CN105025077A - A cloud computing-based vehicle Internet of Things operation system - Google Patents
A cloud computing-based vehicle Internet of Things operation system Download PDFInfo
- Publication number
- CN105025077A CN105025077A CN201510281874.3A CN201510281874A CN105025077A CN 105025077 A CN105025077 A CN 105025077A CN 201510281874 A CN201510281874 A CN 201510281874A CN 105025077 A CN105025077 A CN 105025077A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- cloud computing
- internet
- things
- subsystem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 18
- 230000008447 perception Effects 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 31
- 238000003860 storage Methods 0.000 abstract description 7
- 238000004458 analytical method Methods 0.000 abstract description 5
- 238000005065 mining Methods 0.000 abstract description 5
- 230000004927 fusion Effects 0.000 abstract description 3
- 238000007726 management method Methods 0.000 description 24
- 238000013500 data storage Methods 0.000 description 14
- 238000011161 development Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000007418 data mining Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000013439 planning Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000013523 data management Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013433 optimization analysis Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4185—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
- G05B19/41855—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by local area network [LAN], network structure
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4189—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
技术领域 technical field
本发明属于云计算和物联网技术领域,尤其是涉及一种基于云计算的车载物联网运营系统。 The invention belongs to the technical fields of cloud computing and the Internet of Things, and in particular relates to a cloud computing-based vehicle Internet of Things operating system.
背景技术 Background technique
车载物联网是物联网在交通行业的具体体现和应用。车载物联网系统,是利用先进传感技术、网络技术、计算技术、控制技术、智能技术,对道路和交通进行全面感知,实现多个系统间大范围、大容量数据的交互,对每一辆汽车进行交通全程控制,对每一条道路进行交通全时空控制,以提供交通效率和交通安全为主的网络与应用。车载物联网的服务可分为三种基本类型,即交通信息与导航服务、安全驾驶与车辆保护服务,以及故障诊断的车辆维护、娱乐及通信服务。 The vehicle-mounted Internet of Things is the concrete embodiment and application of the Internet of Things in the transportation industry. The vehicle-mounted Internet of Things system uses advanced sensing technology, network technology, computing technology, control technology, and intelligent technology to conduct comprehensive perception of roads and traffic, and realize the interaction of large-scale and large-capacity data between multiple systems. Cars control the whole traffic, and control the traffic of each road in full time and space, so as to provide networks and applications that focus on traffic efficiency and traffic safety. The services of in-vehicle IoT can be divided into three basic types, namely, traffic information and navigation services, safe driving and vehicle protection services, and vehicle maintenance, entertainment and communication services for fault diagnosis.
云计算是一种大型分布式计算模式,它利用高速互联网的传输能力,将数据的处理过程从个人计算机或服务器移到互联网上的计算机集群中,通过互联网向外部客户依需求提供抽象、虚拟、动态、可管理的计算能力、储存空间、平台和服务。云计算为车载物联网运营平台的后台数据处理中心提供了一个非常恰当的解决方案,可奠定车载物联网运营平台成功的基石。 Cloud computing is a large-scale distributed computing model, which uses the transmission capacity of the high-speed Internet to move the data processing process from personal computers or servers to computer clusters on the Internet, and provides abstract, virtual, Dynamic, manageable computing power, storage, platforms and services. Cloud computing provides a very appropriate solution for the background data processing center of the vehicle-mounted Internet of Things operation platform, which can lay the cornerstone for the success of the vehicle-mounted Internet of Things operation platform.
当前,车载物联网产生的海量的、分布式的、异构的、复杂的数据给车载物联网运营平台的实现带来了很大困难,处理这些数据的计算复杂度很高,传统的单机服务器系统所能提供的有限计算资源往往不能满足要求。另外,现有的车载物联网运营平台中车载终端不能根据动态路况、天气等环境信息做出智能路径导航、物流配送路径动态规划等问题。 At present, the massive, distributed, heterogeneous, and complex data generated by the vehicle-mounted Internet of Things has brought great difficulties to the realization of the vehicle-mounted Internet of Things operation platform. The computational complexity of processing these data is very high. Traditional stand-alone servers The limited computing resources that the system can provide often cannot meet the requirements. In addition, the vehicle-mounted terminal in the existing vehicle-mounted Internet of Things operation platform cannot make smart route navigation and dynamic logistics distribution route planning based on dynamic road conditions, weather and other environmental information.
如何利用云计算所具有的超大规模、虚拟化、高可靠性、高通用性、高扩展性、按需服务、易使用等优点,把抽象化计算与存储资源动态地分配给需要使用的用户,并结合数据挖掘技术,使同一个数据挖掘算法可以分布在多个节点上,而多个节点之间又并行计算,多个资源实行按需分配,目前还没有一项这样将云计算与车载物联网融合的技术。 How to make use of the advantages of cloud computing, such as ultra-large scale, virtualization, high reliability, high versatility, high scalability, on-demand service, and ease of use, to dynamically allocate abstract computing and storage resources to users who need them, Combined with data mining technology, the same data mining algorithm can be distributed on multiple nodes, and multiple nodes are calculated in parallel, and multiple resources are allocated on demand. At present, there is no such combination of cloud computing and vehicle-mounted Internet-connected technology.
发明内容 Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种基于云计算的车载物联网运营系统,本发明基于云计算的车载物联网的模型结构、基于云计算及SOA架构、Web Service接口服务、GPS导航技术、云计算、物联网技术、RFID技术、物联网数据融合技术、数据挖掘技术、多目标优化技术、传感器网络数据管理系统的体系结构、传感器数据的存储和索引、传感器数据查询技术、车载物联网数据选择性采集和数据融合方法、车载物联网中数据存储和规格化方法等,构建一个基于云计算的车载物联网运营示范平台,包括:①实时智能决策支持的车载终端子系统;②实时路况感知子系统;③中心数据处理和智能控制子系统。本系统实现了车载物联网技术和云计算技术的有效融合,解决异构数据访问问题与未存在数据类型访问问题,实现了海量数据的存储、分析、并行处理、实时挖掘,且系统可扩展性、可靠性、通用性均很好。 The technical problem to be solved by the present invention is to provide a cloud computing-based vehicle Internet of Things operation system for the above-mentioned deficiencies in the prior art. The model structure of the cloud computing-based vehicle Internet of Things in the present invention, based on cloud computing and SOA architecture, Web Service interface service, GPS navigation technology, cloud computing, Internet of Things technology, RFID technology, Internet of Things data fusion technology, data mining technology, multi-objective optimization technology, architecture of sensor network data management system, storage and indexing of sensor data, Sensor data query technology, data selective collection and data fusion methods in vehicle IoT, data storage and normalization methods in vehicle IoT, etc., to build a cloud computing-based vehicle IoT operation demonstration platform, including: ①Real-time intelligent decision support Vehicle terminal subsystem; ②real-time road condition perception subsystem; ③central data processing and intelligent control subsystem. This system realizes the effective integration of vehicle-mounted Internet of Things technology and cloud computing technology, solves the problem of heterogeneous data access and non-existent data type access, realizes the storage, analysis, parallel processing, and real-time mining of massive data, and the system is scalable , reliability and versatility are very good.
为解决上述技术问题,本发明采用的技术方案是:一种基于云计算的车载物联网运营系统,其特征在于,包括车载终端子系统、路况感知子系统和中心数据处理和智能控制子系统;所述车载终端子系统为多个智能车载终端机,所述路况感知子系统为多个路边感知设备,所述中心数据处理和智能控制子系统包括物联网应用中间件和后台云计算平台;所述智能车载终端机包括蓝牙模块、RFID车辆自动识别模块、语音转发终端、GPS定位模块、防盗模块和控制器;所述物联网应用中间件由边界节点和内部节点构成。 In order to solve the above technical problems, the technical solution adopted by the present invention is: a cloud computing-based vehicle Internet of Things operation system, characterized in that it includes a vehicle terminal subsystem, a road condition perception subsystem, and a central data processing and intelligent control subsystem; The vehicle-mounted terminal subsystem is a plurality of intelligent vehicle-mounted terminals, the road condition sensing subsystem is a plurality of roadside sensing devices, and the central data processing and intelligent control subsystem includes an Internet of Things application middleware and a background cloud computing platform; The intelligent vehicle-mounted terminal includes a Bluetooth module, an RFID vehicle automatic identification module, a voice forwarding terminal, a GPS positioning module, an anti-theft module and a controller; the Internet of Things application middleware is composed of border nodes and internal nodes.
进一步地,所述边界节点设置有RFID识读器。 Further, the border node is provided with an RFID reader.
进一步地,所述内部节点由事件管理系统、任务管理系统、接口模块组成。 Further, the internal node is composed of an event management system, a task management system, and an interface module.
进一步地,所述智能车载终端机与车辆客户端手机无线通信。 Further, the intelligent vehicle terminal communicates wirelessly with the vehicle client mobile phone.
进一步地,所述智能车载终端机通过GPRS或者SMS与第三方应用客户端连接。 Further, the intelligent vehicle-mounted terminal is connected with a third-party application client through GPRS or SMS.
进一步地,所述事件管理系统主要用于接收和处理从边界节点得到的信息,并过滤得到所需的数据;任务管理系统负责管理由上级中间件或车载物联网应用程序发送到本级中间件的任务;接口模块由面向企业具体应用的接口、EPC信息服务接口以及ONSH服务接口构成。 Further, the event management system is mainly used to receive and process the information obtained from the border nodes, and filter to obtain the required data; the task management system is responsible for managing the events sent by the upper-level middleware or the vehicle-mounted Internet of Things application to the current-level middleware The task; the interface module is composed of the interface for the specific application of the enterprise, the EPC information service interface and the ONSH service interface.
进一步地,所述第三方应用客户端为WEB服务器。 Further, the third-party application client is a WEB server.
进一步地,所述路边感知设备为红外感应器、激光扫描器、摄像头以及其他车辆信息采集传感器。 Further, the roadside sensing device is an infrared sensor, a laser scanner, a camera and other vehicle information collection sensors.
进一步地,所述后台云计算平台为WEB服务器或者数据库服务器。 Further, the background cloud computing platform is a WEB server or a database server.
本发明与现有技术相比具有以下优点: Compared with the prior art, the present invention has the following advantages:
1、本发明开发的云计算平台,设计与实现其数据规约功能,解决异构数据访问问题与未存在数据类型访问问题;然后,在开发的云计算平台基础上设计与实现一个基于SOA架构的海量数据挖掘平台。采用云计算技术,实现海量数据的存储、分析、并行处理、实时挖掘;采用SOA架构设计使系统的可扩展性大大增强。 1, the cloud computing platform developed by the present invention, design and realize its data specification function, solve heterogeneous data access problem and non-existing data type access problem; Then, design and realize a SOA framework based on the developed cloud computing platform Mass data mining platform. Using cloud computing technology to realize massive data storage, analysis, parallel processing, and real-time mining; adopting SOA architecture design greatly enhances the scalability of the system.
2、本发明在使用需求驱动采集、门限转发、多路由合并等方法基础上,来保证车载物联网数据在规模上可控,可靠性好。 2. Based on methods such as demand-driven acquisition, threshold forwarding, and multi-route merging, the present invention ensures that the vehicle-mounted Internet of Things data is controllable in scale and has good reliability.
3、本发明的车载终端根据实时交通信息动态智能决策,车载终端能根据所得动态路况信息,动态调整导航规划路径和物流货物配送路径,效率较高,性能优异。 3. The vehicle-mounted terminal of the present invention makes dynamic intelligent decisions based on real-time traffic information, and the vehicle-mounted terminal can dynamically adjust the navigation planning route and logistics cargo delivery route according to the obtained dynamic road condition information, with high efficiency and excellent performance.
4、本发明实现了车载物联网技术和云计算技术的有效融合,解决异构数据访问问题与未存在数据类型访问问题,实现了海量数据的存储、分析、并行处理、实时挖掘。 4. The present invention realizes the effective integration of vehicle-mounted Internet of Things technology and cloud computing technology, solves the problem of heterogeneous data access and non-existent data type access, and realizes the storage, analysis, parallel processing, and real-time mining of massive data.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。 The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明 Description of drawings
图1为本发明的基于云计算的车载物联网运营平台层次图; Fig. 1 is a hierarchical diagram of the vehicle-mounted Internet of Things operation platform based on cloud computing of the present invention;
图2为本发明的基于云计算的车载物联网运营平台体系架构图; Fig. 2 is the system architecture diagram of the vehicle-mounted Internet of Things operation platform based on cloud computing of the present invention;
图3为本发明的物联网云提供不同的使用模式结构示意图; Fig. 3 provides a schematic structural diagram of different usage modes for the Internet of Things cloud of the present invention;
图4为本发明的基于云计算的车载物联网的EPC中间件结构示意图; Fig. 4 is the EPC middleware structure schematic diagram of the vehicle-mounted Internet of Things based on cloud computing of the present invention;
图5为本发明的智能车载终端机设备应用拓扑示意图。 FIG. 5 is a schematic diagram of the application topology of the intelligent vehicle terminal equipment of the present invention.
具体实施方式 Detailed ways
如图1、2所示,一种基于云计算的车载物联网运营系统,其特征在于,包括车载终端子系统、路况感知子系统和中心数据处理和智能控制子系统;所述车载终端子系统为多个智能车载终端机,所述路况感知子系统为多个路边感知设备,所述中心数据处理和智能控制子系统包括物联网应用中间件和后台云计算平台;所述智能车载终端机包括蓝牙模块、RFID车辆自动识别模块、语音转发终端、GPS定位模块、防盗模块和控制器;所述物联网应用中间件由边界节点和内部节点构成。 As shown in Figures 1 and 2, a cloud computing-based vehicle-mounted Internet of Things operating system is characterized in that it includes a vehicle-mounted terminal subsystem, a road condition perception subsystem, and a central data processing and intelligent control subsystem; the vehicle-mounted terminal subsystem It is a plurality of intelligent vehicle-mounted terminals, and the road condition perception subsystem is a plurality of roadside perception devices, and the central data processing and intelligent control subsystem includes the Internet of Things application middleware and background cloud computing platform; the intelligent vehicle-mounted terminal It includes a Bluetooth module, an RFID vehicle automatic identification module, a voice forwarding terminal, a GPS positioning module, an anti-theft module and a controller; the IoT application middleware is composed of border nodes and internal nodes.
本实施例中,所述边界节点设置有RFID识读器。 In this embodiment, the border nodes are provided with RFID readers.
本实施例中,所述内部节点由事件管理系统、任务管理系统、接口模块组成。 In this embodiment, the internal nodes are composed of an event management system, a task management system, and an interface module.
本实施例中,所述智能车载终端机与车辆客户端手机无线通信。 In this embodiment, the smart vehicle terminal communicates wirelessly with the vehicle client mobile phone.
本实施例中,所述智能车载终端机通过GPRS或者SMS与第三方应用客户端连接。 In this embodiment, the intelligent vehicle-mounted terminal is connected with a third-party application client through GPRS or SMS.
本实施例中,所述事件管理系统主要用于接收和处理从边界节点得到的信息,并过滤得到所需的数据;任务管理系统负责管理由上级中间件或车载物联网应用程序发送到本级中间件的任务;接口模块由面向企业具体应用的接口、EPC信息服务接口以及ONSH服务接口构成。 In this embodiment, the event management system is mainly used to receive and process the information obtained from the border nodes, and filter to obtain the required data; The task of the middleware; the interface module is composed of the interface for the specific application of the enterprise, the EPC information service interface and the ONSH service interface.
本实施例中,所述第三方应用客户端为WEB服务器。 In this embodiment, the third-party application client is a WEB server.
本实施例中,所述路边感知设备为红外感应器、激光扫描器、摄像头以及其他车辆信息采集传感器。 In this embodiment, the roadside sensing devices are infrared sensors, laser scanners, cameras and other vehicle information collection sensors.
本实施例中,所述后台云计算平台为WEB服务器或者数据库服务器。 In this embodiment, the background cloud computing platform is a WEB server or a database server.
图2中的车载物联网云的体系结构主要包含物联网云的硬件虚拟化框架、感知设备、物联网应用中间件以及服务管理。各部分共同构成物联网应用平台,为物联网应用的运营管理人员和终端用户服务。各部分的主要功能如下: The architecture of the vehicle-mounted IoT cloud in Figure 2 mainly includes the hardware virtualization framework of the IoT cloud, sensing devices, IoT application middleware, and service management. All parts together constitute the IoT application platform, serving the operation managers and end users of IoT applications. The main functions of each part are as follows:
①硬件虚拟化框架 ①Hardware virtualization framework
硬件虚拟化框架定义了云计算平台所管理的服务器、存储设备、网络设备等物理硬件资源及相应的虚拟化方法和技术,并将上述资源以虚拟化的方式交付给用户。 The hardware virtualization framework defines physical hardware resources such as servers, storage devices, and network devices managed by the cloud computing platform and corresponding virtualization methods and technologies, and delivers the above resources to users in a virtualized manner.
②感知设备 ②Sensing equipment
感知设备主要包括传感器、RFID、语音转发终端、GPS车载机、车辆自动识别终端、定位终端、防盗型车载终端、控制器等智能终端,以及实现终端互联互通的传感网络。感知设备通过网络接入云计算平台,并由物联网应用的中间件对其进行管理。 Sensing devices mainly include intelligent terminals such as sensors, RFID, voice forwarding terminals, GPS vehicle machines, automatic vehicle identification terminals, positioning terminals, anti-theft vehicle terminals, controllers, and sensor networks that realize terminal interconnection. The sensing device is connected to the cloud computing platform through the network, and is managed by the middleware of the Internet of Things application.
③物联网应用中间件 ③ IoT application middleware
车载物联网应用的中间件主要实现终端设备接入、GPS/RFID/ 传感器事件管理、数据存储以及物联网应用等功能,它包含一系列相关的中间件产品。 The middleware for vehicle-mounted IoT applications mainly implements functions such as terminal device access, GPS/RFID/sensor event management, data storage, and IoT applications. It includes a series of related middleware products.
④服务管理 ④Service management
服务管理主要包括物联网云的服务门户、物联网应用和服务的生命周期管理。除了对 IT 物理硬件和虚拟化资源进行管理之外,物联网云的服务管理还包括对感知设备的体系架构、事件以及分布式架构数据平台的管理。 Service management mainly includes the service portal of IoT cloud, life cycle management of IoT applications and services. In addition to the management of IT physical hardware and virtualized resources, the service management of the IoT cloud also includes the management of the architecture of the sensing device, events, and distributed architecture data platforms.
在车载物联网应用的行业用户(智能交通、运输、物流公司)、内容提供商(为服务提供商生产文本、图像、音频、视频或多媒体信息、交通信息气象信息、个人资讯等)、设备提供商、网络运营商包括电信运营商、卫星运营商、广电网络服务商等),不同行业人群所面临的问题不同,对物联网云的功能需求也不相同。因此,本项目的设计基于云计算的车载物联网运营平台为不同用户分别提供了相应的使用模式,如图3所示,具体包括: Industry users (intelligent transportation, transportation, logistics companies), content providers (producing text, images, audio, video or multimedia information, traffic information, weather information, personal information, etc. for service providers) and equipment providers in the application of vehicle Internet of Things Businesses, network operators (including telecom operators, satellite operators, radio and television network service providers, etc.), people in different industries face different problems, and have different functional requirements for the Internet of Things cloud. Therefore, the design of this project is based on the cloud computing in-vehicle Internet of Things operation platform to provide corresponding usage modes for different users, as shown in Figure 3, including:
①车载物联网应用的开发/测试平台 ①Development/testing platform for in-vehicle IoT applications
对于物联网应用的开发商而言,如何快速获得车载物联网应用的开发和测试环境是其提高生产效率的关键,因此,物联网云的虚拟化资源和物联网应用中间件,可以为物联网应用开发商快速提供所需的应用开发和测试环境以及应用基础平台,加速物联网应用的开发和测试周期。其使用流程如下: For developers of IoT applications, how to quickly obtain the development and testing environment for vehicle-mounted IoT applications is the key to improving their production efficiency. Therefore, the virtualization resources of the IoT cloud and IoT application middleware can provide Application developers quickly provide the required application development and testing environment as well as the basic application platform to accelerate the development and testing cycle of IoT applications. Its use process is as follows:
●云计算平台的管理员定义车载物联网应用开发或测试环境的模板,包括其所需的虚拟机环境以及需要部署的物联网应用中间件。 ●The administrator of the cloud computing platform defines the template of the vehicle IoT application development or testing environment, including the required virtual machine environment and the IoT application middleware that needs to be deployed.
●车载物联网应用开发商登录云计算平台,从物联网云的服务目录中选择所需的应用开发或测试环境。 ●Vehicle IoT application developers log in to the cloud computing platform, and select the required application development or testing environment from the service catalog of the IoT cloud.
●云计算平台对应用开发商所申请的开发或测试环境进行自动化部署和配置,并将环境的访问信息返回给物联网应用开发商。 ●The cloud computing platform automatically deploys and configures the development or test environment applied by the application developer, and returns the access information of the environment to the IoT application developer.
●车载物联网应用开发商将其终端设备接入云计算平台,并开始车载物联网应用的开发与测试。 ●Vehicle IoT application developers connect their terminal devices to the cloud computing platform, and start the development and testing of vehicle IoT applications.
②车载物联网应用的运营平台 ②Operation platform for in-vehicle IoT applications
车载物联网应用的运营商希望在其基础平台上同时部署和运营多个物联网应用,从而利用应用的规模化效应来降低运营成本。其中,采用共享的终端设备接入和数据存储是其降低成本的重要方式。利用车载物联网应用的中间件,物联网云可以作为物联网设备的事件捕获和数据存储平台,以支持物联网应用的规模化运营,步骤如下: Operators of in-vehicle IoT applications hope to simultaneously deploy and operate multiple IoT applications on their basic platforms, thereby taking advantage of the scale effect of applications to reduce operating costs. Among them, the use of shared terminal equipment access and data storage is an important way to reduce costs. Utilizing the middleware of in-vehicle IoT applications, the IoT cloud can serve as an event capture and data storage platform for IoT devices to support the large-scale operation of IoT applications. The steps are as follows:
●云计算平台的管理员准备应用的事件捕获和数据存储平台,包括虚拟服务器和用于传感事件捕获或数据存储的中间件。 ● The cloud computing platform administrator prepares the application's event capture and data storage platform, including virtual servers and middleware for sensing event capture or data storage.
●车载物联网应用运营商登录云计算平台,从车载物联网云的服务目录中选择所需的事件通道或数据存储服务。 ●In-vehicle IoT application operator logs into the cloud computing platform, and selects the required event channel or data storage service from the service catalog of the in-vehicle IoT cloud.
●云计算平台对应用中间件进行自动部署和配置,准备其所需的事件通道或数据存储空间,并返回访问信息。 ●The cloud computing platform automatically deploys and configures the application middleware, prepares the required event channel or data storage space, and returns the access information.
●车载物联网应用运营商将车载物联网应用的事件通道或数据存储指向云计算平台上的相应资源,从而使用云计算平台的资源支撑应用运行。 ●In-vehicle IoT application operators point the event channel or data storage of the in-vehicle IoT application to the corresponding resources on the cloud computing platform, so as to use the resources of the cloud computing platform to support the operation of the application.
③车载物联网应用的在线应用平台 ③Online application platform for in-vehicle IoT applications
对于用户而言,快速获取符合自身业务要求的物联网应用是其主要需求。车载物联网云可以提供满足人员或车辆定位、物流追溯、业务流程监控和优化以及数据分析等多种场景的车载物联网应用。其使用流程如下: For users, quickly obtaining IoT applications that meet their own business requirements is their main requirement. The vehicle-mounted IoT cloud can provide vehicle-mounted IoT applications that meet various scenarios such as personnel or vehicle positioning, logistics traceability, business process monitoring and optimization, and data analysis. Its use process is as follows:
●云计算平台的管理员定义车载物联网应用场景的模板,包括其所需的虚拟机环境、需要部署的应用中间件和典型应用。 ●The administrator of the cloud computing platform defines the template of the vehicle IoT application scenario, including the required virtual machine environment, application middleware and typical applications that need to be deployed.
●车载物联网应用用户登录云计算平台,从车载物联网云的服务目录中选择自己所需的物联网应用场景。 ●In-vehicle IoT application users log in to the cloud computing platform and select their desired IoT application scenarios from the service catalog of the in-vehicle IoT cloud.
●云计算平台对所申请的应用场景进行自动化部署和配置,并将应用的访问信息返回给物联网应用用户。 ●The cloud computing platform automatically deploys and configures the applied application scenarios, and returns the application access information to the IoT application users.
●车载物联网应用用户将其终端设备接入云计算平台,并开始车载物联网应用的使用。 ●In-vehicle Internet of Things application users connect their terminal devices to the cloud computing platform and start using the in-vehicle Internet of Things application.
车载物联网是通过射频识别(RFID)、红外感应器、GPS全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网的三个层次,感知层、网络层、应用层。感知层主要通过GPS车载终端、射频识别(RFID)系统实现RFID标签的自动采集和识别。RFID标签附着于可跟踪的车辆上,从而实现全球流通,感知器与信息系统相连,读取标签中的电子代码(Electronic Product Code,EPC),并将其输入网络信息系统。车载物联网的网络层将建立在现有的移动通信网络和互联网基础上,对感知层采集上传的数据进行存储、查询、分析、挖掘、理解以及基于感知数据决策和行为,而实现这一系列数据管理和处理的核心是EPC中间件,它作为物联网网络层的重要组成部分,承前启后,为应用层提供各类服务基础。应用层是车载物联网的应用软件、智能控制技术部分。 Vehicle Internet of Things is to connect any item with the Internet through radio frequency identification (RFID), infrared sensor, GPS global positioning system, laser scanner and other information sensing equipment according to the agreed agreement, for information exchange and communication, in order to realize A network for intelligent identification, positioning, tracking, monitoring and management. The three levels of the Internet of Things, the perception layer, the network layer, and the application layer. The perception layer mainly realizes the automatic collection and identification of RFID tags through GPS vehicle terminal and radio frequency identification (RFID) system. RFID tags are attached to trackable vehicles to achieve global circulation. The sensor is connected to the information system to read the electronic code (Electronic Product Code, EPC) in the tag and input it into the network information system. The network layer of the vehicle-mounted Internet of Things will be established on the basis of the existing mobile communication network and the Internet, and the data collected and uploaded by the perception layer will be stored, queried, analyzed, mined, understood, and decision-making and behavior based on the perception data will be realized. The core of data management and processing is EPC middleware. As an important part of the Internet of Things network layer, it provides various service foundations for the application layer. The application layer is the application software and intelligent control technology part of the vehicle Internet of things.
基于云计算的车载物联网运营平台的EPC中间件系统,主要由边界节点(Es)和内部节点(Is)构成,其中节点间多为异地分布。这一特点决定分布式的系统架构应该是一种必然的选择,基于云计算技术的系统结构则能够最大限度地发挥分布式计算的优势。基于云计算的车载物联网的EPC中间件系统结构如图4所示。 The EPC middleware system of the vehicle-mounted Internet of Things operation platform based on cloud computing is mainly composed of boundary nodes (Es) and internal nodes (Is), and the nodes are mostly distributed in different places. This characteristic determines that the distributed system architecture should be an inevitable choice, and the system architecture based on cloud computing technology can maximize the advantages of distributed computing. The structure of EPC middleware system based on cloud computing in-vehicle Internet of Things is shown in Figure 4.
边界节点中,RFID识读器用于接受RFID标签的射频信号,信息初步处理后,通过数据传输接口向相应的内部节点传递。 In the border node, the RFID reader is used to receive the radio frequency signal of the RFID tag. After the information is initially processed, it is transmitted to the corresponding internal node through the data transmission interface.
内部节点由事件管理系统、任务管理系统、接口模块组成。事件管理系统主要用于接收和处理从边界节点得到的信息,并过滤得到所需的数据;任务管理系统负责管理由上级中间件或车载物联网应用程序发送到本级中间件的任务,这些任务代表用户在EPC中间件端运行,运用SOAP服务器负责表明任务管理的功能和接口,它使任务管理器成为可以被所有系统统一访问的SOAP服务;接口模块由面向企业具体应用的接口、EPC信息服务(EPCIS)接口以及ONSH服务接口构成,它是EPC中间件系统与外界交互的通道,通过使用云计算技术,接口模块向外部提供有状态的Web Service,屏蔽了系统内部各子系统实现的差异,统一了EPC中间件与外部环境之间的通信方式,模块内子系统采用SOA的设计思想,使整个模块变得灵活而易于扩展,当外部环境的业务逻辑改变时,只要Web Service接口不变,EPC中间件就无须作调整。 Internal nodes are composed of event management system, task management system and interface modules. The event management system is mainly used to receive and process the information obtained from the border nodes, and to filter the required data; the task management system is responsible for managing the tasks sent to the middleware by the upper-level middleware or vehicle-mounted Internet of Things applications. It runs on the EPC middleware side on behalf of the user, and uses the SOAP server to be responsible for indicating the functions and interfaces of task management. It makes the task manager a SOAP service that can be uniformly accessed by all systems; the interface module consists of interfaces for specific applications of enterprises and EPC information services. (EPCIS) interface and ONSH service interface, which is the channel for the EPC middleware system to interact with the outside world. By using cloud computing technology, the interface module provides a stateful Web Service to the outside, shielding the differences in the implementation of each subsystem within the system. The communication method between the EPC middleware and the external environment is unified. The subsystem in the module adopts the design idea of SOA, which makes the whole module flexible and easy to expand. When the business logic of the external environment changes, as long as the Web Service interface remains unchanged, the EPC Middleware does not need to be adjusted.
智能车载终端机设备应用拓扑示意图如图5所示,包括以下功能参数。 The schematic diagram of the application topology of the intelligent vehicle terminal equipment is shown in Figure 5, including the following functional parameters.
1)智能车载终端机的功能: 1) Functions of the smart vehicle terminal:
①通过车载智能网关,接收车载物联网运营平台和车辆客户端发来的指令并依照执行,实现车内相关设备的控制和通信;同时主动根据配置定时上传相关数据给车载物联网运营平台和车辆客户端手机;另外实现车载电话和车载预警的相关本地应用功能。 ①Through the vehicle-mounted intelligent gateway, receive the instructions sent by the vehicle-mounted Internet of Things operation platform and the vehicle client and execute them in accordance with the instructions to realize the control and communication of related equipment in the vehicle; at the same time, actively upload relevant data to the vehicle-mounted Internet of Things operation platform and vehicles according to the configuration at regular intervals Client mobile phone; in addition, it realizes related local application functions of car phone and car early warning.
②车载物联网运营平台接收车载智能网关发来的信息数据,可送给第三方平台的信息数据进行相应的加工处理后送给第三方应用平台;发送第三方应用平台的指令和车载物联网运营平台的指令给车载智能网关,并要求它正确响应。 ②The vehicle-mounted Internet of Things operation platform receives the information data sent by the vehicle-mounted intelligent gateway, and the information data that can be sent to the third-party platform is processed accordingly and then sent to the third-party application platform; The instructions of the platform are sent to the vehicle intelligent gateway, and it is required to respond correctly.
③手机和手机客户端接收车载智能网关的相关数据,检测它的状态,接收它的报警信息;发送指令给手机客户端,对其进行管理设置等。 ③ The mobile phone and the mobile client receive relevant data from the vehicle-mounted intelligent gateway, detect its status, and receive its alarm information; send instructions to the mobile client to manage and set it, etc.
2)终端机系统参数如下: 2) The terminal system parameters are as follows:
①支持GSM850/900/1800/1900MHz。 ①Support GSM850/900/1800/1900MHz.
②支持网络类型:EDGE/GPRS/GSM。 ② Support network type: EDGE/GPRS/GSM.
③支持蓝牙2.1标准,可扩展外接蓝牙车载专用总线适配器,可获取各种与车相关的总线数据,当车出现异常时候可以及时提醒车主并通告后台;同时对于加入运营的车辆可以根据车辆情况获取实时的数据。 ③Support the Bluetooth 2.1 standard, and can be extended to connect to a dedicated Bluetooth car bus adapter, which can obtain various bus data related to the car. When the car is abnormal, it can promptly remind the owner and notify the background; at the same time, the vehicles that join the operation can be obtained according to the vehicle situation real-time data.
④支持2.4G RFID标准,可扩展外接RFID TAG和某些专有设备。RFID主要实现车辆安全的自动设撤防功能;同时可以作为车辆的一个专有的身份标识,动态提供给停车场,4S店等等。 ④Support 2.4G RFID standard, expandable external RFID TAG and some proprietary equipment. RFID mainly realizes the automatic arming and disarming function of vehicle safety; at the same time, it can be used as a proprietary identification mark of the vehicle, which can be dynamically provided to parking lots, 4S stores and so on.
⑤支持车内入侵探测模块的连接,当车辆发生入侵时候,可以第一时间现场,远程车主手机端以及通用能力平台管理端报警;支持车内空气质量探测模块的接入,当车内氧气浓度下降到一定比例时候,已经对车内人体造成威胁时候,现场报警;支持响应紧急呼叫按钮的联动,当发生紧急事故时候,按下紧急呼叫按钮,设备会自动联络紧急呼叫联络人或者后台,达到及时救援的目的。 ⑤Support the connection of the intrusion detection module in the vehicle. When the vehicle is intruded, the on-site, remote vehicle owner's mobile phone terminal and the management terminal of the general capability platform can alarm at the first time; support the access of the air quality detection module in the vehicle, when the oxygen concentration in the vehicle When it drops to a certain percentage, when the human body in the car has been threatened, the on-site alarm is supported; the linkage of the emergency call button is supported. When an emergency occurs, press the emergency call button, and the device will automatically contact the emergency call contact person or the background to reach The purpose of timely rescue.
⑥支持GPS定位,当发生需要GPS位置信息时候的应用时,GPS定位系统会提供必要的经纬度信息给响应的实体应用。 ⑥Support GPS positioning. When an application needs GPS location information, the GPS positioning system will provide the necessary latitude and longitude information to the corresponding entity application.
⑦支持手机客户端通信,达到对设备配置,控制,信息获取等功能。 ⑦Support mobile phone client communication to achieve functions such as device configuration, control, and information acquisition.
⑧支持GPRS通道和车载物联网运营平台通信,达到对设备配置,控制,信息获取等功能。 ⑧Support communication between GPRS channel and vehicle-mounted Internet of Things operation platform to achieve functions such as equipment configuration, control, and information acquisition.
车载物联网是一个巨大的无线传感器网络。本课题是利用先进传感技术、网络技术、计算技术、控制技术、智能技术,对道路和交通进行全面感知,实现多个系统间大范围、大容量数据的交互,对每一辆汽车进行交通全程控制,对每一条道路进行交通全时空控制,以提供交通效率和交通安全为主的网络与应用。车载物联网的服务可分为三种基本类型,即交通信息与导航服务、安全驾驶与车辆保护服务,以及故障诊断的车辆维护、娱乐及通信服务。 In-vehicle IoT is a huge network of wireless sensors. This topic is to use advanced sensing technology, network technology, computing technology, control technology, and intelligent technology to comprehensively perceive roads and traffic, realize the interaction of large-scale and large-capacity data between multiple systems, and monitor the traffic of each vehicle. Full-process control, full-time and space-time traffic control for each road, to provide networks and applications that focus on traffic efficiency and traffic safety. The services of in-vehicle IoT can be divided into three basic types, namely, traffic information and navigation services, safe driving and vehicle protection services, and vehicle maintenance, entertainment and communication services for fault diagnosis.
本发明的基础原理是:车载物联网运营平台是车载物联网的“大脑”,它使车辆、道路、车管、调度组成一个协同系统,可以对网络内的车辆、路况实施实时的管理和控制,为用户提供实时准确交通信息查询、车辆跟踪定位、运输路径选择、物流网络设计与优化、安全驾驶和车辆保护、定向广告、娱乐等服务。通过车载物联网可以更加精细和动态的方式管理车辆和道路,使车辆和道路,物流和客流能达到“理性和智慧”的状态,而这种“理性和智慧”是建立在车载物联网运营平台对车载物联网数据智能处理的基础之上。由于车、路的接入,使得车载物联网的规模非常庞大,车载物联网上的数据具有海量、种类纷繁复杂、语义丰富、实时传输等特点,给车载物联网运营平台带来了巨大的挑战。 The basic principle of the present invention is: the vehicle-mounted Internet of Things operation platform is the "brain" of the vehicle-mounted Internet of Things, which makes vehicles, roads, vehicle management, and dispatching form a collaborative system, and can implement real-time management and control of vehicles and road conditions in the network , to provide users with real-time and accurate traffic information query, vehicle tracking and positioning, transportation route selection, logistics network design and optimization, safe driving and vehicle protection, targeted advertising, entertainment and other services. Vehicles and roads can be managed in a more refined and dynamic manner through the Internet of Vehicles, so that vehicles and roads, logistics and passenger flow can reach a state of "rationality and wisdom", and this "rationality and wisdom" is based on the operation platform of the Internet of Vehicles Based on the intelligent processing of vehicle-mounted IoT data. Due to the access of vehicles and roads, the scale of the Internet of Vehicles is very large. The data on the Internet of Vehicles has the characteristics of massive, complex, rich semantics, and real-time transmission, which brings huge challenges to the operation platform of the Internet of Vehicles. .
首先,本发明研究基于云计算及SOA架构:使用云计算平台,设计与实现其数据规约功能,解决异构数据访问问题与未存在数据类型访问问题;然后,在开发的云计算平台基础上设计与实现一个基于SOA架构的海量数据挖掘平台。采用云计算技术,实现海量数据的存储、分析、并行处理、实时挖掘;采用SOA架构设计使系统的可扩展性大大增强。 First of all, the research of the present invention is based on cloud computing and SOA architecture: use the cloud computing platform to design and implement its data specification function, solve the heterogeneous data access problem and the non-existing data type access problem; then, design on the basis of the developed cloud computing platform And implement a massive data mining platform based on SOA architecture. Using cloud computing technology to realize massive data storage, analysis, parallel processing, and real-time mining; adopting SOA architecture design greatly enhances the scalability of the system.
然后,研究Web Service接口服务:平台的目标之一是实现数据挖掘与行业应用软件的集成,这就要求平台必须提供必要的二次开发接口。要求如下:平台无关性,对JAVA、C#、Delphi等各种开发语言全面支持;封装性,接口只提供输入与输出,处理过程进行封装;可扩展性,二次开发接口可根据需要在系统无需重新编译的情况下即可完成接口的扩充。为满足以上要求,Web Service将是最佳选择。 Then, study the Web Service interface service: one of the goals of the platform is to realize the integration of data mining and industry application software, which requires the platform to provide the necessary secondary development interface. The requirements are as follows: platform independence, comprehensive support for various development languages such as JAVA, C#, Delphi; encapsulation, the interface only provides input and output, and the processing process is encapsulated; scalability, the secondary development interface can be used in the system as needed The expansion of the interface can be completed in the case of recompilation. To meet the above requirements, Web Service will be the best choice.
最后,研究一种车载物联网数据选择性采集和数据融合方法,在使用需求驱动采集、门限转发、多路由合并等方法基础上,来保证车载物联网数据在规模上可控;研究一种车载物联网中数据存储和规格化方法,在全局数据存储位置最优的最优数据存储(ODS)算法、RFID-Cuboids、SMURF模型基础上,结合云计算的Google File Systerm(GFS)、MapReduce编程模式以形成车载物联网云计算端所需的分布式数据库BigTable。研究车载终端的根据实时交通信息动态智能决策方法,车载终端能根据所得动态路况信息,动态调整导航规划路径和物流货物配送路径。 Finally, a method of selective acquisition and data fusion of vehicle-mounted IoT data is studied, based on methods such as demand-driven acquisition, threshold forwarding, and multi-routing merging, to ensure that the scale of vehicle-mounted IoT data is controllable; research a vehicle-mounted Data storage and normalization methods in the Internet of Things, based on the optimal data storage (ODS) algorithm, RFID-Cuboids, and SMURF models with optimal global data storage locations, combined with Google File System (GFS) and MapReduce programming models for cloud computing In order to form the distributed database BigTable required by the cloud computing terminal of the in-vehicle Internet of Things. Research on the dynamic intelligent decision-making method of vehicle-mounted terminals based on real-time traffic information. Vehicle-mounted terminals can dynamically adjust the navigation planning route and logistics cargo delivery route according to the obtained dynamic road condition information.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。 The above are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technical aspects of the present invention. within the scope of protection of the scheme.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510281874.3A CN105025077A (en) | 2015-05-28 | 2015-05-28 | A cloud computing-based vehicle Internet of Things operation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510281874.3A CN105025077A (en) | 2015-05-28 | 2015-05-28 | A cloud computing-based vehicle Internet of Things operation system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105025077A true CN105025077A (en) | 2015-11-04 |
Family
ID=54414773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510281874.3A Pending CN105025077A (en) | 2015-05-28 | 2015-05-28 | A cloud computing-based vehicle Internet of Things operation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105025077A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105389683A (en) * | 2015-11-25 | 2016-03-09 | 北京华油信通科技有限公司 | Cloud computing support system |
CN105407174A (en) * | 2015-12-15 | 2016-03-16 | 上海仪电(集团)有限公司 | Cloud-based IOT monitoring method and system |
CN105956409A (en) * | 2016-05-27 | 2016-09-21 | 上海道拓医药科技股份有限公司 | Real-time data management method and system of intelligent medical equipment |
CN106211349A (en) * | 2016-06-23 | 2016-12-07 | 桂林电子科技大学 | Access method of Internet of Vehicles equipment based on big data |
CN106484544A (en) * | 2016-09-21 | 2017-03-08 | 北京邦天信息技术有限公司 | A kind of virtualized method and apparatus is carried out to internet of things equipment |
CN106681790A (en) * | 2015-11-10 | 2017-05-17 | 现代自动车株式会社 | Method and Apparatus for Providing Linking Service |
CN107302581A (en) * | 2017-07-10 | 2017-10-27 | 中邮科通信技术股份有限公司 | The method that end-to-end Internet of Things equipment wisdom contact is built based on virtual Internet of Things middleware |
CN107918849A (en) * | 2017-10-23 | 2018-04-17 | 深圳职业技术学院 | A kind of intelligent scheduling device and method of electronic logistics van |
CN109376303A (en) * | 2018-10-25 | 2019-02-22 | 合肥望京科技有限公司 | A kind of vehicle-mounted content information intelligent recommendation system and method based on car networking |
CN109474912A (en) * | 2018-04-10 | 2019-03-15 | 西南大学 | A vehicle-mounted gateway system and monitoring method and device for vehicle-mounted subsystems |
CN109714421A (en) * | 2018-12-28 | 2019-05-03 | 国汽(北京)智能网联汽车研究院有限公司 | Intelligent network based on bus or train route collaboration joins automobilism system |
CN109976726A (en) * | 2019-03-20 | 2019-07-05 | 深圳市赛梅斯凯科技有限公司 | Vehicle-mounted Edge intelligence computing architecture, method, system and storage medium |
CN110149353A (en) * | 2018-02-11 | 2019-08-20 | 陕西爱尚物联科技有限公司 | A kind of Internet of Things network method and its system |
CN110853390A (en) * | 2019-11-25 | 2020-02-28 | 江苏科创交通安全产业研究院有限公司 | Intelligent network connection ponding road section early warning system |
CN111988209A (en) * | 2020-08-10 | 2020-11-24 | 广州通达汽车电气股份有限公司 | Vehicle-mounted router Internet of things data processing method, device, equipment and storage medium |
CN112964343A (en) * | 2021-02-07 | 2021-06-15 | 广东电子工业研究院有限公司 | Freight car weighing monitoring system and monitoring method thereof |
CN113157500A (en) * | 2020-01-23 | 2021-07-23 | 阿里巴巴集团控股有限公司 | Equipment testing method, device, computer system and readable storage medium |
WO2021184841A1 (en) * | 2020-03-19 | 2021-09-23 | 中移(上海)信息通信科技有限公司 | Internet of vehicles method and apparatus, device, storage medium, and system |
CN113507685A (en) * | 2021-06-28 | 2021-10-15 | 深圳市高力高科实业有限公司 | Internet of things application system based on Bluetooth technology |
CN113610464A (en) * | 2021-08-03 | 2021-11-05 | 深圳信息职业技术学院 | Intelligent Internet of vehicles intelligent platform based on Internet of things and communication technology |
CN114285872A (en) * | 2021-12-09 | 2022-04-05 | 海基(常州)工业智能科技有限公司 | Internet of things monitoring system for parking equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097003A (en) * | 2010-12-31 | 2011-06-15 | 北京星河易达科技有限公司 | Intelligent traffic safety system based on human condition recognition |
US8396943B2 (en) * | 2008-04-23 | 2013-03-12 | Panasonic Corporation | Vehicle mounted device, server device, and communication system |
CN103477666A (en) * | 2011-03-31 | 2013-12-25 | 英特尔公司 | Connecting mobile devices, Internet-connected vehicles, and cloud services |
CN104468666A (en) * | 2013-09-22 | 2015-03-25 | 梁懿 | Electronic product code middleware for internet of things platform |
-
2015
- 2015-05-28 CN CN201510281874.3A patent/CN105025077A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8396943B2 (en) * | 2008-04-23 | 2013-03-12 | Panasonic Corporation | Vehicle mounted device, server device, and communication system |
CN102097003A (en) * | 2010-12-31 | 2011-06-15 | 北京星河易达科技有限公司 | Intelligent traffic safety system based on human condition recognition |
CN103477666A (en) * | 2011-03-31 | 2013-12-25 | 英特尔公司 | Connecting mobile devices, Internet-connected vehicles, and cloud services |
CN104468666A (en) * | 2013-09-22 | 2015-03-25 | 梁懿 | Electronic product code middleware for internet of things platform |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106681790A (en) * | 2015-11-10 | 2017-05-17 | 现代自动车株式会社 | Method and Apparatus for Providing Linking Service |
CN106681790B (en) * | 2015-11-10 | 2021-05-25 | 现代自动车株式会社 | Method and apparatus for providing link service |
CN105389683A (en) * | 2015-11-25 | 2016-03-09 | 北京华油信通科技有限公司 | Cloud computing support system |
CN105407174A (en) * | 2015-12-15 | 2016-03-16 | 上海仪电(集团)有限公司 | Cloud-based IOT monitoring method and system |
CN105956409A (en) * | 2016-05-27 | 2016-09-21 | 上海道拓医药科技股份有限公司 | Real-time data management method and system of intelligent medical equipment |
CN106211349A (en) * | 2016-06-23 | 2016-12-07 | 桂林电子科技大学 | Access method of Internet of Vehicles equipment based on big data |
CN106484544A (en) * | 2016-09-21 | 2017-03-08 | 北京邦天信息技术有限公司 | A kind of virtualized method and apparatus is carried out to internet of things equipment |
CN106484544B (en) * | 2016-09-21 | 2023-07-14 | 北京邦天信息技术有限公司 | Method and device for virtualizing Internet of things equipment |
CN107302581A (en) * | 2017-07-10 | 2017-10-27 | 中邮科通信技术股份有限公司 | The method that end-to-end Internet of Things equipment wisdom contact is built based on virtual Internet of Things middleware |
CN107918849A (en) * | 2017-10-23 | 2018-04-17 | 深圳职业技术学院 | A kind of intelligent scheduling device and method of electronic logistics van |
CN110149353A (en) * | 2018-02-11 | 2019-08-20 | 陕西爱尚物联科技有限公司 | A kind of Internet of Things network method and its system |
CN109474912B (en) * | 2018-04-10 | 2022-02-18 | 西南大学 | Vehicle-mounted gateway system and monitoring method and device of vehicle-mounted subsystem |
CN109474912A (en) * | 2018-04-10 | 2019-03-15 | 西南大学 | A vehicle-mounted gateway system and monitoring method and device for vehicle-mounted subsystems |
CN109376303A (en) * | 2018-10-25 | 2019-02-22 | 合肥望京科技有限公司 | A kind of vehicle-mounted content information intelligent recommendation system and method based on car networking |
CN109714421A (en) * | 2018-12-28 | 2019-05-03 | 国汽(北京)智能网联汽车研究院有限公司 | Intelligent network based on bus or train route collaboration joins automobilism system |
CN109976726A (en) * | 2019-03-20 | 2019-07-05 | 深圳市赛梅斯凯科技有限公司 | Vehicle-mounted Edge intelligence computing architecture, method, system and storage medium |
CN110853390A (en) * | 2019-11-25 | 2020-02-28 | 江苏科创交通安全产业研究院有限公司 | Intelligent network connection ponding road section early warning system |
CN113157500A (en) * | 2020-01-23 | 2021-07-23 | 阿里巴巴集团控股有限公司 | Equipment testing method, device, computer system and readable storage medium |
WO2021184841A1 (en) * | 2020-03-19 | 2021-09-23 | 中移(上海)信息通信科技有限公司 | Internet of vehicles method and apparatus, device, storage medium, and system |
CN111988209A (en) * | 2020-08-10 | 2020-11-24 | 广州通达汽车电气股份有限公司 | Vehicle-mounted router Internet of things data processing method, device, equipment and storage medium |
CN112964343A (en) * | 2021-02-07 | 2021-06-15 | 广东电子工业研究院有限公司 | Freight car weighing monitoring system and monitoring method thereof |
CN113507685A (en) * | 2021-06-28 | 2021-10-15 | 深圳市高力高科实业有限公司 | Internet of things application system based on Bluetooth technology |
CN113507685B (en) * | 2021-06-28 | 2022-08-23 | 深圳市高力高科实业有限公司 | Internet of things application system based on Bluetooth technology |
CN113610464A (en) * | 2021-08-03 | 2021-11-05 | 深圳信息职业技术学院 | Intelligent Internet of vehicles intelligent platform based on Internet of things and communication technology |
CN114285872A (en) * | 2021-12-09 | 2022-04-05 | 海基(常州)工业智能科技有限公司 | Internet of things monitoring system for parking equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105025077A (en) | A cloud computing-based vehicle Internet of Things operation system | |
Rito et al. | Aveiro tech city living lab: A communication, sensing, and computing platform for city environments | |
CN105554059B (en) | Logistics transportation Intellisense and position service system based on Beidou navigation technology | |
Wan et al. | VCMIA: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing | |
Atzori et al. | Towards the implementation of the Social Internet of Vehicles | |
CN204633813U (en) | A cloud computing-based vehicle Internet of Things operation system | |
Santos et al. | City of things: Enabling resource provisioning in smart cities | |
CN104091375A (en) | A vehicle network monitoring system based on a Beidou positioning system | |
CN203870689U (en) | Monitoring system on basis of Beidou positioning system for internet of vehicles | |
Cheng et al. | Geelytics: Enabling on-demand edge analytics over scoped data sources | |
CN105678436B (en) | A method and system for collaborative management of Internet of Things based on cloud service platform | |
US20130273901A1 (en) | Scalable Common Infrastructure for Information Collection from Networked Devices | |
CN103312788A (en) | Automotive network black box system with cooperative terminal, pipeline and cloud end | |
CN204045019U (en) | A kind of transport truck intelligent safety monitoring terminal device | |
CN112839319A (en) | Method, device and system for processing information of cellular internet of vehicles, terminal and storage medium | |
CN114221978A (en) | Urban rail transit cloud platform system | |
Hu et al. | RETRACTED: Design and Implementation of Intelligent Vehicle Control System Based on Internet of Things and Intelligent Transportation | |
CN107395757A (en) | Based on ACP methods car networking system parallel with social physical message system | |
He et al. | Cyber-physical systems in transportation | |
Alam et al. | A seven-layered model architecture, network model, protocol stack, security, application, issues and challenges in internet of vehicle | |
Fan et al. | The design of IOV overall structure and the research of IOV key technology in intelligent transportation system | |
CN211580004U (en) | Novel intelligent repeater system | |
H. Money et al. | Leveraging AI and sensor fabrics to evolve Smart City solution designs | |
Jain et al. | Opportunities and challenges of cyber-physical transportation systems | |
Bansal et al. | IoT in next generation traffic management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151104 |
|
RJ01 | Rejection of invention patent application after publication |