <mn>0.8</mn> <mo>-</mo> <msub> <mi>SOC</mi> <mn>2</mn> </msub> <mo>&amp;rsqb;</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>d</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>d</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mi>L</mi> <mo>=</mo> <msub> <mi>w</mi> <mi>x</mi> </msub> <msub> <mi>L</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>y</mi> </msub> <msub> <mi>L</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>z</mi> </msub> <msub> <mi>L</mi> <mi>z</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>e</mi> </msub> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>f</mi> </msub> <msub> <mi>L</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>r</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>x</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;rho;C</mi> <mrow> <mi>D</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mn>2</mn> </msub> <msup> <msub> <mi>v</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>9.8</mn> <mo>*</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>y</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>z</mi> </msub> <mo>=</mo> <mn>0.0874</mn> <mo>*</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>/</mo> <mn>1000</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mn>0.5</mn> <mo>*</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>/</mo> <mn>1000</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>SOC</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>SOC</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>*</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>/</mo> <mn>1000</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>f</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>ln</mi> <mo>&amp;lsqb;</mo> <msub> <mi>SOC</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>0.6</mn> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>ln</mi> <mo>&amp;lsqb;</mo> <mn>0.8</mn> <mo>-</mo> <msub> <mi>SOC</mi> <mn>2</mn> </msub> <mo>&amp;rsqb;</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>d</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>d</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> 式中SOCd是目标蓄电池荷电状态,Vd是车辆目标速度,它取值为车辆最优等速燃油经济性速度,Wx、Wy、Wz、Wd、We、Wf、Wr和Ws是权重系数,dd为最低车辆间距,评价函数设置使其在最低车辆间距以上浮动,从而增加控制自由度,提高车辆燃油经济性,障碍函数用于处理系统状态约束,df为后车和自车间距,dp为前车和自车间距;In the formula, SOC d is the state of charge of the target battery, V d is the target speed of the vehicle, and its value is the optimal constant speed fuel economy speed of the vehicle, W x , W y , W z , W d , We e , W f , W r and W s are weight coefficients, d d is the minimum vehicle distance, the evaluation function is set to float above the minimum vehicle distance, so as to increase the control degree of freedom and improve vehicle fuel economy, and the barrier function is used to deal with system state constraints, d f is the distance between the rear vehicle and its own vehicle, d p is the distance between the front vehicle and its own vehicle; 步骤4)在线最优控制:为保证系统的实时最优性能,运用基于哈密顿方程的数值快速求解方法来求解上述最优控制问题,运用极小值原理将最优控制问题转化为两点边值问题,在处理哈密顿函数相关的微分方程组和代数方程组时采用部分空间法求解,这是一种GMRES解法;Step 4) Online optimal control: In order to ensure the real-time optimal performance of the system, the numerical fast solution method based on the Hamiltonian equation is used to solve the above optimal control problem, and the minimum value principle is used to convert the optimal control problem into a two-point edge When dealing with the differential equations and algebraic equations related to the Hamiltonian function, the partial space method is used to solve the value problem, which is a GMRES solution method; 在每个采样时刻,首先测取前车位置、自车位置、后车位置、前车速度、自车速度、后车速度、前车加速度、自车加速度、后车加速度和自车蓄电池荷电状态实时状态信号,其次利用全球定位系统、车间通信系统、车路通信系统和智能交通系统预测未来一定区间车辆及周围环境的状态,包括前车加速度、后车加速度、前车与自车间距、后车与自车间距,再次根据建立的车辆模型和最优控制问题,利用上述数值快速解法求解预测区间内的最优控制序列,应用预测区间内的最优控制序列的第一个控制量于车辆,之后在下一个采样时刻,将预测区间向前推进一步,如此循环往复,实现在线最优控制。At each sampling moment, first measure the front vehicle position, self-vehicle position, rear vehicle position, front vehicle speed, self-vehicle speed, rear vehicle speed, front-vehicle acceleration, self-vehicle acceleration, rear-vehicle acceleration, and self-vehicle battery charge Status real-time status signal, secondly use global positioning system, vehicle-to-vehicle communication system, vehicle-road communication system and intelligent transportation system to predict the status of vehicles and surrounding environment in a certain range in the future, including the acceleration of the front vehicle, the acceleration of the rear vehicle, the distance between the front vehicle and the vehicle, The distance between the following vehicle and the self-vehicle is again based on the established vehicle model and the optimal control problem, using the above numerical fast solution method to solve the optimal control sequence in the prediction interval, and applying the first control quantity of the optimal control sequence in the prediction interval to Then, at the next sampling time, the vehicle advances the prediction interval one step forward, and this cycle repeats to achieve online optimal control.
CN201510410042.7A 2015-06-01 2015-07-13 Hybrid vehicle energy-conservation forecast Control Algorithm based on decentralised control Expired - Fee Related CN105083276B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510410042.7A CN105083276B (en) 2015-06-01 2015-07-13 Hybrid vehicle energy-conservation forecast Control Algorithm based on decentralised control

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2015102920436 2015-06-01
CN201510292043 2015-06-01
CN201510410042.7A CN105083276B (en) 2015-06-01 2015-07-13 Hybrid vehicle energy-conservation forecast Control Algorithm based on decentralised control

Publications (2)

Publication Number Publication Date
CN105083276A CN105083276A (en) 2015-11-25
CN105083276B true CN105083276B (en) 2017-09-15

Family

ID=54564847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510410042.7A Expired - Fee Related CN105083276B (en) 2015-06-01 2015-07-13 Hybrid vehicle energy-conservation forecast Control Algorithm based on decentralised control

Country Status (1)

Country Link
CN (1) CN105083276B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759753B (en) * 2016-01-25 2018-06-19 合肥工业大学 The energy management optimal control method of hybrid vehicle based on V2X
CN105721750A (en) * 2016-03-01 2016-06-29 天津职业技术师范大学 Hybrid electric vehicle energy-saving effect improvement device
CN105946857B (en) * 2016-05-16 2017-02-15 吉林大学 Parallel plug-in hybrid electric vehicle (PHEV) energy management method based on intelligent transportation system
CN106080585B (en) * 2016-06-22 2020-04-03 江苏大学 A Nonlinear Model Predictive Control Method for Double Planetary Hybrid Electric Vehicle
CN106494388B (en) * 2016-09-28 2019-02-01 中国科学院深圳先进技术研究院 A kind of hybrid vehicle energy management and speed-regulating device and method
CN106502098B (en) * 2016-11-19 2019-03-01 合肥工业大学 A kind of optimal speed closed loop quick predict control method and device based on car networking
CN106740822A (en) * 2017-02-14 2017-05-31 上汽大众汽车有限公司 Hybrid power system and its energy management method
CN107117170B (en) * 2017-04-28 2019-04-09 吉林大学 A real-time predictive cruise control system based on economical driving
CN108365986B (en) * 2018-02-07 2019-06-21 重庆大学 Collaborative energy management method for hybrid electric vehicle fleet based on model predictive control
CN110481536B (en) * 2019-07-03 2020-12-11 中国科学院深圳先进技术研究院 A kind of control method and device applied to hybrid electric vehicle
CN110667564B (en) * 2019-11-11 2021-03-30 重庆理工大学 Intelligent energy management method for autonomous platooning of parallel hybrid electric vehicles
TWI727697B (en) * 2020-03-11 2021-05-11 李綱 Eco-driving assistance system
CN111923896B (en) * 2020-08-17 2021-08-20 大连民族大学 An energy management method for HEV vehicles based on rolling dynamic programming
CN112907937B (en) * 2021-02-03 2022-10-14 湖南大学 Hybrid vehicle queue control method and system considering rear vehicle information
CN118884843B (en) * 2024-09-30 2024-12-20 华东交通大学 Train control method and related device based on obstacle function and coupler constraint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476596A1 (en) * 2011-01-12 2012-07-18 Harman Becker Automotive Systems GmbH Energy efficient driving assistance
CN103863087A (en) * 2014-03-25 2014-06-18 河南理工大学 Plug-in hybrid electric vehicle energy-saving predictive control method based on optimal engine operation line
CN103863318A (en) * 2014-03-25 2014-06-18 河南理工大学 Hybrid electric vehicle energy-saving predictive control method based on vehicle-following model
CN104249736A (en) * 2014-08-25 2014-12-31 河南理工大学 Hybrid electric vehicle energy-saving predictive control method based on platoons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476596A1 (en) * 2011-01-12 2012-07-18 Harman Becker Automotive Systems GmbH Energy efficient driving assistance
CN103863087A (en) * 2014-03-25 2014-06-18 河南理工大学 Plug-in hybrid electric vehicle energy-saving predictive control method based on optimal engine operation line
CN103863318A (en) * 2014-03-25 2014-06-18 河南理工大学 Hybrid electric vehicle energy-saving predictive control method based on vehicle-following model
CN104249736A (en) * 2014-08-25 2014-12-31 河南理工大学 Hybrid electric vehicle energy-saving predictive control method based on platoons

Also Published As

Publication number Publication date
CN105083276A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
CN105083276B (en) Hybrid vehicle energy-conservation forecast Control Algorithm based on decentralised control
CN104249736B (en) The energy-conservation forecast Control Algorithm of hybrid vehicle based on platoon driving
CN103863318B (en) A kind of hybrid vehicle energy-conservation forecast Control Algorithm based on car-following model
CN104859647B (en) Plug-in hybrid-power automobile energy-saving control method
CN104590247B (en) Hybrid electric vehicle energy conservation predictive control method based on traffic signal lamp information
CN105946857B (en) Parallel plug-in hybrid electric vehicle (PHEV) energy management method based on intelligent transportation system
WO2020143495A1 (en) Regenerative brake and retarding system for hybrid commercial vehicle
CN111959490B (en) Model reference adaptive optimal energy management method for plug-in hybrid electric vehicles
WO2020199909A1 (en) Heavy truck fuel-saving robot device and control method
CN104554251A (en) Hybrid car energy-saving prediction control method based on road gradient information
CN103863087B (en) Plug-in hybrid electric vehicle energy-saving predictive control method based on optimal engine operation line
CN105539423B (en) The hybrid electric vehicle torque distribution control method and system of combining environmental temperature protection battery
CN106080579B (en) A kind of hybrid electric vehicle complete vehicle control method based on suspension vibration energy regenerating
CN106740822A (en) Hybrid power system and its energy management method
Li et al. Hierarchical predictive energy management of hybrid electric buses based on driver information
Ouddah et al. From offline to adaptive online energy management strategy of hybrid vehicle using Pontryagin’s minimum principle
CN106055830A (en) PHEV (Plug-in Hybrid Electric Vehicle) control threshold parameter optimization method based on dynamic programming
CN105128855A (en) A control method for a dual-axle parallel hybrid electric city bus
Lu et al. Fuzzy logic control approach to the energy management of parallel hybrid electric vehicles
Bao et al. LSTM-based energy management algorithm for a vehicle power-split hybrid powertrain
Zhang et al. Co-simulation of energy management strategy for hybrid electric vehicle in AVL InMotion
Zhang et al. Predictive energy management strategy for fully electric vehicles based on hybrid model predictive control
Gong et al. Benchmark study on real-time energy optimization of HEVs under connected environment
Zhu et al. Real-time co-optimization of vehicle route and speed using generic algorithm for improved fuel economy
CN115571113A (en) Hybrid power vehicle energy optimization control method and system based on speed planning

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170915

Termination date: 20210713