CN105049682B - Digital camera system and the method for controlling the digital camera system - Google Patents
Digital camera system and the method for controlling the digital camera system Download PDFInfo
- Publication number
- CN105049682B CN105049682B CN201510113209.3A CN201510113209A CN105049682B CN 105049682 B CN105049682 B CN 105049682B CN 201510113209 A CN201510113209 A CN 201510113209A CN 105049682 B CN105049682 B CN 105049682B
- Authority
- CN
- China
- Prior art keywords
- lens unit
- processor
- data
- image
- movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Studio Devices (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请要求于2014年4月18日提交的名为“Digital Photographing System andControlling Method Thereof”的韩国专利申请No.10-2014-0046885以及于2014年6月20日提交的名为“Digital Photographing System and Controlling Method Thereof”的韩国专利申请No.10-2014-0076061的权益,其内容整体结合于此作为参考。This application claims Korean Patent Application No. 10-2014-0046885 filed on April 18, 2014 entitled "Digital Photographing System and Controlling Method Thereof" and filed on June 20, 2014 entitled "Digital Photographing System and Controlling Method Thereof," Korean Patent Application No. 10-2014-0076061, the contents of which are hereby incorporated by reference in their entirety.
技术领域technical field
本发明的一些实施方式可以涉及数字照相系统及用于控制该数字照相系统的方法。Some embodiments of the invention may relate to digital camera systems and methods for controlling the same.
背景技术Background technique
通常,数字照相系统可以使用数字信号处理器处理通过摄像设备接收的图像、压缩处理后的图像以生成图像文件、以及在存储器中存储所生成的图像文件。In general, a digital camera system may process images received through an imaging device using a digital signal processor, compress the processed images to generate image files, and store the generated image files in a memory.
此外,数字照相系统可以在诸如LCD的显示设备上显示图像文件的图像,其通过摄像设备接收或存储在存储介质中。然而,诸如照相机的数字照相系统可能由于用户的运动(手抖等)或用户拍摄期望的图像时的任意干扰而抖动。由于该抖动,通过摄像设备输入的图像抖动且因此图像的质量降级。In addition, digital photography systems can display images of image files on a display device, such as an LCD, received by an imaging device or stored in a storage medium. However, a digital photographing system such as a camera may shake due to a user's motion (hand shake, etc.) or any disturbance when the user captures a desired image. Due to this shaking, the image input through the imaging device shakes and thus the quality of the image is degraded.
[相关技术文献][Related technical literature]
[专利文献][Patent Document]
(专利文献1)韩国专利申请公开号No.10-2010-0104383(Patent Document 1) Korean Patent Application Publication No. 10-2010-0104383
发明内容Contents of the invention
本公开的一些实施方式可以提供数字照相系统及用于控制该数字照相系统的方法,该系统和方法能够在拍摄主体(subject)的过程期间照相机发生运动时基于运动传感器的关于照相机运动的运动数据并行应用光学补偿过程和图像补偿过程以对所拍摄的图像的抖动或干扰进行补偿。Some embodiments of the present disclosure may provide a digital camera system and a method for controlling the digital camera system, which are capable of motion data about camera motion based on a motion sensor when the camera motion occurs during the process of photographing a subject. The optical compensation process and the image compensation process are applied in parallel to compensate for shaking or disturbance of the captured image.
数字照相系统及用于控制该数字照相系统的方法的一些实施方式可以根据所述照相机模块在每个轴向方向上的移动距离是否处于预设参考范围内来并行执行光学补偿过程和图像补偿数据生成过程,并且可以通过在预定条件下选择性地应用光学补偿过程来补偿由于运动引起的图像的抖动。照相机模块的移动距离可以基于与照相机模块的运动对应的运动数据得以计算。Some implementations of the digital camera system and the method for controlling the digital camera system may execute the optical compensation process and the image compensation data in parallel according to whether the moving distance of the camera module in each axial direction is within a preset reference range generation process, and the shake of the image due to motion can be compensated by selectively applying the optical compensation process under predetermined conditions. The moving distance of the camera module may be calculated based on motion data corresponding to the motion of the camera module.
本公开的一些实施方式可以通过在预定条件下使用预设同步信息单独地应用控制透镜单元的移动的光学补偿处理器和生成图像补偿数据的图像补偿数据生成过程来缩短由于运动引起的图像补偿处理时间且确保图像质量的可靠性,对于运动(手抖或水平/垂直移动)可能在图像(静止或移动图片)被拍摄时发生。Some embodiments of the present disclosure can shorten image compensation processing due to motion by separately applying an optical compensation processor controlling movement of the lens unit and an image compensation data generation process generating image compensation data using preset synchronization information under predetermined conditions time and to ensure the reliability of the image quality, for motion (hand shake or horizontal/vertical movement) that may occur when the image (still or moving picture) is taken.
附图说明Description of drawings
从以下具体描述中可以更清楚地了解本发明的上述及其它方面、特征和其他优点,这些描述是结合附图给出的,其中:The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description, which description is given in conjunction with the accompanying drawings, in which:
图1为示出了根据本公开的示例性实施方式的数字照相系统的方框图;FIG. 1 is a block diagram illustrating a digital camera system according to an exemplary embodiment of the present disclosure;
图2为示出了根据本公开的示例性实施方式的数字照相系统的照相机模块的配置的图示;2 is a diagram showing a configuration of a camera module of a digital camera system according to an exemplary embodiment of the present disclosure;
图3为示出了根据本公开的示例性实施方式的数字照相系统的自动聚焦处理器的功能的图示;3 is a diagram illustrating functions of an autofocus processor of a digital camera system according to an exemplary embodiment of the present disclosure;
图4和图5为示出了根据本公开的示例性实施方式的校准(预处理)过程的图示;4 and 5 are diagrams illustrating a calibration (preprocessing) process according to an exemplary embodiment of the present disclosure;
图6为示出了根据本公开的示例性实施方式的第一处理器中的图像补偿过程的图示;FIG. 6 is a diagram illustrating an image compensation process in a first processor according to an exemplary embodiment of the present disclosure;
图7为示出了根据本公开的示例性实施方式的计算应用处理器中的图像帧之间的移动像素(moving pixel)信息的过程的图示;以及7 is a diagram illustrating a process of calculating moving pixel information between image frames in an application processor according to an exemplary embodiment of the present disclosure; and
图8为示出了根据本公开的示例性实施方式的用于控制数字照相系统的方法的流程图。FIG. 8 is a flowchart illustrating a method for controlling a digital camera system according to an exemplary embodiment of the present disclosure.
具体实施方式Detailed ways
从以下示例性实施方式的具体描述中可以更清楚地了解本公开的目标、特征和优点,这些描述是结合附图给出的。在整个附图中,相同的参考数字被用于表示相同或类似的组件,并且其多余的描述将被省略。进一步地,在以下描述中,术语“第一”、“第二”、“一侧”、“另一侧”等被用于将特定组件与其它组件进行区分,但是这些组件的配置不应该被解释为被这些术语所限制。进一步地,在本公开的描述中,当确定相关领域的详细描述将模糊本公开的主旨时,对它的描述将被省略。The objects, features and advantages of the present disclosure can be more clearly understood from the following detailed description of the exemplary embodiments, which are given in conjunction with the accompanying drawings. Throughout the drawings, the same reference numerals are used to designate the same or similar components, and redundant descriptions thereof will be omitted. Further, in the following description, the terms "first", "second", "one side", "another side", etc. are used to distinguish a specific component from other components, but the configuration of these components should not be interpreted as being limited by these terms. Further, in the description of the present disclosure, when it is determined that a detailed description of a related field will obscure the gist of the present disclosure, its description will be omitted.
在下文中,将参考附图详细描述根据本公开的示例性实施方式的数字照相系统和用于控制该数字照相系统的方法。Hereinafter, a digital photographing system and a method for controlling the same according to exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
图1为示出了根据本公开的示例性实施方式的数字照相系统的方框图,图2为示出了根据本公开的示例性实施方式的数字照相系统的照相机模块的配置的图示,图3为示出了根据本公开的示例性实施方式的数字照相系统的自动聚焦处理器的功能的图示。1 is a block diagram showing a digital camera system according to an exemplary embodiment of the present disclosure, FIG. 2 is a diagram showing a configuration of a camera module of the digital camera system according to an exemplary embodiment of the present disclosure, and FIG. 3 is a diagram showing the function of an autofocus processor of a digital camera system according to an exemplary embodiment of the present disclosure.
如图1和图2所示,根据本公开的示例性实施方式的数字照相系统10可以包括照相机模块140、运动传感器100、第一处理器110、光学驱动器120、光学驱动模块130、第二处理器160、存储器170和自动聚焦处理器180。数字照相系统10可以例如被包括在移动多功能设备(诸如数字照相机、蜂窝电话、以及平板电脑)中,或者被包括在手提电脑、台式电脑等中,但数字照相系统10不限于此。As shown in FIGS. 1 and 2 , a digital camera system 10 according to an exemplary embodiment of the present disclosure may include a camera module 140, a motion sensor 100, a first processor 110, an optical driver 120, an optical driver module 130, a second processing device 160, memory 170 and autofocus processor 180. The digital camera system 10 may be included, for example, in mobile multifunction devices such as digital cameras, cellular phones, and tablet computers, or in laptop computers, desktop computers, etc., but the digital camera system 10 is not limited thereto.
运动传感器100可以在照相机模块140内部或外部提供,并且可以生成或输出与照相机模块140的运动对应的运动数据。运动传感器100可以包括角速度传感器101和加速度传感器102。角速度传感器101可以感测照相机模块140的旋转分量(角速度)的变化,例如但不限于,由于手抖或干扰等引起的变化。加速度传感器102可以感测线性分量(速度)的变化,例如但不限于,由于照相机模块140的垂直或水平方向上的移动引起的变化。The motion sensor 100 may be provided inside or outside the camera module 140 and may generate or output motion data corresponding to the motion of the camera module 140 . The motion sensor 100 may include an angular velocity sensor 101 and an acceleration sensor 102 . The angular velocity sensor 101 may sense a change in the rotation component (angular velocity) of the camera module 140 , for example, but not limited to, a change due to hand shaking or disturbance, or the like. The acceleration sensor 102 may sense changes in a linear component (velocity), such as, but not limited to, changes due to movement of the camera module 140 in a vertical or horizontal direction.
例如:1)角速度传感器101可以为陀螺仪传感器,其可以感测偏航轴和俯仰轴的两个方向上照相机模块140的运动的角速度的变化以补偿由于用户的手抖或干扰引起的照相机模块140的垂直和水平抖动或移动,以及2)加速度传感器102可以感测由于用户的移动或干扰引起的照相机模块140水平(x轴)或垂直(y轴)方向上速度的变化,其与由于照相机模块140的运动引起的线性分量对应。For example: 1) The angular velocity sensor 101 can be a gyroscope sensor, which can sense the change of the angular velocity of the camera module 140 in two directions of the yaw axis and the pitch axis to compensate for the camera module caused by the user's hand shake or interference. 140's vertical and horizontal shaking or movement, and 2) the acceleration sensor 102 can sense changes in the speed of the camera module 140 in the horizontal (x-axis) or vertical (y-axis) direction due to user's movement or disturbance, which is different from that caused by the camera module 140 The linear component corresponding to the movement of the module 140 .
透镜单元141可以包括透镜镜筒141a和位置传感器142。透镜镜筒141a可以包括图像传感器141b和透镜组(未示出),其对来自主体141c的光进行光学处理以检测或捕获诸如主体141c的静止(still)或移动图片的图像的图像帧。位置传感器142可以感测透镜镜筒141a的位置变化(参见图3)。The lens unit 141 may include a lens barrel 141 a and a position sensor 142 . The lens barrel 141a may include an image sensor 141b and a lens group (not shown) that optically processes light from the subject 141c to detect or capture image frames such as images of still or moving pictures of the subject 141c. The position sensor 142 may sense a position change of the lens barrel 141a (see FIG. 3 ).
例如,透镜组(未示出)可以包括变焦透镜、聚焦透镜和补偿透镜中的至少一者。图像传感器141b可以例如是,但不限于,电荷耦合设备(CCD)、互补金属氧化物半导体(CMOS)或将通过透镜镜筒141a入射的光的光学信号转换为电模拟信号的任意设备。位置传感器142可以感测透镜镜筒141a的位置变化以传送透镜镜筒141a的当前位置信息至第一处理器110。位置传感器142可以例如为,但不限于,使用其中电压随着磁场强度变化的霍尔效应来检测透镜镜筒141a的当前位置的霍尔传感器(未示出)。For example, a lens group (not shown) may include at least one of a zoom lens, a focus lens, and a compensation lens. The image sensor 141b may be, for example, but not limited to, a Charge Coupled Device (CCD), Complementary Metal Oxide Semiconductor (CMOS), or any device that converts an optical signal of light incident through the lens barrel 141a into an electrical analog signal. The position sensor 142 can sense the position change of the lens barrel 141 a to transmit the current position information of the lens barrel 141 a to the first processor 110 . The position sensor 142 may be, for example, but not limited to, a Hall sensor (not shown) that detects the current position of the lens barrel 141a using a Hall effect in which a voltage varies with a magnetic field strength.
光学驱动器120可以生成光学驱动模块130的驱动电压和控制信号以根据从第一处理器110输入的控制信号来移动透镜单元141。The optical driver 120 may generate a driving voltage and a control signal of the optical driving module 130 to move the lens unit 141 according to a control signal input from the first processor 110 .
此外,光学驱动器120可以基于与控制透镜单元141的移动范围的控制信号对应的切换操作来控制光学驱动模块130的驱动。光学驱动器120可以例如为,但不限于,电机驱动集成芯片(IC)。光学驱动器120可以嵌入在第一处理器110中。In addition, the optical driver 120 may control driving of the optical driving module 130 based on a switching operation corresponding to a control signal controlling a moving range of the lens unit 141 . The optical driver 120 may be, for example, but not limited to, a motor driving integrated chip (IC). The optical driver 120 may be embedded in the first processor 110 .
在该实施方式中,光学驱动模块130可以包括包含音圈电机(VCM)或压电设备的第一和第二致动器131和132。第一致动器131可以控制透镜单元141在垂直方向(y轴方向)上的移动,而第二致动器132可以控制透镜单元141在水平方向(x轴方向)上的移动。In this embodiment, the optical driving module 130 may include first and second actuators 131 and 132 including voice coil motors (VCM) or piezoelectric devices. The first actuator 131 can control the movement of the lens unit 141 in the vertical direction (y-axis direction), and the second actuator 132 can control the movement of the lens unit 141 in the horizontal direction (x-axis direction).
第一处理器110可以并行或同时执行图像补偿数据生成过程和光学补偿过程。例如,光学补偿过程可以基于运动数据来控制透镜单元141的移动,而图像补偿数据生成过程可以生成对应于图像的图像补偿数据,但不限于此。图像补偿数据生成过程和光学补偿过程可以同时执行。The first processor 110 may perform the image compensation data generation process and the optical compensation process in parallel or simultaneously. For example, the optical compensation process may control the movement of the lens unit 141 based on motion data, and the image compensation data generation process may generate image compensation data corresponding to an image, but is not limited thereto. The image compensation data generation process and the optical compensation process can be performed simultaneously.
例如,光学补偿过程可以根据照相机模块140在移动方向(每个轴向方向,诸如x轴或y轴方向)上的移动距离是否处于预设参考范围内而选择性地执行,并且其详细内容将在下面描述。照相机模块140的移动距离可以基于例如但不限于与照相机模块140的运动对应的运动数据(加速度或角速度变化的数据)来计算。For example, the optical compensation process can be selectively performed according to whether the moving distance of the camera module 140 in a moving direction (each axial direction, such as the x-axis or y-axis direction) is within a preset reference range, and its details will be Described below. The moving distance of the camera module 140 may be calculated based on, for example but not limited to, motion data (data of acceleration or angular velocity change) corresponding to the motion of the camera module 140 .
此外,当执行图像补偿数据生成过程时,第一处理器110可以基于预设同步信息来生成与图像的每个图像帧同步的图像补偿数据。例如,图像补偿数据ID(参见图6)可以包括配置了空数据的虚拟数据及配置了透镜单元141的焦距信息和取决于加速度变化的运动数据的元数据。In addition, when performing the image compensation data generation process, the first processor 110 may generate image compensation data synchronized with each image frame of the image based on preset synchronization information. For example, the image compensation data ID (see FIG. 6 ) may include dummy data configured with null data and metadata configured with focal length information of the lens unit 141 and motion data depending on changes in acceleration.
例如,通过使用同步信息(透镜单元141的焦距信息的检测时机(timing)和运动数据,参见图5),第一处理器110可以1)将虚拟数据与其中执行了光学补偿过程的周期或部分中获取的图像帧同步以及2)将元数据与其中未执行光学驱动过程的周期或部分中获取的图像帧同步。For example, by using synchronization information (timing of detection of focal length information of the lens unit 141 and motion data, see FIG. 5 ), the first processor 110 can 1) combine the dummy data with the period or part in which the optical compensation process is performed and 2) synchronizing metadata with image frames acquired during periods or portions in which the optical drive process was not performed.
此外,光学驱动处理器或第一处理器110可以将图像补偿数据ID储存在存储器170中或将图像补偿数据ID传送至应用处理器或第二处理器160。In addition, the optical drive processor or the first processor 110 may store the image compensation data ID in the memory 170 or transmit the image compensation data ID to the application processor or the second processor 160 .
当执行光学补偿过程时,第一处理器110可以根据照相机模块140在移动方向(每个轴向方向,诸如x轴或y轴方向)上的移动距离(其可以基于运动数据计算)是否处于预设参考范围内而选择性地执行光学补偿过程。When performing the optical compensation process, the first processor 110 may be in the predetermined position according to whether the moving distance (which may be calculated based on the motion data) of the camera module 140 in the moving direction (each axial direction, such as the x-axis or the y-axis direction) is The optical compensation process is selectively performed within a reference range.
运动数据可以包括例如但不限于由于用户的手抖或干扰引起的照相机模块140的旋转分量(角速度)以及在水平或垂直方向上照相机模块140的运动的线性分量(加速度)的数据。The motion data may include, for example but not limited to, data of a rotation component (angular velocity) of the camera module 140 and a linear component (acceleration) of motion of the camera module 140 in a horizontal or vertical direction due to user's hand shake or disturbance.
当照相机模块140的移动距离处于参考范围内时,第一处理器110可以执行控制透镜单元141的移动的光学补偿过程,以便能够补偿照相机模块140的运动。例如,参考范围可以为水平(x轴)方向上或垂直(y轴)方向上透镜单元的最大可移动范围DX或DY,但不限于此。When the movement distance of the camera module 140 is within the reference range, the first processor 110 may perform an optical compensation process of controlling the movement of the lens unit 141 so that the movement of the camera module 140 can be compensated. For example, the reference range may be the maximum movable range D X or D Y of the lens unit in the horizontal (x-axis) direction or vertical (y-axis) direction, but is not limited thereto.
具体地,第一处理器110可以基于从位置传感器142传送的透镜镜筒141a的位置信息来控制透镜镜筒141a的移动,以便能够补偿由于照相机模块140的运动引起的图像的抖动。例如,第一处理器110可以生成控制信号以在与照相机模块140的移动方向相反的方向上尽可能与照相机模块140的移动距离相同地移动透镜镜筒141a,并传送所生成的控制信号至光学驱动器120。Specifically, the first processor 110 may control the movement of the lens barrel 141 a based on the position information of the lens barrel 141 a transmitted from the position sensor 142 so as to be able to compensate for shaking of an image due to the movement of the camera module 140 . For example, the first processor 110 may generate a control signal to move the lens barrel 141a as much as the moving distance of the camera module 140 in a direction opposite to the moving direction of the camera module 140, and transmit the generated control signal to the optics. drive 120 .
光学驱动器120可以生成光学驱动模块130的驱动电压和控制信号以根据或响应于从第一处理器110传送的控制信号来移动透镜单元141。此外,光学驱动器120可以基于与移动透镜单元141的控制信号对应的切换操作来控制光学驱动模块130的驱动。The optical driver 120 may generate a driving voltage and a control signal of the optical driving module 130 to move the lens unit 141 according to or in response to a control signal transmitted from the first processor 110 . In addition, the optical driver 120 may control the driving of the optical driving module 130 based on a switching operation corresponding to a control signal to move the lens unit 141 .
因此,检测或捕获通过在其中执行了光学补偿过程的周期或部分中使用透镜单元141补偿由于照相机模块140的运动引起的抖动或干扰获得的图像帧是可能的。Accordingly, it is possible to detect or capture an image frame obtained by compensating for shaking or disturbance due to motion of the camera module 140 using the lens unit 141 in a period or portion in which the optical compensation process is performed.
第二处理器160可以使用从第一处理器110传送的图像补偿数据来计算显示器190上各个图像帧之间的移动像素信息,且之后可以基于所计算的移动像素信息来补偿由于照相机模块140的运动引起的图像的抖动或干扰。The second processor 160 can use the image compensation data transmitted from the first processor 110 to calculate the moving pixel information between the various image frames on the display 190, and then can compensate the movement caused by the camera module 140 based on the calculated moving pixel information. Jittering or disturbance of the image caused by motion.
具体地,第二处理器160可以使用基于同步信息与构成图像的图像帧获取的图像补偿数据,诸如虚拟数据和元数据,来计算各个图像帧之间的移动像素信息,并补偿由于照相机模块140的运动引起的图像的抖动或干扰。例如,第二处理器160可以为应用处理器,其装配在移动电话等中,且可以包括图像感测处理器(ISP)。Specifically, the second processor 160 may use image compensation data acquired based on the synchronization information and the image frames constituting the image, such as dummy data and metadata, to calculate moving pixel information between individual image frames, and to compensate Jitter or disturbance of the image caused by the movement. For example, the second processor 160 may be an application processor, which is mounted in a mobile phone or the like, and may include an Image Sensing Processor (ISP).
自动聚焦处理器180可以计算关于通过透镜单元141获取的主体的各个图像帧的焦距信息(包括焦长),并可以传送焦距信息至第一处理器110。焦距信息还可以通过近距离传感器和/或光学或声学装置进行检测。The auto focus processor 180 may calculate focal length information (including a focal length) about each image frame of a subject acquired through the lens unit 141 and may transmit the focal length information to the first processor 110 . Focus information can also be detected by proximity sensors and/or optical or acoustic means.
例如,如图3所示,自动聚焦处理器180可以控制焦距f的位置以从f1移动到f2,以便在主体141c的位置从P1移动到P2或者在透镜镜筒141a的位置从L1移动到L2时明确地将主体的图像投影到图像传感器141b上,并且可以计算诸如焦长(其为焦距f和投影到图像传感器141b上的主体的图像之间的距离)的焦距信息,且之后传送焦距信息至第一处理器110。For example, as shown in FIG. 3 , the autofocus processor 180 may control the position of the focal length f to move from f1 to f2 so as to move from P1 to P2 at the position of the main body 141c or from L1 at the position of the lens barrel 141a By L2 the image of the subject is explicitly projected onto the image sensor 141b, and focal length information such as the focal length (which is the distance between the focal length f and the image of the subject projected onto the image sensor 141b) can be calculated and then transmitted The focal length information is sent to the first processor 110 .
存储器170可以储存由第一处理器110生成的图像补偿数据和/或校准期间生成的或建立的同步信息。存储器170可以例如但不限于,诸如静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)的易失性存储器或诸如只读存储器(ROM)和闪存的非易失性存储器。The memory 170 may store image compensation data generated by the first processor 110 and/or synchronization information generated or established during calibration. Memory 170 may be, for example but not limited to, volatile memory such as static random access memory (SRAM) and dynamic random access memory (DRAM), or nonvolatile memory such as read only memory (ROM) and flash memory.
显示器190可以为视觉上在屏幕上输出数据的显示器设备,且可以例如为阴极射线管(CRT)、液晶显示器(LCD)、等离子显示板(PDP)、发光二极管(LED)和有机发光二极管(OLED),但其不必限于此。The display 190 may be a display device that visually outputs data on a screen, and may be, for example, a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display panel (PDP), a light emitting diode (LED), and an organic light emitting diode (OLED). ), but it need not be limited thereto.
上述的第一处理器110、应用处理器或第二处理器160、以及自动对焦处理器180可以包括用于执行前述功能的算法,且可以通过固件、软件或硬件(例如,半导体芯片或专用集成电路)实现。The above-mentioned first processor 110, application processor or second processor 160, and autofocus processor 180 may include algorithms for performing the aforementioned functions, and may be implemented through firmware, software or hardware (for example, a semiconductor chip or an application-specific integration) circuit) is realized.
在下文中,根据本公开的示例性实施方式的数字照相系统的校准(预处理)过程将参考图4和图5被更详细地描述。Hereinafter, a calibration (preprocessing) process of a digital camera system according to an exemplary embodiment of the present disclosure will be described in more detail with reference to FIGS. 4 and 5 .
图4为示出了根据本公开的示例性实施方式的数字照相系统的校准过程的流程图,及图5为示出了通过根据本公开的示例性实施方式的数字照相系统的校准来检测的同步信息的图示。4 is a flow chart showing a calibration process of a digital camera system according to an exemplary embodiment of the present disclosure, and FIG. Graphical representation of synchronization information.
首先,如图4所示,根据本公开的示例性实施方式的数字照相系统的校准(预处理)可以包括以下中的至少一个或多个步骤:1)使用透镜单元141检测、捕获或感测移动图片(moving picture)(或者静止图像)的各个图像帧(S10),2)获取从运动传感器100输出的运动数据(S20),以及3)计算关于图像帧和运动数据的获取时机(acquisition timing)的同步信息(S30)。这里,校准可以在初期阶段被执行一次,且之后可以储存在存储器170、第一处理器110等中,且由此可以被重复使用。First, as shown in FIG. 4 , the calibration (preprocessing) of the digital camera system according to an exemplary embodiment of the present disclosure may include at least one or more of the following steps: 1) using the lens unit 141 to detect, capture, or sense Each image frame of a moving picture (or still image) (S10), 2) acquires motion data output from the motion sensor 100 (S20), and 3) calculates an acquisition timing (acquisition timing) for the image frame and motion data ) synchronization information (S30). Here, the calibration may be performed once at an early stage, and then may be stored in the memory 170, the first processor 110, etc., and thus may be repeatedly used.
例如,如图5所示,1)通过透镜单元141检测、捕获或感测构成移动图片的各个图像帧f1至fn。这里,移动图片的拍摄速度(各个图像帧的周期TC和检测速度)可以根据移动图片的拍摄模式(例如,30帧每秒(fps)或40fps)不同地配置。For example, as shown in FIG. 5 , 1) each image frame f 1 to f n constituting a moving picture is detected, captured or sensed through the lens unit 141 . Here, the shooting speed of the moving picture (period T C and detection speed of each image frame) may be configured differently according to the shooting mode of the moving picture (for example, 30 frames per second (fps) or 40 fps).
2)运动传感器100可以输出由于或对应于照相机模块140的运动(可以以恒定速度在移动图片的拍摄过程期间产生)的运动数据a1至an(优选地,由陀螺仪传感器检测的角速度的变化的数据)。这里,运动数据a1至an的输出速度可以根据运动传感器100的设置改变。2) The motion sensor 100 may output motion data a 1 to a n due to or corresponding to the motion of the camera module 140 (which may be generated at a constant speed during the capture process of the moving picture) (preferably, the angular velocity detected by the gyro sensor) changing data). Here, the output speed of the motion data a 1 to a n may be changed according to the setting of the motion sensor 100 .
3)根据从运动传感器100输出的运动数据a1至an,检测时机t1至t4n+1(在该检测时机,最精确地表示由于照相机模块140的运动引起的图像帧f1至fn的移动的运动数据a5至a4n+1被检测到)可以被计算,且检测时机t1至t4n+1可以具有预定周期Ta。图5的ΔT表示在运动数据的同步之前的延迟时间,其可以是因为运动传感器100的运动数据的输出速度与图像启动的拍摄速度之间的差异而产生。3) Based on the motion data a 1 to a n output from the motion sensor 100, detect timings t 1 to t 4n+1 (at which detection timings most accurately represent image frames f 1 to f caused by motion of the camera module 140 Motion data (a 5 to a 4n+1 of n 's movement is detected) may be calculated, and the detection timing t 1 to t 4n+1 may have a predetermined period T a . ΔT of FIG. 5 represents a delay time before synchronization of motion data, which may be generated due to a difference between an output speed of motion data of the motion sensor 100 and a shooting speed of an image start.
这里,检测时机可以根据移动图片的拍摄模式(例如,30fps)不同地配置,其仅仅是一个示例,并因而检测时机不限于以上描述的。Here, the detection timing may be configured differently according to the photographing mode of the moving picture (for example, 30 fps), which is just an example, and thus the detection timing is not limited to that described above.
因此,关于运动数据的提取时机和可以获取移动图片的各个图像帧f1至fn的时机的同步信息(移动图片的图像帧的检测速度(例如,30fps)和与此对应的运动数据的检测时机t5至t4n+1)可以通过校准(预处理)过程获取。Therefore, synchronous information about the timing of extraction of motion data and the timing at which the respective image frames f1 to fn of the moving picture can be acquired (the detection speed of the image frame of the moving picture (for example, 30 fps) and the detection of the motion data corresponding thereto The timing t 5 to t 4n+1 ) can be obtained through a calibration (preprocessing) process.
在下文中,根据本公开的示例性实施方式的数字照相系统及用于控制该数字照相系统的方法将参考图1、2和5至8得以详细描述。Hereinafter, a digital photographing system and a method for controlling the same according to exemplary embodiments of the present disclosure will be described in detail with reference to FIGS. 1 , 2 and 5 to 8 .
图6为示出了根据本公开的示例性实施方式的数字照相系统的图像补偿数据生成过程的图示,图7为示出了根据本公开的示例性实施方式的计算数字照相系统中的构成图像的图像帧之间的移动像素信息的过程的图示,及图8为示出了根据本公开的示例性实施方式的用于控制数字照相系统的方法的流程图。6 is a diagram showing an image compensation data generation process of a digital camera system according to an exemplary embodiment of the present disclosure, and FIG. 7 is a diagram showing a configuration in a computational digital camera system according to an exemplary embodiment of the present disclosure. An illustration of a process of moving pixel information between image frames of an image, and FIG. 8 is a flowchart illustrating a method for controlling a digital camera system according to an exemplary embodiment of the present disclosure.
首先,如图1和8所示,根据本公开的示例性实施方式的数字照相系统10及用于控制该数字照相系统的方法可以执行:1)通过透镜单元141对构成主体141c的图像(静止或移动图片)的各个图像帧进行拍摄(检测)(S100)。图像帧的检测速度和周期可以根据图像的拍摄模式而不同地设置。所拍摄的移动图片的图像帧可以通过透镜单元141传送至第二处理器160。First, as shown in FIGS. 1 and 8 , the digital photographing system 10 and the method for controlling the digital photographing system according to an exemplary embodiment of the present disclosure can perform: 1) image (still or moving pictures) of each image frame is photographed (detected) (S100). The detection speed and cycle of the image frame may be set differently according to the shooting mode of the image. The captured image frames of the moving picture may be transmitted to the second processor 160 through the lens unit 141 .
接下来,2)当照相机模块140的运动(手抖、水平或垂直运动或任何干扰)在通过透镜单元141对主体141c的图像进行拍摄、捕获或感测(检测)时发生的情况下,由于运动中的手抖引起的角速度(在偏航轴或俯仰轴方向上的旋转分量)的变化和由运动中的水平或垂直方向上的线性运动引起的加速度的变化(水平(x轴)或垂直(y轴)方向上的速度变化)的运动数据可以从运动传感器100输出(S110)。Next, 2) In the case where motion of the camera module 140 (hand shake, horizontal or vertical motion, or any disturbance) occurs while shooting, capturing, or sensing (detecting) an image of the subject 141c through the lens unit 141, due to Changes in angular velocity (rotational components in the direction of the yaw or pitch axis) caused by hand tremors in motion and changes in acceleration (horizontal (x-axis) or vertical Motion data of (speed change in the y-axis) direction) may be output from the motion sensor 100 (S110).
接下来,3)第一处理器110可以执行图象补偿数据生成过程,其基于由校准预置的同步信息(在运动数据的检测时机t5至54n+1中,对应于当前移动图片的拍摄速度(例如,30fps或50fps)的同步信息(运动数据的检测时机))可以生成与移动图片的图像帧同步的图像补偿数据(配置了虚拟数据和元数据)(S120)。Next, 3) the first processor 110 can execute the image compensation data generation process, which is based on the synchronization information preset by the calibration (in the detection timing t5 to 54n+1 of the motion data, corresponding to the current moving picture Synchronization information (detection timing of motion data) of shooting speed (for example, 30fps or 50fps) can generate image compensation data (dummy data and metadata configured) synchronized with image frames of moving pictures (S120).
此外,4)第一处理器110可以使用应用自运动传感器100的角速度(在偏航轴或俯仰轴方向上的旋转分量)和加速度(水平(x轴)或垂直(y轴)方向上的速度变化)的运动数据来计算实际的移动方向和水平(x轴)或垂直(y轴)方向上照相机模块140的移动距离,从而确定是否执行光学补偿过程(S130)。In addition, 4) the first processor 110 can use the angular velocity (the rotational component in the direction of the yaw axis or the pitch axis) and the acceleration (the velocity in the horizontal (x-axis) or vertical (y-axis) direction) applied from the motion sensor 100 Change) motion data to calculate the actual moving direction and the moving distance of the camera module 140 in the horizontal (x-axis) or vertical (y-axis) direction, so as to determine whether to perform the optical compensation process (S130).
例如,第一处理器110可以确定水平(x轴)或垂直(y轴)方向上的照相机模块140的移动距离是否处于预设参考范围(例如但不限于水平(DX)方向和垂直(DY)方向上透镜单元141的最大可移动范围)内。For example, the first processor 110 may determine whether the moving distance of the camera module 140 in the horizontal (x-axis) or vertical (y-axis) direction is within a preset reference range (such as but not limited to the horizontal (D x ) direction and the vertical (D x ) direction Y ) within the maximum movable range of the lens unit 141 in the direction).
此外,i)当照相机模块140的移动距离处于参考范围内时,第一处理器110可以从位置传感器142接收透镜镜筒141a的当前位置信息。ii)第一处理器110可以基于位置信息控制透镜镜筒141a的移动以补偿取决于照相机模块140的运动的图像的抖动。例如第一处理器110可以生成控制信号以在与照相机模块140的运动方向相反的方向上尽可能与照相机模块140的实际移动距离相同地移动透镜单元141,并传送所生成的控制信号至光学驱动器120。In addition, i) when the moving distance of the camera module 140 is within the reference range, the first processor 110 may receive current position information of the lens barrel 141 a from the position sensor 142 . ii) The first processor 110 may control the movement of the lens barrel 141 a based on the position information to compensate for shaking of an image depending on the motion of the camera module 140 . For example, the first processor 110 may generate a control signal to move the lens unit 141 as much as the actual moving distance of the camera module 140 in a direction opposite to the moving direction of the camera module 140, and transmit the generated control signal to the optical driver. 120.
iii)光学驱动器120可以基于控制信号生成光学驱动模块130的控制信号和驱动电流,且之后使用控制信号来控制光学驱动模块(例如但不限于音圈电机或压电设备)130的驱动,从而执行控制透镜单元141的移动范围的光学驱动过程。iii) The optical driver 120 can generate the control signal and the driving current of the optical driving module 130 based on the control signal, and then use the control signal to control the driving of the optical driving module (such as but not limited to a voice coil motor or piezoelectric device) 130, thereby performing An optical driving process that controls the moving range of the lens unit 141 .
这里,第一致动器131可以控制垂直方向(y轴方向)上透镜单元141的移动,及第二致动器132可以控制水平方向(x轴方向)上透镜单元141的移动。Here, the first actuator 131 may control the movement of the lens unit 141 in the vertical direction (y-axis direction), and the second actuator 132 may control the movement of the lens unit 141 in the horizontal direction (x-axis direction).
第一处理器110可以i)基于同步信息(诸如与在生成图像补偿数据的校准中设置的当前对移动图片进行拍摄的拍摄速度对应的运动数据的检测时机)将虚拟数据与在其中执行光学补偿的部分中获取的图像的图像帧(通过光学补偿过程的手抖补偿图像帧)同步(S140)。The first processor 110 may i) combine the dummy data with the image in which the optical compensation is performed based on synchronization information such as the detection timing of the motion data corresponding to the current shooting speed for shooting moving pictures set in the calibration for generating the image compensation data. The image frames (hand-shake compensation image frames through the optical compensation process) of the images acquired in the part are synchronized (S140).
此外,第一处理器可以ii)将元数据与在其中未执行光学补偿的部分中获取的图像的图像帧同步(S150)。这里,虚拟数据可以被配置有空数据(可以忽略的值或毫无意义的值),而元数据可以被配置有拍摄移动图片的各个图像帧的运动数据(例如,加速度变化的数据)和透镜单元141的焦距信息(诸如焦长)。Also, the first processor may ii) synchronize metadata with an image frame of an image acquired in a portion in which optical compensation is not performed (S150). Here, dummy data can be configured with null data (values that can be ignored or meaningless), and metadata can be configured with motion data (for example, data of acceleration changes) and lens Focal distance information (such as focal length) of the unit 141.
自动聚焦处理器180可以在图像帧获取时机t1至t4n+1计算透镜单元141的焦距信息(例如,焦长)以将焦距信息(例如,焦长)传送至第一处理器110。The auto focus processor 180 may calculate focal length information (eg, focal length) of the lens unit 141 at image frame acquisition timings t 1 to t 4n+1 to transmit the focal length information (eg, focal length) to the first processor 110 .
例如,如图6所示,1)由透镜单元141以恒定拍摄速度(例如30fps)检测、捕获或感测的移动图片的各个图像帧f1至fn可以被传送至第二处理器160,以及2)基于与照相机模块140的运动对应的运动数据(如,加速度变化和角速度变化的数据),第一处理器110可以确定照相机模块140在水平(x轴)或垂直(y轴)方向上的移动距离是否处于预设参考范围(例如但不限于如图2中所示的水平(DX)和垂直(DY)方向上的透镜单元141的最大可移动范围)内以确定是否执行光学驱动过程。For example, as shown in FIG. 6 , 1) respective image frames f1 to fn of a moving picture detected, captured or sensed by the lens unit 141 at a constant shooting speed (for example, 30 fps) may be transmitted to the second processor 160, And 2) based on the motion data corresponding to the motion of the camera module 140 (such as the data of acceleration change and angular velocity change), the first processor 110 can determine whether the camera module 140 is in the horizontal (x-axis) or vertical (y-axis) direction. Whether the moving distance is within a preset reference range (such as but not limited to the maximum movable range of the lens unit 141 in the horizontal (D X ) and vertical (D Y ) directions as shown in FIG. 2 ) to determine whether to perform optical drive process.
3)第一处理器110可以并行执行图像补偿过程,其可以生成配置有基于对应于移动图片的拍摄速度的同步信息(例如但不限于,运动数据的检测时机t5、t9以及t13至t4n+1)的与图像帧同步的虚拟数据和元数据的图像补偿数据ID。3) The first processor 110 can execute the image compensation process in parallel, and it can generate synchronization information configured based on the shooting speed corresponding to the moving picture (for example, but not limited to, detection timings t 5 , t 9 , and t 13 to t 4n+1 ) of dummy data and metadata image compensation data ID synchronized with the image frame.
例如,i)虚拟数据D1、D2、D3、……、Dn可以基于在其中执行光学补偿的部分或周期(例如,部分a或当照相机模块140在水平(x轴)或垂直(y轴)方向上的移动距离处于预设参考范围内时)中获取的图像的图像帧的同步信息(例如,检测时机t5、t9、t13至t4n+1)而被同步。For example, i) virtual data D 1 , D 2 , D 3 , ..., D n can be based on the section or period in which optical compensation is performed (eg, section a or when the camera module 140 is in the horizontal (x-axis) or vertical ( The synchronization information (for example, detection timing t 5 , t 9 , t 13 to t 4n+1 ) of the image frame of the image acquired in the y-axis) direction when the moving distance is within the preset reference range) is synchronized.
ii)基于同步信息,元数据可以与其中未执行光学补偿的部分(例如,部分b或当照相机模块140在水平(x轴)或垂直(y轴)方向上的移动距离超出预设参考范围或在预设参考范围之外时)中获取的图像的图像帧同步(例如,在检测时机t5、t9、t13至t4n+1获取的元数据M4、M5、和M6至Mn(拍摄的移动图片的各个图像帧的运动数据和焦距信息(诸如透镜单元141的焦长))可以与在部分b获取的图像的图像帧同步。ii) Based on the synchronization information, the metadata can be related to the part where optical compensation is not performed (for example, part b or when the movement distance of the camera module 140 in the horizontal (x-axis) or vertical (y-axis) direction exceeds a preset reference range or Image frame synchronization of images acquired in when outside the preset reference range ) (for example, metadata M 4 , M 5 , and M 6 to M n (motion data and focal length information such as the focal length of the lens unit 141 of each image frame of the photographed moving picture) may be synchronized with the image frame of the image acquired at part b.
iii)因此,根据是否在由透镜单元141检测、感测或捕获图像的所有图像帧f1至fn时执行光学驱动过程,通过图像补偿数据生成过程生成的图像的图像补偿数据ID=D1、D2、D3、…、M4、M5、以及M6至MN可以被配置有基于对应于移动图片的拍摄速度的预设同步信息与图像帧同步的虚拟数据和元数据。iii) Therefore, according to whether the optical driving process is performed when all the image frames f1 to fn of the image are detected, sensed or captured by the lens unit 141, the image compensation data ID = D of the image generated by the image compensation data generation process 1 , D 2 , D 3 , . . . , M 4 , M 5 , and M 6 to M N may be configured with dummy data and metadata synchronized with image frames based on preset synchronization information corresponding to a shooting speed of a moving picture.
此外,当对图像的拍摄结束时,第一处理器110可以在存储器170中储存图像的图像补偿数据或者传送图像补偿数据至第二处理器160。In addition, when the shooting of the image ends, the first processor 110 may store the image compensation data of the image in the memory 170 or transmit the image compensation data to the second processor 160 .
接下来,第二处理器160可以使用从第一处理器110传送的图像补偿数据以计算构成图像的各个图像帧之间的移动像素信息(S160)。Next, the second processor 160 may use the image compensation data transferred from the first processor 110 to calculate moving pixel information between respective image frames constituting the image (S160).
例如,第二处理器160可以使用构成图像的图像帧以及运动传感器100的加速度变化的运动数据和包括透镜单元141的焦距信息的元数据M4、M5和M6至MN来计算各个图像帧之间的移动像素信息,图像帧和运动数据及元数据在各个图像帧的获取时机处同步。For example, the second processor 160 may calculate the respective images using image frames constituting the images and motion data of acceleration changes of the motion sensor 100 and metadata M 4 , M 5 , and M 6 to M N including focal length information of the lens unit 141. Moving pixel information between frames, image frames and motion data and metadata are synchronized at the acquisition timing of each image frame.
例如,如图7所示,第二处理器160中的图像帧之间的移动像素信息可以通过以下等式1至4来计算,其中Wd表示图像传感器141b的水平距离或宽度,视场(FOV)表示视角,RS表示显示器的屏幕分辨率(图形设置值),δp表示显示器上各个图像帧的移动像素的数量,以及δS表示照相机模块140的移动距离。For example, as shown in FIG. 7, the moving pixel information between image frames in the second processor 160 can be calculated by the following equations 1 to 4, where Wd represents the horizontal distance or width of the image sensor 141b, and the field of view ( FOV) represents the viewing angle, RS represents the screen resolution (graphics setting value) of the display, δp represents the number of moving pixels for each image frame on the display, and δS represents the moving distance of the camera module 140.
这里,使用透镜单元141的焦长和加速度变化的运动数据(由加速度传感器102获取的数据)计算的图像帧之间的移动像素信息可以包括移动像素的数量和移动方向。Here, the moving pixel information between image frames calculated using the focal length of the lens unit 141 and motion data of acceleration change (data acquired by the acceleration sensor 102 ) may include the number of moving pixels and the moving direction.
[等式1][equation 1]
Wd=2*1*tan(FOV/2)W d =2*1*tan(FOV/2)
[等式2][equation 2]
δp:δs=Rs:Wd δ p : δ s = R s : W d
[等式3][equation 3]
δs=∫∫(δ2s/δt2)δ s =∫∫(δ 2 s/δt 2 )
[等式4][equation 4]
δp=δs*Rs/(2*tan(FOV/2))δ p =δ s *R s /(2*tan(FOV/2))
接下来,由于通过第二处理器160计算的图像帧之间的移动像素信息可以储存在存储器170等中,且所补偿的图像可以通过使用图像和对应于该图像的移动像素信息经由专用播放器等输出,这相比于用于对图像拍摄且之后使用图像处理技术的后补偿(post-compensation)方法,可以更多地减小图像补偿的功耗和处理时间。Next, since the moving pixel information between image frames calculated by the second processor 160 can be stored in the memory 170 or the like, and the compensated image can be transmitted through a dedicated player by using the image and the moving pixel information corresponding to the image. etc. output, which can reduce the power consumption and processing time of image compensation more than a post-compensation method for capturing an image and then using an image processing technique.
如上所述,根据本公开的示例性实施方式的数字照相系统可以根据可能在静止或移动图片被拍摄时发生的运动(手抖、水平/垂直移动或任何干扰)并行应用光学补偿过程和图像补偿数据生成过程,从而缩短了对运动的图像补偿处理时间且保证了图像补偿的可靠性。As described above, the digital camera system according to the exemplary embodiment of the present disclosure can apply the optical compensation process and image compensation in parallel according to motion (hand shake, horizontal/vertical movement, or any disturbance) that may occur when still or moving pictures are taken. Data generation process, thereby shortening the image compensation processing time for motion and ensuring the reliability of image compensation.
尽管本公开的优选实施方式已经出于阐述的目的而被公开,但是他们均是为了具体解释本公开且因此根据本公开的数字照相系统及用于控制该数字照相系统的方法并不限制于此,但是本领域技术人员将理解在不背离如所附权利要求书中公开的本公开的范围和精神的情况下,可以进行各种修改、增加和替换。Although the preferred embodiments of the present disclosure have been disclosed for the purpose of illustration, they are all for explaining the present disclosure in detail and thus the digital camera system and the method for controlling the digital camera system according to the present disclosure are not limited thereto , but those skilled in the art will understand that various modifications, additions and substitutions can be made without departing from the scope and spirit of the present disclosure as disclosed in the appended claims.
因此,任何和所有修改、变形或等效排布应该被认为落入本公开的范围内,并且公开的详细范围将由随附权利要求书公开。Accordingly, any and all modifications, variations or equivalent arrangements should be considered to fall within the scope of the present disclosure, and the detailed scope of the disclosure will be disclosed by the appended claims.
Claims (30)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20140046885 | 2014-04-18 | ||
KR10-2014-0046885 | 2014-04-18 | ||
KR10-2014-0076061 | 2014-06-20 | ||
KR1020140076061A KR101642569B1 (en) | 2014-04-18 | 2014-06-20 | Digital photographing System and Controlling method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105049682A CN105049682A (en) | 2015-11-11 |
CN105049682B true CN105049682B (en) | 2018-06-29 |
Family
ID=54428960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510113209.3A Expired - Fee Related CN105049682B (en) | 2014-04-18 | 2015-03-16 | Digital camera system and the method for controlling the digital camera system |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101642569B1 (en) |
CN (1) | CN105049682B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105391943B (en) * | 2015-12-03 | 2019-04-26 | Oppo广东移动通信有限公司 | Fast focusing method and system for photographing device |
KR102530761B1 (en) * | 2016-08-03 | 2023-05-11 | 삼성전자주식회사 | Image sensor, camera module and apparatus comprising the same |
JP6674701B2 (en) * | 2016-09-28 | 2020-04-01 | ルネサスエレクトロニクス株式会社 | Image processing module and semiconductor system |
US11202006B2 (en) * | 2018-05-18 | 2021-12-14 | Samsung Electronics Co., Ltd. | CMOS-assisted inside-out dynamic vision sensor tracking for low power mobile platforms |
CN110049238B (en) * | 2019-03-26 | 2021-09-07 | Oppo广东移动通信有限公司 | Camera anti-shake system and method, electronic device, computer-readable storage medium |
CN110035228B (en) * | 2019-03-26 | 2021-09-07 | Oppo广东移动通信有限公司 | Camera anti-shake system, method, electronic device and computer-readable storage medium |
CN109922264B (en) * | 2019-03-26 | 2022-02-18 | Oppo广东移动通信有限公司 | Camera anti-shake system and method, electronic device, and computer-readable storage medium |
KR20200122013A (en) * | 2019-04-17 | 2020-10-27 | 엘지이노텍 주식회사 | A camera module and an optical instrument including the same |
CN112839177B (en) * | 2021-01-20 | 2023-07-04 | 北京小米移动软件有限公司 | Lens control method, lens control device and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1806202A (en) * | 2003-06-09 | 2006-07-19 | 奥林巴斯株式会社 | Image capture device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4511766B2 (en) * | 2000-07-10 | 2010-07-28 | 株式会社リコー | Image capturing apparatus and shake correction method in image capturing apparatus |
JP4717748B2 (en) * | 2006-08-11 | 2011-07-06 | キヤノン株式会社 | Camera body and camera system having the same |
JP2009145852A (en) * | 2007-11-22 | 2009-07-02 | Fujifilm Corp | Automatic focusing device, camera, automatic focusing method |
KR101528860B1 (en) * | 2008-12-11 | 2015-06-15 | 삼성전자주식회사 | Method and apparatus for correcting a shakiness in digital photographing apparatus |
KR101575630B1 (en) | 2009-03-17 | 2015-12-08 | 삼성전자주식회사 | Driving assembly for image stabilization of digital camera |
-
2014
- 2014-06-20 KR KR1020140076061A patent/KR101642569B1/en active Active
-
2015
- 2015-03-16 CN CN201510113209.3A patent/CN105049682B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1806202A (en) * | 2003-06-09 | 2006-07-19 | 奥林巴斯株式会社 | Image capture device |
Also Published As
Publication number | Publication date |
---|---|
CN105049682A (en) | 2015-11-11 |
KR101642569B1 (en) | 2016-07-26 |
KR20150120832A (en) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105049682B (en) | Digital camera system and the method for controlling the digital camera system | |
CN110012224B (en) | Camera anti-shake system, method, electronic device and computer-readable storage medium | |
US9699381B2 (en) | Digital photographing motion compensation system and method | |
CN106911879B (en) | Image forming apparatus module, method of operating the same, and terminal device including the same | |
CN105191283B (en) | Imaging device, solid-state imaging element, camera module, electronic device, and imaging method | |
US9019387B2 (en) | Imaging device and method of obtaining image | |
JP6674701B2 (en) | Image processing module and semiconductor system | |
JP2013165485A (en) | Image processing apparatus, image capturing apparatus, and computer program | |
KR20160140193A (en) | Circuit for correcting image and correcting image Method thereof | |
JP2012078495A (en) | Imaging device, shake correction device, and shake correction method | |
JP7387713B2 (en) | Imaging device, solid-state imaging device, camera module, drive control unit, and imaging method | |
KR102592745B1 (en) | Posture estimating apparatus, posture estimating method and computer program stored in recording medium | |
JP2017116924A (en) | Zoom control device, zoom control method, and imaging apparatus | |
US8817127B2 (en) | Image correction device for image capture device and integrated circuit for image correction device | |
US10097758B2 (en) | Data processing apparatus, data processing method, and recording medium | |
JP5423204B2 (en) | Imaging device | |
JP2000069353A (en) | Camera-shake detector and camera-shake correction device | |
US8619149B2 (en) | Camera with an image sensor that doubles as a motion sensor | |
JP2017134185A (en) | Image blur correction device, imaging apparatus, lens unit, control method of image blur correction device, program, and storage medium | |
TWI639338B (en) | Image capturing apparatus and image smooth zooming method thereof | |
KR20160026036A (en) | Apparatus for driving auto focusing and Controlling Method thereof | |
JP2011259341A (en) | Imaging apparatus | |
TWI612805B (en) | Image processing method and system thereof | |
CN106973214A (en) | Data processing equipment and data processing method | |
JP5525807B2 (en) | camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180629 |