CN105069762A - Image denoising method based on Shearlet transform and non-linear diffusion - Google Patents
Image denoising method based on Shearlet transform and non-linear diffusion Download PDFInfo
- Publication number
- CN105069762A CN105069762A CN201510547712.XA CN201510547712A CN105069762A CN 105069762 A CN105069762 A CN 105069762A CN 201510547712 A CN201510547712 A CN 201510547712A CN 105069762 A CN105069762 A CN 105069762A
- Authority
- CN
- China
- Prior art keywords
- mrow
- image
- shearlet
- diffusion
- denoising
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Image Processing (AREA)
Abstract
本发明公开了一种基于Shearlet变换和非线性扩散的图像去噪方法,包括步骤:一、将含噪图像输入图像处理器;二、图像处理器对含噪图像进行多尺度Shearlet变换,得到低频Shearlet系数和高频Shearlet系数,并将高频Shearlet系数记为初始含噪Shearlet系数;三、图像处理器连续使用λ次局部维纳滤波对初始含噪Shearlet系数进行扩散去噪处理;四、图像处理器进行信号重构,得到重构图像;五、图像处理器对重构图像进行非线性扩散后处理,去除假细节;六、输出去噪后的图像。本发明方法步骤简单,能够十分有效地把信号和噪声区别开来,并且在移除噪声的同时保护图像的细节特征,性能优良。
The invention discloses an image denoising method based on Shearlet transform and nonlinear diffusion, comprising steps: 1. Inputting the noisy image into an image processor; 2. The image processor performs multi-scale Shearlet transform on the noisy image to obtain low frequency Shearlet coefficients and high-frequency Shearlet coefficients, and the high-frequency Shearlet coefficients are recorded as initial noisy Shearlet coefficients; 3. The image processor continuously uses λ-time local Wiener filtering to perform diffusion and denoising processing on the initial noisy Shearlet coefficients; 4. Image The processor performs signal reconstruction to obtain a reconstructed image; 5. The image processor performs nonlinear diffusion post-processing on the reconstructed image to remove false details; 6. Outputs a denoised image. The method of the invention has simple steps, can effectively distinguish the signal from the noise, and protects the detailed features of the image while removing the noise, and has excellent performance.
Description
技术领域technical field
本发明属于图像处理技术领域,具体涉及一种基于Shearlet变换和非线性扩散的图像去噪方法。The invention belongs to the technical field of image processing, in particular to an image denoising method based on Shearlet transformation and nonlinear diffusion.
背景技术Background technique
图像与人们的生活密切相关,然而图像在生成和传输的过程中会受到各种噪声的干扰,因此对图像进行去噪,提高图像的主、客观效果就显得尤为重要。现有技术中关于图像去噪的方法和优缺点如下:Images are closely related to people's lives. However, images will be disturbed by various noises during the process of generation and transmission. Therefore, it is particularly important to denoise images and improve the subjective and objective effects of images. The methods and advantages and disadvantages of image denoising in the prior art are as follows:
2010年02月05日,电子科技大学刘金华等人在申请号为201010107623.0的中国专利中公开了一种基于偏微分方程的双树复小波图像去噪方法;2014年10月27日,刘金华在申请号为201410584194.4的中国专利中又公开了一种基于双树复小波变换的图像去噪方法,该专利申请公开了一种改进的基于双树复小波变换和偏微分方程的图像去噪方法,此方法在小波域实施基于偏微分方程的非线扩散格式,能够很好移除噪声,但是双树复小波仍然缺乏足够的方向选择性,这限制了性能改进空间。On February 05, 2010, Liu Jinhua and others from the University of Electronic Science and Technology of China disclosed a dual-tree complex wavelet image denoising method based on partial differential equations in the Chinese patent application number 201010107623.0; on October 27, 2014, Liu Jinhua applied for The Chinese patent No. 201410584194.4 discloses an image denoising method based on dual-tree complex wavelet transform. This patent application discloses an improved image denoising method based on dual-tree complex wavelet transform and partial differential equation. The method implements a nonlinear diffusion scheme based on partial differential equations in the wavelet domain, which can remove noise well, but the dual-tree complex wavelet still lacks sufficient direction selectivity, which limits the room for performance improvement.
2014年7月23日,西安电子科技大学王桂婷等人在申请号为201210061837.8的中国专利中公开了一种基于二维Otsu的轮廓波域维纳滤波图像去噪方法,该方法首先对含噪图像进行轮廓波分解,再对分解出的各个高频子带进行二维Otsu分割,得到重要系数和非重要系数;分别计算高频子带的椭圆窗口,根据椭圆窗口估计高频子带的信号方差,对重要系数和非重要系数分别进行维纳滤波;对去噪后的高频子带进行轮廓波逆变换,得到去噪图像FI;对FI进行非局部均值滤波,得到去噪输出。该专利表明,其性能优于如下三种现有方法:一是优于X.Li在2010年于《IEEEInternationalConferenceonMechatronicsandAutomation(IEEE机械电子自动化国际会议)》第114-118页发表的文章《ImagedenoisingviadoublyWienerfilteringwithadaptivedirectionalwindowsandmeanshiftalgorithminwaveletdomain(基于自适应方向窗和和均值漂移算法的小波域双维纳滤波图像去噪)》中提出的一种基于自适应窗口的小波域双维纳滤波去噪方法;二是优于Z.F.Zhou等在2009年于《IEEEConferenceonIndustrialElectronicsandApplications(IEEE工业电子与应用会议)》第3654-3657页发表的文章《Contourlet-basedimagedenoisingalgorithmusingadaptivewindows(用自适应窗的轮廓波域图像去噪)》中提出的一种基于自适应窗口的轮廓波域维纳滤波去噪方法;三是优于Q.Zhao等在2010年于《JournalofComputationalInformationSystems(计算信息系统杂志)》第6卷第2期第601-610页发表的文章《Imagedenoisingbasedonimprovednon-localmeansandnonsubsampledcontourlettransformWienerfiltering(基于改进的非局部均值和非下采样轮廓波变换的维纳滤波图像去噪)》中提出的一种基于非局部均值的非下采样轮廓波域维纳滤波去噪方法。On July 23, 2014, Wang Guiting of Xidian University and others disclosed a two-dimensional Otsu-based contour wave domain Wiener filter image denoising method in the Chinese patent application number 201210061837.8. Carry out contourlet decomposition, and then perform two-dimensional Otsu segmentation on each decomposed high-frequency sub-band to obtain important coefficients and non-important coefficients; calculate the elliptical windows of high-frequency sub-bands respectively, and estimate the signal variance of high-frequency sub-bands according to the elliptical windows , Wiener filtering is performed on the important coefficients and non-important coefficients respectively; contourlet inverse transform is performed on the denoised high-frequency subbands to obtain the denoised image FI; non-local mean filtering is performed on FI to obtain the denoised output. This patent shows that its performance is better than the following three existing methods: one is better than the article "Image denoising via doubly Wiener filtering with adaptive directional windows and mean shift algorithm min wavelet domain" published by X.Li on pages 114-118 of "IEEE International Conference on Mechatronics and Automation (IEEE International Conference on Mechatronics and Automation)" in 2010. Adaptive window and mean shift algorithm wavelet domain double Wiener filter image denoising) "A wavelet domain double Wiener filter denoising method based on adaptive window is proposed; the second is better than Z.F.Zhou et al. in 2009 A contourlet based on an adaptive window is proposed in the article "Contourlet-based image denoising algorithm using adaptive windows (contourlet-based image denoising algorithm using adaptive window)" published on pages 3654-3657 of "IEEE Conference on Industrial Electronics and Applications". Domain Wiener filtering denoising method; the third is better than the article "Image denoising based on improved non-local means and non subsampled contour let transform Wiener filtering (based on improved Wiener filter image denoising based on non-local mean and non-subsampled contourlet transform)" proposed a non-subsampled contourlet domain Wiener filter denoising method based on non-local mean.
尽管“基于二维Otsu的轮廓波域维纳滤波图像去噪方法”取得了好的效果,但是该方法却需要对小波系数进行分类,实施维纳滤波去噪后,还需要进行非局部均值滤波,实施复杂。Although the "2D Otsu-based contour wave domain Wiener filter image denoising method" has achieved good results, but this method needs to classify wavelet coefficients, and after implementing Wiener filter denoising, non-local mean filtering is also required , which is complex to implement.
为了解决以上问题,西安电子科技大学苗启广等人在申请号为201210364581.8的中国专利中公开了一种基于Shearlet变换和维纳滤波的图像去噪方法,该方法首先对输入源图像进行对称延拓,然后使用剪切变换,接着使用小波包分解,对分解系数使用传统维纳滤波,用处理后的系数得到重构图像,最后进行对称变换和图像融合,得到最终去噪图像;该方法利用了Shearlet变换具有多方向性和维纳滤波能够根据图像的区域方差调整滤波器输出等优点,克服了现有技术中小波变换不能很好表达图像的各向异性信息的缺点,以及使用单一阈值对不同方向上系数进行相同处理而导致的去噪效果不理想的问题,从而能够在图像的不同方向上的高频系数中更准确的分析图像细节信息,但是由于维纳滤波的生成图像存在假细节,影响了去噪性能的提升。In order to solve the above problems, Miao Qiguang of Xidian University and others disclosed an image denoising method based on Shearlet transform and Wiener filter in the Chinese patent application number 201210364581.8. The method first symmetrically extends the input source image Then use the shear transformation, then use the wavelet packet decomposition, use the traditional Wiener filter for the decomposition coefficients, use the processed coefficients to obtain the reconstructed image, and finally perform the symmetric transformation and image fusion to obtain the final denoising image; this method uses Shearlet transform has the advantages of multi-directionality and Wiener filtering can adjust the filter output according to the regional variance of the image. The problem of unsatisfactory denoising effect caused by the same processing of coefficients in different directions, so that the image detail information can be more accurately analyzed in the high-frequency coefficients in different directions of the image, but there are false details in the generated image due to Wiener filtering , affecting the improvement of denoising performance.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种基于Shearlet变换和非线性扩散的图像去噪方法,其方法步骤简单,实现方便,能够十分有效地把信号和噪声区别开来,并且在移除噪声的同时保护图像的细节特征,性能优良,实用性强,使用效果好,便于推广使用。The technical problem to be solved by the present invention is to provide an image denoising method based on Shearlet transform and nonlinear diffusion in view of the deficiencies in the above-mentioned prior art. The method has simple steps, is easy to implement, and can effectively distinguish signal from noise It can protect the detailed features of the image while removing the noise. It has excellent performance, strong practicability, good use effect, and is easy to promote and use.
为解决上述技术问题,本发明采用的技术方案是:一种基于Shearlet变换和非线性扩散的图像去噪方法,其特征在于该方法包括以下步骤:For solving the problems of the technologies described above, the technical solution adopted in the present invention is: a kind of image denoising method based on Shearlet transformation and nonlinear diffusion, it is characterized in that the method comprises the following steps:
步骤一、将含噪图像输入图像处理器;Step 1, inputting the noisy image into the image processor;
步骤二、图像处理器对含噪图像进行多尺度Shearlet变换,得到低频Shearlet系数和高频Shearlet系数,并将高频Shearlet系数记为初始含噪Shearlet系数;Step 2, the image processor performs multi-scale Shearlet transformation on the noisy image to obtain low-frequency Shearlet coefficients and high-frequency Shearlet coefficients, and record the high-frequency Shearlet coefficients as initial noisy Shearlet coefficients;
步骤三、图像处理器连续使用λ次局部维纳滤波对初始含噪Shearlet系数进行扩散去噪处理;其中,λ为自然数且λ的取值为2~15;Step 3, the image processor continuously uses λ local Wiener filtering to perform diffusion and denoising processing on the initial noisy Shearlet coefficients; where λ is a natural number and the value of λ is 2 to 15;
步骤四、图像处理器采用Shearlet逆变换对低频Shearlet系数和经过步骤三扩散去噪处理后的初始含噪Shearlet系数进行信号重构,得到重构图像;Step 4, the image processor uses Shearlet inverse transform to perform signal reconstruction on the low-frequency Shearlet coefficients and the initial noisy Shearlet coefficients after the diffusion and denoising processing in step 3, to obtain a reconstructed image;
步骤五、图像处理器对重构图像进行基于偏微分方程的非线性扩散后处理,去除重构图像的假细节;Step 5, the image processor performs nonlinear diffusion post-processing on the reconstructed image based on partial differential equations to remove false details of the reconstructed image;
步骤六、输出去噪后的图像。Step 6, outputting the image after denoising.
上述的基于Shearlet变换和非线性扩散的图像去噪方法,其特征在于:步骤二中图像处理器对含噪图像进行五层多尺度Shearlet变换,第一层和第二层两级高频子带各有16个方向,第三层和第四层两级高频子带各有8个方向,第五层为低频子带。The above-mentioned image denoising method based on Shearlet transform and nonlinear diffusion is characterized in that: in step 2, the image processor performs five-layer multi-scale Shearlet transform on the noisy image, and the first layer and the second layer two-stage high-frequency sub-band Each has 16 directions, the third and fourth layers of high-frequency sub-bands each have 8 directions, and the fifth layer is a low-frequency sub-band.
上述的基于Shearlet变换和非线性扩散的图像去噪方法,其特征在于:步骤三中图像处理器连续使用λ次局部维纳滤波对初始含噪Shearlet系数进行扩散去噪处理的具体过程为:将初始含噪Shearlet系数作为第一次维纳滤波的输入信号,将当前维纳滤波的输出信号作为下一次维纳滤波的输入信号;第r次维纳滤波在子带位置(x,y)处恢复得到的高频Shearlet系数记为zr(x,y)且zr(x,y)=Wr(x,y)zr-1(x,y),其中,r的取值为1~λ的自然数,zr-1(x,y)为用第r-1次维纳滤波在子带位置(x,y)处恢复得到的高频Shearlet系数,z0(x,y)为在子带位置(x,y)处的初始含噪系数,Wr(x,y)为第r次维纳滤波且nr(x,y)为在子带位置(x,y)处要移除的噪声成分,为nr(x,y)的方差且取η为噪声方差调整参数且η为实数,为子带内初始噪声方差且由Monte-Carlo方法估计得到;sr(x,y)为在子带位置(x,y)处要恢复的信号成分,为sr(x,y)的方差且根据公式
上述的基于Shearlet变换和非线性扩散的图像去噪方法,其特征在于:η的取值为1~1.5的实数。The above-mentioned image denoising method based on Shearlet transform and nonlinear diffusion is characterized in that the value of η is a real number ranging from 1 to 1.5.
上述的基于Shearlet变换和非线性扩散的图像去噪方法,其特征在于:步骤五中图像处理器对重构图像进行基于偏微分方程的非线性扩散后处理,去除重构图像的假细节的具体过程为:假设重构图像为I,对I用偏微分方程进行非线性扩散后处理,其中,div为散度算子,t为偏微分扩散进化的时刻,随着扩散的深入,t的值增加;It(i,j)为时刻t位置(i,j)处的像素灰度值,为It(i,j)的梯度,ct(i,j)为指数扩散函数且将偏微分方程离散化为:
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明的方法步骤简单,实现方便。1, the method step of the present invention is simple, realizes conveniently.
2、相比现有技术,本发明能够十分有效地把信号和噪声区别开来,并且在移除噪声的同时保护图像的细节特征,从而得到原图像的最佳恢复。2. Compared with the prior art, the present invention can effectively distinguish the signal from the noise, and protect the details of the image while removing the noise, so as to obtain the best restoration of the original image.
3、本发明选用的Shearlet具有足够的方向选择性,可以很好的捕捉图像的几何特征;在去噪过程中,不仅在Shearlet变换域实施基于修改的维纳滤波的扩散萎缩,也在重构后的图像上实施基于偏微分方程的非线性扩散,用以移除重构图像所生成的假细节,性能优良。3, the selected Shearlet of the present invention has sufficient direction selectivity, can well capture the geometric feature of image; The nonlinear diffusion based on the partial differential equation is implemented on the final image to remove the false details generated by the reconstructed image, and the performance is excellent.
4、本发明的实用性强,使用效果好,便于推广使用。4. The present invention has strong practicability, good use effect, and is convenient for popularization and use.
综上所述,本发明的方法步骤简单,实现方便,能够十分有效地把信号和噪声区别开来,并且在移除噪声的同时保护图像的细节特征,性能优良,实用性强,使用效果好,便于推广使用。In summary, the method of the present invention has simple steps, is easy to implement, can effectively distinguish signal from noise, and protects the details of the image while removing noise, has excellent performance, strong practicability, and good use effect , which is convenient for promotion and use.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明的方法流程框图。Fig. 1 is a flow chart of the method of the present invention.
图2A为原始Barbara图像。Figure 2A is the original Barbara image.
图2B为含噪Barbara图像。Figure 2B is a noisy Barbara image.
图2C为采用WWF方法处理后的去噪Barbara图像。Figure 2C is the denoised Barbara image processed by the WWF method.
图2D为采用GWF方法处理后的去噪Barbara图像。Figure 2D is the denoised Barbara image processed by the GWF method.
图2E为采用LBS方法处理后的去噪Barbara图像。Figure 2E is the denoised Barbara image processed by the LBS method.
图2F为采用ProbShrink方法处理后的去噪Barbara图像。Figure 2F is the denoised Barbara image processed by the ProbShrink method.
图2G为采用UWTSURE-LET方法处理后的去噪Barbara图像。Figure 2G is the denoised Barbara image processed by the UWTSURE-LET method.
图2H为采用本发明方法处理后的去噪Barbara图像。Fig. 2H is a denoised Barbara image processed by the method of the present invention.
具体实施方式Detailed ways
如图1所示,本发明的基于Shearlet变换和非线性扩散的图像去噪方法,其特征在于该方法包括以下步骤:As shown in Figure 1, the image denoising method based on Shearlet transform and nonlinear diffusion of the present invention is characterized in that the method comprises the following steps:
步骤一、将含噪图像输入图像处理器;Step 1, inputting the noisy image into the image processor;
步骤二、图像处理器对含噪图像进行多尺度Shearlet变换,得到低频Shearlet系数和高频Shearlet系数,并将高频Shearlet系数记为初始含噪Shearlet系数;Step 2, the image processor performs multi-scale Shearlet transformation on the noisy image to obtain low-frequency Shearlet coefficients and high-frequency Shearlet coefficients, and record the high-frequency Shearlet coefficients as initial noisy Shearlet coefficients;
步骤三、图像处理器连续使用λ次局部维纳滤波对初始含噪Shearlet系数进行扩散去噪处理;其中,λ为自然数且λ的取值为2~15;Step 3, the image processor continuously uses λ local Wiener filtering to perform diffusion and denoising processing on the initial noisy Shearlet coefficients; where λ is a natural number and the value of λ is 2 to 15;
步骤四、图像处理器采用Shearlet逆变换对低频Shearlet系数和经过步骤三扩散去噪处理后的初始含噪Shearlet系数进行信号重构,得到重构图像;Step 4, the image processor uses Shearlet inverse transform to perform signal reconstruction on the low-frequency Shearlet coefficients and the initial noisy Shearlet coefficients after the diffusion and denoising processing in step 3, to obtain a reconstructed image;
步骤五、图像处理器对重构图像进行基于偏微分方程的非线性扩散后处理,去除重构图像的假细节;Step 5, the image processor performs nonlinear diffusion post-processing on the reconstructed image based on partial differential equations to remove false details of the reconstructed image;
步骤六、输出去噪后的图像。Step 6, outputting the image after denoising.
本实施例中,步骤二中图像处理器对含噪图像进行五层多尺度Shearlet变换,第一层和第二层两级高频子带各有16个方向,第三层和第四层两级高频子带各有8个方向,第五层为低频子带。In this embodiment, in step 2, the image processor performs five-layer multi-scale Shearlet transformation on the noisy image. The first and second layers of high-frequency subbands each have 16 directions, and the third and fourth layers have two Each of the high-frequency sub-bands has 8 directions, and the fifth layer is the low-frequency sub-band.
具体实施时,采用的Shearlet变换为G.R.Easley,D.Labate,W.Q.Lim在2008年于《AppliedandComputationalHarmonicAnalysis(应用和计算谐波分析)》第25卷第1期第25~46页发表的文章《Sparsedirectionalimagerepresentationsusingthediscreteshearlettransform(基于离散Shearlet变换的图像定向稀疏表示)》中所提出的离散非下采样Shearlet变换,选用的窗函数为“Meyer”,该离散Shearlet变换具有平移不变性和良好的方向性,能更有效的捕捉图像的几何特征。During specific implementation, the Shearlet transformation adopted is the article "Sparse directional image representations using the discrete shearlet transform ( The discrete non-subsampling Shearlet transform proposed in "Oriented Sparse Representation of Image Based on Discrete Shearlet Transformation)" uses the window function "Meyer". The discrete Shearlet transform has translation invariance and good directionality, and can more effectively capture The geometry of the image.
本实施例中,步骤三中图像处理器连续使用λ次局部维纳滤波对初始含噪Shearlet系数进行扩散去噪处理的具体过程为:将初始含噪Shearlet系数作为第一次维纳滤波的输入信号,将当前维纳滤波的输出信号作为下一次维纳滤波的输入信号;第r次维纳滤波在子带位置(x,y)处恢复得到的高频Shearlet系数记为zr(x,y)且zr(x,y)=Wr(x,y)zr-1(x,y),其中,r的取值为1~λ的自然数,zr-1(x,y)为用第r-1次维纳滤波在子带位置(x,y)处恢复得到的高频Shearlet系数,z0(x,y)为在子带位置(x,y)处的初始含噪系数,Wr(x,y)为第r次维纳滤波且nr(x,y)为在子带位置(x,y)处要移除的噪声成分,为nr(x,y)的方差且取η为噪声方差调整参数且η为实数,为子带内初始噪声方差且由Monte-Carlo方法估计得到;sr(x,y)为在子带位置(x,y)处要恢复的信号成分,为sr(x,y)的方差且根据公式
当步骤二中图像处理器对含噪图像进行五层多尺度Shearlet变换时,步骤三中在处理第一层高频子带内Shearlet系数到第四层高频子带内Shearlet系数时,R的值依次为7、2、2、2。When the image processor performs five-layer multi-scale Shearlet transformation on the noisy image in step 2, when processing the Shearlet coefficients in the first layer of high-frequency sub-bands to the fourth layer of high-frequency sub-bands in step 3, the value of R The values are 7, 2, 2, 2 in sequence.
本实施例中,λ的取值为10,η的取值为1~1.5的实数。优选地,η的取值为1.2,即即本发明中每次维纳滤波的噪声方差为子带内初始噪声方差的10分之1.2倍,每次维纳滤波的信号方差由当前输入信号估计,且取δ=0,即本发明对传统维纳滤波中的估计方法进行了修改,修改后,方差值小于的信号细节在扩散去噪处理中不再会被移除。In this embodiment, the value of λ is 10, and the value of η is a real number ranging from 1 to 1.5. Preferably, the value of n is 1.2, namely That is, the noise variance of each Wiener filter in the present invention is the initial noise variance in the subband 1.2 times of 10, the signal variance of each Wiener filter is estimated by the current input signal, and take δ=0, that is, the present invention is to traditional Wiener filter The estimation method of is modified, after the modification, the variance value is less than The signal details of are no longer removed in the diffusion denoising process.
本实施例中,步骤五中图像处理器对重构图像进行基于偏微分方程的非线性扩散后处理,去除重构图像的假细节的具体过程为:假设重构图像为I,对I用偏微分方程进行非线性扩散后处理,其中,div为散度算子,t为偏微分扩散进化的时刻,随着扩散的深入,t的值增加;It(i,j)为时刻t位置(i,j)处的像素灰度值,为It(i,j)的梯度,ct(i,j)为指数扩散函数且将偏微分方程离散化为:
本实施例中,所述图像处理器为计算机。In this embodiment, the image processor is a computer.
为了验证本发明能够产生的技术效果,采用MATLAB7.0软件进行了下面的仿真论证;在仿真过程中,测试图像所添加的噪声是均值为零且以不同标准差σ的高斯白噪声。In order to verify the technical effects that the present invention can produce, MATLAB7.0 software is used to carry out the following simulation demonstration; in the simulation process, the noise added to the test image is Gaussian white noise with a mean value of zero and different standard deviations σ.
仿真1Simulation 1
采用大小为512×512像素的Lena和Barbara图像作为测试图像,SD表示本发明方法,仿真1给出了本发明方法与国际上出现的经典的好的小波域图像去噪算法和局部维纳滤波图像去噪算法的对比结果,不同去噪方法输出的峰值信噪比(PSNR)的比较如表1所示:Adopt the Lena and Barbara image that size is 512 * 512 pixels as the test image, SD represents the method of the present invention, simulation 1 has provided the method of the present invention and the classical good wavelet domain image denoising algorithm and local Wiener filter that appear in the world The comparison results of image denoising algorithms, and the comparison of peak signal-to-noise ratio (PSNR) output by different denoising methods are shown in Table 1:
表1中,WWF是M.K.Mihcak等在1999年于《IEEESignalProcessingLetters(IEEE信号处理快报)》第6卷第12期第300-303页发表的文章《Lowcomplexityimagedenoisingbasedonstatisticalmodelingofwaveletcoefficients(基于小波系数统计模型的低复杂度图像去噪)》中提出的经典的“小波域维纳滤波”图像去噪方法;GWF是X.Zhang等在2013年于《ComputersandElectricalEngineering(计算机与电气工程)》第39卷第3期第934-344页发表的文章《Gradient-basedWienerfilterforimagedenoising(梯度域维纳滤波图像去噪)》中提出的“基于梯度域的维纳滤波”图像去噪方法;LBS是L.Sendur等于2002年于《IEEESignalProcessingLetters(IEEE信号处理快报)》第9卷第12期第438-441页发表的文章《Bivariateshrinkagewithlocalvarianceestimation(用局部方差估计的双变量萎缩)》中提出的“基于局部方差估计的双变量萎缩”图像去噪方法;ProbShrink是A.Pizurica等在2006年于《IEEETransactionsonImageProcessing(IEEE图像处理汇刊)》第15卷第3期第654-665页发表的文章《Estimatingtheprobabilityofthepresenceofasignalofinterestinmultiresolutionsingle-andmultibandimagedenoising(多分辨率单频带和多频带图像去噪中重要信号存在的概率估计)》中提出的“基于小波系数包含重要信息的概率进行萎缩”的图像去噪方法;UWTSURE-LET是T.Blu等在2007年于《IEEETransactionsonImageProcessing(IEEE图像处理汇刊)》第16卷第11期第2778-2786页发表的文章《TheSURE-LETapproachtoimagedenoising(基于SURE-LET方法的图像去噪)》中提出的“基于斯坦无偏风险估计和阈值线性展开”的图像去噪方法。In Table 1, WWF is the article "Low complexity image denoising based on statistical modeling of wavelet coefficients" published by M.K.Mihcak et al. in "IEEE Signal Processing Letters (IEEE Signal Processing Letters)" Vol. Noise) is the classic "wavelet domain Wiener filter" image denoising method; GWF is X. Zhang et al. in 2013 in "Computers and Electrical Engineering (Computer and Electrical Engineering)", Volume 39, Issue 3, Page 934-344 The "Gradient-based Wiener filter for image denoising" proposed in the published article "Gradient-based Wiener filter for image denoising" (Gradient-based Wiener filter for image denoising) Express) "Volume 9, No. 12, Page 438-441, the article "Bivariateshrinkagewithlocal varianceestimation (bivariate shrinkage with local variance estimation)" proposed "bivariate shrinkage based on local variance estimation" image denoising method; ProbShrink is A.Pizurica et al. published the article "Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising" in "IEEE Transactions on Image Processing (IEEE Image Processing Transactions)" Volume 15, No. 3, Pages 654-665 in 2006. Probability Estimation of the Existence of Signals)" proposes an image denoising method based on "shrinking based on the probability that wavelet coefficients contain important information"; UWTSURE-LET is T. The image denoising method "based on Stein unbiased risk estimation and threshold linear expansion" proposed in the article "TheSURE-LET approach to image denoising (image denoising based on SURE-LET method)" published on pages 2778-2786 of volume 16, issue 11 .
表1不同去噪方法输出的峰值信噪比PSNR的比较Table 1 Comparison of peak signal-to-noise ratio PSNR output by different denoising methods
从表1能够看出,本发明优于上述其他图像去噪方法,峰值信噪比(PSNR)最高。It can be seen from Table 1 that the present invention is superior to other image denoising methods mentioned above, and has the highest peak signal-to-noise ratio (PSNR).
图2A~2H给出了几种方法对于标准差σ=25的Barbara图像处理的视觉效果比较。其中,图2A为原始Barbara图像,图2B为含噪Barbara图像,图2C为用WWF方法处理后的去噪Barbara图像,图2D为用GWF方法处理后的去噪Barbara图像,图2E为用LBS方法处理后的去噪Barbara图像,图2F为用ProbShrink方法处理后的去噪Barbara图像,图2G为用UWTSURE-LET方法处理后的去噪Barbara图像,图2H为用本发明的方法处理后的去噪Barbara图像。Figures 2A-2H show the comparison of visual effects of several methods for Barbara image processing with standard deviation σ=25. Among them, Figure 2A is the original Barbara image, Figure 2B is the noisy Barbara image, Figure 2C is the denoised Barbara image processed by the WWF method, Figure 2D is the denoised Barbara image processed by the GWF method, and Figure 2E is the denoised Barbara image processed by the LBS method. The denoising Barbara image after processing by the method, Fig. 2F is the denoising Barbara image after processing with the ProbShrink method, Fig. 2G is the denoising Barbara image after processing with the UWTSURE-LET method, Fig. 2H is the denoising Barbara image after processing with the method of the present invention Denoising the Barbara image.
从图2A~2H可以看出,在WWF方法处理后的去噪Barbara图像里,存在明显的假细节;在GWF方法处理后的去噪Barbara图像里,存在很多噪声;尽管LBS方法、ProbShrink方法和UWTSURE-LET方法处理后的去噪Barbara图像在视觉效果上超越了WWF方法和GWF方法处理后的去噪Barbara图像,但是与本发明的方法处理后的去噪Barbara图像相比,仍然存在较多的假细节。本发明能够在移除噪声的同时较好保存图像的特征,视觉效果最好。It can be seen from Fig. 2A~2H that there are obvious false details in the denoised Barbara image processed by WWF method; there is a lot of noise in the denoised Barbara image processed by GWF method; although LBS method, ProbShrink method and The denoising Barbara image processed by the UWTSURE-LET method surpasses the denoising Barbara image processed by the WWF method and the GWF method in visual effect, but compared with the denoising Barbara image processed by the method of the present invention, there are still more fake details. The invention can better preserve the feature of the image while removing the noise, and has the best visual effect.
从上述对比可以看出,本发明在主客观效果上都优于现有国际上其他一些经典的小波域图像去噪方法和局部维纳滤波方法。It can be seen from the above comparison that the present invention is superior to some other classic wavelet domain image denoising methods and local Wiener filtering methods in the world in both subjective and objective effects.
仿真2Simulation 2
采用大小为512×512像素的Lena和Barbara图像作为测试图像,SD表示本发明方法,仿真2给出了本发明方法与国际上出现的好的基于小波域扩散格式的图像去噪方法的对比结果,不同去噪方法输出的峰值信噪比(PSNR)的比较如表2和表3所示:The Lena and Barbara images with a size of 512×512 pixels are used as test images, SD represents the method of the present invention, and simulation 2 shows the comparison results between the method of the present invention and the good image denoising method based on the wavelet domain diffusion format in the world , the comparison of peak signal-to-noise ratio (PSNR) output by different denoising methods is shown in Table 2 and Table 3:
WMSAD是J.zhong等在2008年于《IEEETransactionsonCircuitsandSystemsI:RegularPapers(IEEE电路与系统汇刊第一部分:定期论文)》第55卷第9期第2716-2725页发表的文章《Wavelet-basedmultiscaleanisotropicgiffusionwithadaptivestatisticalanalysisforimagerestoration(基于小波变换和自适应统计分析的多尺度各向异性扩散图像恢复)》中提出的一种“小波域中基于偏微分方程的非线性扩散”图像去噪方法;SWCD是A.K.Mandava等在2001年于《JournalofElectronicImaging(电子成像杂志)》第20卷第3期第033016-1-033016-7页发表的文章《Imagedenoisingbasedonadaptivenonlineardiffusioninwaveletdomain(小波域自适应非线性扩散图像去噪)》提出的一种“平稳小波域中利用上下文信息的非线性扩散”图像去噪方法。WMSAD is the article "Wavelet-basedmultiscaleanisotropicgiffusionwithadaptivestatisticalanalysisforimagerestoration" published by J.zhong et al. Multiscale Anisotropic Diffusion Image Restoration with Adaptive Statistical Analysis)" proposes a "nonlinear diffusion based on partial differential equation in wavelet domain" image denoising method; SWCD is A.K.Mandava et al. (Journal of Electronic Imaging) "Volume 20, Issue 3, Page 033016-1-033016-7 published the article "Image denoising based on adaptive non-linear diffusion in wavelet domain (wavelet domain adaptive non-linear diffusion image denoising)" proposed a "stationary wavelet domain using context Nonlinear diffusion of information" image denoising method.
表2SD和WMSAD的输出PSNR的比较Table 2 Comparison of output PSNR of SD and WMSAD
表3SD和SWCD的输出PSNR的比较Table 3 Comparison of output PSNR of SD and SWCD
从表2和表3能够看出,本发明优于现有国际上好的小波域中基于扩散格式的图像去噪方法,峰值信噪比(PSNR)最高。It can be seen from Table 2 and Table 3 that the present invention is superior to the existing image denoising method based on the diffusion scheme in the wavelet domain which is the best in the world, and has the highest peak signal-to-noise ratio (PSNR).
仿真3Simulation 3
采用大小为512×512像素的Lena和Barbara图像作为测试图像,SD表示本发明方法,仿真3给出了本发明方法与技术1和技术2的对比结果,不同去噪方法输出的峰值信噪比(PSNR)的比较如表4和表5所示:The Lena and Barbara images with a size of 512×512 pixels are used as test images, SD represents the method of the present invention, simulation 3 shows the comparison results of the method of the present invention and technology 1 and technology 2, and the peak signal-to-noise ratio output by different denoising methods The comparison of (PSNR) is shown in Table 4 and Table 5:
表4SD和技术1的输出PSNR的比较Table 4 Comparison of output PSNR of SD and technique 1
表5SD和技术2的输出PSNR的比较Table 5 Comparison of output PSNR of SD and Technique 2
技术1是背景技术中提及的申请号为201210364581.8的中国专利中公开的基于Shearlet变换和维纳滤波的图像去噪方法,技术2是背景技术中提及的申请号为201210061837.8的中国专利公开的基于二维Otsu的轮廓波域维纳滤波图像去噪方法。Technology 1 is an image denoising method based on Shearlet transform and Wiener filtering disclosed in the Chinese patent application number 201210364581.8 mentioned in the background technology, and technology 2 is disclosed in the Chinese patent application number 201210061837.8 mentioned in the background technology Image denoising method based on two-dimensional Otsu-based Wiener filter in contour wave domain.
从表4和表5能够看出,本发明优于技术1和技术2中的图像去噪方法,峰值信噪比(PSNR)最高。It can be seen from Table 4 and Table 5 that the present invention is superior to the image denoising methods in Technology 1 and Technology 2, and has the highest peak signal-to-noise ratio (PSNR).
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technical aspects of the present invention. within the scope of protection of the scheme.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510547712.XA CN105069762A (en) | 2015-08-31 | 2015-08-31 | Image denoising method based on Shearlet transform and non-linear diffusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510547712.XA CN105069762A (en) | 2015-08-31 | 2015-08-31 | Image denoising method based on Shearlet transform and non-linear diffusion |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105069762A true CN105069762A (en) | 2015-11-18 |
Family
ID=54499120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510547712.XA Pending CN105069762A (en) | 2015-08-31 | 2015-08-31 | Image denoising method based on Shearlet transform and non-linear diffusion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105069762A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106097272A (en) * | 2016-06-13 | 2016-11-09 | 河北工程大学 | Image processing method based on interpolation shearing wave and device |
CN107749054A (en) * | 2017-10-31 | 2018-03-02 | 努比亚技术有限公司 | A kind of image processing method, device and storage medium |
CN109360172A (en) * | 2018-11-06 | 2019-02-19 | 昆明理工大学 | An Image Denoising Method Based on Shearlet Transform and Directed Local Wiener Filtering |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007094742A (en) * | 2005-09-28 | 2007-04-12 | Olympus Corp | Image signal processing apparatus and image signal processing program |
CN101527036A (en) * | 2009-04-01 | 2009-09-09 | 天津大学 | Lifting wavelet image de-noising method based on neighborhood windowing |
CN102890820A (en) * | 2012-09-18 | 2013-01-23 | 西安电子科技大学 | Image denoising method based on shearlet transformation and Wiener filtering |
-
2015
- 2015-08-31 CN CN201510547712.XA patent/CN105069762A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007094742A (en) * | 2005-09-28 | 2007-04-12 | Olympus Corp | Image signal processing apparatus and image signal processing program |
CN101527036A (en) * | 2009-04-01 | 2009-09-09 | 天津大学 | Lifting wavelet image de-noising method based on neighborhood windowing |
CN102890820A (en) * | 2012-09-18 | 2013-01-23 | 西安电子科技大学 | Image denoising method based on shearlet transformation and Wiener filtering |
Non-Patent Citations (2)
Title |
---|
张小波: "基于维纳滤波的图像去噪算法研究", 《中国博士论文全文数据库》 * |
张小波等: "一种有效的各向异性去啴模型", 《电子科技》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106097272A (en) * | 2016-06-13 | 2016-11-09 | 河北工程大学 | Image processing method based on interpolation shearing wave and device |
CN106097272B (en) * | 2016-06-13 | 2018-12-21 | 河北工程大学 | Image processing method and device based on interpolation shearing wave |
CN107749054A (en) * | 2017-10-31 | 2018-03-02 | 努比亚技术有限公司 | A kind of image processing method, device and storage medium |
CN109360172A (en) * | 2018-11-06 | 2019-02-19 | 昆明理工大学 | An Image Denoising Method Based on Shearlet Transform and Directed Local Wiener Filtering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104715461B (en) | Image de-noising method | |
CN103093441B (en) | Based on the non-local mean of transform domain and the image de-noising method of two-varaible model | |
CN102663695B (en) | DR image denoising method based on wavelet transformation and system thereof | |
CN101477679B (en) | Image denoising process based on Contourlet transforming | |
CN102890820B (en) | Based on shearlet conversion and the image de-noising method of Wiener filtering | |
CN101944230B (en) | Non-local mean denoising method for natural images based on multi-scale | |
CN105913393A (en) | Self-adaptive wavelet threshold image de-noising algorithm and device | |
CN103093434B (en) | Non-local wiener filtering image denoising method based on singular value decomposition | |
CN104616249B (en) | A kind of Wavelet Transformation of Image Denoising method based on curvature variation | |
Xizhi | The application of wavelet transform in digital image processing | |
CN101719268B (en) | Generalized Gaussian model graph denoising method based on improved Directionlet region | |
CN102637294A (en) | Image enhancement method based on non-down-sampling Contourlet transform and improved total variation | |
CN105069762A (en) | Image denoising method based on Shearlet transform and non-linear diffusion | |
Gao | Image denoising by non-subsampled shearlet domain multivariate model and its method noise thresholding | |
CN103745442B (en) | The image de-noising method shunk based on non local wavelet coefficient | |
CN103077507A (en) | Beta algorithm-based multiscale SAR (Synthetic Aperture Radar) image denoising method | |
CN103310423A (en) | Mine image intensification method | |
CN102184530B (en) | Image denoising method based on gray relation threshold value | |
CN102339460B (en) | Adaptive satellite image restoration method | |
CN104462800B (en) | A kind of signal de-noising method based on wavelet frame | |
Zhang et al. | Image denoising based on the wavelet semi-soft threshold and total variation | |
CN102622731B (en) | Contourlet domain Wiener filtering image denoising method based on two-dimensional Otsu | |
CN103854258A (en) | Image denoising method based on Contourlet transformation self-adaptation direction threshold value | |
Zhao et al. | An improved Roberts edge detection algorithm based on mean filter and wavelet denoising | |
CN101527037A (en) | Method for denoising stationary wavelet image based on neighborhood windowing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151118 |
|
RJ01 | Rejection of invention patent application after publication |