CN105024094A - Polymer electrolyte containing lithium imide fluorosulfonate and preparing method of polymer electrolyte - Google Patents
Polymer electrolyte containing lithium imide fluorosulfonate and preparing method of polymer electrolyte Download PDFInfo
- Publication number
- CN105024094A CN105024094A CN201410170890.0A CN201410170890A CN105024094A CN 105024094 A CN105024094 A CN 105024094A CN 201410170890 A CN201410170890 A CN 201410170890A CN 105024094 A CN105024094 A CN 105024094A
- Authority
- CN
- China
- Prior art keywords
- lithium salt
- nano
- polymer electrolyte
- polymer
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 47
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 24
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 18
- 150000003949 imides Chemical class 0.000 title description 6
- UQSQSQZYBQSBJZ-UHFFFAOYSA-M fluorosulfonate Chemical compound [O-]S(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-M 0.000 title 1
- -1 sulfonylimide lithium salt Chemical class 0.000 claims abstract description 63
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 54
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 23
- 239000011737 fluorine Substances 0.000 claims abstract description 17
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 40
- 229920000642 polymer Polymers 0.000 claims description 36
- 159000000002 lithium salts Chemical class 0.000 claims description 35
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 33
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 21
- 239000011259 mixed solution Substances 0.000 claims description 17
- 239000002105 nanoparticle Substances 0.000 claims description 17
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 12
- 229910001416 lithium ion Inorganic materials 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000005543 nano-size silicon particle Substances 0.000 claims description 11
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 11
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 11
- 239000012266 salt solution Substances 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 239000011787 zinc oxide Substances 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 4
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims 1
- 150000004702 methyl esters Chemical class 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 12
- 239000007772 electrode material Substances 0.000 abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 230000009477 glass transition Effects 0.000 abstract description 2
- 239000003990 capacitor Substances 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 34
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 125000006353 oxyethylene group Chemical group 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229910000813 Li/LiFePO4 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- JHRWWRDRBPCWTF-OLQVQODUSA-N captafol Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)C(Cl)Cl)C(=O)[C@H]21 JHRWWRDRBPCWTF-OLQVQODUSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- HNCXPJFPCAYUGJ-UHFFFAOYSA-N dilithium bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].[Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F HNCXPJFPCAYUGJ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 125000005463 sulfonylimide group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Abstract
本发明公开了一种含氟磺酰亚胺锂盐的聚合物电解质及其制备方法。本发明制备的聚合物电解质具有常温电导率高、玻璃化温度和结晶度低、机械强度和成膜性能好、与电极材料相容性好等优点,在锂(离子)电池、碳基超级电容器及太阳能电池等方面有潜在的应用价值。
The invention discloses a polymer electrolyte containing fluorine-containing sulfonylimide lithium salt and a preparation method thereof. The polymer electrolyte prepared by the present invention has the advantages of high normal temperature electrical conductivity, low glass transition temperature and crystallinity, good mechanical strength and film-forming performance, and good compatibility with electrode materials. It is used in lithium (ion) batteries and carbon-based super capacitors. and solar cells have potential application value.
Description
技术领域technical field
本发明属于有机高分子功能材料和电化学技术领域,涉及聚合物电解质及其制备方法。The invention belongs to the technical field of organic polymer functional materials and electrochemistry, and relates to a polymer electrolyte and a preparation method thereof.
背景技术Background technique
非水电解质是高比能二次锂(离子)电池的关键材料之一,其综合性能(如化学和电化学稳定性、安全性等)直接影响电池的使用性能和安全性。目前,商用锂离子电池电解质主要由液态有机碳酸酯、导电盐(主要是六氟磷酸锂)、以及必要的功能添加剂(如成膜剂、抗过冲添加剂、阻燃剂、六氟磷酸锂稳定剂等)组成(Chem.Rev.,2004,104,4303;J.PowerSources,2006,162,1379)。但该液态电解质体系存在溶剂易泄漏、易挥发、耐高温性能差和易燃等缺点。Non-aqueous electrolyte is one of the key materials of high specific energy secondary lithium (ion) batteries, and its comprehensive properties (such as chemical and electrochemical stability, safety, etc.) directly affect the performance and safety of batteries. At present, commercial lithium-ion battery electrolytes are mainly composed of liquid organic carbonate, conductive salt (mainly lithium hexafluorophosphate), and necessary functional additives (such as film formers, anti-overshoot additives, flame retardants, lithium hexafluorophosphate stabilizers, etc.) (Chem Rev., 2004, 104, 4303; J. PowerSources, 2006, 162, 1379). However, the liquid electrolyte system has disadvantages such as easy leakage of solvent, easy volatilization, poor high temperature resistance and flammability.
与液态电解质相比,以非质子的小分子有机溶剂为增塑剂的凝胶聚合物电解质(GPEs),具有较高的离子电导率,但仍存在着增塑剂的迁移、挥发,机械性能差等问题,导致电池性能急剧下降(Eur.Polym.J.,2006,42,21;Electrochim.Acta,2011,57,4),不能满足作为大型锂(离子)电池(如动力与储能电池)所需要的安全、无泄漏的固态聚合物电解质的要求。Compared with liquid electrolytes, gel polymer electrolytes (GPEs), which use aprotic small molecule organic solvents as plasticizers, have higher ionic conductivity, but there are still migration, volatilization, and mechanical properties of plasticizers. Poor problems lead to a sharp decline in battery performance (Eur.Polym.J., 2006, 42, 21; Electrochim.Acta, 2011, 57, 4), which cannot be used as a large lithium (ion) battery (such as power and energy storage batteries) ) requirements for safe, leak-free solid polymer electrolytes.
纯固态聚合物电解质(SPEs)因其较高的体积利用率、良好的成膜性、以及无渗漏等优点,被认为是极有潜力解决现有液体电解质安全隐患的主要替代电解质材料(Nature,2001,414,359)。其高分子网状骨架可以有效抑制锂枝晶的生长,可应用于以金属锂为负极的高比能二次锂电池。特别是,最近基于纯SPEs的Li/LiFePO4聚合物电池(LPB)作为动力电源,在法国成功应用于电动汽车,极大地激发了人们对全固态聚合物锂电池的高度关注。Pure solid polymer electrolytes (SPEs) are considered to be the main alternative electrolyte materials with great potential to solve the safety hazards of existing liquid electrolytes due to their high volume utilization, good film-forming properties, and no leakage (Nature , 2001, 414, 359). Its polymer network framework can effectively inhibit the growth of lithium dendrites, and can be applied to high specific energy secondary lithium batteries with metal lithium as the negative electrode. In particular, Li/LiFePO 4 polymer batteries (LPB) based on pure SPEs have recently been successfully applied in France as a power source. Electric vehicles have greatly stimulated people's attention to all-solid-state polymer lithium batteries.
纯SPEs主要由聚氧乙烯(PEO)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVdF)等含有Lewis碱性基团的聚合物与导电锂盐共混组成。现有技术中,已报道的用于纯SPEs的导电盐主要有六氟磷酸锂(LiPF6,如Electrochim.Acta,2013,90,17;CN102117932等)、高氯酸锂(LiClO4,如SolidStateIonics,1986,18-19,295;CN101901938;CN101130587;CN102324561等)、四氟硼酸锂(LiBF4,如Electrochim.Acta,2005,50,3942;CN102324559;CN102318125等)、双草酸硼酸锂(LiBOB,如CN103199301等)、和三氟甲基磺酸锂(LiOSO2CF3,如Electrochim.Acta,1998,43,1447;CN101735589;CN1396197等)等。Pure SPEs are mainly composed of polymers containing Lewis basic groups such as polyoxyethylene (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF) and conductive lithium salts. mixed composition. In the prior art, the reported conductive salts for pure SPEs mainly include lithium hexafluorophosphate (LiPF 6 , such as Electrochim.Acta, 2013, 90, 17; CN102117932, etc.), lithium perchlorate (LiClO 4 , such as SolidStateIonics, 1986, 18-19,295; CN101901938; CN101130587; CN102324561, etc.), lithium tetrafluoroborate (LiBF 4 , such as Electrochim.Acta, 2005, 50, 3942; CN102324559; CN102318125, etc.), lithium bisoxalate borate (LiBOB, such as CN1031993) , and lithium trifluoromethanesulfonate (LiOSO 2 CF 3 , such as Electrochim. Acta, 1998, 43, 1447; CN101735589; CN1396197, etc.), etc.
但采用上述锂盐与聚合物组成的纯SPEs的常温(40~60℃)电导率较低,仅有10-8~10-7S cm-1。研究显示具有磺酰亚胺(-SO2-N-SO2-)结构的锂盐双(三氟甲基磺酰)亚胺锂(LiTFSI)作导电盐时,可以显著降低聚合物电解质的玻璃化温度,提高其常温电导率。但基于LiTFSI的纯SPEs与电极材料的相容性较差(Macromolecules,1994,27,7469;J.Electrochem.Soc.,1995,142,2118),极大地限制了这类SPEs的应用。However, the normal temperature (40-60°C) conductivity of pure SPE s composed of the above-mentioned lithium salt and polymer is low, only 10 -8 -10 -7 S cm -1 . Studies have shown that when the lithium salt lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) with a sulfonimide (-SO 2 -N-SO 2 -) structure is used as a conductive salt, it can significantly reduce the glass density of the polymer electrolyte. Temperature, improve its conductivity at room temperature. However, pure SPEs based on LiTFSI have poor compatibility with electrode materials (Macromolecules, 1994, 27, 7469; J. Electrochem. Soc., 1995, 142, 2118), which greatly limits the application of this type of SPEs.
综上所述,现有技术中纯固态聚合物电解质,多存在常温电导率偏低、电解质的机械强度和成膜性能不足、与电极材料相容性较差等问题。To sum up, the pure solid polymer electrolytes in the prior art often have problems such as low conductivity at room temperature, insufficient mechanical strength and film-forming performance of the electrolyte, and poor compatibility with electrode materials.
发明内容Contents of the invention
本发明的目的在于提供一种含氟磺酰亚胺锂盐的聚合物电解质。The object of the present invention is to provide a polymer electrolyte containing fluorine-sulfonimide lithium salt.
本发明提供的含氟磺酰亚胺锂盐的聚合物电解质由聚合物介质、锂盐和添加剂组成,所述添加剂选自无机纳米颗粒;The polymer electrolyte of the fluorine-containing sulfonylimide lithium salt provided by the present invention is composed of a polymer medium, a lithium salt and an additive, and the additive is selected from inorganic nanoparticles;
本方法中所述的溶剂选自水、乙醇、甲醇、丙酮、乙腈、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、乙酸、乙醚、四氢呋喃、二甲基亚砜、硝基甲烷、乙酸乙酯、乙酸丁酯、石油醚、和甲苯中的至少一种,优选是乙腈;所述溶剂与所述锂盐的质量比是20~200∶1,优选是20~100∶1;所述聚合物溶液的粘度是1~20∶1Pa·s,优选是5~10∶1Pa·s;The solvent described in this method is selected from water, ethanol, methanol, acetone, acetonitrile, N,N-dimethylformamide, N-methylpyrrolidone, acetic acid, ether, tetrahydrofuran, dimethyl sulfoxide, nitromethane , ethyl acetate, butyl acetate, petroleum ether, and at least one of toluene, preferably acetonitrile; the mass ratio of the solvent to the lithium salt is 20-200:1, preferably 20-100:1; The viscosity of the polymer solution is 1-20:1 Pa·s, preferably 5-10:1 Pa·s;
所述聚合物选自聚氧乙烯(PEO)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVdF)、聚乙烯醇(PVA)和聚乙烯醇缩丁醛(PVB)中的至少一种,优选聚氧乙烯(PEO)、聚丙烯腈(PAN)和聚甲基丙烯酸甲酯(PMMA)中的至少一种;所述聚合物的数均分子量是5×103至5×107g mol-1,优选数均分子量是5×104至5×106g mol-1;所述的无机纳米粒子选自纳米二氧化钛颗粒、纳米氧化铝颗粒、纳米氧化镁颗粒、纳米氧化硅颗粒、纳米氧化锆颗粒和纳米氧化锌颗粒中的至少一种,优选纳米氧化硅颗粒;所述的各聚合物的结构单元分别为:The polymer is selected from polyoxyethylene (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA) and polyvinyl butyral At least one of aldehydes (PVB), preferably at least one of polyoxyethylene (PEO), polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA); the number average molecular weight of the polymer is 5 ×10 3 to 5×10 7 g mol -1 , preferably the number average molecular weight is 5×10 4 to 5×10 6 g mol -1 ; the inorganic nanoparticles are selected from nano titanium dioxide particles, nano alumina particles, nano At least one of magnesium oxide particles, nano-silicon oxide particles, nano-zirconia particles and nano-zinc oxide particles, preferably nano-silicon oxide particles; the structural units of each polymer are respectively:
所述的锂盐是具有以下式(I)所示结构的化合物:Described lithium salt is the compound with structure shown in following formula (I):
式(I)中,In formula (I),
RF为F或CF3;R F is F or CF 3 ;
当RF为F时,n是1-20的整数,优选n是1-5;X是O;Rf是CmF2m+1(m=1-8)、OCH2CF3和OCH(CF3)2中的一种;When R F is F, n is an integer of 1-20, preferably n is 1-5; X is O; R f is C m F 2m+1 (m=1-8), OCH 2 CF 3 and OCH ( One of CF 3 ) 2 ;
当RF为CF3时,n是1;X是N-SO2CF3;Rf是CmF2m+1(m=1-8)、OCH2CF3和OCH(CF3)2中的一种;When R F is CF 3 , n is 1; X is N-SO 2 CF 3 ; R f is C m F 2m+1 (m=1-8), OCH 2 CF 3 and OCH(CF 3 ) 2 a kind of
所述无机纳米粒子选自纳米二氧化钛颗粒、纳米氧化铝颗粒、纳米氧化镁颗粒、纳米氧化硅颗粒、纳米氧化锆颗粒和纳米氧化锌颗粒中的至少一种,优选纳米氧化硅颗粒;所述无机纳米颗粒的粒径是1~500纳米,优选是5~100纳米;所述聚合物的结构单元与所述锂盐的摩尔比是5~30∶1,优选是15~20∶1;所述无机纳米颗粒与所述锂盐的质量比是1∶0.5~20,优选是1∶5~10。The inorganic nanoparticles are selected from at least one of nano-titania particles, nano-alumina particles, nano-magnesia particles, nano-silicon oxide particles, nano-zirconia particles and nano-zinc oxide particles, preferably nano-silicon oxide particles; The particle size of the nanoparticles is 1-500 nanometers, preferably 5-100 nanometers; the molar ratio of the structural unit of the polymer to the lithium salt is 5-30:1, preferably 15-20:1; the The mass ratio of inorganic nanoparticles to the lithium salt is 1:0.5-20, preferably 1:5-10.
本发明的另一个目的是提供一种含氟磺酰亚胺锂盐的聚合物电解质的制备方法,该制备方法包括如下步骤:Another object of the present invention is to provide a kind of preparation method of the polymer electrolyte containing fluorine sulfonimide lithium salt, and this preparation method comprises the steps:
将锂盐和聚合物分别于溶剂中溶解,将无机纳米颗粒加入到所述锂盐溶液中,再将所述聚合物溶液加入所述锂盐溶液中,混合均匀后得到混合液,所述混匀的方法选自常规的搅拌和超声中的至少一种,混匀时间为3-30小时,优选10小时,将所述混合液转移到表面平整光滑的基体上,所述的表面平整光滑的基体可由聚四氟乙烯、玻璃或聚丙烯材料构成,60~80℃下真空干燥24至50小时,优选48小时,得到含氟磺酰亚胺锂盐的聚合物电解质;Dissolving the lithium salt and the polymer in a solvent respectively, adding inorganic nanoparticles into the lithium salt solution, adding the polymer solution into the lithium salt solution, and mixing uniformly to obtain a mixed solution, the mixed solution The uniform method is selected from at least one of conventional stirring and ultrasonic, and the mixing time is 3-30 hours, preferably 10 hours, and the mixed solution is transferred to a flat and smooth substrate, and the flat and smooth surface The matrix can be made of polytetrafluoroethylene, glass or polypropylene material, and vacuum-dried at 60-80°C for 24-50 hours, preferably 48 hours, to obtain a polymer electrolyte containing fluorine-sulfonimide lithium salt;
本方法中所述的溶剂选自水、乙醇、甲醇、丙酮、乙腈、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、乙酸、乙醚、四氢呋喃、二甲基亚砜、硝基甲烷、乙酸乙酯、乙酸丁酯、石油醚、和甲苯中的至少一种,优选是乙腈;所述溶剂与所述锂盐的质量比是20~200∶1,优选是20~100∶1;所述聚合物溶液的粘度是1~20∶1Pa·s,优选是5~10∶1Pa·s;The solvent described in this method is selected from water, ethanol, methanol, acetone, acetonitrile, N,N-dimethylformamide, N-methylpyrrolidone, acetic acid, ether, tetrahydrofuran, dimethyl sulfoxide, nitromethane , ethyl acetate, butyl acetate, petroleum ether, and at least one of toluene, preferably acetonitrile; the mass ratio of the solvent to the lithium salt is 20-200:1, preferably 20-100:1; The viscosity of the polymer solution is 1-20:1 Pa·s, preferably 5-10:1 Pa·s;
本方法中所述的锂盐为具有上述式(I)所示结构的化合物。The lithium salt described in the method is a compound having the structure shown in the above formula (I).
本方法中所述的无机纳米粒子选自纳米二氧化钛颗粒、纳米氧化铝颗粒、纳米氧化镁颗粒、纳米氧化硅颗粒、纳米氧化锆颗粒和纳米氧化锌颗粒中的至少一种,优选纳米氧化硅颗粒;所述无机纳米颗粒的粒径是1~500纳米,优选是5~100纳米;所述聚合物的结构单元与所述锂盐的摩尔比是5~30∶1,优选是15~20∶1;所述无机纳米颗粒与所述锂盐的质量比是1∶0.5~20,优选是1∶5~10。Inorganic nanoparticles described in the method are selected from at least one of nano-titania particles, nano-alumina particles, nano-magnesia particles, nano-silicon oxide particles, nano-zirconia particles and nano-zinc oxide particles, preferably nano-silicon oxide particles The particle diameter of the inorganic nanoparticles is 1 to 500 nanometers, preferably 5 to 100 nanometers; the molar ratio of the structural unit of the polymer to the lithium salt is 5 to 30:1, preferably 15 to 20: 1. The mass ratio of the inorganic nanoparticles to the lithium salt is 1:0.5-20, preferably 1:5-10.
本发明提供的含氟磺酰亚胺锂盐的聚合物电解质可用于制备锂离子电池和锂电池。The polymer electrolyte containing fluorine sulfonylimide lithium salt provided by the invention can be used to prepare lithium ion batteries and lithium batteries.
本发明提供的聚合物电解质具有如下优点:(1)由于全氟烷基的强吸电子效应,降低了N原子上的负电荷密度,从而促使磺酰亚胺锂解离度增大,载流子数目增多,有利于提高室温电导率。(2)基于F-SO2-N(-)-SO2-结构的亚胺所具有的独特柔性,降低了聚合物的结晶度,有利于提高聚合物固态电解质的电导率。(3)通过改变锂盐和聚合物的比例,制备出任意不同锂盐含量的聚合物电解质,达到选择具有最高电导率的聚合物电解质的目的。(4)含F-SO2-结构的聚合物电解质与金属锂、石墨等电极材料良好的相容性,降低了电池的界面阻抗,提高了电池的循环效率和容量保持率。The polymer electrolyte provided by the present invention has the following advantages: (1) due to the strong electron-withdrawing effect of the perfluoroalkyl group, the negative charge density on the N atom is reduced, thereby promoting the increase of the dissociation degree of the sulfonylimide lithium, and the current-carrying The increase in the number of subs is conducive to improving the room temperature conductivity. (2) The unique flexibility of the imine based on the F-SO 2 -N (-) -SO 2 - structure reduces the crystallinity of the polymer, which is conducive to improving the conductivity of the polymer solid electrolyte. (3) By changing the ratio of lithium salt and polymer, polymer electrolytes with any different lithium salt contents are prepared to achieve the purpose of selecting the polymer electrolyte with the highest conductivity. (4) The polymer electrolyte containing F-SO 2 -structure has good compatibility with electrode materials such as metal lithium and graphite, which reduces the interface impedance of the battery and improves the cycle efficiency and capacity retention of the battery.
本发明制备的聚合物电解质具有常温电导率高、玻璃化温度和结晶度低、机械强度和成膜性能好、电化学窗口宽和热稳定性好等优点,在锂(离子)电池、碳基超级电容器及太阳能电池等方面有潜在的应用价值。The polymer electrolyte prepared by the present invention has the advantages of high electrical conductivity at room temperature, low glass transition temperature and crystallinity, good mechanical strength and film-forming performance, wide electrochemical window and good thermal stability. It is used in lithium (ion) batteries, carbon-based There are potential applications in supercapacitors and solar cells.
附图说明Description of drawings
图1:实施例2制备的氟磺酰)(五氟乙基磺酰)亚胺锂(LiFPFSI)与聚氧乙烯的共混电解质(电解质2)的薄膜照片。Figure 1: Film photo of the blended electrolyte (electrolyte 2) of lithium fluorosulfonyl)(pentafluoroethylsulfonyl)imide (LiFPFSI) and polyoxyethylene prepared in Example 2.
图2:实施例2制备的氟磺酰)(五氟乙基磺酰)亚胺锂(LiFPFSI)与聚氧乙烯的共混电解质(电解质2)的电导率随温度的变化图;Figure 2: The electrical conductivity of the blended electrolyte (electrolyte 2) of lithium fluorosulfonyl) (pentafluoroethylsulfonyl)imide (LiFPFSI) and polyoxyethylene prepared in Example 2 as a function of temperature;
图3:实施例2制备的氟磺酰)(五氟乙基磺酰)亚胺锂(LiFPFSI)与聚氧乙烯的共混电解质(电解质2)的Li/LiFePO4电池的比容量和效率随循环次数的关系。Figure 3: The specific capacity and efficiency of the Li/LiFePO 4 battery based on the blend electrolyte (electrolyte 2) of lithium fluorosulfonyl) (pentafluoroethylsulfonyl) imide (LiFPFSI) and polyoxyethylene prepared in Example 2. The relationship between the number of cycles.
具体实施方式Detailed ways
下面列举本发明所涉及的部分化合物的制备,以及性能测试结果,以对本发明作进一步详细的说明,但并不仅仅限于所列举的化合物。The preparation of some compounds involved in the present invention and the performance test results are listed below to further describe the present invention in detail, but are not limited to the listed compounds.
实施例1~6为聚合物电解质的制备Embodiment 1~6 is the preparation of polymer electrolyte
实施例1:(氟磺酰)(三氟甲基磺酰)亚胺锂(LiFTFSI)与聚丙烯腈的共混电解质(电解质1)的制备Example 1: Preparation of a blend electrolyte (electrolyte 1) of (fluorosulfonyl)(trifluoromethylsulfonyl)imide lithium (LiFTFSI) and polyacrylonitrile
在超声的条件下,将0.5g(2.1mmol)LiFTFSI加入到5mL丙酮中,得到无色均匀液体,再将2.2g分子量为4×105g mol-1聚丙烯腈(其结构单元为丙烯腈,该结构与锂离子的摩尔比为20∶1)加入80mL丙酮中,得到无色粘稠液体(粘度为4.3Pa·s)。将所述高分子溶液加入所述锂盐溶液中,超声2小时,得到混匀溶液;接着,用旋涂法将得到的混匀溶液均匀涂覆到平整的聚四氟乙烯板表面;最后所述聚四氟乙烯板在50℃下真空干燥48小时,得到表面光滑、厚度为120μm且具有一定机械强度的薄膜(电解质1)。Under ultrasonic conditions, 0.5g (2.1mmol) LiFTFSI was added to 5mL of acetone to obtain a colorless homogeneous liquid, and then 2.2g of polyacrylonitrile with a molecular weight of 4×10 5 g mol -1 (its structural unit was acrylonitrile , the molar ratio of the structure to lithium ions is 20:1) was added into 80 mL of acetone to obtain a colorless viscous liquid (viscosity of 4.3 Pa·s). The polymer solution was added to the lithium salt solution, and ultrasonicated for 2 hours to obtain a mixed solution; then, the obtained mixed solution was uniformly coated on the surface of a flat polytetrafluoroethylene plate by a spin coating method; the final The polytetrafluoroethylene plate was vacuum-dried at 50° C. for 48 hours to obtain a thin film (electrolyte 1) with a smooth surface, a thickness of 120 μm and a certain mechanical strength.
实施例2:(氟磺酰)(五氟乙基磺酰)亚胺锂(LiFPFSI)与聚氧乙烯的共混电解质(电解质2)的制备Example 2: Preparation of a blended electrolyte (electrolyte 2) of lithium (fluorosulfonyl)(pentafluoroethylsulfonyl)imide (LiFPFSI) and polyoxyethylene
在超声的条件下,将0.5g(1.7mmol)LiFPFSI加入到5mL乙腈中,得到无色均匀液体,再将1.5g分子量为4×105g mol-1聚氧乙烯(其结构单元为氧乙烯,该结构与锂离子的摩尔比为20∶1)加入50mL丙酮中,得到无色粘稠液体(粘度为9.7Pa·s)。将所述高分子溶液加入所述锂盐溶液中,超声5小时,得到混匀溶液;接着,用旋涂法将得到的混匀溶液均匀涂覆到平整的聚四氟乙烯板表面;最后所述聚四氟乙烯板在50℃下真空干燥24小时,得到表面光滑、厚度为150μm且具有一定机械强度的薄膜(电解质2,见图1)。Under ultrasonic conditions, 0.5g (1.7mmol) LiFPFSI was added to 5mL of acetonitrile to obtain a colorless homogeneous liquid, and then 1.5g of polyoxyethylene with a molecular weight of 4×10 5 g mol -1 (its structural unit was oxyethylene , the molar ratio of this structure to lithium ions is 20:1) was added into 50 mL of acetone to obtain a colorless viscous liquid (viscosity of 9.7 Pa·s). The polymer solution was added to the lithium salt solution, and ultrasonicated for 5 hours to obtain a mixed solution; then, the obtained mixed solution was uniformly coated on the surface of a flat polytetrafluoroethylene plate by a spin coating method; the final The polytetrafluoroethylene plate was vacuum-dried at 50° C. for 24 hours to obtain a film with a smooth surface, a thickness of 150 μm and a certain mechanical strength (electrolyte 2, see FIG. 1 ).
实施例3:(氟磺酰)(全氟丁基磺酰)亚胺锂(LiFNFSI)、纳米二氧化硅与聚氧乙烯的共混电解质(电解质3)的制备Example 3: Preparation of a blended electrolyte (electrolyte 3) of (fluorosulfonyl) (perfluorobutylsulfonyl) lithium imide (LiFNFSI), nano-silica and polyoxyethylene
在超声的条件下,将1.2g(3.1mmol)LiFNFSI和0.3g纳米二氧化硅(粒径为100纳米)依次加入到40mL丙酮中,得到均匀的悬浮液,再将2.2g分子量为5×105g mol-1聚氧乙烯(其结构单元为氧乙烯,该结构与锂离子的摩尔比为16∶1)加入100mL丙酮中,得到无色粘稠液体(粘度为9.4Pa·s)。将所述高分子溶液加入所述锂盐和纳米二氧化硅的溶液中,超声10小时,得到混匀溶液;接着,用旋涂法将得到的混匀溶液均匀涂覆到平整的聚四氟乙烯板表面;最后所述聚四氟乙烯板在50℃下真空干燥48小时,得到表面光滑、厚度为110μm且具有一定机械强度的薄膜(电解质3)。Under ultrasonic conditions, 1.2g (3.1mmol) LiFNFSI and 0.3g nano-silicon dioxide (particle size: 100nm) were successively added to 40mL acetone to obtain a uniform suspension, and then 2.2g with a molecular weight of 5×10 5 g mol -1 of polyoxyethylene (its structural unit is oxyethylene, and the molar ratio of this structure to lithium ions is 16:1) was added to 100 mL of acetone to obtain a colorless viscous liquid (viscosity of 9.4 Pa·s). Add the polymer solution to the lithium salt and nano-silica solution, and ultrasonicate for 10 hours to obtain a mixed solution; then, use the spin coating method to uniformly coat the obtained mixed solution on a flat polytetrafluoroethylene The surface of the vinyl plate; finally, the polytetrafluoroethylene plate was vacuum-dried at 50° C. for 48 hours to obtain a film (electrolyte 3) with a smooth surface, a thickness of 110 μm and a certain mechanical strength.
实施例4:(氟磺酰)(全氟己基磺酰)亚胺锂(LiFHFSI)与聚乙烯醇的共混电解质(电解质4)的制备Example 4: Preparation of a blend electrolyte (electrolyte 4) of (fluorosulfonyl) (perfluorohexylsulfonyl) lithium imide (LiFHFSI) and polyvinyl alcohol
在超声的条件下,将2.5g(5.1mmol)LiFHFSI加入到50mL乙醇中,得到无色均匀液体,再将2.3g分子量为4×105g mol-1聚氧乙烯(其结构单元为乙烯醇,该结构与锂离子的摩尔比为10∶1,)加入100mL丙酮中,得到无色粘稠液体(粘度为7.6Pa·s)。将所述高分子溶液加入所述锂盐溶液中,超声2小时,得到混匀溶液;接着,用旋涂法将得到的混匀溶液均匀涂覆到平整的聚四氟乙烯板表面;最后所述聚四氟乙烯板在50℃下真空干燥48小时,得到表面光滑、厚度为100μm且具有一定机械强度的薄膜(电解质4)。Under ultrasonic conditions, 2.5g (5.1mmol) LiFHFSI was added to 50mL of ethanol to obtain a colorless homogeneous liquid, and then 2.3g of polyoxyethylene with a molecular weight of 4×10 5 g mol -1 (its structural unit was vinyl alcohol , the molar ratio of this structure to lithium ions is 10:1,) was added into 100 mL of acetone to obtain a colorless viscous liquid (viscosity of 7.6 Pa·s). The polymer solution was added to the lithium salt solution, and ultrasonicated for 2 hours to obtain a mixed solution; then, the obtained mixed solution was uniformly coated on the surface of a flat polytetrafluoroethylene plate by a spin coating method; the final The polytetrafluoroethylene plate was vacuum-dried at 50° C. for 48 hours to obtain a thin film (electrolyte 4) with a smooth surface, a thickness of 100 μm and a certain mechanical strength.
实施例5:双(氟磺酰)磺酰二亚胺锂(LiFSDI)与聚氧乙烯的共混电解质(电解质5)的制备Example 5: Preparation of a blended electrolyte (electrolyte 5) of lithium bis(fluorosulfonyl)sulfonyldiimide (LiFSDI) and polyoxyethylene
在搅拌下,将0.7g(2.6mmol)LiFSDI加入到5mL乙腈中,得到无色均匀液体,再将2.8g分子量为4×105g mol-1聚氧乙烯(其结构单元为氧乙烯,该结构与锂离子的摩尔比为24∶1,)加入100mL乙腈中,得到无色粘稠液体(粘度为5.6Pa·s)。将所述高分子溶液加入所述锂盐溶液中,搅拌2小时,得到混匀溶液;接着,用旋涂法将得到的混匀溶液均匀涂覆到平整的聚四氟乙烯板表面;最后所述聚四氟乙烯板在50℃下真空干燥48小时,得到表面光滑、厚度为140μm且具有一定机械强度的薄膜(电解质5)。Under stirring, 0.7g (2.6mmol) LiFSDI was added to 5mL acetonitrile to obtain a colorless homogeneous liquid, and then 2.8g molecular weight was 4×10 5 g mol -1 polyoxyethylene (its structural unit was oxyethylene, the The molar ratio of the structure to lithium ions is 24:1,) was added into 100 mL of acetonitrile to obtain a colorless viscous liquid (viscosity of 5.6 Pa·s). Add the polymer solution into the lithium salt solution and stir for 2 hours to obtain a mixed solution; then, use the spin coating method to uniformly coat the obtained mixed solution on the surface of a flat polytetrafluoroethylene plate; The polytetrafluoroethylene plate was vacuum-dried at 50° C. for 48 hours to obtain a thin film (electrolyte 5) with a smooth surface, a thickness of 140 μm and a certain mechanical strength.
实施例6:(三氟甲基磺酰)(三氟甲基(S-三氟甲基磺酰亚胺基)磺酰)(LiTFIT)与聚氧乙烯的共混电解质(电解质6)的制备Example 6: Preparation of (trifluoromethylsulfonyl) (trifluoromethyl (S-trifluoromethylsulfonimide) sulfonyl) (LiTFIT) and polyoxyethylene blend electrolyte (electrolyte 6)
在搅拌下,将0.5g(1.2mmol)LiTFIT加入到5mL乙腈中,得到无色均匀液体,再将1.1g分子量为5×105g mol-1聚氧乙烯(其结构单元为氧乙烯,该结构与锂离子的摩尔比为20∶1,)加入70mL乙腈中,得到无色粘稠液体(粘度为6.4Pa·s)。将所述高分子溶液加入所述锂盐溶液中,搅拌4小时,得到混匀溶液;接着,用旋涂法将得到的混匀溶液均匀涂覆到平整的聚四氟乙烯板表面;最后所述聚四氟乙烯板在50℃下真空干燥48小时,得到表面光滑、厚度为130μm且具有一定机械强度的薄膜(电解质6)。Under stirring, 0.5g (1.2mmol) LiTFIT was added to 5mL of acetonitrile to obtain a colorless homogeneous liquid, and then 1.1g of polyoxyethylene (its structural unit was oxyethylene, the The molar ratio of the structure to lithium ions is 20:1,) was added into 70 mL of acetonitrile to obtain a colorless viscous liquid (viscosity of 6.4 Pa·s). Add the polymer solution into the lithium salt solution, stir for 4 hours to obtain a mixed solution; then, use the spin coating method to uniformly coat the obtained mixed solution on the surface of a flat polytetrafluoroethylene plate; The polytetrafluoroethylene plate was vacuum-dried at 50° C. for 48 hours to obtain a thin film (electrolyte 6) with a smooth surface, a thickness of 130 μm and a certain mechanical strength.
实施例7:实施例1~6制备的含氟磺酰亚胺锂盐的聚合物电解质1~6的性能表征Example 7: Performance characterization of polymer electrolytes 1-6 containing fluorine-containing sulfonimide lithium salt prepared in Examples 1-6
(1)电导率的测定:本发明中使用瑞士万通公司电化学工作站Autolab PGSTAT302N,采用电化学交流阻抗谱法(EIS)测定聚合物电解质的离子电导率。(1) Measurement of electrical conductivity: In the present invention, Metrohm's electrochemical workstation Autolab PGSTAT302N was used to measure the ionic conductivity of the polymer electrolyte by electrochemical impedance spectroscopy (EIS).
将聚合物电解质膜夹在已知表面积的两个不锈钢阻塞电极之间,为了确保电极与电解质接触良好,在测量之前将测量体系在60℃下恒温2小时。测量的温度范围为20至100℃,测量的频率为O.1至106Hz。通过交流阻抗的Nyquist图读出聚合物电解质的本体电阻,然后根据公式σ=l/AR,计算出聚合物电解质膜的电导率σ,其中l为膜的厚度,A为电极面积,R为聚合物电解质膜的本体电阻。The polymer electrolyte membrane was sandwiched between two stainless steel blocking electrodes of known surface area. In order to ensure good contact between the electrodes and the electrolyte, the measurement system was kept at 60 °C for 2 hours before measurement. The temperature range of the measurement is 20 to 100° C., and the frequency of the measurement is 0.1 to 10 6 Hz. Read the bulk resistance of the polymer electrolyte through the Nyquist diagram of AC impedance, and then calculate the conductivity σ of the polymer electrolyte membrane according to the formula σ=l/AR, where l is the thickness of the membrane, A is the electrode area, and R is the polymerization The bulk resistance of the electrolyte membrane.
(2)离子迁移数的测定:本发明中采用Bruce等(Polymer,1987,28,2324)和Watanabe等(Solid State Ionics,1988,28-30,911)改进的交流阻抗-直流极化联用法测定锂离子迁移数。将聚合物电解质组装成对称模型电池Li|SPEs|Li,测试温度为60℃,极化电压为100mV,交流阻抗测试频率范围0.01Hz至1MHz。根据公式(其中Is、Io分别为稳态电流和始态电流(直流极化图中读取),分别为稳态本体电阻和始态本体电阻(阻抗谱中读取),ΔV为极化电压(已知,为100mV),分别为始态界面电阻和稳态界面电阻(阻抗谱中读取)),即可计算出锂离子迁移数。(2) Determination of ion migration number: the AC impedance-DC polarization coupling method improved by Bruce et al. (Polymer, 1987, 28, 2324) and Watanabe et al. Determination of lithium ion transfer number. The polymer electrolyte was assembled into a symmetrical model battery Li|SPEs|Li, the test temperature was 60°C, the polarization voltage was 100mV, and the AC impedance test frequency range was 0.01Hz to 1MHz. According to the formula (where I s and I o are the steady-state current and the initial-state current (read in the DC polarization diagram) respectively, are the steady-state body resistance and initial-state body resistance (read from the impedance spectrum), respectively, ΔV is the polarization voltage (known, 100mV), Respectively, the initial state interface resistance and the steady state interface resistance (read in the impedance spectrum)), the lithium ion migration number can be calculated.
(3)电化学窗口测定:本发明中使用瑞士万通Autolab PGSTAT302N型电化学工作站,采用线性扫描伏安法(LSV)测定聚合物电解质的氧化、还原电位,然后根据公式:(3) Electrochemical window measurement: use Metrohm Autolab PGSTAT302N type electrochemical workstation in the present invention, adopt linear sweep voltammetry (LSV) to measure the oxidation and reduction potential of polymer electrolyte, then according to the formula:
EWs=Eanodic-Ecathodic EW s =E anodic -E cathodic
(其中,EWs为聚合物电解质的电化学窗口;Eanodic为聚合物电解质的氧化电位;Ecathodic为聚合物电解质的还原电位),即可计算出聚合物电解质的电化学窗口。(where EW s is the electrochemical window of the polymer electrolyte; E anodic is the oxidation potential of the polymer electrolyte; E cathodic is the reduction potential of the polymer electrolyte), and the electrochemical window of the polymer electrolyte can be calculated.
采用三电极体系测量氧化还原电位;其中Pt为工作电极(电极面积:7.85×10-3cm2),金属锂为参比电极和对电极;扫描速率为5mV s-1;测试温度为60℃。A three-electrode system was used to measure the redox potential; where Pt was the working electrode (electrode area: 7.85×10 -3 cm 2 ), metal lithium was the reference electrode and counter electrode; the scan rate was 5mV s -1 ; the test temperature was 60°C .
性能测试的结果列于表1中。The results of the performance tests are listed in Table 1.
表1含氟磺酰亚胺锂盐的聚合物电解质1-6的性能测试结果(60℃)Table 1 Performance Test Results of Polymer Electrolytes 1-6 Containing Lithium Fluorine Sulfonylimide Salt (60°C)
注:电解质2的测试结果见图2.Note: The test results of electrolyte 2 are shown in Figure 2.
实施例8:含氟磺酰亚胺锂盐的聚合物电解质在锂电池中的应用。Example 8: Application of a polymer electrolyte containing fluorine-containing sulfonylimide lithium salt in a lithium battery.
(1)正极:分别以LiCoO2、LiMn2O4、LiFePO4、Li(CoNiMn)1/3O2等为活性物质的电极片为正极。(1) Positive electrode: Electrode sheets respectively using LiCoO 2 , LiMn 2 O 4 , LiFePO 4 , Li(CoNiMn) 1/3 O 2 and the like as active materials are the positive electrodes.
(2)负极:分别以锂箔、人造石墨负、Li4Ti5O12等为负极。(2) Negative electrode: Lithium foil, artificial graphite negative, Li 4 Ti 5 O 12 etc. are used as negative electrodes respectively.
(3)电解质:以电解质2和电解质5为聚合物电解质。(3) Electrolyte: Electrolyte 2 and Electrolyte 5 are polymer electrolytes.
(4)聚合物电池的装配:在氩气手套箱中,将上述正极、负极和电解质装配成聚合物电池。在微机控制的自动充放电仪(Land,CT2001A)上,进行电池循环性能测试。本实施例的测试结果参见表2。(4) Assembly of polymer battery: In an argon glove box, the above positive electrode, negative electrode and electrolyte were assembled into a polymer battery. The battery cycle performance test was carried out on an automatic charging and discharging instrument controlled by a microcomputer (Land, CT2001A). The test results of this embodiment are shown in Table 2.
表2基于含氟磺酰亚胺锂盐的聚合物电解质的二次锂电池的性能(60℃)Table 2 Performance of secondary lithium batteries based on polymer electrolytes containing fluorine-containing sulfonylimide lithium salts (60°C)
注:电解质2的Li/LiFePO4电池的比容量和效率随循环次数的关系见图3。Note: The specific capacity and efficiency of the Li/LiFePO4 battery with electrolyte 2 as a function of cycle number are shown in Fig. 3.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410170890.0A CN105024094A (en) | 2014-04-25 | 2014-04-25 | Polymer electrolyte containing lithium imide fluorosulfonate and preparing method of polymer electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410170890.0A CN105024094A (en) | 2014-04-25 | 2014-04-25 | Polymer electrolyte containing lithium imide fluorosulfonate and preparing method of polymer electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105024094A true CN105024094A (en) | 2015-11-04 |
Family
ID=54413899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410170890.0A Pending CN105024094A (en) | 2014-04-25 | 2014-04-25 | Polymer electrolyte containing lithium imide fluorosulfonate and preparing method of polymer electrolyte |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105024094A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105680092A (en) * | 2016-01-25 | 2016-06-15 | 山东玉皇新能源科技有限公司 | Solid-state polymer electrolyte and preparation method thereof |
CN106816627A (en) * | 2016-11-29 | 2017-06-09 | 中国电子科技集团公司第十八研究所 | Composite plastic crystal polymer electrolyte material and preparation method thereof |
CN108155414A (en) * | 2016-12-06 | 2018-06-12 | 中国科学院宁波材料技术与工程研究所 | Fluoropolymer lithium ion conductor, preparation method and the application of self-plasticization |
CN114976254A (en) * | 2022-04-24 | 2022-08-30 | 九江天赐高新材料有限公司 | Preparation method of lithium ion battery electrolyte |
CN115275333A (en) * | 2021-04-30 | 2022-11-01 | 南方科技大学 | Flexible solid electrolyte, preparation method thereof and secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102412417A (en) * | 2010-09-20 | 2012-04-11 | 华中科技大学 | Non-aqueous electrolyte for improving high-temperature electrochemical performance of lithium ion battery and application thereof |
CN103515650A (en) * | 2012-06-26 | 2014-01-15 | 华中科技大学 | Non-aqueous electrolyte for lithium ion battery, and application thereof |
CN103579670A (en) * | 2012-07-24 | 2014-02-12 | 海洋王照明科技股份有限公司 | Gel polymer electrolyte and preparation method thereof |
-
2014
- 2014-04-25 CN CN201410170890.0A patent/CN105024094A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102412417A (en) * | 2010-09-20 | 2012-04-11 | 华中科技大学 | Non-aqueous electrolyte for improving high-temperature electrochemical performance of lithium ion battery and application thereof |
CN103515650A (en) * | 2012-06-26 | 2014-01-15 | 华中科技大学 | Non-aqueous electrolyte for lithium ion battery, and application thereof |
CN103579670A (en) * | 2012-07-24 | 2014-02-12 | 海洋王照明科技股份有限公司 | Gel polymer electrolyte and preparation method thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105680092A (en) * | 2016-01-25 | 2016-06-15 | 山东玉皇新能源科技有限公司 | Solid-state polymer electrolyte and preparation method thereof |
CN105680092B (en) * | 2016-01-25 | 2018-08-31 | 山东玉皇新能源科技有限公司 | A kind of solid polymer electrolyte and preparation method thereof |
CN106816627A (en) * | 2016-11-29 | 2017-06-09 | 中国电子科技集团公司第十八研究所 | Composite plastic crystal polymer electrolyte material and preparation method thereof |
CN108155414A (en) * | 2016-12-06 | 2018-06-12 | 中国科学院宁波材料技术与工程研究所 | Fluoropolymer lithium ion conductor, preparation method and the application of self-plasticization |
CN115275333A (en) * | 2021-04-30 | 2022-11-01 | 南方科技大学 | Flexible solid electrolyte, preparation method thereof and secondary battery |
CN114976254A (en) * | 2022-04-24 | 2022-08-30 | 九江天赐高新材料有限公司 | Preparation method of lithium ion battery electrolyte |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105591154B (en) | The all solid state serondary lithium battery and its preparation of polycarbonate-based full solid state polymer electrolyte and its composition and application | |
CN103509153B (en) | A kind of polymer list ionic electrolytes and preparation method thereof | |
CN103259043B (en) | Lithium rechargeable battery and its electrolyte | |
CN103094611B (en) | Preparation method for ionic liquid gel electrolyte | |
Wang et al. | Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries | |
CN103840198A (en) | Lithium ion battery gel polymer electrolyte and preparation method thereof | |
CN112599847B (en) | A kind of double-layer solid electrolyte film for lithium battery and preparation method thereof | |
Liu et al. | Gel polymer electrolyte membranes boosted with sodium-conductive β-alumina nanoparticles: application for Na-ion batteries | |
CN106058312B (en) | A kind of solid state ionic liquid electrolyte, preparation method and application | |
CN108242563B (en) | High-voltage-resistant solid lithium battery polymer electrolyte and preparation and application thereof | |
Wang et al. | Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries | |
CN105655649A (en) | Incombustible electro-deposition lithium battery and application thereof | |
CN107069079A (en) | A kind of solid state electrolyte and its preparation and application | |
WO2019080689A1 (en) | Hybrid supercapacitor | |
WO2010055762A1 (en) | Electrical double layer capacitor | |
CN103474723A (en) | Lithium-air battery and preparation method thereof | |
CN103078138A (en) | High-voltage lithium ion battery and electrolyte thereof | |
CN105406124A (en) | Electrolyte for improving high temperature and high voltage performance of lithium ion battery and application thereof in lithium ion battery | |
Lun et al. | Ionic conductivity promotion of polymer membranes with oxygen-ion conducting nanowires for rechargeable lithium batteries | |
Wen et al. | A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor | |
CN105024094A (en) | Polymer electrolyte containing lithium imide fluorosulfonate and preparing method of polymer electrolyte | |
CN109698384A (en) | A kind of preparation method of cylindrical mixing solid-liquid lithium ion battery | |
Zhu et al. | In-situ polymerized gel polymer electrolytes for stable solid-state lithium batteries with long-cycle life | |
CN105098232A (en) | All-solid-state polymer electrolyte and preparation method and application thereof | |
Lu et al. | UV-curable-based plastic crystal polymer electrolyte for high-performance all-solid-state Li-ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151104 |
|
WD01 | Invention patent application deemed withdrawn after publication |