[go: up one dir, main page]

CN105043259A - Numerical control machine tool rotating shaft error detection method based on binocular vision - Google Patents

Numerical control machine tool rotating shaft error detection method based on binocular vision Download PDF

Info

Publication number
CN105043259A
CN105043259A CN201510527601.2A CN201510527601A CN105043259A CN 105043259 A CN105043259 A CN 105043259A CN 201510527601 A CN201510527601 A CN 201510527601A CN 105043259 A CN105043259 A CN 105043259A
Authority
CN
China
Prior art keywords
machine tool
point
error
coordinates
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510527601.2A
Other languages
Chinese (zh)
Other versions
CN105043259B (en
Inventor
刘巍
丁立超
李肖
贾振元
赵凯
严洪悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510527601.2A priority Critical patent/CN105043259B/en
Publication of CN105043259A publication Critical patent/CN105043259A/en
Application granted granted Critical
Publication of CN105043259B publication Critical patent/CN105043259B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

本发明基于双目视觉的数控机床旋转轴误差检测方法属于机床精度检测技术领域,涉及一种五轴数控机床的双转轴几何误差检测与辨识方法。本发明采用高分辨率双目视觉系统,采集贴于机床转台表面标记点位置信息;再经过摄像机标定、图像分割、标记点提取、机床旋转轴误差辨识模型实现机床旋转轴的两项位置误差与两项角度误差的检测采集,完成几何参数的快速测量。此方法采用圆形标记点,不仅图像处理程序简单、特征提取精度高,而且鲁棒性好、测量快速、便捷。同时,该方法解决了数控机床旋转轴安装误差检测、辨识困难的问题,为机床误差检测与辨识技术提供了新的方向。

The invention relates to a binocular vision-based detection method for the rotation axis error of a CNC machine tool, which belongs to the technical field of machine tool precision detection, and relates to a method for detecting and identifying geometric errors of a dual-rotation axis of a five-axis CNC machine tool. The present invention adopts a high-resolution binocular vision system to collect the position information of the marking points pasted on the surface of the machine tool turntable; and then realizes the two position errors and The detection and collection of two angle errors complete the rapid measurement of geometric parameters. This method uses circular marking points, which not only has simple image processing procedures and high feature extraction accuracy, but also has good robustness, fast and convenient measurement. At the same time, this method solves the problem of difficult detection and identification of the installation error of the rotation axis of the CNC machine tool, and provides a new direction for the error detection and identification technology of the machine tool.

Description

基于双目视觉的数控机床旋转轴误差检测方法Detection method of rotation axis error of CNC machine tool based on binocular vision

技术领域technical field

本发明属于机床精度检测技术领域,涉及一种五轴数控机床的双转轴几何误差检测与辨识方法。The invention belongs to the technical field of machine tool precision detection, and relates to a method for detecting and identifying geometric errors of two rotating shafts of a five-axis numerically controlled machine tool.

背景技术Background technique

在航空、航天以及国防工业等领域,对高效、高精度制造的要求越来越高。尤其针对结构复杂的发动机叶轮、模具制造等零件,五轴数控机床能够实现位置与方向的灵活控制,是目前应用比较广泛的技术。然而,相比三轴数控机床,五轴数控机床不仅具有三个直线轴的误差,同时还增加了两个旋转轴的误差,这导致机床误差项增多,且不可避免。而旋转轴作为五轴数控机床的重要组成构件,因其缺少精度标定及误差补偿的方法,是机床准静态误差和动态误差的主要来源。因此,定期检查与标定旋转轴的误差不仅能够维持机床的精度,同时为精密制造奠定了基础。In the fields of aviation, spaceflight and defense industry, the requirements for high-efficiency and high-precision manufacturing are getting higher and higher. Especially for engine impellers with complex structures, mold manufacturing and other parts, five-axis CNC machine tools can realize flexible control of position and direction, which is a widely used technology at present. However, compared with the three-axis CNC machine tool, the five-axis CNC machine tool not only has the error of three linear axes, but also increases the error of two rotary axes, which leads to an increase in the error term of the machine tool, which is inevitable. As an important component of five-axis CNC machine tools, the rotary axis is the main source of quasi-static errors and dynamic errors of machine tools because of the lack of methods for precision calibration and error compensation. Therefore, regular inspection and calibration of the error of the rotary axis can not only maintain the accuracy of the machine tool, but also lay the foundation for precision manufacturing.

目前,数控机床误差检测的技术主要包括:实物基准测量法、激光干涉仪、球杆仪、激光跟踪仪等。大连创达技术有限公司董海发明的专利号为CN102476323A《新型数控机床误差检测仪》发明了一种基于圆轨迹的误差检测仪器,通过分析圆轨迹插补的误差,评估机床性能。但这种方法不便于实现各项误差的辨识,导致误差补偿困难。重庆大学陶桂宝等人发明的专利号为CN103143984A《基于激光跟踪仪的机床误差动态补偿方法》发明了基于激光跟踪仪的机床误差实时检测技术,这种方法虽然简单、方便,但是成本较高。激光干涉仪测量精度较高,但是操作比较复杂。综上所述,目前的方法多用于直线轴的误差检测,且成本较高,并不适用于旋转轴误差的检测与辨识。因此,有必要研究一种方便、快捷、低成本的旋转轴误差检测与辨识技术。At present, the error detection technology of CNC machine tools mainly includes: physical reference measurement method, laser interferometer, ballbar, laser tracker and so on. The patent number invented by Dong Hai of Dalian Chuangda Technology Co., Ltd. is CN102476323A "New CNC Machine Tool Error Detector" invented an error detection instrument based on circular trajectory, which evaluates the performance of machine tools by analyzing the error of circular trajectory interpolation. However, this method is not convenient to realize the identification of various errors, which leads to difficulties in error compensation. The patent No. CN103143984A "Dynamic Compensation Method for Machine Tool Error Based on Laser Tracker" invented by Tao Guibao of Chongqing University and others invented a real-time detection technology for machine tool error based on laser tracker. Although this method is simple and convenient, it is expensive. The laser interferometer has high measurement accuracy, but the operation is more complicated. To sum up, the current methods are mostly used for the error detection of linear axes, and the cost is high, and they are not suitable for the detection and identification of rotary axis errors. Therefore, it is necessary to study a convenient, fast and low-cost rotary axis error detection and identification technology.

发明内容Contents of the invention

本发明要解决的技术难题是克服现有技术的问题,发明一种基于双目视觉的机床旋转轴安装误差测量方法。将多组反光编码标记点贴于待测旋转轴表面,数控系统控制机床旋转轴定角度旋转,并在每个角度利用双目视觉采集反光编码标记点,并获得编码标记点三维位置信息。基于上述标记点位置信息,采用最小二乘法拟合空间圆,并获得空间圆的位置坐标,与理想轴中心位置比较获得待测旋转轴中心线性误差;同时,利用标记点位置拟合空间平面,此平面的法向矢量与理想转轴轴线矢量比较,可测得转轴安装的角度误差。此方法采用圆形标记点,不仅图像处理程序简单、特征提取精度高,而且鲁棒性好、测量快速、便捷。同时,该方法解决了数控机床旋转轴安装误差检测、辨识困难的问题,为机床误差检测与辨识技术提供了新的方向。The technical problem to be solved by the present invention is to overcome the problems of the prior art and to invent a method for measuring the installation error of the rotating shaft of a machine tool based on binocular vision. Affix multiple sets of reflective coding marks on the surface of the rotating shaft to be tested, the numerical control system controls the rotating shaft of the machine tool to rotate at a fixed angle, and uses binocular vision to collect reflective coding marking points at each angle, and obtain the three-dimensional position information of the coding marking points. Based on the position information of the above marker points, the least square method is used to fit the space circle, and the position coordinates of the space circle are obtained, and compared with the ideal axis center position, the linear error of the center of the rotation axis to be measured is obtained; at the same time, the space plane is fitted by the position of the mark points, The normal vector of this plane is compared with the ideal shaft axis vector, and the angular error of the shaft installation can be measured. This method uses circular marking points, which not only has simple image processing procedures and high feature extraction accuracy, but also has good robustness, fast and convenient measurement. At the same time, this method solves the problem of difficult detection and identification of the installation error of the rotation axis of the CNC machine tool, and provides a new direction for the error detection and identification technology of the machine tool.

本发明所采用的技术方案是一种基于双目视觉的数控机床旋转轴误差检测方法,其特征是,本发明采用高分辨率双目视觉系统,采集贴于机床转台表面圆环编码标记点的位置信息,转台每转过一定的角度,视觉系统采集一次,直到旋转一周。最后经过摄像机标定、图像分割、标记点提取、机床旋转轴误差辨识模型实现机床旋转轴的两项位置误差与两项角度误差的检测采集,得到机床旋转轴的4项安装误差,完成几何参数的快速测量;检测方法具体步骤如下:The technical solution adopted in the present invention is a binocular vision-based method for detecting the rotation axis error of a CNC machine tool, which is characterized in that the present invention adopts a high-resolution binocular vision system to collect and affix the circular code mark points on the surface of the machine tool turntable. Position information, every time the turntable rotates through a certain angle, the vision system collects it once until it rotates once. Finally, through camera calibration, image segmentation, marker point extraction, and machine tool rotation axis error identification model, the detection and collection of two position errors and two angle errors of the machine tool rotation axis are realized, and four installation errors of the machine tool rotation axis are obtained, and the geometric parameters are completed. Rapid measurement; the specific steps of the detection method are as follows:

(1)摄像机的标定(1) Camera calibration

本发明采用张正友等人提出的基于高精度棋盘格靶标的双目视觉标定方法;The present invention adopts the binocular vision calibration method based on high-precision checkerboard targets proposed by Zhang Zhengyou and others;

首先使用张氏标定方法确定出两相机的内外参数,然后对棋盘格靶标角点进行三维重建,并根据角点重建坐标与实际坐标的偏差,建立函数f(x),对内外参数进行整体优化;如下所示:Firstly, use Zhang’s calibration method to determine the internal and external parameters of the two cameras, then perform three-dimensional reconstruction of the corner points of the checkerboard target, and establish a function f(x) according to the deviation between the reconstructed coordinates of the corner points and the actual coordinates, and optimize the internal and external parameters as a whole ;As follows:

f(x)=(xp-xi)2+(yp-yi)2+(zp-zi)2(1)f(x)=(x p -x i ) 2 +(y p -y i ) 2 +(z p -z i ) 2 (1)

其中:xp,yp,zp为各角点的实际坐标,而xi,yi,zi为重建得到的各角点坐标,则建立目标函数F(x)如下:Among them: x p , y p , z p are the actual coordinates of each corner point, and x i , y i , zi are the reconstructed coordinates of each corner point, then the objective function F(x) is established as follows:

Ff (( xx )) == minmin ΣΣ ii == 11 NN ff (( xx )) 22 -- -- -- (( 22 ))

其中,为所有点偏差函数的平方和,应用LM方法对该目标函数F(x)进行优化,得到内外参数的全局最优解;in, is the sum of squares of all point deviation functions, and the LM method is used to optimize the objective function F(x) to obtain the global optimal solution of internal and external parameters;

(2)图像特征分割(2) Image feature segmentation

首先对图像进行降噪、滤波处理,随后利用灰度阀值法将所有目标特征与背景初步分离,灰度阀值法相应公式:First, noise reduction and filtering are performed on the image, and then all target features are preliminarily separated from the background by using the gray threshold method. The corresponding formula of the gray threshold method is:

{{ gg (( xx ,, ythe y )) &Element;&Element; GG 11 gg (( xx ,, ythe y )) << TT gg (( xx ,, ythe y )) &Element;&Element; GG 22 gg (( xx ,, ythe y )) &GreaterEqual;&Greater Equal; TT -- -- -- (( 33 ))

其中,g(x,y)为图像(x,y)像素点所对应的的灰度值,T表示所选用灰度阀值,G1、G2为背景集合、特征标记集合;然后,对特征标记集合进行连通区域标记,并利用区域面积作为门限值去除图像中不感兴趣的连通区域,相应公式如下:Among them, g(x, y) is the gray value corresponding to the pixel of the image (x, y), T represents the selected gray threshold value, G 1 and G 2 are the background set and feature mark set; then, the The feature mark set is used to mark connected regions, and use the region area as a threshold value to remove uninteresting connected regions in the image. The corresponding formula is as follows:

hh ii (( xx ,, ythe y )) << SS hh ii (( xx ,, ythe y )) == 00 hh ii (( xx ,, ythe y )) &GreaterEqual;&Greater Equal; SS hh ii (( xx ,, ythe y )) == 11 ii == 11 ,, 2....2.... nno -- -- -- (( 44 ))

其中,i=1,2....n为n个连通区域,gi(x,y)为第i个连通区域的面积,S为连通区域面积门限阈值;如果连通区域面积小于S,则将此连通区域设置为背景;Among them, i=1,2....n are n connected regions, g i (x,y) is the area of the i-th connected region, S is the threshold value of the connected region area; if the connected region area is smaller than S, then Set this connected region as the background;

(3)特征标记的提取(3) Extraction of feature marks

1)编码点中心提取:1) Code point center extraction:

首先采用8连通区域标记图像中的连通区域,随后利用曲率约束,将曲率较大与较小的不感兴趣连通区域去除,相应公式如下:First, 8 connected regions are used to mark the connected regions in the image, and then the curvature constraints are used to remove the uninteresting connected regions with larger and smaller curvatures. The corresponding formula is as follows:

gg tt (( ii )) << ee 11 LL (( ii )) == 00 gg tt (( ii )) >> ee 22 LL (( ii )) == 00 ii == 11 ,, 2....2.... nno -- -- -- (( 55 ))

其中,i=1,2....n为n个连通区域,gt(i)为第i个连通区域的离心率,e1,e2为离心率门限值,L(i)=0表示将第i个连通域设置为背景;如此,便可获得准确的编码标记点图像;随后,利用质心算法,获得编码标记点中心坐标;Among them, i=1,2....n are n connected regions, gt(i) is the eccentricity of the i-th connected region, e 1 and e 2 are the eccentricity thresholds, L(i)=0 Indicates that the i-th connected domain is set as the background; in this way, an accurate coded marker image can be obtained; then, using the centroid algorithm, the coordinates of the coded marker center are obtained;

2)编码点识别:2) Code point identification:

本发明采用圆环编码标记点,圆环编码中心为圆标记点1,标记点周围为与其同心的分段圆环区域,用于表征圆环编码的身份信息,称为编码带2;该圆环按照角度平均分为15份,每份24度,相当于一个二进制位;每一位取前景色为白色,后景色为黑色,相应的二进制编码为“1”、“0”;从标记点圆心出发,按照一定方向扫描实心与空心编码带,白色代表实心,黑色代表空心,扫描到实心码带记为1,空心码带记为0;如果没有扫描到编码带,则从中心开始重新扫描;扫描一周后,整个编码点的码值序列即被全部读出,形成一个二进制序列,每个二进制序列又与一个十进制整数对应,从而获得每个编码点的身份信息;The present invention adopts the circular coding marking point, the circular coding center is the circular marking point 1, and the surrounding of the marking point is a segmented ring area concentric with it, which is used to represent the identity information of the circular coding, which is called the coding zone 2; The ring is divided into 15 parts on average according to the angle, and each part is 24 degrees, which is equivalent to a binary bit; each bit takes the foreground color as white and the back color as black, and the corresponding binary codes are "1" and "0"; Starting from the center of the circle, scan the solid and hollow coding tapes in a certain direction, white represents solid, black represents hollow, and the solid code tape is scanned as 1, and the hollow code tape is recorded as 0; if no code tape is scanned, start scanning again from the center ; After scanning for one week, the code value sequence of the entire code point is read out to form a binary sequence, and each binary sequence corresponds to a decimal integer, thereby obtaining the identity information of each code point;

解码后,根据不同编码标记点发的身份信息,将每个角度的同一编码点的像素坐标储存在一个文件下,依次获得所偶标记点左右图像的像素坐标;再利用张氏标定法获得的摄像机的内外参数,重建各个标记点的三维坐标;After decoding, according to the identity information sent by different coded points, the pixel coordinates of the same coded point at each angle are stored in a file, and the pixel coordinates of the left and right images of the even marked points are sequentially obtained; and then obtained by Zhang’s calibration method The internal and external parameters of the camera are used to reconstruct the three-dimensional coordinates of each marked point;

(4)机床旋转轴误差辨识(4) Error identification of the rotary axis of the machine tool

数控机床旋转轴误差主要有两种误差源,分别是连接误差与体积误差;前者与跟机床命令位置无关,通常由于旋转轴安装偏差导致的,后者与机床命令位置有关,受机床零部件加工精度影响;本发明针对机床旋转轴的连接误差,发明一种基于双目视觉的机床旋转轴误差检测辨识方法;连接误差共有4项,包括2项线性位置误差,2项角度误差;There are two main error sources for the rotary axis error of CNC machine tools, namely connection error and volume error; the former has nothing to do with the command position of the machine tool, and is usually caused by the installation deviation of the rotary axis; the latter is related to the command position of the machine tool and is affected by the processing of machine tool parts. Influenced by precision; the present invention aims at the connection error of the machine tool's rotating shaft, and invents a method for detecting and identifying the machine's rotating shaft error based on binocular vision; there are 4 items of connection error, including 2 items of linear position error and 2 items of angle error;

根据已经获得的不同角度下编码点在视觉坐标系下的三维坐标,利用最小二乘法拟合平面,建立平面方程:According to the three-dimensional coordinates of the coding points in the visual coordinate system obtained at different angles, the least square method is used to fit the plane, and the plane equation is established:

Ax+By+Cz+D=0(6)Ax+By+Cz+D=0(6)

其中,A、B、C、D为平面方程系数;经过简化后可得到:Among them, A, B, C, D are plane equation coefficients; after simplification, we can get:

zz == -- AA CC xx -- BB CC ythe y -- DD. CC -- -- -- (( 77 ))

为实现平面拟合,建立目标函数F(x):In order to achieve plane fitting, the objective function F(x) is established:

Ff (( xx )) == mm ii nno &Sigma;&Sigma; ii == 11 nno (( aa 00 xx ii ++ aa 11 ythe y ii ++ aa 22 -- zz ii )) -- -- -- (( 88 ))

其中, a 0 = - A C , a 1 = - B C , a 2 = - D C , (xi,yi,zi)(i=1,2,3...n)为n个编码标记点在视觉坐标系下的三维坐标;由此可以获得拟合的平面,并获得该平面的法向矢量。比较拟合平面的法向矢量与理想平面的法向矢量,解得旋转轴的连接误差的2项角度误差;in, a 0 = - A C , a 1 = - B C , a 2 = - D. C , ( xi , y i , z i )(i=1,2,3...n) are the three-dimensional coordinates of n coded marker points in the visual coordinate system; thus the fitted plane can be obtained, and the The normal vector of the plane. Comparing the normal vector of the fitting plane and the normal vector of the ideal plane, the two angle errors of the connection error of the rotation axis are solved;

为辨识旋转轴连接误差的线性位置误差,根据编码点位置关系,每两个点连成一条直线L1;在旋转轴按照一定角度旋转时,该直线会跟随转轴进行旋转形成直线L2,并且直线L1与直线L2相交于点P1;依次,旋转轴旋转一周,共形成n条直线,每两条直线交于点Pi,i=1,2,....n/2,对这些点的坐标取平均值P,将P视为实际圆的圆心;比较实际圆心与理想圆心的坐标可获得机床旋转轴连接误差的线性位置误差:In order to identify the linear position error of the connection error of the rotating shaft, according to the positional relationship of the coding points, every two points are connected to form a straight line L 1 ; when the rotating shaft rotates at a certain angle, the straight line will follow the rotating shaft to rotate to form a straight line L 2 , and The straight line L 1 and the straight line L 2 intersect at point P 1 ; sequentially, the rotation axis rotates once to form n straight lines, and every two straight lines intersect at point P i , i=1, 2,...n/2, Take the average value P of the coordinates of these points, and regard P as the center of the actual circle; comparing the coordinates of the actual center of the circle with the ideal center of the circle can obtain the linear position error of the connection error of the rotary axis of the machine tool:

er(x)=P(x)-Pideal(x)(9)er(x)=P(x)-P ideal (x)(9)

er(y)=P(y)-Pideal(y)(10)er(y)=P(y) -Pideal (y)(10)

其中,er(x),er(y)分别为旋转轴在X、Y方向线性位置误差,P(x),P(y)为旋转轴实际圆心的X、Y坐标,Pideal(x),Pideal(y)为理想旋转轴圆心的X、Y坐标;Among them, er(x), er(y) are the linear position error of the rotation axis in the X and Y directions respectively, P(x), P(y) are the X and Y coordinates of the actual center of the rotation axis, P ideal (x), P ideal (y) is the X and Y coordinates of the ideal rotation axis circle center;

本发明的有益效果是该方法利用反光编码标记点实现数控机床旋转轴4项连接误差的检测与辨识,具有方便、快捷、鲁棒性好、抗噪能力强、无需激光准直以及其他轴的配合等优点。该方法有效提高了机床旋转轴误差检测的效率,避免了繁琐的测量过程以及复杂的辨识模型,为数控机床误差检测提供了一种快速、便捷的方法;同时为机床其他误差检测提供了基础与方向。The beneficial effect of the present invention is that the method utilizes the reflective coding mark point to realize the detection and identification of the four connection errors of the rotary axis of the CNC machine tool, which is convenient, fast, robust, strong in noise resistance, and does not require laser alignment and other axes. Coordination and other advantages. This method effectively improves the efficiency of machine tool rotation axis error detection, avoids the cumbersome measurement process and complex identification model, and provides a fast and convenient method for error detection of CNC machine tools; at the same time, it provides a basis for other error detection of machine tools. direction.

附图说明Description of drawings

图1为机床误差检测装置模型图。其中,1‐左摄像机、2‐右摄像机、3‐反光编码标记点、4‐机床旋转平台、5‐数控机床。Figure 1 is a model diagram of the machine tool error detection device. Among them, 1‐left camera, 2‐right camera, 3‐reflective coding marking point, 4‐rotary platform of machine tool, 5‐NC machine tool.

图2为圆环编码标记点图。其中,1‐圆标记点,2‐编码带。Fig. 2 is a diagram of marking points of circular coding. Among them, 1‐circle marking point, 2‐coding band.

图3为机床旋转角度轴误差辨识原理图。1‐理想转台平面、2‐实际转台平面、3‐实际转台法向矢量、4‐编码标记点,ε1‐机床旋转轴与实际转台法向矢量3的角度误差,ε2‐机床旋转轴与Z轴的角度误差。Figure 3 is a schematic diagram of the machine tool rotation angle axis error identification. 1‐ideal turntable plane, 2‐actual turntable plane, 3‐actual normal vector of turntable, 4‐coded mark point, ε 1 ‐angular error between machine tool rotation axis and actual turntable normal vector 3, ε 2 ‐machine tool rotation axis and The angular error of the Z axis.

图4为机床旋转轴位置误差辨识原理图。1‐理想转台、2‐实际转台、3‐实际转台中心、4‐编码标记点、5‐理想转台中心,δ1‐机床旋转轴与X轴的线性位置误差,δ2‐机床旋转轴与Y轴的线性位置误差。Figure 4 is a schematic diagram of the position error identification of the rotary axis of the machine tool. 1‐ideal turntable, 2‐actual turntable, 3‐actual turntable center, 4‐coded mark point, 5‐ideal turntable center, δ 1 ‐linear position error between machine tool rotation axis and X axis, δ 2 ‐machine tool rotation axis and Y The linear position error of the axis.

具体实施方式Detailed ways

以下结合技术方案和附图详细叙述本发明的具体实施方式。附图1为基于双目视觉的机床误差检测装置模型图。本方法通过左、右两台摄像机1、2采集被测转台表面的编码标记点的坐标信息,经处理解辨识旋转轴链接误差。The specific embodiments of the present invention will be described in detail below in conjunction with the technical solutions and accompanying drawings. Accompanying drawing 1 is a model diagram of a machine tool error detection device based on binocular vision. In the method, two left and right cameras 1 and 2 are used to collect coordinate information of coded marking points on the surface of the measured turntable, and after processing, the link error of the rotation axis is resolved and identified.

先安装测量装置,将左、右摄像机1、2安装在旋转轴上方,并将左、右高速摄像机1、2固定,调整位置使得测量视场在左、右高速摄像机1、2的公共视场内,调节光源亮度以提高测量空间的亮度;随后,将反光标记点3任意贴于转台4表面,并控制机床按一定角度转动,每转动一次,左右相机1、2拍摄一次,直到转台4旋转一周;最后,由图形工作站进行双目相机标定、图像分割、特征提取、误差辨识等工作。Install the measurement device first, install the left and right cameras 1 and 2 above the rotation axis, fix the left and right high-speed cameras 1 and 2, and adjust the position so that the measurement field of view is in the common field of view of the left and right high-speed cameras 1 and 2 Inside, adjust the brightness of the light source to increase the brightness of the measurement space; then, affix the reflective markers 3 on the surface of the turntable 4 arbitrarily, and control the machine tool to rotate at a certain angle. Every time it rotates, the left and right cameras 1 and 2 take pictures once until the turntable 4 rotates One week; at the end, the graphics workstation will perform tasks such as binocular camera calibration, image segmentation, feature extraction, and error identification.

本发明采用两个高分辨率摄像机1、2拍摄物体运动情况,两个摄像机型号为VA‐29M摄像机,分辨率:6576×4384,靶面尺寸:35mm,帧频:5fps。镜头型号为佳能EF24‐70mmf/2.8LIIUSM变焦镜头,参数如下所示,镜头焦距:f=24‐70,最大光圈:F2.8,,镜头重量:805g,镜头尺寸:88.5mm×113mm。拍摄条件如下:,图片像素为6576×4384,镜头焦距为50mm,物距为460mm,视场约为200mm×200mm。The present invention adopts two high-resolution cameras 1 and 2 to shoot the motion of the object. The two cameras are VA-29M cameras with a resolution of 6576×4384, a target surface size of 35 mm, and a frame rate of 5 fps. The lens model is Canon EF24‐70mmf/2.8LIIUSM zoom lens, the parameters are as follows, lens focal length: f=24‐70, maximum aperture: F2.8, lens weight: 805g, lens size: 88.5mm×113mm. The shooting conditions are as follows: the pixel of the picture is 6576×4384, the focal length of the lens is 50mm, the object distance is 460mm, and the field of view is about 200mm×200mm.

(1)进行高速摄像机的标定(1) Carry out the calibration of the high-speed camera

本发明采用以张正友等人提出的基于二维平面棋盘格靶标的摄像机标定方法为基础,进行标定得到两高速相机的内参数K,外参数[RT],畸变系数δ,再应用Levenberg-Marquardt(LM)方法对公式(2)进行优化,可得到双目视觉系统各摄像机内外参数的全局最优解,标定结果如表1所示:The present invention adopts the camera calibration method based on the two-dimensional planar checkerboard target proposed by Zhang Zhengyou et al. to perform calibration to obtain the internal parameter K, external parameter [RT], and distortion coefficient δ of the two high-speed cameras, and then apply Levenberg-Marquardt( The LM) method optimizes formula (2), and the global optimal solution of the internal and external parameters of each camera in the binocular vision system can be obtained. The calibration results are shown in Table 1:

表1标定结果Table 1 Calibration results

(2)图像特征分割(2) Image feature segmentation

利用灰度阀值法对所采集到图像进行预处理,根据公式(3),通过灰度阈值,将编码标记点与背景初步分离。随后,对编码标记集合进行连通区域标记,并利用区域面积作为门限值去除图像中不感兴趣的连通区域,最终实现图像分割。The gray threshold method is used to preprocess the collected images. According to the formula (3), the coded marker points are initially separated from the background through the gray threshold. Then, mark the connected regions on the coded label set, and use the region area as the threshold value to remove the uninteresting connected regions in the image, and finally realize the image segmentation.

(3)特征标记的提取(3) Extraction of feature marks

采用8连通区域标记图像中的连通区域,随后利用曲率约束,将曲率较大与较小的不感兴趣连通区域去除,获得清晰图像。同时利用质心算法,获得编码标记点中心坐标;图2为圆形编码标记点图,表示出圆标记点1为白色,周围环形区域表示编码标记点身份信息为编码带2。从圆标记点圆心出发,按照顺时针方向,扫描实心与空心编码带。其中,白色代表实心,黑色代表空心,扫描到实心码带记为1,空心码带记为0。扫描一周后,读出整个编码点的码值序列,形成一个二进制序列001100111011111,并转化成一个十进制整数6607,从而获得每个编码点的身份信息。此外,经过双目重建,可以获得编码标记点的三维坐标。8-connected regions are used to mark the connected regions in the image, and then the curvature constraints are used to remove the uninteresting connected regions with larger and smaller curvatures to obtain a clear image. At the same time, the centroid algorithm is used to obtain the central coordinates of the coded mark points; Figure 2 is a circular coded mark point diagram, which shows that the circle mark point 1 is white, and the surrounding ring area indicates that the identity information of the coded mark point is coded band 2. Starting from the center of the circle marking point, scan the solid and hollow coding tapes in a clockwise direction. Among them, white represents solid, black represents hollow, and the solid code tape is recorded as 1, and the hollow code tape is recorded as 0. After scanning for one week, read out the code value sequence of the entire code point to form a binary sequence 001100111011111, and convert it into a decimal integer 6607 to obtain the identity information of each code point. In addition, after binocular reconstruction, the 3D coordinates of the coded marker points can be obtained.

(4)机床旋转轴误差辨识(4) Error identification of the rotary axis of the machine tool

本发明中,控制机床每5°转一次,共转动360°,且每个角度采集一次左右图像,并重建出编码点三维坐标。为实现机床旋转轴连接误差的检测与辨识,分别进行平面拟合与圆心求取。首先,附图3所示,根据已经获得的不同角度下编码点4在视觉坐标系下的三维坐标,利用公式(6)、(7)、(8),通过最小二乘法拟合标记点平面2,并经过计算获得该平面的法向矢量3。比较拟合平面的法向矢量3与理想平面的法向矢量,Z轴矢量视为理想平面法向矢量,解得机床旋转轴与实际转台法向矢量3的角度误差ε1,机床旋转轴与Z轴的角度误差ε2两项角度误差。In the present invention, the machine tool is controlled to rotate once every 5°, a total of 360°, and the left and right images are collected once at each angle, and the three-dimensional coordinates of the coding points are reconstructed. In order to realize the detection and identification of the connection error of the rotary axis of the machine tool, the plane fitting and the calculation of the center of the circle are carried out respectively. First, as shown in accompanying drawing 3, according to the three-dimensional coordinates of the coding point 4 in the visual coordinate system obtained at different angles, use the formulas (6), (7), and (8) to fit the plane of the marked point by the least square method 2, and obtain the normal vector 3 of the plane through calculation. Comparing the normal vector 3 of the fitting plane with the normal vector of the ideal plane, the Z-axis vector is regarded as the normal vector of the ideal plane, and the angle error ε 1 between the machine tool rotation axis and the actual turntable normal vector 3 is obtained, and the machine tool rotation axis and The angular error of the Z axis ε 2 two-term angular error.

为辨识旋转轴连接误差的线性位置误差,根据编码点位置关系,选择2个编码点,形成1条直线,记为初始直线L1。机床每5°转动一次,没转动一次都会形成新的直线,依次转动一周,每条初始直线都会形成71条新的直线,这些直线的交点视为圆心O,如附图4所示,最终通过三组实验取平均值,确定准确圆心。利用公式(9)、(10)比较实际圆心3与理想圆心5的坐标,最终获得机床旋转轴与X轴的线性位置误差δ1、机床旋转轴与Y轴的线性位置误差δ2In order to identify the linear position error of the connection error of the rotary axis, according to the positional relationship of the code points, two code points are selected to form a straight line, which is denoted as the initial straight line L 1 . The machine tool rotates every 5°, and a new straight line will be formed without turning once, and each initial straight line will form 71 new straight lines. The intersection of these straight lines is regarded as the center O, as shown in Figure 4, and finally passed Three sets of experiments were averaged to determine the exact center of the circle. Use formulas (9) and (10) to compare the coordinates of the actual center 3 and the ideal center 5, and finally obtain the linear position error δ 1 between the machine tool rotation axis and the X axis, and the linear position error δ 2 between the machine tool rotation axis and the Y axis.

本发明利用双目视觉检测编码标记点信息,并通过建立较简单的误差辨识模型,实现机床旋转轴误差检测与辨识。该方法具有方便、快捷、鲁棒性好、抗噪能力强、无需激光准直以及其他轴的配合等优点有效提高了机床旋转轴误差检测的效率,同时为机床其他误差检测提供了基础与方向。The invention uses binocular vision to detect coded marking point information, and establishes a relatively simple error identification model to realize the error detection and identification of the rotation axis of the machine tool. This method has the advantages of convenience, quickness, good robustness, strong anti-noise ability, no need for laser alignment and cooperation with other axes, etc. It effectively improves the efficiency of machine tool rotation axis error detection, and at the same time provides the basis and direction for other error detection of machine tools .

Claims (1)

1.一种基于双目视觉的数控机床旋转轴误差检测方法,其特征是,本发明采用高分辨率双目视觉系统,采集贴于机床转台表面圆环编码标记点的位置信息,转台每转过一定的角度,视觉系统采集一次,直到旋转一周。最后经过摄像机标定、图像分割、标记点提取、机床旋转轴误差辨识模型实现机床旋转轴的两项位置误差与两项角度误差的检测采集,完成几何参数的快速测量;检测方法具体步骤如下:1. A method for detecting the error of the axis of rotation of a numerically controlled machine tool based on binocular vision, characterized in that the present invention adopts a high-resolution binocular vision system to collect the positional information attached to the circular code mark point on the surface of the turntable of the machine tool. After a certain angle, the vision system collects once until it rotates once. Finally, through camera calibration, image segmentation, marker point extraction, and machine tool rotation axis error identification model, the detection and collection of two position errors and two angle errors of the machine tool rotation axis are realized, and the rapid measurement of geometric parameters is completed. The specific steps of the detection method are as follows: (1)摄像机的标定(1) Camera calibration 本发明采用张正友等人提出的基于高精度棋盘格靶标的双目视觉标定方法;The present invention adopts the binocular vision calibration method based on high-precision checkerboard targets proposed by Zhang Zhengyou and others; 首先使用张氏标定方法确定出两相机的内外参数,然后对棋盘格靶标角点进行三维重建,并根据角点重建坐标与实际坐标的偏差,建立函数f(x),对内外参数进行整体优化;如下所示:Firstly, use Zhang’s calibration method to determine the internal and external parameters of the two cameras, then perform three-dimensional reconstruction of the corner points of the checkerboard target, and establish a function f(x) according to the deviation between the reconstructed coordinates of the corner points and the actual coordinates, and optimize the internal and external parameters as a whole ;As follows: f(x)=(xp-xi)2+(yp-yi)2+(zp-zi)2(1)f(x)=(x p -x i ) 2 +(y p -y i ) 2 +(z p -z i ) 2 (1) 其中:xp,yp,zp为各角点的实际坐标,而xi,yi,zi为重建得到的各角点坐标,则可建立目标函数F(x)如下:Among them: x p , y p , z p are the actual coordinates of each corner point, and x i , y i , zi are the reconstructed coordinates of each corner point, then the objective function F(x) can be established as follows: Ff (( xx )) == mm ii nno &Sigma;&Sigma; ii == 11 NN ff (( xx )) 22 -- -- -- (( 22 )) 其中,为所有点偏差函数的平方和,应用LM方法对该目标函数F(x)进行优化,得到内外参数的全局最优解;in, is the sum of squares of all point deviation functions, and the LM method is used to optimize the objective function F(x) to obtain the global optimal solution of internal and external parameters; (2)图像特征分割(2) Image feature segmentation 首先对图像进行降噪、滤波处理,利用灰度阀值法将所有目标特征与背景初步分离,灰度阀值法相应公式:First, noise reduction and filtering are performed on the image, and all target features are initially separated from the background by using the gray threshold method. The corresponding formula of the gray threshold method is: {{ gg (( xx ,, ythe y )) &Element;&Element; GG 11 gg (( xx ,, ythe y )) << TT gg (( xx ,, ythe y )) &Element;&Element; GG 22 gg (( xx ,, ythe y )) &GreaterEqual;&Greater Equal; TT -- -- -- (( 33 )) 其中,g(x,y)为图像(x,y)像素点所对应的的灰度值,T表示所选用灰度阀值,G1、G2为背景集合、特征标记集合;对特征标记集合进行连通区域标记,并利用区域面积作为门限值去除图像中不感兴趣的连通区域,相应公式如下:Among them, g(x, y) is the gray value corresponding to the pixel of the image (x, y), T represents the selected gray threshold value, G 1 and G 2 are the background set and feature mark set; for feature mark The set is marked with connected regions, and the area of the region is used as the threshold value to remove uninteresting connected regions in the image. The corresponding formula is as follows: {{ hh ii (( xx ,, ythe y )) << SS hh ii (( xx ,, ythe y )) == 00 hh ii (( xx ,, ythe y )) &GreaterEqual;&Greater Equal; SS hh ii (( xx ,, ythe y )) == 11 ii == 11 ,, 2....2.... nno -- -- -- (( 44 )) 其中,i=1,2....n为n个连通区域,gi(x,y)为第i个连通区域的面积,S为连通区域面积门限阈值;如果连通区域面积小于S,则将此连通区域设置为背景;Among them, i=1,2....n are n connected regions, g i (x,y) is the area of the i-th connected region, S is the threshold value of the connected region area; if the connected region area is smaller than S, then Set this connected region as the background; (3)特征标记的提取(3) Extraction of feature marks 1)编码点中心提取:1) Code point center extraction: 首先采用8连通区域标记图像中的连通区域,随后利用曲率约束,将曲率较大与较小的不感兴趣连通区域去除,相应公式如下:First, 8 connected regions are used to mark the connected regions in the image, and then the curvature constraints are used to remove the uninteresting connected regions with larger and smaller curvatures. The corresponding formula is as follows: gg tt (( ii )) << ee 11 LL (( ii )) == 00 gg tt (( ii )) >> ee 22 LL (( ii )) == 00 ii == 11 ,, 2....2.... nno -- -- -- (( 55 )) 其中,i=1,2....n为n个连通区域,gt(i)为第i个连通区域的离心率,e1,e2为离心率门限值,L(i)=0表示将第i个连通域设置为背景;如此,便获得准确的编码标记点图像;利用质心算法,获得编码标记点中心坐标;Among them, i=1,2....n are n connected regions, gt(i) is the eccentricity of the i-th connected region, e 1 and e 2 are the eccentricity thresholds, L(i)=0 Indicates that the i-th connected domain is set as the background; in this way, an accurate coded marker image is obtained; using the centroid algorithm, the coordinates of the coded marker center are obtained; 2)编码点识别:2) Code point identification: 本发明采用圆环编码标记点,圆环编码中心为圆标记点(1),标记点周围为与其同心的分段圆环区域,用于表征圆环编码的身份信息,称为编码带(2);该圆环按照角度平均分为15份,每份24度,相当于一个二进制位;每一位取前景色为白色,后景色为黑色,相应的二进制编码为“1”、“0”;从标记点圆心出发,按照一定方向,扫描实心与空心编码带,扫描到实心码带记为1,空心码带记为0,如果没有扫描到编码带,则从中心开始重新扫描;扫描一周后,整个编码点的码值序列即被全部读出,形成一个二进制序列,每个二进制序列又与一个十进制整数对应,从而获得每个编码点的身份信息;The present invention adopts the ring coding marking point, the ring coding center is the circular marking point (1), and the surrounding of the marking point is a segmented ring area concentric with it, which is used to represent the identity information of the ring coding, called the coding band (2 ); the ring is divided into 15 parts on average according to the angle, and each part is 24 degrees, which is equivalent to a binary bit; each bit takes the foreground color as white and the back color as black, and the corresponding binary codes are "1" and "0". ;Starting from the center of the marked point, scan the solid and hollow coding tapes according to a certain direction. When the solid code tape is scanned, it is recorded as 1, and the hollow code tape is recorded as 0. If the code tape is not scanned, start scanning again from the center; scan for one week After that, the code value sequence of the entire code point is read out completely to form a binary sequence, and each binary sequence corresponds to a decimal integer, thereby obtaining the identity information of each code point; 解码后,根据不同编码标记点发的身份信息,将每个角度的同一编码点的像素坐标储存在一个文件下,依次获得所偶标记点左右图像的像素坐标;再利用张氏标定法获得的摄像机的内外参数,重建各个标记点的三维坐标;After decoding, according to the identity information sent by different coded points, the pixel coordinates of the same coded point at each angle are stored in a file, and the pixel coordinates of the left and right images of the even marked points are sequentially obtained; and then obtained by Zhang’s calibration method The internal and external parameters of the camera are used to reconstruct the three-dimensional coordinates of each marked point; (4)机床旋转轴误差辨识(4) Error identification of the rotary axis of the machine tool 本发明针对机床旋转轴的连接误差进行检测辨识,包括2项线性位置误差,2项角度误差;The invention detects and identifies the connection error of the rotary axis of the machine tool, including two linear position errors and two angular errors; 根据已经获得的不同角度下编码点在视觉坐标系下的三维坐标,利用最小二乘法拟合平面,建立平面方程:According to the three-dimensional coordinates of the coding points in the visual coordinate system obtained at different angles, the least square method is used to fit the plane, and the plane equation is established: Ax+By+Cz+D=0(6)Ax+By+Cz+D=0(6) 其中,A、B、C、D为平面方程系数;经过简化后可得到:Among them, A, B, C, D are plane equation coefficients; after simplification, we can get: zz == -- AA CC xx -- BB CC ythe y -- DD. CC -- -- -- (( 77 )) 为实现平面拟合,建立目标函数F(x):In order to achieve plane fitting, the objective function F(x) is established: Ff (( xx )) == mm ii nno &Sigma;&Sigma; ii == 11 nno (( aa 00 xx ii ++ aa 11 ythe y ii ++ aa 22 -- zz ii )) -- -- -- (( 88 )) 其中, a 0 = - A C , a 1 = - B C , a 2 = - D C , (xi,yi,zi)(i=1,2,3...n)为n个编码标记点在视觉坐标系下的三维坐标;由此可以获得拟合的平面,并获得该平面的法向矢量。比较拟合平面的法向矢量与理想平面的法向矢量,解得旋转轴的连接误差的2项角度误差;in, a 0 = - A C , a 1 = - B C , a 2 = - D. C , ( xi , y i , z i )(i=1,2,3...n) are the three-dimensional coordinates of n coded marker points in the visual coordinate system; thus the fitted plane can be obtained, and the The normal vector of the plane. Comparing the normal vector of the fitting plane and the normal vector of the ideal plane, the two angle errors of the connection error of the rotation axis are solved; 为辨识旋转轴连接误差的线性位置误差,根据编码点位置关系,每两个点连成一条直线L1;在旋转轴按照一定角度旋转时,该直线会跟随转轴进行旋转形成直线L2,并且直线L1与直线L2相交于点P1;依次,旋转轴旋转一周,共形成n条直线,每两条直线交于点Pi,i=1,2,3…n/2,对这些点的坐标取平均值P,将P视为实际圆的圆心;比较实际圆心与理想圆心的坐标可获得机床旋转轴连接误差的线性位置误差:In order to identify the linear position error of the connection error of the rotating shaft, according to the positional relationship of the coding points, every two points are connected to form a straight line L 1 ; when the rotating shaft rotates at a certain angle, the straight line will follow the rotating shaft to rotate to form a straight line L 2 , and The straight line L 1 and the straight line L 2 intersect at point P 1 ; sequentially, the rotation axis rotates once to form n straight lines, and every two straight lines intersect at point P i , i=1, 2, 3...n/2, for these The coordinates of the points take the average value P, and P is regarded as the center of the actual circle; comparing the coordinates of the actual center of the circle with the ideal center of the circle can obtain the linear position error of the connection error of the rotary axis of the machine tool: er(x)=P(x)-Pideal(x)(9)er(x)=P(x)-P ideal (x)(9) er(y)=P(y)-Pideal(y)(10)er(y)=P(y) -Pideal (y)(10) 其中,er(x),er(y)分别为旋转轴在X、Y方向线性位置误差,P(x),P(y)为旋转轴实际圆心的X、Y坐标,Pideal(x),Pideal(y)为理想旋转轴圆心的X、Y坐标。Among them, er(x), er(y) are the linear position error of the rotation axis in the X and Y directions respectively, P(x), P(y) are the X and Y coordinates of the actual center of the rotation axis, P ideal (x), P ideal (y) is the X and Y coordinates of the ideal rotation axis circle center.
CN201510527601.2A 2015-08-25 2015-08-25 Digit Control Machine Tool rotary shaft error detection method based on binocular vision Active CN105043259B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510527601.2A CN105043259B (en) 2015-08-25 2015-08-25 Digit Control Machine Tool rotary shaft error detection method based on binocular vision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510527601.2A CN105043259B (en) 2015-08-25 2015-08-25 Digit Control Machine Tool rotary shaft error detection method based on binocular vision

Publications (2)

Publication Number Publication Date
CN105043259A true CN105043259A (en) 2015-11-11
CN105043259B CN105043259B (en) 2017-07-11

Family

ID=54449999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510527601.2A Active CN105043259B (en) 2015-08-25 2015-08-25 Digit Control Machine Tool rotary shaft error detection method based on binocular vision

Country Status (1)

Country Link
CN (1) CN105043259B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105382631A (en) * 2015-12-15 2016-03-09 福建工程学院 Equipment and method for detecting error of rotating shaft of five-axis numerical control machine tool
CN105758383A (en) * 2015-12-30 2016-07-13 中国科学院长春光学精密机械与物理研究所 Precision analysis method for binocular vision measuring system
CN106017326A (en) * 2016-08-02 2016-10-12 清华大学 Point location accuracy evaluation method for gantry drilling machine tool
CN107144248A (en) * 2017-05-31 2017-09-08 天津大学 A kind of scaling method of Digit Control Machine Tool turntable error
CN105469418B (en) * 2016-01-04 2018-04-20 中车青岛四方机车车辆股份有限公司 Based on photogrammetric big field-of-view binocular vision calibration device and method
CN107990841A (en) * 2017-11-20 2018-05-04 中国科学院长春光学精密机械与物理研究所 A kind of auxiliary device for three-dimensional scanning measurement
CN108036753A (en) * 2017-12-01 2018-05-15 成都飞机工业(集团)有限责任公司 A kind of machine tool accuracy detection instrument and its application method
CN108620955A (en) * 2018-04-18 2018-10-09 大连理工大学 Machine tool rotary axis error based on monocular vision measures and discrimination method
CN109579871A (en) * 2018-11-14 2019-04-05 中国直升机设计研究所 Inertial navigation components installation error detection method and device based on computer vision
WO2019090487A1 (en) * 2017-11-07 2019-05-16 大连理工大学 Highly dynamic wide-range any-contour-error monocular six-dimensional measurement method for numerical control machine tool
CN110108207A (en) * 2019-05-16 2019-08-09 博众精工科技股份有限公司 Rotary shaft centre of gyration line geometry error calibrating method based on probe
CN110375680A (en) * 2019-07-17 2019-10-25 朱承智 The measuring method of revolving body dynamic shaft core position based on binocular visual positioning technology
CN110812710A (en) * 2019-10-22 2020-02-21 苏州雷泰智能科技有限公司 Accelerator frame rotation angle measuring system and method and radiotherapy equipment
CN111199542A (en) * 2019-12-30 2020-05-26 季华实验室 Precise positioning method of tooling board
CN111275667A (en) * 2020-01-13 2020-06-12 武汉科技大学 A processing error detection method, device and processing method
CN111336918A (en) * 2020-03-10 2020-06-26 深圳市兴华炜科技有限公司 Plug-in clamping jaw detection process and system and clamping jaw
CN111649671A (en) * 2020-06-11 2020-09-11 中国航空工业集团公司北京航空精密机械研究所 Multi-axis vision measurement system and calibration method for rotation axis position of pitching table
CN112611318A (en) * 2020-12-03 2021-04-06 深圳数马电子技术有限公司 Method and device for measuring motion axis error
CN112991464A (en) * 2021-03-19 2021-06-18 山东大学 Point cloud error compensation method and system based on three-dimensional reconstruction of stereoscopic vision
CN113205561A (en) * 2021-05-20 2021-08-03 清华大学 Rotating shaft pose detection method and device based on vision
CN115471551A (en) * 2022-09-13 2022-12-13 苏州市凌臣采集计算机有限公司 Method and device for obtaining coordinates of dispensing point positions, computer equipment and readable storage medium
CN115933530A (en) * 2022-12-15 2023-04-07 上海维宏电子科技股份有限公司 Five-axis dynamic error compensation method, device, processor and computer-readable storage medium applied in numerical control system
CN116734774A (en) * 2023-08-09 2023-09-12 合肥安迅精密技术有限公司 Method and system for testing and compensating rotation precision of R axis to Z axis of mounting head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768759A (en) * 1996-11-19 1998-06-23 Zevatech, Inc. Method and apparatus for reflective in-flight component registration
CN103323229A (en) * 2013-07-08 2013-09-25 重庆工业职业技术学院 Rotation axis error detection method of five-axis numerical control machine tool based on machine vision
CN103878641A (en) * 2014-03-14 2014-06-25 浙江大学 Rotating shaft geometric error identification method commonly used for five-axis numerical control machine tool
CN103913131A (en) * 2014-04-14 2014-07-09 大连理工大学 Free curve method vector measurement method based on binocular vision
CN104308657A (en) * 2014-10-14 2015-01-28 浙江大学 Machine tool rotating shaft geometry error six-circle identifying method based on measuring of ball bar instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768759A (en) * 1996-11-19 1998-06-23 Zevatech, Inc. Method and apparatus for reflective in-flight component registration
CN103323229A (en) * 2013-07-08 2013-09-25 重庆工业职业技术学院 Rotation axis error detection method of five-axis numerical control machine tool based on machine vision
CN103878641A (en) * 2014-03-14 2014-06-25 浙江大学 Rotating shaft geometric error identification method commonly used for five-axis numerical control machine tool
CN103913131A (en) * 2014-04-14 2014-07-09 大连理工大学 Free curve method vector measurement method based on binocular vision
CN104308657A (en) * 2014-10-14 2015-01-28 浙江大学 Machine tool rotating shaft geometry error six-circle identifying method based on measuring of ball bar instrument

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘巍等: "基于双目视觉的转动惯量测量方法", 《基于双目视觉的转动惯量测量方法 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105382631B (en) * 2015-12-15 2017-12-19 福建工程学院 A kind of detection device and method of five-axle number control machine tool rotation axis error
CN105382631A (en) * 2015-12-15 2016-03-09 福建工程学院 Equipment and method for detecting error of rotating shaft of five-axis numerical control machine tool
CN105758383A (en) * 2015-12-30 2016-07-13 中国科学院长春光学精密机械与物理研究所 Precision analysis method for binocular vision measuring system
CN105469418B (en) * 2016-01-04 2018-04-20 中车青岛四方机车车辆股份有限公司 Based on photogrammetric big field-of-view binocular vision calibration device and method
CN106017326A (en) * 2016-08-02 2016-10-12 清华大学 Point location accuracy evaluation method for gantry drilling machine tool
CN107144248B (en) * 2017-05-31 2019-07-19 天津大学 A Calibration Method for Rotary Table Error of CNC Machine Tool
CN107144248A (en) * 2017-05-31 2017-09-08 天津大学 A kind of scaling method of Digit Control Machine Tool turntable error
US11014211B2 (en) 2017-11-07 2021-05-25 Dalian University Of Technology Monocular vision six-dimensional measurement method for high-dynamic large-range arbitrary contouring error of CNC machine tool
WO2019090487A1 (en) * 2017-11-07 2019-05-16 大连理工大学 Highly dynamic wide-range any-contour-error monocular six-dimensional measurement method for numerical control machine tool
CN107990841A (en) * 2017-11-20 2018-05-04 中国科学院长春光学精密机械与物理研究所 A kind of auxiliary device for three-dimensional scanning measurement
CN108036753A (en) * 2017-12-01 2018-05-15 成都飞机工业(集团)有限责任公司 A kind of machine tool accuracy detection instrument and its application method
CN108620955A (en) * 2018-04-18 2018-10-09 大连理工大学 Machine tool rotary axis error based on monocular vision measures and discrimination method
CN108620955B (en) * 2018-04-18 2019-11-19 大连理工大学 Measurement and Identification Method of Rotary Axis Error of Machine Tool Based on Monocular Vision
CN109579871A (en) * 2018-11-14 2019-04-05 中国直升机设计研究所 Inertial navigation components installation error detection method and device based on computer vision
CN110108207A (en) * 2019-05-16 2019-08-09 博众精工科技股份有限公司 Rotary shaft centre of gyration line geometry error calibrating method based on probe
CN110108207B (en) * 2019-05-16 2021-02-19 博众精工科技股份有限公司 Method for calibrating geometric error of rotation center line of rotating shaft based on probe
CN110375680A (en) * 2019-07-17 2019-10-25 朱承智 The measuring method of revolving body dynamic shaft core position based on binocular visual positioning technology
CN110812710A (en) * 2019-10-22 2020-02-21 苏州雷泰智能科技有限公司 Accelerator frame rotation angle measuring system and method and radiotherapy equipment
CN110812710B (en) * 2019-10-22 2021-08-13 苏州雷泰智能科技有限公司 Accelerator frame rotation angle measuring system and method and radiotherapy equipment
CN111199542A (en) * 2019-12-30 2020-05-26 季华实验室 Precise positioning method of tooling board
CN111275667B (en) * 2020-01-13 2024-05-24 武汉科技大学 Machining error detection method, device and machining method
CN111275667A (en) * 2020-01-13 2020-06-12 武汉科技大学 A processing error detection method, device and processing method
CN111336918A (en) * 2020-03-10 2020-06-26 深圳市兴华炜科技有限公司 Plug-in clamping jaw detection process and system and clamping jaw
CN111649671A (en) * 2020-06-11 2020-09-11 中国航空工业集团公司北京航空精密机械研究所 Multi-axis vision measurement system and calibration method for rotation axis position of pitching table
CN112611318A (en) * 2020-12-03 2021-04-06 深圳数马电子技术有限公司 Method and device for measuring motion axis error
CN112991464A (en) * 2021-03-19 2021-06-18 山东大学 Point cloud error compensation method and system based on three-dimensional reconstruction of stereoscopic vision
CN113205561A (en) * 2021-05-20 2021-08-03 清华大学 Rotating shaft pose detection method and device based on vision
CN113205561B (en) * 2021-05-20 2024-10-01 清华大学 Visual-based pivot pose detection method and device
CN115471551A (en) * 2022-09-13 2022-12-13 苏州市凌臣采集计算机有限公司 Method and device for obtaining coordinates of dispensing point positions, computer equipment and readable storage medium
CN115471551B (en) * 2022-09-13 2023-09-01 苏州市凌臣采集计算机有限公司 Coordinate acquisition method and device for dispensing point positions, computer equipment and readable storage medium
CN115933530A (en) * 2022-12-15 2023-04-07 上海维宏电子科技股份有限公司 Five-axis dynamic error compensation method, device, processor and computer-readable storage medium applied in numerical control system
CN116734774A (en) * 2023-08-09 2023-09-12 合肥安迅精密技术有限公司 Method and system for testing and compensating rotation precision of R axis to Z axis of mounting head
CN116734774B (en) * 2023-08-09 2023-11-28 合肥安迅精密技术有限公司 Method and system for testing and compensating rotation precision of R axis to Z axis of mounting head

Also Published As

Publication number Publication date
CN105043259B (en) 2017-07-11

Similar Documents

Publication Publication Date Title
CN105043259B (en) Digit Control Machine Tool rotary shaft error detection method based on binocular vision
CN108921901B (en) A large field of view camera calibration method based on precision two-axis turntable and laser tracker
CN108648232B (en) Binocular stereoscopic vision sensor integrated calibration method based on precise two-axis turntable
CN105698699B (en) A kind of Binocular vision photogrammetry method based on time rotating shaft constraint
CN104075688B (en) A kind of binocular solid stares the distance-finding method of monitoring system
CN105205824B (en) Multiple-camera global calibration method based on high-precision auxiliary camera and ball target
CN103278139B (en) A kind of varifocal single binocular vision sensing device
CN102221331B (en) Measuring method based on asymmetric binocular stereovision technology
Luna et al. Calibration of line-scan cameras
CN109163657B (en) Round target pose detection method based on binocular vision three-dimensional reconstruction
CN106990776B (en) Robot homing positioning method and system
CN104154875A (en) Three-dimensional data acquisition system and acquisition method based on two-axis rotation platform
CN102693543B (en) Method for automatically calibrating Pan-Tilt-Zoom in outdoor environments
CN111637851B (en) Aruco code-based visual measurement method and device for plane rotation angle
CN103559707B (en) Based on the industrial fixed-focus camera parameter calibration method of motion side&#39;s target earnest
CN101858742A (en) A single-camera-based fixed-focus ranging method
CN104316083A (en) Three-dimensional coordinate calibration device and method of TOF (Time-of-Flight) depth camera based on sphere center positioning of virtual multiple spheres
CN109579695A (en) A kind of parts measurement method based on isomery stereoscopic vision
CN103247048A (en) Camera mixing calibration method based on quadratic curve and straight lines
CN103697811B (en) A kind of camera is combined the method obtaining contour of object three-dimensional coordinate with structure light source
CN116840258A (en) Bridge pier disease detection method based on multifunctional underwater robot and stereo vision
Zheng et al. Calibration of linear structured light system by planar checkerboard
Zhu et al. Rotation axis calibration of laser line rotating-scan system for 3D reconstruction
CN103868455A (en) Method for achieving visual reconstruction of space coordinates of target point in water tank
Zou et al. Flexible extrinsic parameter calibration for multicameras with nonoverlapping field of view

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant