CN105048999B - Gallium nitride base low-leakage current double cantilever beam switchs the rest-set flip-flop of nor gate - Google Patents
Gallium nitride base low-leakage current double cantilever beam switchs the rest-set flip-flop of nor gate Download PDFInfo
- Publication number
- CN105048999B CN105048999B CN201510379020.9A CN201510379020A CN105048999B CN 105048999 B CN105048999 B CN 105048999B CN 201510379020 A CN201510379020 A CN 201510379020A CN 105048999 B CN105048999 B CN 105048999B
- Authority
- CN
- China
- Prior art keywords
- mesfet
- switch
- cantilever
- type mesfet
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims description 11
- 229910002601 GaN Inorganic materials 0.000 title description 14
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 230000009977 dual effect Effects 0.000 claims abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 16
- 239000010931 gold Substances 0.000 claims description 16
- 229910052737 gold Inorganic materials 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 14
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 238000007667 floating Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 229910001020 Au alloy Inorganic materials 0.000 claims description 4
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 4
- 239000003353 gold alloy Substances 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 15
- 238000000206 photolithography Methods 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MBGCACIOPCILDG-UHFFFAOYSA-N [Ni].[Ge].[Au] Chemical compound [Ni].[Ge].[Au] MBGCACIOPCILDG-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明的氮化镓基低漏电流双悬臂梁开关或非门的RS触发器用具有双悬臂梁开关的MESFET或非门代替传统的或非门,两个悬臂梁开关的位置关于该MESFET源‑漏方向对称,MESFET的栅极与衬底之间形成了肖特基接触,在栅极下方的衬底中形成耗尽层,把悬臂梁开关的下拉电压设计得与MESFET的阈值电压相等,当在悬臂梁开关与下拉电极之间所加载的电压大于MESFET的阈值电压时,悬臂梁下拉与栅极紧贴使MESFET导通,当所加电压小于N型MESFET的阈值电压时,悬臂梁开关就不能下拉,MESFET关断,在该RS触发器工作时,当NMESFET处于关断时其悬臂梁开关就处于悬浮态,降低了栅极漏电流,从而降低了该RS触发器的功耗。
The GaN-based RS flip-flop with dual cantilever switch NOR gates of the present invention replaces conventional NOR gates with MESFET NOR gates having dual cantilever beam switches, the positions of the two cantilever beam switches are relative to the MESFET source- The drain direction is symmetrical, a Schottky contact is formed between the gate of the MESFET and the substrate, and a depletion layer is formed in the substrate below the gate, and the pull-down voltage of the cantilever switch is designed to be equal to the threshold voltage of the MESFET. When the voltage applied between the cantilever beam switch and the pull-down electrode is greater than the threshold voltage of the MESFET, the cantilever beam pull-down and the gate are close to make the MESFET turn on. When the applied voltage is less than the threshold voltage of the N-type MESFET, the cantilever beam switch cannot pull down, the MESFET is turned off, and when the RS flip-flop is working, the cantilever switch is in a suspended state when the NMESFET is turned off, which reduces the gate leakage current, thereby reducing the power consumption of the RS flip-flop.
Description
技术领域technical field
本发明提出了GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器,属于微电子机械系统的技术领域。The invention provides a GaN-based low-leakage current dual cantilever beam switch MESFET RS flip-flop for a NOR gate, which belongs to the technical field of micro-electromechanical systems.
背景技术Background technique
随着无线通信技术的发展,射频集成电路的芯片也迅速发展,集成规模不断扩大,工作频率不断提高,传统的硅基材料已经不能满足要求。基于氮化镓衬底的MESFET就是在这种背景下被提出应用,由于氮化镓材料良好的特性使得由它制造的晶体管具有很高的电子迁移率,很强的抗辐射能力,较大的工作温度范围。由于芯片中晶体管的数量越来越多,随之而来的就是集成电路的功耗问题。随着集成电路的发展,芯片的规模变得很大,人们对于芯片的功耗越来越重视。太高的功耗会对芯片的散热材料提出更高的要求,还会使芯片的性能受到影响。所以,对于器件的低功耗的设计在集成电路的设计中显得越来越重要。With the development of wireless communication technology, the chips of radio frequency integrated circuits are also developing rapidly, the scale of integration continues to expand, and the operating frequency continues to increase. Traditional silicon-based materials can no longer meet the requirements. MESFET based on gallium nitride substrate is proposed and applied under this background. Due to the good characteristics of gallium nitride material, the transistor manufactured by it has high electron mobility, strong radiation resistance, and large range of working temperature. As the number of transistors in a chip increases, so does the power consumption of integrated circuits. With the development of integrated circuits, the scale of chips becomes larger, and people pay more and more attention to the power consumption of chips. Too high power consumption will impose higher requirements on the heat dissipation material of the chip, and will also affect the performance of the chip. Therefore, the design of low power consumption of devices is becoming more and more important in the design of integrated circuits.
RS触发器电路作为数字电路的重要组成部分,它是各种具有复杂功能的触发器电路的基本构成部分,有着巨大的应用,常规MESFET组成的RS触发器,随着集成度的提升,功耗变得越来越严重,功耗过大带来的芯片过热问题会严重影响集成电路的性能,本文提出的具有可动悬臂梁开关结构的MESFET可以有效降低栅极漏电流,进而降低RS触发器电路的功耗。As an important part of digital circuits, RS flip-flop circuit is the basic component of various flip-flop circuits with complex functions, and has huge applications. The RS flip-flop composed of conventional MESFET, with the improvement of integration, the power consumption It is becoming more and more serious. The overheating of the chip caused by excessive power consumption will seriously affect the performance of the integrated circuit. The MESFET with a movable cantilever switch structure proposed in this paper can effectively reduce the gate leakage current, thereby reducing the RS flip-flop power consumption of the circuit.
发明内容Contents of the invention
技术问题:本发明的目的是提供一种GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器。将传统的两个由常规MESFET组成的或非门的RS触发器电路换为两个具有双悬臂梁开关结构的MESFET或非门的RS触发器,在该RS触发器处于工作状态时,可以有效地降低晶体管的栅极漏电流,从而降低该RS触发器的功耗。Technical problem: the purpose of this invention is to provide a kind of RS flip-flop of GaN-based low leakage current double cantilever switch MESFET NOR gate. Replace the traditional two RS flip-flop circuits of NOR gates composed of conventional MESFETs with two RS flip-flops of MESFET NOR gates with a double cantilever beam switch structure. When the RS flip-flops are in working condition, they can be effectively The gate leakage current of the transistor is greatly reduced, thereby reducing the power consumption of the RS flip-flop.
技术方案:本发明的氮化镓基低漏电流双悬臂梁开关或非门的RS触发器由具有双悬臂梁开关第一N型MESFET和第二N型MESFET,电阻和电源组成,该双悬臂梁开关第一N型MESFET和第二N型MESFET制作在半绝缘GaN衬底上,第一N型MESFET和第二N型MESFET的源极和漏极由金属和重掺杂N区形成欧姆接触构成,栅极由钛/铂/金合金和N型有源层形成肖特基接触构成,在栅极上方悬浮着两个用钛/金/钛制作而成的对称设计的悬臂梁开关,两个悬臂梁开关的悬浮端之间留有缝隙以保证两个悬臂梁开关下拉时互不干扰,两个悬臂梁开关的位置关于该MESFET源-漏方向对称,悬臂梁开关的锚区制作在半绝缘GaN衬底上,在悬臂梁开关与衬底之间设有下拉电极,下拉电极由氮化硅材料覆盖,下拉电极和源极接地,漏极通过电阻与电源VCC相连,源极和漏极上连接的引线用金制作;在该RS触发器的第一N型MESFET和第二N型MESFET中各有一个悬臂梁开关分别作为该RS触发器的输入端S和R,输出端Q在双悬臂梁开关第二N型MESFET的漏极和电阻之间输出,输出端在第一N型MESFET的漏极和电阻之间输出,第一N型MESFET另外的一个悬臂梁开关通过引线与第二N型MESFET的漏极相连,同样第二N型MESFET的另一个悬臂梁开关通过引线与第一N型MESFET的漏极相连,形成对称的结构,为了保证当双悬臂梁开关第一N型MESFET和第二N型MESFET导通时由电阻分压得出输出为低电平,电阻的阻值远大于第一N型MESFET和第二N型MESFET导通的阻抗。Technical solution: The RS flip-flop of the gallium nitride-based low leakage current double cantilever switch NOR gate of the present invention is composed of a first N-type MESFET and a second N-type MESFET with a double cantilever switch, a resistor and a power supply. Beam switch The first N-type MESFET and the second N-type MESFET are fabricated on a semi-insulating GaN substrate, and the source and drain of the first N-type MESFET and the second N-type MESFET are formed by metal and heavily doped N regions to form ohmic contacts The gate is composed of titanium/platinum/gold alloy and N-type active layer to form a Schottky contact. Two symmetrically designed cantilever beam switches made of titanium/gold/titanium are suspended above the gate. There is a gap between the floating ends of the two cantilever switches to ensure that the two cantilever switches do not interfere with each other when they are pulled down. The positions of the two cantilever switches are symmetrical with respect to the source-drain direction of the MESFET. On the insulating GaN substrate, there is a pull-down electrode between the cantilever beam switch and the substrate, the pull-down electrode is covered by silicon nitride material, the pull-down electrode and the source are grounded, the drain is connected to the power supply VCC through a resistor, the source and drain The wires connected on the top are made of gold; in the first N-type MESFET and the second N-type MESFET of the RS flip-flop, there is a cantilever switch respectively as the input terminals S and R of the RS flip-flop, and the output terminal Q is in the double Cantilever switch output between the drain of the second N-type MESFET and the resistor, output Output between the drain of the first N-type MESFET and the resistor, another cantilever switch of the first N-type MESFET is connected to the drain of the second N-type MESFET through a lead, and the other cantilever of the second N-type MESFET is also The switch is connected to the drain of the first N-type MESFET through a lead wire to form a symmetrical structure. In order to ensure that when the first N-type MESFET and the second N-type MESFET of the double cantilever beam switch are turned on, the output obtained by dividing the voltage by the resistor is a low voltage. flat, the resistance value of the resistor is much larger than the conduction resistance of the first N-type MESFET and the second N-type MESFET.
所述的悬臂梁开关是依靠锚区的支撑悬浮在栅极上方,栅极与衬底之间形成了肖特基接触;该第一N型MESFET和第二N型MESFET的两个悬臂梁开关的下拉电压设计的与该N型MESFET的阈值电压相等,只有当该N型MESFET的悬臂梁开关上所加的电压大于该N型MESFET的阈值电压时,其悬臂梁开关才能下拉并接触栅极从而使双悬臂梁开关MESFET导通,当所加电压小于双悬臂梁开关MESFET的阈值电压时悬臂梁开关就不能下拉,双悬臂梁开关MESFET关断,在该RS触发器工作时,当双悬臂梁开关MESFET处于关断时其悬臂梁开关就处于悬浮态,降低了栅极漏电流,从而降低了电路的功耗。The cantilever switch is suspended above the gate by the support of the anchor region, and a Schottky contact is formed between the gate and the substrate; the two cantilever switches of the first N-type MESFET and the second N-type MESFET The pull-down voltage is designed to be equal to the threshold voltage of the N-type MESFET. Only when the voltage applied to the cantilever switch of the N-type MESFET is greater than the threshold voltage of the N-type MESFET, the cantilever switch can be pulled down and contact the gate. Therefore, the double cantilever beam switch MESFET is turned on. When the applied voltage is less than the threshold voltage of the double cantilever beam switch MESFET, the cantilever beam switch cannot be pulled down, and the double cantilever beam switch MESFET is turned off. When the RS flip-flop is working, when the double cantilever beam switch When the switch MESFET is turned off, its cantilever beam switch is in a suspended state, which reduces the gate leakage current, thereby reducing the power consumption of the circuit.
当该RS触发器处于工作态时,定义Q=1,为触发器的1状态,定义Q=0,为触发器的0状态,S称为置位端,R称为复位端。当S=1、R=0时,由于输入端S接高电平,输入端S对应的悬臂梁开关下拉并使双悬臂梁开关第一N型MESFET导通从而输出为低电平,即Q=1,在S=1信号消失以后,由于有Q端的高电平接回到该RS触发器的双悬臂梁开关第一N型MESFET的另一个悬臂梁开关并使其下拉,从而使输出维持在低电平,因而电路的1状态得以保持;当S=0、R=1时,由于输入端R接高电平,输入端R对应的悬臂梁开关下拉并使双悬臂梁开关第二N型MESFET导通从而输出Q为低电平,即Q=0,在R=1信号消失以后,电路的0状态保持不变;当S=R=0时,电路维持原来的状态不变;当S=R=1时,这种状态是不允许出现的,是RS触发器的约束条件。该触发器中的N型MESFET随着输入信号的变化其状态也在导通与关断之间变化,当N型MESFET处于关断态时其悬臂梁开关处于悬浮状态,降低了栅极漏电流,从而降低了该RS触发器的功耗。由于RS触发器的次态Qn+1不仅与输入状态有关,而且也与RS触发器原来的状态Q(也称为初态)有关,得到的RS触发器的真值表如下:When the RS flip-flop is in the working state, define Q=1, For the 1 state of the flip-flop, define Q=0, It is the 0 state of the flip-flop, S is called the set terminal, and R is called the reset terminal. When S=1, R=0, since the input terminal S is connected to a high level, the cantilever beam switch corresponding to the input terminal S is pulled down and the first N-type MESFET of the double cantilever beam switch is turned on to output is low level, that is Q=1, after the S=1 signal disappears, because the high level of the Q terminal is connected back to the double cantilever switch of the RS flip-flop and the other cantilever switch of the first N-type MESFET is pulled down, so that the output Maintained at low level, so the 1 state of the circuit is maintained; when S=0, R=1, since the input terminal R is connected to high level, the cantilever beam switch corresponding to the input terminal R pulls down and makes the double cantilever beam switch second The N-type MESFET is turned on so that the output Q is low, that is, Q=0, After the R=1 signal disappears, the 0 state of the circuit remains unchanged; when S=R=0, the circuit maintains the original state; when S=R=1, This state is not allowed and is a constraint of the RS flip-flop. The state of the N-type MESFET in the flip-flop also changes between on and off as the input signal changes. When the N-type MESFET is in the off state, its cantilever beam switch is in a suspended state, which reduces the gate leakage current. , thereby reducing the power consumption of the RS flip-flop. Since the second state Q n+1 of the RS flip-flop is not only related to the input state, but also related to the original state Q (also called the initial state) of the RS flip-flop, the truth table of the obtained RS flip-flop is as follows:
有益效果:本发明的GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器中的双悬臂梁开关MESFET的的两个悬臂梁开关下拉与N型MESFET栅极相接触时,N型MESFET导通。当悬臂梁开关与下拉电极之间所加电压小于MESFET的阈值电压时,悬臂梁开关不能下拉,N型MESFET关断,此时悬臂梁开关处于悬浮态,降低了栅极漏电流从而降低了该RS触发器的功耗。Beneficial effects: when the two cantilever switches of the GaN-based low-leakage current double cantilever switch MESFET in the RS flip-flop of the NOR gate of the present invention are in contact with the gate of the N-type MESFET, the N-type MESFET turns on. When the voltage applied between the cantilever switch and the pull-down electrode is less than the threshold voltage of the MESFET, the cantilever switch cannot be pulled down, and the N-type MESFET is turned off. At this time, the cantilever switch is in a floating state, which reduces the gate leakage current and thus reduces the Power consumption of the RS flip-flop.
附图说明Description of drawings
图1为本发明GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器的俯视图,Fig. 1 is the top view of the RS flip-flop of the GaN-based low leakage current double cantilever switch MESFET NOR gate of the present invention,
图2为图1GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器的P-P’向的剖面图,Figure 2 is a cross-sectional view of the P-P' direction of the RS flip-flop of the GaN-based low-leakage current double cantilever switch MESFET NOR gate in Figure 1,
图3为图1GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器的A-A’向的剖面图。Fig. 3 is an A-A' cross-sectional view of the RS flip-flop of the GaN-based low-leakage current double cantilever switch MESFET NOR gate in Fig. 1 .
图中包括:第一N型MESFET1,第二开关N型MESFET2,半绝缘GaN衬底3,引线4,栅极5,悬臂梁开关6,锚区7,下拉电极板8,氮化硅层9,源极10,N型有源层11,漏极12,电阻13。The figure includes: a first N-type MESFET1, a second switch N-type MESFET2, a semi-insulating GaN substrate 3, a lead 4, a gate 5, a cantilever beam switch 6, an anchor region 7, a pull-down electrode plate 8, and a silicon nitride layer 9 , source 10, N-type active layer 11, drain 12, resistor 13.
具体实施方式detailed description
本发明的GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器由两个双悬臂梁开关N型MESFET即第一N型MESFET1,第二开关N型MESFET2、电阻13组成。该MESFET的源极10和漏极12由金属和重掺杂N区形成欧姆接触构成,栅极5由钛/铂/金合金和N型有源层12形成肖特基接触构成,在悬臂梁开关N型MESFET的栅极5上方悬浮着两个用钛/金/钛制作而成的对称设计的悬臂梁开关6,两个悬臂梁开关6的悬浮端留有一定缝隙以保证两个悬臂梁开关6下拉时互不干扰,两个悬臂梁开关6的位置关于该N型MESFET源-漏方向对称。悬臂梁开关6的锚区7制作在半绝缘GaN衬底3上,在悬臂梁开关6与衬底之间存在下拉电极8,下拉电极8由氮化硅材料9覆盖,悬臂梁开关N型MESFET的下拉电极8接地。在该RS触发器的双悬臂梁开关的第一N型MESFET1和第二N型MESFET2各有一个悬臂梁开关作为该RS触发器的输入端S和R,输出端Q在双悬臂梁开关第一N型MESFET1的漏极和电阻之间输出,输出端在双悬臂梁开关第一N型MESFET1的漏极和电阻之间输出,第一N型MESFET1和第二N型MESFET2的源极都接地,第一N型MESFET1另外的一个悬臂梁开关通过引线与双悬臂梁开关第二N型MESFET2的漏极相连,同样双悬臂梁开关第二N型MESFET2的另一个悬臂梁开关通过引线与双悬臂梁开关第一N型MESFET 1的漏极相连,形成对称的结构,为了保证当该MESFET导通时由电阻分压得出输出为低电平,电阻13的阻值远大于该MESFET导通的阻抗。The RS flip-flop of the GaN-based low-leakage current double cantilever switch MESFET NOR gate of the present invention is composed of two double cantilever switch N-type MESFETs, that is, the first N-type MESFET1, the second switch N-type MESFET2, and a resistor 13. The source 10 and drain 12 of the MESFET are composed of metal and heavily doped N regions to form ohmic contacts, and the gate 5 is composed of titanium/platinum/gold alloy and N-type active layer 12 to form Schottky contacts. Two symmetrically designed cantilever beam switches 6 made of titanium/gold/titanium are suspended above the gate 5 of the switching N-type MESFET. A certain gap is left at the suspension ends of the two cantilever beam switches 6 to ensure that the two cantilever beams The switch 6 does not interfere with each other when pulled down, and the positions of the two cantilever beam switches 6 are symmetrical with respect to the source-drain direction of the N-type MESFET. The anchor region 7 of the cantilever switch 6 is made on the semi-insulating GaN substrate 3, and there is a pull-down electrode 8 between the cantilever switch 6 and the substrate, and the pull-down electrode 8 is covered by a silicon nitride material 9, and the cantilever switch N-type MESFET The pull-down electrode 8 is grounded. The first N-type MESFET1 and the second N-type MESFET2 of the dual cantilever switch of the RS flip-flop each have a cantilever switch as the input terminals S and R of the RS flip-flop, and the output terminal Q is at the first of the double cantilever switch. Output between the drain of N-type MESFET1 and the resistor, the output Output between the drain of the first N-type MESFET1 of the double cantilever beam switch and the resistor, the sources of the first N-type MESFET1 and the second N-type MESFET2 are both grounded, and the other cantilever switch of the first N-type MESFET1 connects with the lead wire The drain of the second N-type MESFET 2 of the double cantilever switch is connected, and the other cantilever switch of the second N-type MESFET 2 of the double cantilever switch is connected with the drain of the first N-type MESFET 1 of the double cantilever switch through a lead wire, forming a symmetrical In order to ensure that when the MESFET is turned on, the output obtained by dividing the voltage by the resistor is a low level, the resistance value of the resistor 13 is much larger than the impedance of the MESFET turned on.
当该RS触发器处于工作态时,定义Q=1,为触发器的1状态,定义Q=0,为触发器的0状态,S称为置位端,R称为复位端。当S=1、R=0时,由于输入端S接高电平,输入端S对应的悬臂梁开关下拉并使双悬臂梁开关第一N型MESFET 1导通从而输出为低电平,即Q=1,在S=1信号消失以后,由于有Q端的高电平接回到该双悬臂梁开关第一N型MESFET 1的另一个悬臂梁开关并使其下拉,从而使输出为低电平,因而电路的1状态得以保持;当S=0、R=1时,由于输入端R接高电平,输入端R对应的悬臂梁开关下拉并使双悬臂梁开关第二N型MESFET2导通从而输出Q为低电平,即Q=0,在R=1信号消失以后,电路的0状态保持不变;当S=R=0时,电路维持原来的状态不变;当S=R=1时,这种状态是不允许出现的,是RS触发器的约束条件。该触发器中的N型MESFET随着输入信号的变化其状态也在导通与关断之间变化,当N型MESFET处于关断态时其悬臂梁开关处于悬浮状态,降低了栅极漏电流,从而降低了该RS触发器的功耗。When the RS flip-flop is in the working state, define Q=1, For the 1 state of the flip-flop, define Q=0, It is the 0 state of the flip-flop, S is called the set terminal, and R is called the reset terminal. When S=1, R=0, since the input terminal S is connected to a high level, the cantilever beam switch corresponding to the input terminal S is pulled down and the first N-type MESFET 1 of the double cantilever beam switch is turned on to output is low level, that is Q=1, after the S=1 signal disappears, because the high level of the Q terminal is connected back to another cantilever switch of the first N-type MESFET 1 of the double cantilever switch and makes it pull down, so that the output is low level, so the 1 state of the circuit is maintained; when S=0, R=1, since the input terminal R is connected to a high level, the cantilever beam switch corresponding to the input terminal R is pulled down and the double cantilever beam switch second N The type MESFET2 is turned on so that the output Q is low level, that is, Q=0, After the R=1 signal disappears, the 0 state of the circuit remains unchanged; when S=R=0, the circuit maintains the original state; when S=R=1, This state is not allowed and is a constraint of the RS flip-flop. The state of the N-type MESFET in the flip-flop also changes between on and off as the input signal changes. When the N-type MESFET is in the off state, its cantilever beam switch is in a suspended state, which reduces the gate leakage current. , thereby reducing the power consumption of the RS flip-flop.
GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器的制备方法包括以下几个步骤:The preparation method of the RS flip-flop of the GaN-based low-leakage current double cantilever switch MESFET NOR gate includes the following steps:
1)准备半绝缘GaN衬底;1) Prepare a semi-insulating GaN substrate;
2)淀积氮化硅,用等离子体增强型化学气相淀积法工艺(PECVD)生长一层氮化硅,然后光刻和刻蚀氮化硅,去除N型MESFET有源区的氮化硅;2) Deposit silicon nitride, grow a layer of silicon nitride by plasma enhanced chemical vapor deposition (PECVD), and then photolithography and etch silicon nitride to remove silicon nitride in the active area of N-type MESFET ;
3)N型MESFET有源区离子注入:注入磷后,在氮气环境下退火;退火完成后,在高温下进行N+杂质再分布,形成N型MESFET有源区的N型有源层;3) Ion implantation in the active area of N-type MESFET: after implanting phosphorus, anneal in nitrogen environment; after annealing, redistribute N + impurities at high temperature to form the N-type active layer in the active area of N-type MESFET;
4)去除氮化硅层:采用干法刻蚀技术将氮化硅全部去除;4) Removing the silicon nitride layer: using dry etching technology to remove all the silicon nitride;
5)光刻开关区,去除开关区的光刻胶;5) photolithography switch area, removing the photoresist in the switch area;
6)电子束蒸发钛/铂/金;6) Electron beam evaporation of titanium/platinum/gold;
7)去除光刻胶以及光刻胶上的钛/铂/金;7) removing the photoresist and the titanium/platinum/gold on the photoresist;
8)加热,使钛/铂/金合金与N型GaN有源层形成肖特基接触;8) heating to form a Schottky contact between the titanium/platinum/gold alloy and the N-type GaN active layer;
9)涂覆光刻胶,光刻并刻蚀N型MESFET源极和漏极区域的光刻胶;9) Coating photoresist, photolithography and etching the photoresist in the source and drain regions of the N-type MESFET;
10)注入重掺杂N型杂质,在N型MESFET源极和漏极区域形成的N型重掺杂区,注入后进行快速退火处理;10) Implanting heavily doped N-type impurities, forming N-type heavily doped regions in the N-type MESFET source and drain regions, and performing rapid annealing after implantation;
11)光刻源极和漏极,去除引线、源极和漏极的光刻胶;11) Photoetching the source and drain, removing the photoresist of the leads, source and drain;
12)真空蒸发金锗镍/金;12) Vacuum evaporation of gold germanium nickel/gold;
13)去除光刻胶以及光刻胶上的金锗镍/金;13) remove the photoresist and the gold germanium nickel/gold on the photoresist;
14)合金化形成欧姆接触,形成引线、源极和漏极;14) Alloying to form ohmic contact, forming leads, source and drain;
15)涂覆光刻胶,去除输入引线、电极板和固支梁的锚区位置的光刻胶;15) Coating photoresist, removing the photoresist at the anchor area position of the input lead, the electrode plate and the fixed support beam;
16)蒸发第一层金,其厚度约为0.3μm;16) Evaporate the first layer of gold with a thickness of about 0.3 μm;
17)去除光刻胶以及光刻胶上的金,初步形成输入引线、电极板和固支梁的锚区;17) Remove the photoresist and the gold on the photoresist, and initially form the anchor area of the input lead, the electrode plate and the fixed support beam;
18)淀积氮化硅:用等离子体增强型化学气相淀积法工艺(PECVD)生长厚的氮化硅介质层;18) Deposition of silicon nitride: growth by plasma-enhanced chemical vapor deposition (PECVD) Thick silicon nitride dielectric layer;
19)光刻并刻蚀氮化硅介质层,保留在电极板上的氮化硅;19) Photolithography and etching the silicon nitride dielectric layer, and the silicon nitride on the electrode plate is retained;
20)淀积并光刻聚酰亚胺牺牲层:在砷化镓衬底上涂覆1.6μm厚的聚酰亚胺牺牲层,要求填满凹坑;光刻聚酰亚胺牺牲层,仅保留固支梁下方的牺牲层;20) Deposit and lithography polyimide sacrificial layer: Coat a 1.6 μm thick polyimide sacrificial layer on the gallium arsenide substrate, and it is required to fill the pits; photolithography polyimide sacrificial layer, only Retain the sacrificial layer under the fixed beam;
21)蒸发钛/金/钛,其厚度为500/1500/蒸发用于电镀的底金;21) Evaporate titanium/gold/titanium with a thickness of 500/1500/ Evaporation of base gold for electroplating;
22)光刻:去除要电镀地方的光刻胶;22) Photolithography: remove the photoresist at the place to be electroplated;
23)电镀金,其厚度为2μm;23) Gold electroplating, the thickness of which is 2 μm;
24)去除光刻胶:去除不需要电镀地方的光刻胶;24) Remove photoresist: remove photoresist where electroplating is not required;
25)反刻钛/金/钛,腐蚀底金,形成固支梁;25) Anti-etch titanium/gold/titanium, corrode the bottom gold, and form a solid support beam;
26)释放聚酰亚胺牺牲层:显影液浸泡,去除固支梁下的聚酰亚胺牺牲层,去离子水稍稍浸泡,无水乙醇脱水,常温下挥发,晾干。26) Release the polyimide sacrificial layer: soak in developer solution, remove the polyimide sacrificial layer under the fixed beam, soak in deionized water for a while, dehydrate with absolute ethanol, volatilize at room temperature, and dry in the air.
本发明与现有技术的区别在于:The difference between the present invention and prior art is:
本发明中的RS触发器所使用的双悬臂梁开关MESFET的两个悬臂梁开关是悬浮在其栅极之上的,N型MESFET的栅极与衬底之间形成了肖特基接触,在栅极下方的衬底中形成耗尽层,该N型MESFET的悬臂梁开关的下拉电压设计得与MESFET的阈值电压相等,当加载在悬臂梁开关与下拉电极之间的电压大于MESFET的阈值电压时,悬臂梁开关下拉与栅极紧贴,N型MESFET导通。当悬臂梁开关与下拉电极之间所加电压小于MESFET的阈值电压时,悬臂梁开关不能下拉,其MESFET关断,此时悬臂梁开关处于悬浮态,降低了栅极漏电流从而降低了该RS触发器的功耗。The two cantilever switches of the double cantilever beam switch MESFET used in the RS flip-flop in the present invention are suspended above its grid, and a Schottky contact is formed between the grid of the N-type MESFET and the substrate, and the A depletion layer is formed in the substrate below the gate. The pull-down voltage of the cantilever switch of the N-type MESFET is designed to be equal to the threshold voltage of the MESFET. When the voltage loaded between the cantilever switch and the pull-down electrode is greater than the threshold voltage of the MESFET When the cantilever beam switch is pulled down and close to the gate, the N-type MESFET is turned on. When the voltage applied between the cantilever switch and the pull-down electrode is less than the threshold voltage of the MESFET, the cantilever switch cannot be pulled down, and its MESFET is turned off. At this time, the cantilever switch is in a floating state, which reduces the gate leakage current and thus reduces the RS. power consumption of the flip-flop.
满足以上条件的结构即视为本发明的GaN基低漏电流双悬臂梁开关MESFET或非门的RS触发器。The structure meeting the above conditions is regarded as the RS flip-flop of the GaN-based low leakage current double cantilever switch MESFET NOR gate of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510379020.9A CN105048999B (en) | 2015-07-01 | 2015-07-01 | Gallium nitride base low-leakage current double cantilever beam switchs the rest-set flip-flop of nor gate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510379020.9A CN105048999B (en) | 2015-07-01 | 2015-07-01 | Gallium nitride base low-leakage current double cantilever beam switchs the rest-set flip-flop of nor gate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105048999A CN105048999A (en) | 2015-11-11 |
CN105048999B true CN105048999B (en) | 2017-09-15 |
Family
ID=54455243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510379020.9A Expired - Fee Related CN105048999B (en) | 2015-07-01 | 2015-07-01 | Gallium nitride base low-leakage current double cantilever beam switchs the rest-set flip-flop of nor gate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105048999B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777907A (en) * | 2009-12-31 | 2010-07-14 | 宁波大学 | Low-power dissipation RS latch unit and low-power dissipation master-slave D flip-flop |
CN101257289B (en) * | 2008-03-28 | 2011-04-20 | 华中科技大学 | Low-power consumption double-capacitance spread type CMOS oscillator |
CN103199823A (en) * | 2013-04-08 | 2013-07-10 | 宁波大学 | High-performance low leakage power consumption master-slave type D flip-flop |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4030213B2 (en) * | 1999-02-22 | 2008-01-09 | 株式会社ルネサステクノロジ | Semiconductor circuit device |
-
2015
- 2015-07-01 CN CN201510379020.9A patent/CN105048999B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101257289B (en) * | 2008-03-28 | 2011-04-20 | 华中科技大学 | Low-power consumption double-capacitance spread type CMOS oscillator |
CN101777907A (en) * | 2009-12-31 | 2010-07-14 | 宁波大学 | Low-power dissipation RS latch unit and low-power dissipation master-slave D flip-flop |
CN103199823A (en) * | 2013-04-08 | 2013-07-10 | 宁波大学 | High-performance low leakage power consumption master-slave type D flip-flop |
Also Published As
Publication number | Publication date |
---|---|
CN105048999A (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104935261B (en) | Gallium nitride base low-leakage current cantilever switch field effect transistor mixer | |
CN104967439B (en) | Gallium nitride base low-leakage current clamped beam switching field effect transistor nor gate | |
CN105048999B (en) | Gallium nitride base low-leakage current double cantilever beam switchs the rest-set flip-flop of nor gate | |
CN105024688B (en) | The NAND gate of gallium nitride base low-leakage current clamped beam | |
CN105141289B (en) | The rest-set flip-flop of the cantilever switch of gallium nitride base low-leakage current four | |
CN104935327B (en) | Gallium nitride base low-leakage current double cantilever beam switchs nor gate | |
CN104967430B (en) | Gallium nitride base low-leakage current clamped beam switchs the rest-set flip-flop of nor gate | |
CN105049032B (en) | Gallium nitride base low-leakage current cantilever switch field-effect transistor nor gate | |
CN104993808B (en) | The rest-set flip-flop of gallium nitride base low-leakage current cantilever switch nor gate | |
CN104992940B (en) | Gallium nitride base low-leakage current cantilever beam field-effect transistor transmission gate and preparation method | |
CN105140227B (en) | The NAND gate of gallium nitride base low-leakage current cantilever beam | |
CN104953980B (en) | The SCF and preparation method of gallium nitride base low-leakage current cantilever beam | |
CN104953969B (en) | Gallium nitride base low-leakage current clamped beam switchs difference amplifier | |
CN105048988B (en) | The SCF and preparation method of gallium nitride base low-leakage current clamped beam | |
CN104935295B (en) | The rest-set flip-flop of gallium nitride base low-leakage current clamped beam | |
CN104935278B (en) | Gallium nitride base low-leakage current clamped beam switchs class B push-pull power amplifier and preparation | |
CN105023940B (en) | Gallium nitride base low-leakage current clamped beam field-effect transistor transmission gate and preparation method | |
CN104966715B (en) | Gallium nitride base low-leakage current clamped beam field-effect transistor phase inverter and preparation method | |
CN105161490B (en) | Gallium nitride base low-leakage current cantilever beam field-effect transistor phase inverter and preparation method | |
CN104935263B (en) | Gallium nitride base low-leakage current cantilever switch class B push-pull power amplifier | |
CN104935296B (en) | The rest-set flip-flop of gallium nitride base low-leakage current cantilever beam | |
CN104935262B (en) | Gallium nitride base low-leakage current clamped beam switching field effect transistor frequency mixer | |
CN105099374B (en) | Gallium nitride base low-leakage current cantilever switch difference amplifier | |
CN104935297B (en) | Based on silicon substrate low-leakage current double cantilever beam can moving grid nor gate rest-set flip-flop | |
CN104993792A (en) | Cross-coupled oscillator using gallium nitride-based clamped beam switches with low leakage current, and preparation method of cross-coupled oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170915 |
|
CF01 | Termination of patent right due to non-payment of annual fee |