CN105024055A - Lithium-ion battery porous nanometer silicon-carbon composite negative electrode material and preparation method thereof - Google Patents
Lithium-ion battery porous nanometer silicon-carbon composite negative electrode material and preparation method thereof Download PDFInfo
- Publication number
- CN105024055A CN105024055A CN201410150747.5A CN201410150747A CN105024055A CN 105024055 A CN105024055 A CN 105024055A CN 201410150747 A CN201410150747 A CN 201410150747A CN 105024055 A CN105024055 A CN 105024055A
- Authority
- CN
- China
- Prior art keywords
- silicon
- porous silicon
- electrode material
- negative electrode
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供了一种锂离子电池多孔纳米硅-碳复合负极材料及其制备方法,具体地,该方法包括步骤:(1)提供一硅-活泼金属合金块体;(2)用所述合金块体与液相造孔剂进行反应以除去所述合金块体中的活泼金属,得到多孔硅纳米材料;(3)用氢氟酸清洗所述多孔硅纳米颗粒以去除氧化硅,得到经氢氟酸清洗处理的多孔硅纳米材料;(4)在惰性气体中,在碳源存在下,对所述经氢氟酸清洗处理的多孔硅纳米材料进行煅烧,得到多孔硅-碳复合电极材料。该方法制得的多孔硅材料具有纳米多孔结构,硅纳米颗粒尺寸小而均一,可用作锂离子电池负极材料,显示了高的放电比容量和充放电循环稳定性。The invention provides a lithium-ion battery porous nano-silicon-carbon composite negative electrode material and a preparation method thereof. Specifically, the method comprises the steps of: (1) providing a silicon-active metal alloy block; (2) using the alloy The block is reacted with a liquid phase pore-forming agent to remove the active metal in the alloy block to obtain a porous silicon nanomaterial; (3) cleaning the porous silicon nanoparticle with hydrofluoric acid to remove silicon oxide to obtain a hydrogenated Porous silicon nanomaterials cleaned with hydrofluoric acid; (4) calcining the porous silicon nanomaterials cleaned with hydrofluoric acid in the presence of a carbon source in an inert gas to obtain porous silicon-carbon composite electrode materials. The porous silicon material prepared by the method has a nano-porous structure, and the silicon nano-particles are small and uniform in size, can be used as a negative electrode material of a lithium ion battery, and shows high discharge specific capacity and charge-discharge cycle stability.
Description
技术领域technical field
本发明涉及锂离子电池负极材料领域,具体地,本发明涉及一种可作为锂离子电池负极材料的具有高比容量以及良好循环性能的多孔纳米硅材料,及其制备方法。The invention relates to the field of lithium-ion battery negative electrode materials, in particular, the invention relates to a porous nano-silicon material with high specific capacity and good cycle performance that can be used as a lithium-ion battery negative electrode material, and a preparation method thereof.
背景技术Background technique
目前,商用锂离子电池材料广泛使用石墨及改性石墨,但是其理论容量仅为372mAh/g,体积比容量为883mAh/cm3,不能适用当前发展高能量动力电池的需要。近年来,开发新型锂离子电极材料受到全世界科技人员的广泛关注,特别是研发具有高能量密度、良好循环寿命以及简单制备工艺的负极材料成为锂离子电池电极研究的热点之一。硅,锗,锡等负极材料由于其较高的理论容量(分别为ca.4200,ca.1600,ca.990mAh/g)有望成为取代碳基材料作为锂离子电池的负极材料。然而纵观硅,锗,锡等负极材料存在的问题,主要体现在以下几个方面:(1)硅,锗,锡等负极材料在电化学循环过程中存在较大的体积变化,其中理论比容量最高的硅负极材料其体积膨胀高达300%,造成锂离子电池本身电化学循环性能的迅速衰减退化,严重影响了锂离子电池的使用寿命;(2)由于硅负极材料在电池充放电循环过程中结构的不稳定性,随着Li+的嵌入和脱出会导致活性电极材料的破裂、粉化、脱落等,会形成新的电极表面层,消耗锂,进而产生了较大的不可逆容量损失,因此基于常规的微米级硅基负极材料锂离子电池的使用寿命问题成为制约其技术发展的瓶颈,同时也阻碍了硅基负极材料的商业化进程;(3)由于硅本身的导电性较差,影响了锂离子电池的大倍率充放电过程的进行。At present, graphite and modified graphite are widely used in commercial lithium-ion battery materials, but their theoretical capacity is only 372mAh/g, and their volume specific capacity is 883mAh/cm 3 , which cannot meet the needs of the current development of high-energy power batteries. In recent years, the development of new lithium-ion electrode materials has attracted widespread attention from scientists all over the world, especially the development of negative electrode materials with high energy density, good cycle life and simple preparation process has become one of the hot spots in the research of lithium-ion battery electrodes. Anode materials such as silicon, germanium, and tin are expected to replace carbon-based materials as anode materials for lithium-ion batteries due to their higher theoretical capacities (ca.4200, ca.1600, and ca.990mAh/g, respectively). However, looking at the problems of silicon, germanium, tin and other negative electrode materials, they are mainly reflected in the following aspects: (1) silicon, germanium, tin and other negative electrode materials have large volume changes during the electrochemical cycle, and the theoretical ratio The silicon anode material with the highest capacity has a volume expansion of up to 300%, which causes the rapid attenuation and degradation of the electrochemical cycle performance of the lithium-ion battery itself, seriously affecting the service life of the lithium-ion battery; Due to the instability of the structure, the intercalation and extraction of Li + will lead to the cracking, pulverization, and shedding of the active electrode material, which will form a new electrode surface layer and consume lithium, resulting in a large irreversible capacity loss. Therefore, the service life of lithium-ion batteries based on conventional micron-scale silicon-based negative electrode materials has become a bottleneck restricting its technological development, and has also hindered the commercialization of silicon-based negative electrode materials; (3) due to the poor conductivity of silicon itself, It affects the progress of the high-rate charge and discharge process of the lithium-ion battery.
相对于锗和锡,硅的理论容量更高,达到了4212mAh/g,同时由于负极硅相对较低的生产成本,而成为锂离子电池负极研究的重中之重。因此,如何有效地抑制硅负极在电池充放电过程中体积的变化造成锂离子电池内部结构的破坏以及如何有效改善硅基负极材料的导电性,从而达到提高硅基锂离子电池电化学循环性能是本领域亟需解决的问题。Compared with germanium and tin, the theoretical capacity of silicon is higher, reaching 4212mAh/g. At the same time, due to the relatively low production cost of negative silicon, it has become the top priority in the research of lithium-ion battery negative electrodes. Therefore, how to effectively suppress the damage of the internal structure of the lithium-ion battery caused by the volume change of the silicon-based negative electrode during battery charging and discharging and how to effectively improve the conductivity of the silicon-based negative electrode material, so as to improve the electrochemical cycle performance of the silicon-based lithium-ion battery problems that need to be solved in this field.
综上所述,本领域尚缺乏一种导电性能好,可用于锂离子电池负极材料制备具有高放电比容量和充放电循环稳定性的电池的硅纳米材料。To sum up, there is still a lack of silicon nanomaterials in the art that have good electrical conductivity and can be used as negative electrode materials for lithium-ion batteries to prepare batteries with high discharge specific capacity and charge-discharge cycle stability.
发明内容Contents of the invention
本发明提供了一种导电性能好,可用于锂离子电池负极材料制备具有高放电比容量和充放电循环稳定性的电池的硅纳米材料。The invention provides a silicon nanometer material with good electrical conductivity, which can be used as negative electrode material of lithium ion battery to prepare battery with high discharge specific capacity and charge and discharge cycle stability.
本发明的第一方面,提供了一种多孔硅-碳复合材料的制备方法,所述方法包括步骤:A first aspect of the present invention provides a method for preparing a porous silicon-carbon composite material, the method comprising the steps of:
(1)提供一硅-活泼金属合金块体;(1) providing a silicon-active metal alloy block;
(2)用所述合金块体与液相造孔剂进行反应以除去所述合金块体中的活泼金属,得到多孔硅纳米材料;(2) reacting the alloy block with a liquid phase pore-forming agent to remove the active metal in the alloy block to obtain a porous silicon nanomaterial;
(3)用氢氟酸清洗所述多孔硅纳米材料以去除氧化硅,得到经氢氟酸清洗处理的多孔硅纳米材料;(3) cleaning the porous silicon nanomaterial with hydrofluoric acid to remove silicon oxide, and obtaining a porous silicon nanomaterial cleaned with hydrofluoric acid;
(4)在惰性气体中,在碳源存在下,对所述经氢氟酸清洗处理的多孔硅纳米材料进行煅烧,得到多孔硅-碳复合材料。(4) Calcining the porous silicon nanomaterial cleaned with hydrofluoric acid in the presence of a carbon source in an inert gas to obtain a porous silicon-carbon composite material.
在另一优选例中,在所述合金块体中,所述的硅的质量百分比为1-99%,较佳地为10-80%。In another preferred example, in the alloy block, the mass percentage of silicon is 1-99%, preferably 10-80%.
在另一优选例中,所述的氢氟酸溶液的质量比为1%~30%。In another preferred example, the mass ratio of the hydrofluoric acid solution is 1%-30%.
在另一优选例中,在所述步骤(4)中,所述煅烧的温度范围为300~1900℃,较佳地为400~1700℃,更佳地为600~1500℃。In another preferred example, in the step (4), the temperature range of the calcination is 300-1900°C, preferably 400-1700°C, more preferably 600-1500°C.
在另一优选例中,在所述步骤(4)中,所述煅烧过程中,所述的升温速率为以1~10℃/min的速度升温。In another preferred example, in the step (4), during the calcination process, the heating rate is 1-10° C./min.
在另一优选例中,在所述步骤(4)中,所述的反应时间为0.1~24小时,优选为0.2~12小时,更优选地为0.2~5小时。In another preferred example, in the step (4), the reaction time is 0.1-24 hours, preferably 0.2-12 hours, more preferably 0.2-5 hours.
在另一优选例中,所述经氢氟酸清洗处理的多孔硅纳米材料是组分和形貌均一的多孔硅纳米颗粒;较佳地,所述的经氢氟酸清洗处理的多孔硅纳米材料中氧化硅的含量≤2%,较佳地≤1%,更佳地≤0.5%。In another preferred example, the porous silicon nanomaterials cleaned with hydrofluoric acid are porous silicon nanoparticles with uniform composition and appearance; preferably, the porous silicon nanomaterials cleaned with hydrofluoric acid The silicon oxide content in the material is ≤2%, preferably ≤1%, more preferably ≤0.5%.
在另一优选例中,在所述步骤(4)中,还包括:对所述的多孔硅-碳复合电极材料进行后处理;较佳地,所述的后处理包括:洗涤、过滤、烘干,或其组合。In another preferred example, in the step (4), it also includes: post-processing the porous silicon-carbon composite electrode material; preferably, the post-processing includes: washing, filtering, drying dry, or a combination thereof.
在另一优选例中,所述的“除去”指去除至少95%,较佳地至少98%,更佳地至少99%的所述合金块体中的活泼金属。In another preferred embodiment, the "removal" refers to the removal of at least 95%, preferably at least 98%, and more preferably at least 99% of the active metals in the alloy bulk.
在另一优选例中,所述的活泼金属选自下组:铝、铁、镁、锌、钙、铅,或其组合。In another preferred embodiment, the active metal is selected from the group consisting of aluminum, iron, magnesium, zinc, calcium, lead, or combinations thereof.
在另一优选例中,所述的合金块体为铝硅合金块体。In another preferred example, the alloy bulk is an aluminum-silicon alloy bulk.
在另一优选例中,所述的铝硅合金块体的大小为0.1mm~60mm。In another preferred example, the size of the aluminum-silicon alloy block is 0.1mm-60mm.
在另一优选例中,所述的液相造孔剂是能与活泼金属反应而不与单质硅反应的溶液;较佳地,所述的液相造孔剂为无机酸;更佳地,所述的液相造孔剂为无机强酸。In another preferred embodiment, the liquid-phase pore-forming agent is a solution capable of reacting with active metals but not reacting with elemental silicon; preferably, the liquid-phase pore-forming agent is an inorganic acid; more preferably, The liquid-phase pore-forming agent is a strong inorganic acid.
在另一优选例中,所述的液相造孔剂选自下组:盐酸、硝酸、硫酸,或其组合。In another preferred embodiment, the liquid phase pore former is selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, or combinations thereof.
在另一优选例中,所述的液相造孔剂为质量百分比溶液浓度为0.5%~35%的无机酸溶液。In another preferred example, the liquid-phase pore-forming agent is an inorganic acid solution with a solution concentration of 0.5%-35% by mass.
在另一优选例中,所述的碳源为含碳气体,较佳地选自下组:甲烷、乙烷、丙烷、乙烯、丙烯、乙炔、丙炔,或其组合。In another preferred embodiment, the carbon source is a carbon-containing gas, preferably selected from the group consisting of methane, ethane, propane, ethylene, propylene, acetylene, propyne, or combinations thereof.
在另一优选例中,所述的碳源是甲烷、乙烷、丙烷、乙烯、丙烯、乙炔、丙炔中的1种或至少2种的组合。In another preferred example, the carbon source is one or a combination of at least two of methane, ethane, propane, ethylene, propylene, acetylene, and propyne.
在另一优选例中,所述的惰性气体选自下组:氮气、氦气、氩气、氖气,或其组合。In another preferred embodiment, the inert gas is selected from the group consisting of nitrogen, helium, argon, neon, or combinations thereof.
在另一优选例中,所述的惰性气体为氮气、氦气、氩气、氖气中的1种或至少2种的组合;优选为氮气、氦气、氩气中的1种或至少2种的组合。In another preferred example, the inert gas is one or a combination of at least two of nitrogen, helium, argon, and neon; preferably one or at least two of nitrogen, helium, and argon combination of species.
本发明的第二方面,提供了一种多孔硅-碳复合电极材料,所述的电极材料是用如本发明第一方面所述的方法制备的。The second aspect of the present invention provides a porous silicon-carbon composite electrode material, which is prepared by the method described in the first aspect of the present invention.
在另一优选例中,所述的电极材料是锂离子电池电极材料。In another preferred example, the electrode material is a lithium ion battery electrode material.
在另一优选例中,在所述材料中,所述的碳元素的质量比为材料总重量的2-30wt%,较佳地3~20wt%。In another preferred example, in the material, the mass ratio of the carbon element is 2-30wt% of the total weight of the material, preferably 3-20wt%.
在另一优选例中,在所述材料中,杂质含量(即除硅、碳之外其他元素的含量)≤1%,较佳地为≤0.5%,更佳地为≤0.1%。In another preferred example, in the material, the impurity content (ie content of elements other than silicon and carbon) is ≤1%, preferably ≤0.5%, more preferably ≤0.1%.
在另一优选例中,所述的杂质选自下组:Al、Ti、K、V、Mn、Ni,或其组合。In another preferred embodiment, the impurity is selected from the group consisting of Al, Ti, K, V, Mn, Ni, or combinations thereof.
在另一优选例中,所述材料中还含有导电性金属;较佳地,所述的导电性金属选自下组:Cu、Ag、Zn、Fe、Al,或其组合。In another preferred embodiment, the material further contains a conductive metal; preferably, the conductive metal is selected from the group consisting of Cu, Ag, Zn, Fe, Al, or a combination thereof.
在另一优选例中,所述的电极材料具有选自下组的一个或多个特征:In another preferred example, the electrode material has one or more characteristics selected from the following group:
所述的电极材料为纳米颗粒,且所述纳米颗粒的粒径为5nm-300nm;The electrode material is nanoparticles, and the particle size of the nanoparticles is 5nm-300nm;
所述电极材料的比表面积为10-500cm2/g;The specific surface area of the electrode material is 10-500cm 2 /g;
在另一优选例中,所述的负极材料的放电比容量为>900mAh/g,较佳地为>1000mAh/g,>1100mAh/g,最佳地,所述的负极材料的放电比容量为1200-1600mAh/g。In another preferred example, the discharge specific capacity of the negative electrode material is >900mAh/g, preferably >1000mAh/g, >1100mAh/g, and most preferably, the discharge specific capacity of the negative electrode material is 1200-1600mAh/g.
在另一优选例中,所述的负极材料的库伦效率(第二次充放电循环后)为≥92%,较佳地为≥95%,更佳地为≥97%。In another preferred embodiment, the Coulombic efficiency (after the second charge-discharge cycle) of the negative electrode material is ≥92%, preferably ≥95%, more preferably ≥97%.
本发明的第三方面,提供了一种电池负极,所述的电池负极是用如本发明第二方面所述的材料制备的,或所述的电池负极含有如本发明第二方面所述的材料。The third aspect of the present invention provides a negative electrode of a battery, the negative electrode of the battery is prepared with the material as described in the second aspect of the present invention, or the negative electrode of the battery contains the material as described in the second aspect of the present invention Material.
在另一优选例中,所述的电池负极还包括导电剂和/或黏结剂。In another preferred example, the negative electrode of the battery further includes a conductive agent and/or a binder.
在另一优选例中,所述的导电剂选自下组:乙炔黑、SUPER P-Li、碳纤维、焦炭、石墨、中间相碳微球、硬碳,或其组合;优选地选自碳纳米管、碳纳米线、碳纳米球、石墨烯,或其组合。In another preferred example, the conductive agent is selected from the following group: acetylene black, SUPER P-Li, carbon fiber, coke, graphite, mesocarbon microspheres, hard carbon, or a combination thereof; preferably selected from carbon nano tubes, carbon nanowires, carbon nanospheres, graphene, or combinations thereof.
在另一优选例中,所述的粘接剂选自下组:聚偏氟乙烯(PVDF)、聚丙烯酸锂(Li-PAA)、丁苯橡胶(SBR)和羧甲基纤维素钠(CMC),或其组合。In another preferred example, the adhesive is selected from the group consisting of polyvinylidene fluoride (PVDF), lithium polyacrylate (Li-PAA), styrene-butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC ), or a combination thereof.
在另一优选例中,在所述负极材料中,所述的硅-碳复合电极材料的含量为60-90wt%;In another preferred example, in the negative electrode material, the content of the silicon-carbon composite electrode material is 60-90wt%;
所述的导电剂的含量为5-15wt%;The content of the conductive agent is 5-15wt%;
所述的黏结剂的含量为5-25wt%,以负极材料的总重量计。The content of the binder is 5-25wt%, based on the total weight of the negative electrode material.
在另一优选例中,在所述负极材料中,所述的硅-碳复合电极材料,导电剂,黏结剂三者的质量比为(80±10):(10±2):(10±2)。In another preferred example, in the negative electrode material, the mass ratio of the silicon-carbon composite electrode material, conductive agent, and binder is (80±10):(10±2):(10± 2).
本发明的第四方面,提供了一种制品,所述的制品是用如本发明第二方面所述的材料制备的,或所述的制品含有如本发明第二方面所述的材料,或所述的制品具有如本发明第三方面所述的电池负极。The fourth aspect of the present invention provides a product, the product is prepared with the material as described in the second aspect of the present invention, or the product contains the material as described in the second aspect of the present invention, or The product has the battery negative electrode as described in the third aspect of the present invention.
在另一优选例中,所述的电池是锂离子电池。In another preferred example, the battery is a lithium ion battery.
在另一优选例中,所述的制品是电池,且所述的电池包括正极材料,负极材料,电解液和隔膜,且所述的负极材料包括如本发明第二方面所述的材料。In another preferred example, the product is a battery, and the battery includes a positive electrode material, a negative electrode material, an electrolyte and a separator, and the negative electrode material includes the material as described in the second aspect of the present invention.
在另一优选例中,所述的电池为锂电池。In another preferred example, the battery is a lithium battery.
在另一优选例中,所述的电池还具有外壳;且所述的外壳选自下组:金属材料、复合材料,或其组合。In another preferred example, the battery further has a casing; and the casing is selected from the group consisting of metal materials, composite materials, or combinations thereof.
在另一优选例中,所述的电池为无水电池。In another preferred example, the battery is an anhydrous battery.
在另一优选例中,所述的隔膜选自下组:陶瓷多孔膜、合成树脂制备的多孔膜、玻璃纤维隔膜。In another preferred example, the separator is selected from the group consisting of ceramic porous membranes, porous membranes made of synthetic resin, and glass fiber membranes.
在另一优选例中,所述的正极材料中包括一种或多种活性金属氧化物作为正极活性材料,且所述的活性金属氧化物中还包括选自下组的非活性金属元素:锰(Mn)、铁(Fe)、钴(Co)、钒(V)、镍(Ni)、铬(Cr),或其组合;In another preferred example, the positive electrode material includes one or more active metal oxides as the positive electrode active material, and the active metal oxide also includes an inactive metal element selected from the following group: manganese (Mn), iron (Fe), cobalt (Co), vanadium (V), nickel (Ni), chromium (Cr), or combinations thereof;
较佳地,所述的正极活性材料还包括选自下组的组分:非活性金属的金属氧化物、金属硫化物、过渡金属氧化物、过渡金属硫化物,或其组合。Preferably, the positive electrode active material further includes components selected from the group consisting of metal oxides, metal sulfides, transition metal oxides, transition metal sulfides, or combinations thereof of inactive metals.
在另一优选例中,所述的活性金属为锂。In another preferred example, the active metal is lithium.
在另一优选例中,当所述的电池为锂电池时,所述的正极活性材料还包括选自下组的组分:In another preferred example, when the battery is a lithium battery, the positive electrode active material further includes a component selected from the following group:
LiMnO2,LiMnO 2 ,
LiMn2O4,LiMn 2 O 4 ,
LiCoO2,LiCoO 2 ,
Li2CrO7,Li 2 CrO 7 ,
LiNiO2,LiNiO 2 ,
LiFeO2,LiFeO 2 ,
LiNixCo1-XO2(0<x<1),LiNi x Co 1-X O 2 (0<x<1),
LiFePO4,LiFePO 4 ,
LiMnzNi1-ZO2(0<z<1;LiMn0.5Ni0.5O2),LiMn z Ni 1-Z O 2 (0<z<1; LiMn 0.5 Ni 0.5 O 2 ),
LiMn0.33Co0.33Ni0.33O2,LiMn 0.33 Co 0.33 Ni 0.33 O 2 ,
LiMc0.5Mn1.5O4,其中,Mc为二价金属;LiMc 0.5 Mn 1.5 O 4 , wherein, Mc is a divalent metal;
LiNixCoyMezO2,其中Me代表Al、Mg、Ti、B、Ga、Si中的一种或是几种元素,x>0;y<1,z<1,LiNi x Co y Me z O 2 , where Me represents one or several elements of Al, Mg, Ti, B, Ga, Si, x>0;y<1,z<1,
过渡金属氧化物,transition metal oxides,
过渡金属硫化物,transition metal sulfides,
或其组合。or a combination thereof.
在另一优选例中,所述的过渡金属氧化物为锂离子过渡金属氧化物。In another preferred example, the transition metal oxide is a lithium ion transition metal oxide.
在另一优选例中,所述的电解液包含一种或多种电解质盐;且所述的电解液包含一种或多种有机溶剂。In another preferred embodiment, the electrolyte solution includes one or more electrolyte salts; and the electrolyte solution includes one or more organic solvents.
在另一优选例中,当所述的电池为锂电池时,所述的电解质盐为锂盐。In another preferred example, when the battery is a lithium battery, the electrolyte salt is a lithium salt.
在另一优选例中,所述的有机溶剂中包括至少一种被一个或多个卤素原子取代的环状碳酸酯衍生物;较佳地,所述的有机溶剂中包括4-氟-1,3-二氧杂环戊-2-酮。In another preferred example, the organic solvent includes at least one cyclic carbonate derivative substituted by one or more halogen atoms; preferably, the organic solvent includes 4-fluoro-1, 3-dioxolan-2-one.
在另一优选例中,在充电过程中,所述的电解质盐的正离子能够穿过电解液,从正极材料到达负极材料。In another preferred example, during the charging process, the positive ions of the electrolyte salt can pass through the electrolyte, from the positive electrode material to the negative electrode material.
在另一优选例中,在放电过程中,所述的电解质盐的正离子能够穿过电解液,从负极材料到达正极材料。In another preferred example, during the discharge process, the positive ions of the electrolyte salt can pass through the electrolyte, from the negative electrode material to the positive electrode material.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described in the following (such as embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, we will not repeat them here.
附图说明Description of drawings
图1为实施例1多孔硅-碳复合负极材料的扫描电镜图片。Fig. 1 is a scanning electron microscope picture of the porous silicon-carbon composite negative electrode material of Example 1.
图2为实施例1多孔硅-碳复合负极材料实物图。FIG. 2 is a physical diagram of the porous silicon-carbon composite negative electrode material in Example 1. FIG.
图3为实施例1多孔硅-碳复合负极材料的X射线衍射图。3 is an X-ray diffraction pattern of the porous silicon-carbon composite negative electrode material of Example 1.
图4为实施例1多孔硅-碳复合负极材料的充放电曲线图。FIG. 4 is a charge-discharge curve diagram of the porous silicon-carbon composite negative electrode material in Example 1. FIG.
图5为实施例2多孔硅-碳复合负极材料的充放电曲线图和库仑效率图(▲为库伦效率曲线)。5 is the charge-discharge curve and Coulombic efficiency diagram of the porous silicon-carbon composite negative electrode material of Example 2 (▲ is the Coulombic efficiency curve).
具体实施方式Detailed ways
本发明人经过长期而深入的研究,制备了一种多孔硅-碳复合电极材料。用所述的材料制备的电池具有较高的理论比容量和较好的电池循环稳定性,且特别适合作为锂电池的负极活性材料。基于上述发现,发明人完成了本发明。The present inventor has prepared a porous silicon-carbon composite electrode material after long-term and in-depth research. The battery prepared by using the material has higher theoretical specific capacity and better cycle stability of the battery, and is particularly suitable as a negative electrode active material of a lithium battery. Based on the above findings, the inventors have accomplished the present invention.
术语the term
如本文所用,术语“碳包覆”或“碳复合”可互换使用,均指经造孔的多孔硅材料在碳源存在下进行煅烧,从而形成硅-碳复合材料的过程。As used herein, the terms "carbon coating" or "carbon composite" are used interchangeably to refer to the process of calcining a pore-formed porous silicon material in the presence of a carbon source to form a silicon-carbon composite material.
多孔纳米硅-碳复合材料及其制备Porous Nano-Silicon-Carbon Composite Material and Its Preparation
本发明提供了一种多孔硅-碳复合材料的制备方法,所述方法以铝-活泼金属合金块体为原料,与液相造孔剂反应生成多孔硅颗粒;再经氢氟酸溶液清洗除去表面或多余氧化硅后,进行碳包覆得到多孔硅-碳复合材料。本发明的方法所得的材料用作锂离子电池负极,具有较高的放电比容量和充放电稳定性。The invention provides a method for preparing a porous silicon-carbon composite material. The method uses an aluminum-active metal alloy block as a raw material, reacts with a liquid-phase pore-forming agent to form porous silicon particles; After surface or excess silicon oxide, carbon coating is performed to obtain a porous silicon-carbon composite material. The material obtained by the method of the invention is used as the negative electrode of the lithium ion battery, and has high discharge specific capacity and charge and discharge stability.
具体地,所述方法包括步骤:Specifically, the method includes the steps of:
(1)提供一硅-活泼金属合金块体;(1) providing a silicon-active metal alloy block;
(2)用所述合金块体与液相造孔剂进行反应以除去所述合金块体中的活泼金属,得到多孔硅纳米材料;(2) reacting the alloy block with a liquid phase pore-forming agent to remove the active metal in the alloy block to obtain a porous silicon nanomaterial;
(3)用氢氟酸清洗所述多孔硅纳米材料以去除氧化硅,得到经氢氟酸清洗处理的多孔硅纳米材料;(3) cleaning the porous silicon nanomaterial with hydrofluoric acid to remove silicon oxide, and obtaining a porous silicon nanomaterial cleaned with hydrofluoric acid;
(4)在惰性气体中,在碳源存在下,对所述经氢氟酸清洗处理的多孔硅纳米材料进行煅烧,得到多孔硅-碳复合材料。(4) Calcining the porous silicon nanomaterial cleaned with hydrofluoric acid in the presence of a carbon source in an inert gas to obtain a porous silicon-carbon composite material.
在另一优选例中,在所述合金块体中,所述的硅的质量百分比为1-99%,较佳地为10-80%。In another preferred example, in the alloy block, the mass percentage of silicon is 1-99%, preferably 10-80%.
所述的氢氟酸溶液的浓度没有特别的限制,较佳地,所述氢氟酸溶液为稀溶液,更佳地,所述的氢氟酸溶液的质量比为1%~30%。The concentration of the hydrofluoric acid solution is not particularly limited, preferably, the hydrofluoric acid solution is a dilute solution, more preferably, the mass ratio of the hydrofluoric acid solution is 1%-30%.
在另一优选例中,在所述的碳包覆步骤(即步骤(4))中,所述煅烧的温度范围为300~1900℃,较佳地为400~1700℃,更佳地为600~1500℃。In another preferred example, in the carbon coating step (ie step (4)), the temperature range of the calcination is 300-1900°C, preferably 400-1700°C, more preferably 600°C ~1500°C.
所述的碳包覆过程中,煅烧的温度需缓慢升高;在另一优选例中,在所述步骤(4)中,所述煅烧过程中,所述的升温速率为以1~10℃/min的速度升温。During the carbon coating process, the calcination temperature needs to be raised slowly; in another preferred example, in the step (4), during the calcination process, the temperature increase rate is 1-10°C /min rate of heating.
在另一优选例中,在所述步骤(4)中,所述的反应时间为0.1~24小时,优选为0.2~12小时,更优选地为0.2~5小时。In another preferred example, in the step (4), the reaction time is 0.1-24 hours, preferably 0.2-12 hours, more preferably 0.2-5 hours.
在另一优选例中,所述经氢氟酸清洗处理的多孔硅纳米材料是组分和形貌均一的多孔硅纳米颗粒。In another preferred example, the porous silicon nanomaterials cleaned with hydrofluoric acid are porous silicon nanoparticles with uniform composition and morphology.
所述的碳包覆步骤(即步骤(4))中,较佳地还包括:对所述的多孔硅-碳复合电极材料进行后处理;较佳地,所述的后处理包括:洗涤、过滤、烘干,或其组合。In the carbon coating step (ie, step (4)), it is preferred to further include: post-processing the porous silicon-carbon composite electrode material; preferably, the post-processing includes: washing, Filter, dry, or a combination thereof.
所述的活泼金属没有特别的限制,可以选用任意能与不与硅反应的溶液(即液相造孔剂)进行反应的金属。在本发明的一种优选例中,所述的活泼金属选自下组:铝、铁、镁、锌、钙、铅、或其组合。The active metal is not particularly limited, and any metal that can react with a solution that does not react with silicon (ie, a liquid phase pore former) can be selected. In a preferred embodiment of the present invention, the active metal is selected from the group consisting of aluminum, iron, magnesium, zinc, calcium, lead, or combinations thereof.
在另一优选例中,所述的合金块体为铝硅合金块体。所述的铝硅合金块体的大小没有特别限制,较佳地,所述的硅铝合金块体的直径为0.1mm~60mm。In another preferred example, the alloy bulk is an aluminum-silicon alloy bulk. The size of the aluminum-silicon alloy block is not particularly limited. Preferably, the diameter of the silicon-aluminum alloy block is 0.1 mm to 60 mm.
所述的液相造孔剂可以是任意的、能与活泼金属反应而不与单质硅反应的溶液;较佳地,所述的液相造孔剂为无机酸;更佳地,所述的液相造孔剂为无机强酸。The liquid-phase pore-forming agent can be any solution that can react with active metals but not react with elemental silicon; preferably, the liquid-phase pore-forming agent is an inorganic acid; more preferably, the The liquid phase pore former is a strong inorganic acid.
在另一优选例中,所述的液相造孔剂选自下组:盐酸、硝酸、硫酸,或其组合。In another preferred embodiment, the liquid phase pore former is selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, or combinations thereof.
在另一优选例中,所述的液相造孔剂为质量百分比溶液浓度为0.5%~35%的无机酸溶液。In another preferred example, the liquid-phase pore-forming agent is an inorganic acid solution with a solution concentration of 0.5%-35% by mass.
所述的碳源可以是含碳气体,如气态的烃类。较佳地,所述的碳源选自下组:甲烷、乙烷、丙烷、乙烯、丙烯、乙炔、丙炔,或其组合。在另一优选例中,所述的碳源是甲烷、乙烷、丙烷、乙烯、丙烯、乙炔、丙炔中的1种或至少2种的组合。The carbon source may be carbon-containing gas, such as gaseous hydrocarbons. Preferably, the carbon source is selected from the group consisting of methane, ethane, propane, ethylene, propylene, acetylene, propyne, or combinations thereof. In another preferred example, the carbon source is one or a combination of at least two of methane, ethane, propane, ethylene, propylene, acetylene, and propyne.
所述的惰性气体可以是任何不与碳源或硅进行反应的气体,如(但并不限于)选自下组的气体:氮气、氦气、氩气、氖气,或其组合。The inert gas may be any gas that does not react with carbon source or silicon, such as (but not limited to) a gas selected from the group consisting of nitrogen, helium, argon, neon, or combinations thereof.
在另一优选例中,所述的惰性气体为氮气、氦气、氩气、氖气中的1种或至少2种的组合;优选为氮气、氦气、氩气中的1种或至少2种的组合。In another preferred example, the inert gas is one or a combination of at least two of nitrogen, helium, argon, and neon; preferably one or at least two of nitrogen, helium, and argon combination of species.
这种多孔的硅-碳复合电极材料能够很好的缓解硅负极材料嵌锂过程中的体积膨胀问题,在保持较高电池容量的前提下较好地提高了硅基锂离子电池负极材料的循环稳定性,可满足高性能锂离子电池负极材料的要求。This porous silicon-carbon composite electrode material can well alleviate the problem of volume expansion during the lithium intercalation process of silicon negative electrode materials, and improve the cycle of negative electrode materials for silicon-based lithium-ion batteries while maintaining a high battery capacity. Stability can meet the requirements of high-performance lithium-ion battery anode materials.
电池负极材料battery anode material
本发明的硅-碳复合电极材料可以作为负极活性材料,用于制备电池负极材料。The silicon-carbon composite electrode material of the invention can be used as negative electrode active material for preparing battery negative electrode material.
在另一优选例中,所述的电池负极材料还包括导电剂和/或黏结剂。其中,所述的粘接剂优选为选自聚偏氟乙烯(PVDF)、聚丙烯酸锂(Li-PAA)、丁苯橡胶(SBR)和羧甲基纤维素钠(CMC)中的至少一种。In another preferred example, the battery negative electrode material further includes a conductive agent and/or a binder. Wherein, the adhesive is preferably at least one selected from polyvinylidene fluoride (PVDF), lithium polyacrylate (Li-PAA), styrene-butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC). .
在另一优选例中,所述的导电剂选自下组:乙炔黑、SUPER P-Li、碳纤维、焦炭、石墨、中间相碳微球、硬碳,或其组合;优选地选自碳纳米管、碳纳米线、碳纳米球、石墨烯,或其组合。In another preferred example, the conductive agent is selected from the following group: acetylene black, SUPER P-Li, carbon fiber, coke, graphite, mesocarbon microspheres, hard carbon, or a combination thereof; preferably selected from carbon nano tubes, carbon nanowires, carbon nanospheres, graphene, or combinations thereof.
在另一优选例中,在所述负极材料中,所述的硅/碳复合负极活性材料的含量为60-90wt%;In another preferred example, in the negative electrode material, the content of the silicon/carbon composite negative electrode active material is 60-90wt%;
所述的导电剂的含量为5-15wt%;The content of the conductive agent is 5-15wt%;
所述的黏结剂的含量为5-25wt%,以负极材料的总重量计。The content of the binder is 5-25wt%, based on the total weight of the negative electrode material.
在另一优选例中,在所述负极材料中,所述的负极活性材料,导电剂,黏结剂三者的质量比为(80±10):(10±2):(10±2)。In another preferred example, in the negative electrode material, the mass ratio of the negative electrode active material, conductive agent, and binder is (80±10):(10±2):(10±2).
本发明的负极材料在经过多次充放电循环后,库伦效率和放电比容量达到稳定,尤其是,在经过2次以上充放电循环后,库伦效率和放电比容量达到最高值(大于第一次充放电循环)。一个优选的例子中,所述的电池在2-10次充放电后,充放电比容量和库伦效率达到最高。The negative electrode material of the present invention reaches a stable Coulombic efficiency and discharge specific capacity after multiple charge-discharge cycles, especially, after more than 2 charge-discharge cycles, Coulombic efficiency and discharge specific capacity reach the highest value (greater than the first time charge-discharge cycle). In a preferred example, after the battery is charged and discharged 2-10 times, the charge-discharge specific capacity and Coulombic efficiency reach the highest.
含有多孔硅-碳复合负极活性材料的电池Batteries Containing Porous Silicon-Carbon Composite Negative Active Materials
本发明制备的多孔硅-碳复合负极活性材料可以应用于电池领域。其中,一种优选的所述电池包括正极材料,负极材料,电解液,隔膜,且所述的负极材料包括如本发明所述的多孔硅-碳复合电极材料作为负极活性材料。优选地应用于锂电池。The porous silicon-carbon composite negative electrode active material prepared by the invention can be applied to the battery field. Wherein, a preferred battery includes a positive electrode material, a negative electrode material, an electrolyte, and a separator, and the negative electrode material includes the porous silicon-carbon composite electrode material according to the present invention as the negative electrode active material. Preferably applied to lithium batteries.
所述的负极材料由上述多孔硅/碳复合负极活性材料,导电剂及黏结剂组成。多孔硅-碳复合电极材料的含量为60~90wt%,导电剂的含量为5~15%,黏结剂的含量为5~25wt%。在另一优选例中,多孔硅-碳复合电极材料,导电剂,黏结剂的比例为80:10:10。The negative electrode material is composed of the above-mentioned porous silicon/carbon composite negative electrode active material, a conductive agent and a binder. The content of the porous silicon-carbon composite electrode material is 60-90wt%, the content of the conductive agent is 5-15%, and the content of the binder is 5-25wt%. In another preferred example, the ratio of porous silicon-carbon composite electrode material, conductive agent, and binder is 80:10:10.
在另一优选例中,所述的电池还具有外壳。所述的外壳没有特别限制,可以是金属材料或是其他复合材料等。In another preferred example, the battery further has a casing. The shell is not particularly limited, and may be made of metal materials or other composite materials.
在另一优选例中,所述的电池优选为无水电池。In another preferred example, the battery is preferably an anhydrous battery.
所述的电池的隔膜可以是任意本领域现有的电池隔膜,如聚四氟乙烯隔膜、陶瓷多孔膜、玻璃纤维隔膜等。The separator of the battery can be any existing battery separator in the art, such as a polytetrafluoroethylene separator, a ceramic porous membrane, a glass fiber separator, and the like.
在充电过程中,电解质盐的正离子能够穿过电解液,从正极材料到达负极材料;在放电过程中,电解质盐的正离子穿过电解液,从负极材料到达正极材料。During the charging process, the positive ions of the electrolyte salt can pass through the electrolyte, from the positive electrode material to the negative electrode material; during the discharge process, the positive ions of the electrolyte salt pass through the electrolyte, from the negative electrode material to the positive electrode material.
所述的电解液包含溶剂及溶解在溶剂中的电解质盐。所述的溶剂较佳地为有机溶剂,包括(但并不限于):碳酸甲乙酯(Methyl Ethyl Carbonate)、碳酸二甲酯(Dimethyl Carbonate)、碳酸二乙酯(Diethyl Carbonate)、碳酸乙烯酯(Ethylene Carbonate)、碳酸丙烯酯(Propylene Carbonate)、1,2-二甲氧基乙烷、1,3二氧戊烷、苯甲醚、乙酸酯、丙酸酯、丁酸酯、二乙醚、乙腈、丙腈。另一种优选的有机溶剂包括具有卤原子的环状碳酸酯衍生物,可以改善电极的循环性能。碳酸酯衍生物包括4-氟-1,3-二氧杂环戊-2-酮等。The electrolyte solution includes a solvent and an electrolyte salt dissolved in the solvent. Described solvent is preferably an organic solvent, including (but not limited to): Methyl Ethyl Carbonate (Methyl Ethyl Carbonate), Dimethyl Carbonate (Dimethyl Carbonate), Diethyl Carbonate (Diethyl Carbonate), Ethylene Carbonate (Ethylene Carbonate), Propylene Carbonate (Propylene Carbonate), 1,2-Dimethoxyethane, 1,3-Dioxolane, Anisole, Acetate, Propionate, Butyrate, Diethyl Ether , Acetonitrile, propionitrile. Another preferred organic solvent includes cyclic carbonate derivatives with halogen atoms, which can improve the cycle performance of the electrode. Carbonate derivatives include 4-fluoro-1,3-dioxolan-2-one and the like.
所述的电解质盐包括正离子,如可以使用锂盐。优选的锂盐包括六氟磷酸锂、高氯酸锂、氯化锂、溴化锂等。Said electrolyte salt includes positive ions, such as lithium salt can be used. Preferred lithium salts include lithium hexafluorophosphate, lithium perchlorate, lithium chloride, lithium bromide, and the like.
电解液溶剂可以单独使用,也可以包含二种或是多种溶剂,电解质盐可以单独使用,也可包含二种或是多种锂盐。The electrolyte solvent can be used alone or contain two or more solvents, and the electrolyte salt can be used alone or contain two or more lithium salts.
所述的正极材料没有特别的限制,可以参考本领域现有技术进行选择,或采用本领域已有的正极材料。The anode material is not particularly limited, and can be selected with reference to existing technologies in the art, or existing anode materials in the art can be used.
如,当所述的电池为锂电池时,其正极材料可以包括一种或是多种锂金属氧化物,如锰(Mn)、铁(Fe)、钴(Co)、钒(V)、镍(Ni)、铬(Cr)等金属的氧化物。所述的正极活性材料还可以包括一种或多种金属氧化物及金属硫化物等。如(包括但并不限于):LiMnO2,LiMn2O4,LiCoO2,Li2CrO7,LiNiO2,LiFeO2,LiNixCo1-XO2(0<x<1),LiFePO4,LiMnzNi1-ZO2(0<x<1;LiMn0.5Ni0.5O2),LiMn0.33Co0.33Ni0.33O2,LiMc0.5Mn1.5O4,其中,Mc为一个二价金属;LiNixCoyMezO2,其中Me代表Al、Mg、Ti、B、Ga、Si中的一种或是几种元素,x>0;y,z<1。另外,所述的正极活性材料也可包括过渡金属氧化物,如MnO2、V2O5;过渡金属硫化物,如FeS2、MoS2、TiS2。其中,锂离子过渡金属氧化物得到了更多的应用,包括:LiMn2O4,LiCoO2,LiNi0.8Co0.15Al0.05O2,LiFePO4及LiNi0.33Mn0.33Co0.33O2。For example, when the battery is a lithium battery, its positive electrode material can include one or more lithium metal oxides, such as manganese (Mn), iron (Fe), cobalt (Co), vanadium (V), nickel (Ni), chromium (Cr) and other metal oxides. The positive electrode active material may also include one or more metal oxides and metal sulfides. Such as (including but not limited to): LiMnO 2 , LiMn 2 O 4 , LiCoO 2 , Li 2 CrO 7 , LiNiO 2 , LiFeO 2 , LiNi x Co 1-X O 2 (0<x<1), LiFePO 4 , LiMn z Ni 1-Z O 2 (0<x<1; LiMn 0.5 Ni 0.5 O 2 ), LiMn 0.33 Co 0.33 Ni 0.33 O 2 , LiMc 0.5 Mn 1.5 O 4 , where Mc is a divalent metal; LiNi x Co y Me z O 2 , where Me represents one or several elements of Al, Mg, Ti, B, Ga, Si, x>0; y, z<1. In addition, the positive electrode active material may also include transition metal oxides, such as MnO 2 , V 2 O 5 ; transition metal sulfides, such as FeS 2 , MoS 2 , TiS 2 . Among them, lithium ion transition metal oxides have been used more, including: LiMn 2 O 4 , LiCoO 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiFePO 4 and LiNi 0.33 Mn 0.33 Co 0.33 O 2 .
本发明的主要优点包括:The main advantages of the present invention include:
(1)本发明成功制备多孔硅/碳复合负极活性材料。与现有其他材料相比,此材料具有较高的理论比容量。(1) The present invention successfully prepares porous silicon/carbon composite negative electrode active materials. Compared with other existing materials, this material has a higher theoretical specific capacity.
(2)本发明所述多孔硅/碳复合负极材料结构缓解了硅在充放电过程中因体积膨胀和收缩产生的机械应力,消除体积效应;(2) The porous silicon/carbon composite anode material structure of the present invention alleviates the mechanical stress caused by volume expansion and contraction of silicon during charging and discharging, and eliminates the volume effect;
(3)本发明所述锂离子电池多孔硅/碳复合负极材料新型的生产工艺,具有生产成本低廉、工艺简单、规模化生产容易等优点;(3) The novel production process of the porous silicon/carbon composite negative electrode material for lithium ion batteries of the present invention has the advantages of low production cost, simple process, and easy large-scale production;
(4)本发明制备的多孔硅/碳复合负极活性材料可以成功应用于锂电池,表现出较高的容量及较好的循环稳定性。(4) The porous silicon/carbon composite negative electrode active material prepared by the present invention can be successfully applied to lithium batteries, exhibiting higher capacity and better cycle stability.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. For the experimental methods without specific conditions indicated in the following examples, the conventional conditions or the conditions suggested by the manufacturer are usually followed. Percentages and parts are by weight unless otherwise indicated.
通用方法充放电性能测试General method charge and discharge performance test
以下实施例中首次充放电性能测试和循环性能测试的测试条件为:The test conditions for the first charge and discharge performance test and cycle performance test in the following examples are:
比容量按4000mAh/g计算,充电倍率为0.1C(即按理论容量计算,充放电各需要10个小时)或0.05C(即按理论容量计算,充放电各需要20个小时),充放电电压范围为0.01V~1.5V。The specific capacity is calculated on the basis of 4000mAh/g, the charging rate is 0.1C (that is, it takes 10 hours to charge and discharge according to the theoretical capacity) or 0.05C (that is, it takes 20 hours to charge and discharge according to the theoretical capacity), and the charge and discharge voltage The range is 0.01V ~ 1.5V.
实施例中所使用的仪器分别为:The instrument used in the embodiment is respectively:
XRD:采用德国布鲁克公司/Bruker AXS;型号:D8Advance;XRD: Bruker AXS from Germany; Model: D8Advance;
SEM:采用日本日立公司;型号:S~4800;SEM: Hitachi, Japan; Model: S~4800;
实施例1Example 1
将25g直径为0.1mm~60mm铝硅合金块体(约含20%的硅),加入到300ml的5%的稀盐酸溶液中反应,磁力搅拌均匀。待该混合溶液充分反应完全以后,将混合溶液经过过滤,用去离子水和乙醇等充分漂洗以后,以除去AlCl3得到多孔硅纳米颗粒;再将多孔硅纳米颗粒加入到5%质量比的氢氟酸溶液清洗,已除去多孔硅纳米颗粒表面或多余氧化硅后,进行过滤,用去离子水和乙醇等充分漂洗,收集得到成分单一,形貌均匀的多孔纳米硅,如图1。Add 25g of aluminum-silicon alloy blocks (containing about 20% silicon) with a diameter of 0.1mm to 60mm into 300ml of 5% dilute hydrochloric acid solution for reaction, and stir evenly with magnetic force. After the mixed solution is fully reacted, the mixed solution is filtered and rinsed with deionized water and ethanol to remove AlCl to obtain porous silicon nanoparticles; then the porous silicon nanoparticles are added to 5 % mass ratio of hydrogen After cleaning with hydrofluoric acid solution, the surface of porous silicon nanoparticles or excess silicon oxide has been removed, filtered, fully rinsed with deionized water and ethanol, and porous nano-silicon with single composition and uniform appearance is collected, as shown in Figure 1.
然后在氩气(80%)/(20%)乙炔气体氛围400℃(以5℃/min的速度升温至400℃)下煅烧20分钟得到多孔硅-碳复合电极材料,如图2。Then calcined in argon (80%)/(20%) acetylene gas atmosphere at 400°C (heating up to 400°C at a rate of 5°C/min) for 20 minutes to obtain a porous silicon-carbon composite electrode material, as shown in Figure 2.
对实施例1制备的多孔纳米硅进行了XRD结构分析,测试结果如图3所示。从图3可以看出,所制备的多孔硅纳米颗粒为结晶性良好的晶体硅,主峰值在28.44°(111面),47.30°(220面),56.12°(311面),69.13°(400面),76.38°(331面),没有其他杂质峰的出现。证明所制备的多孔硅纳米颗粒为高纯度多晶硅。The XRD structure analysis was carried out on the porous nano-silicon prepared in Example 1, and the test results are shown in FIG. 3 . It can be seen from Fig. 3 that the prepared porous silicon nanoparticles are crystalline silicon with good crystallinity, and the main peaks are at 28.44° (111 plane), 47.30° (220 plane), 56.12° (311 plane), 69.13° (400 plane). plane), 76.38 ° (331 plane), there is no appearance of other impurity peaks. It is proved that the prepared porous silicon nanoparticles are high-purity polysilicon.
将多孔硅-碳复合电极材料、导电碳(Super-P)和聚丙烯酸锂(Li-PAA)按照80:10:10的质量比例混合在溶剂中,搅拌均匀,得到负极浆料,以锂片为负极,0.1C倍率进行充/放电测试,测得该复合电极材料在室温下的首次放电比容量为1479.4mAh/g,充电比容量为1137.3mAh/g,首次库伦效率可高达76.9%,第二次的放电比容量为1707.8mAh/g,充电比容量为1558.9mAh/g,库伦效率可高达91.3%。第三次的放电比容量为1675.5mAh/g,充电比容量为1575.4mAh/g,库伦效率可高达94.0%,呈现上升趋势,显示了较好的循环稳定性,如图4所示。Mix the porous silicon-carbon composite electrode material, conductive carbon (Super-P) and lithium polyacrylate (Li-PAA) in a solvent in a mass ratio of 80:10:10, stir evenly to obtain a negative electrode slurry, and use a lithium sheet As the negative electrode, the charge/discharge test was carried out at a rate of 0.1C. It was measured that the first discharge specific capacity of the composite electrode material at room temperature was 1479.4mAh/g, the charge specific capacity was 1137.3mAh/g, and the first Coulombic efficiency could be as high as 76.9%. The secondary discharge specific capacity is 1707.8mAh/g, the charge specific capacity is 1558.9mAh/g, and the Coulombic efficiency can be as high as 91.3%. The third discharge specific capacity is 1675.5mAh/g, the charge specific capacity is 1575.4mAh/g, and the Coulombic efficiency can be as high as 94.0%, showing an upward trend, showing good cycle stability, as shown in Figure 4.
实施例2Example 2
将35g直径为0.1mm~60mm铝硅合金块体(约含30%的硅),加入到400ml的5%的稀盐酸溶液中反应,磁力搅拌均匀。待该混合溶液充分反应完全以后,将混合溶液经过过滤,用去离子水和乙醇等充分漂洗以后,得到多孔硅纳米颗粒;再将多孔硅纳米颗粒加入到5%质量比的氢氟酸溶液清洗,已除去多孔硅纳米颗粒表面或多余氧化硅后,进行过滤,用去离子水和乙醇等充分漂洗,收集得到成分单一,形貌均匀的多孔硅纳米颗粒。然后在氩气(80%)/(20%)乙炔气体氛围690℃(以10℃/min的速度升温至690℃)下煅烧10分钟得到多孔硅/碳复合电极材料。将多孔硅-碳复合电极材料、导电碳(Super-P)和羧甲基纤维素钠(CMC)按照70∶20∶10的质量比例混合在溶剂中,搅拌均匀,得到负极浆料,以锂片为负极,0.05C倍率进行充/放电测试,测得该复合电极材料在室温下的首次放电比容量为1466.1mAh/g,充电比容量为898.1mAh/g,首次库伦效率可高达61.3%,第二次的放电比容量为1175.1mAh/g,充电比容量为1034.8mAh/g,库伦效率可高达88.1%。第三次的放电比容量为1114.8mAh/g,充电比容量为1038.9mAh/g,库伦效率可高达93.2%,呈现上升趋势,显示了较好的稳定性。表一为制得的硅碳负极材料的电化学性能,图5为实施例2多孔硅-碳复合负极材料的充放电曲线图和库仑效率图。Add 35g of aluminum-silicon alloy blocks (containing about 30% silicon) with a diameter of 0.1mm to 60mm into 400ml of 5% dilute hydrochloric acid solution for reaction, and stir evenly with magnetic force. After the mixed solution is fully reacted, the mixed solution is filtered and fully rinsed with deionized water and ethanol to obtain porous silicon nanoparticles; then the porous silicon nanoparticles are added to a 5% mass ratio hydrofluoric acid solution for cleaning , after the surface of the porous silicon nanoparticles or excess silicon oxide has been removed, filter, rinse thoroughly with deionized water and ethanol, and collect porous silicon nanoparticles with a single composition and uniform appearance. Then, it was calcined for 10 minutes in an argon (80%)/(20%) acetylene gas atmosphere at 690°C (increasing the temperature to 690°C at a rate of 10°C/min) for 10 minutes to obtain a porous silicon/carbon composite electrode material. Mix porous silicon-carbon composite electrode material, conductive carbon (Super-P) and sodium carboxymethyl cellulose (CMC) in a solvent according to a mass ratio of 70:20:10, and stir evenly to obtain negative electrode slurry. The sheet is the negative electrode, and the charge/discharge test is carried out at a rate of 0.05C. It is measured that the first discharge specific capacity of the composite electrode material at room temperature is 1466.1mAh/g, the charge specific capacity is 898.1mAh/g, and the first Coulombic efficiency can be as high as 61.3%. The second discharge specific capacity is 1175.1mAh/g, the charge specific capacity is 1034.8mAh/g, and the Coulombic efficiency can be as high as 88.1%. The third discharge specific capacity is 1114.8mAh/g, the charge specific capacity is 1038.9mAh/g, and the Coulombic efficiency can be as high as 93.2%, showing an upward trend and showing good stability. Table 1 shows the electrochemical properties of the prepared silicon-carbon anode material, and FIG. 5 shows the charge-discharge curve and Coulombic efficiency diagram of the porous silicon-carbon composite anode material in Example 2.
表一实施例2制得锂离子电池用的硅碳负极材料的电化学性能Table 1 embodiment 2 makes the electrochemical performance of the silicon carbon negative electrode material that lithium-ion battery is used
实施例3Example 3
将30g直径为0.1mm~60mm铝硅合金块体(约含50%的硅),加入到300ml的10%的稀盐酸溶液中充分反应,磁力搅拌均匀。待该混合溶液充分反应完全以后,将混合溶液经过过滤,用去离子水和乙醇等充分漂洗以后,得到多孔硅纳米颗粒;再将多孔硅纳米颗粒加入到10%质量比的氢氟酸溶液清洗,已除去多孔硅纳米颗粒表面或多余氧化硅后,进行过滤,用去离子水和乙醇等充分漂洗,收集得到成分单一,形貌均匀的多孔硅纳米颗粒。然后在氩气(80%)/(20%)乙烯气体氛围800℃(以5℃/min的速度升温至800℃)下煅烧30分钟得到多孔硅/碳复合电极材料。以锂片为负极,0.05C倍率进行充/放电测试,测得该复合电极材料在室温下的首次放电比容量为1428.3mAh/g,充电比容量为1305.4mAh/g,首次库伦效率可高达91.4%,第二次的放电比容量为1722.0mAh/g,第三次的放电比容量为1539.0mAh/g,第二次和第三次的库伦效率可高达95-97%。经50次充放电循环后,库伦效率仍可高达97%以上,且在第二次充放电循环后,放电比容量呈平台状,这表示经过几次充放电循环后,电极材料的嵌/脱锂能力逐渐达到稳定状态。本发明的材料制成的负极材料在多次充放电循环后具有很好的循环稳定性。Add 30g of aluminum-silicon alloy blocks (containing about 50% silicon) with a diameter of 0.1mm to 60mm into 300ml of 10% dilute hydrochloric acid solution to fully react, and stir evenly with magnetic force. After the mixed solution is fully reacted, the mixed solution is filtered and fully rinsed with deionized water and ethanol to obtain porous silicon nanoparticles; then the porous silicon nanoparticles are added to a 10% mass ratio hydrofluoric acid solution for cleaning , after the surface of the porous silicon nanoparticles or excess silicon oxide has been removed, filter, rinse thoroughly with deionized water and ethanol, and collect porous silicon nanoparticles with a single composition and uniform appearance. Then, it was calcined for 30 minutes in an argon (80%)/(20%) ethylene gas atmosphere at 800°C (increasing the temperature to 800°C at a rate of 5°C/min) to obtain a porous silicon/carbon composite electrode material. Using a lithium sheet as the negative electrode, the charge/discharge test was carried out at a rate of 0.05C. It was measured that the first discharge specific capacity of the composite electrode material at room temperature was 1428.3mAh/g, the charge specific capacity was 1305.4mAh/g, and the first coulombic efficiency was as high as 91.4 %, the specific capacity of the second discharge is 1722.0mAh/g, the specific capacity of the third discharge is 1539.0mAh/g, and the Coulombic efficiency of the second and third discharges can be as high as 95-97%. After 50 charge-discharge cycles, the Coulombic efficiency can still be as high as 97%, and after the second charge-discharge cycle, the discharge specific capacity is plateau, which means that after several charge-discharge cycles, the intercalation/detachment of the electrode material Lithium capacity gradually reaches a steady state. The negative electrode material made of the material of the invention has good cycle stability after multiple charge and discharge cycles.
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application as if each were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410150747.5A CN105024055A (en) | 2014-04-15 | 2014-04-15 | Lithium-ion battery porous nanometer silicon-carbon composite negative electrode material and preparation method thereof |
CN201910165349.3A CN109888232A (en) | 2014-04-15 | 2014-04-15 | A kind of porous nano-silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410150747.5A CN105024055A (en) | 2014-04-15 | 2014-04-15 | Lithium-ion battery porous nanometer silicon-carbon composite negative electrode material and preparation method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910165349.3A Division CN109888232A (en) | 2014-04-15 | 2014-04-15 | A kind of porous nano-silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105024055A true CN105024055A (en) | 2015-11-04 |
Family
ID=54413864
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910165349.3A Pending CN109888232A (en) | 2014-04-15 | 2014-04-15 | A kind of porous nano-silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof |
CN201410150747.5A Pending CN105024055A (en) | 2014-04-15 | 2014-04-15 | Lithium-ion battery porous nanometer silicon-carbon composite negative electrode material and preparation method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910165349.3A Pending CN109888232A (en) | 2014-04-15 | 2014-04-15 | A kind of porous nano-silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN109888232A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870427A (en) * | 2016-06-14 | 2016-08-17 | 中国科学院宁波材料技术与工程研究所 | Lithium ion battery cathode material, preparing method of lithium ion battery cathode material and lithium ion battery |
CN108640118A (en) * | 2018-04-25 | 2018-10-12 | 山东大学 | A kind of preparation method of high-purity porous silicon |
CN110350181A (en) * | 2019-07-16 | 2019-10-18 | 昆明理工大学 | A kind of preparation method of lithium ion cell nano porous silicon negative electrode material |
CN112768663A (en) * | 2021-01-26 | 2021-05-07 | 惠州锂威新能源科技有限公司 | Nano porous silicon/carbon negative electrode material, preparation method thereof and lithium ion battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116470043A (en) * | 2023-05-16 | 2023-07-21 | 安徽科技学院 | Porous silicon-transition metal sulfide composite material and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040214085A1 (en) * | 2003-01-06 | 2004-10-28 | Kyou-Yoon Sheem | Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery |
CN102157731A (en) * | 2011-03-18 | 2011-08-17 | 上海交通大学 | Silicon and carbon compound anode material of lithium ion battery and preparation method of silicon and carbon compound anode material |
CN103165874A (en) * | 2013-04-10 | 2013-06-19 | 上海空间电源研究所 | A kind of lithium-ion battery porous silicon negative electrode material and its preparation method and application |
CN103337612A (en) * | 2013-03-22 | 2013-10-02 | 济南大学 | Nanoporous silicon/carbon composite material and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2470056B (en) * | 2009-05-07 | 2013-09-11 | Nexeon Ltd | A method of making silicon anode material for rechargeable cells |
KR101103841B1 (en) * | 2009-05-27 | 2012-01-06 | 한국과학기술연구원 | Method for producing bundle silicon nanorods by electroless etching method using metal ions and anode active material for lithium secondary battery containing same |
CN102041406A (en) * | 2009-10-20 | 2011-05-04 | 财团法人工业技术研究院 | Porous powder and method for producing the same |
CN102969489B (en) * | 2012-12-05 | 2016-08-17 | 奇瑞汽车股份有限公司 | A kind of Si-C composite material and preparation method thereof, lithium ion battery containing this material |
CN103247792A (en) * | 2013-03-22 | 2013-08-14 | 济南大学 | Nano porous silicon alloy material and preparation method thereof |
-
2014
- 2014-04-15 CN CN201910165349.3A patent/CN109888232A/en active Pending
- 2014-04-15 CN CN201410150747.5A patent/CN105024055A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040214085A1 (en) * | 2003-01-06 | 2004-10-28 | Kyou-Yoon Sheem | Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery |
CN102157731A (en) * | 2011-03-18 | 2011-08-17 | 上海交通大学 | Silicon and carbon compound anode material of lithium ion battery and preparation method of silicon and carbon compound anode material |
CN103337612A (en) * | 2013-03-22 | 2013-10-02 | 济南大学 | Nanoporous silicon/carbon composite material and preparation method thereof |
CN103165874A (en) * | 2013-04-10 | 2013-06-19 | 上海空间电源研究所 | A kind of lithium-ion battery porous silicon negative electrode material and its preparation method and application |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870427A (en) * | 2016-06-14 | 2016-08-17 | 中国科学院宁波材料技术与工程研究所 | Lithium ion battery cathode material, preparing method of lithium ion battery cathode material and lithium ion battery |
CN108640118A (en) * | 2018-04-25 | 2018-10-12 | 山东大学 | A kind of preparation method of high-purity porous silicon |
CN110350181A (en) * | 2019-07-16 | 2019-10-18 | 昆明理工大学 | A kind of preparation method of lithium ion cell nano porous silicon negative electrode material |
CN112768663A (en) * | 2021-01-26 | 2021-05-07 | 惠州锂威新能源科技有限公司 | Nano porous silicon/carbon negative electrode material, preparation method thereof and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
CN109888232A (en) | 2019-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105226285B (en) | A kind of porous Si-C composite material and preparation method thereof | |
CN102394305B (en) | Foamy copper oxide/copper lithium ion battery anode and preparation method thereof | |
CN110600720A (en) | Composite silicon-based material, negative electrode material, preparation methods of composite silicon-based material and negative electrode material, and lithium ion battery | |
CN103682279B (en) | A kind of silica-based composite lithium ion battery cathode material and its preparation method and application | |
CN102237519A (en) | Fluorine-free preparation method for three-dimensional porous silica powder anode material of lithium ion battery | |
CN102646810A (en) | Preparation method of a three-dimensional porous graphene doped and coated lithium titanate composite negative electrode material | |
CN102208641A (en) | One-step synthesis of hollow sphere structure Fe3O4/C lithium-ion battery anode material | |
Sun et al. | Fe2O3/CNTs composites as anode materials for lithium-ion batteries | |
WO2022121281A1 (en) | Self-filling coated silicon-based composite material and preparation method therefor and application thereof | |
CN103117414A (en) | Electrolyte solution for negative lithium titanate battery, lithium ion battery and preparation method thereof | |
CN108232141B (en) | High-compaction lithium ion battery silicon-carbon composite negative electrode material and preparation method thereof | |
CN113380998A (en) | Silicon-carbon negative electrode material and preparation method and application thereof | |
CN107634206B (en) | A kind of flexible negative electrode material for lithium ion battery and preparation method thereof | |
CN107275590A (en) | A kind of porous Si-C composite material and its preparation method and application | |
CN111029541B (en) | Silicon-carbon composite electrode material for honeycomb-like lithium ion battery and preparation method thereof | |
WO2017008615A1 (en) | Method for fabricating modified-silicon-based negative-electrode material by vapor deposition | |
CN105118966B (en) | A kind of high nitrogen-containing tin carbon composite for cathode of lithium battery and preparation method | |
CN105226244A (en) | Three-dimensional porous silicon-nano silver composite material and preparation thereof and the application as lithium ion battery negative material | |
CN105024055A (en) | Lithium-ion battery porous nanometer silicon-carbon composite negative electrode material and preparation method thereof | |
WO2013117080A1 (en) | Heterojunction nanomaterial, cathode pole piece for lithium-ion batteries, and lithium-ion battery | |
CN106960947A (en) | Composite, its preparation method and application | |
CN103647040A (en) | Electrode slurry, negative electrode and lithium ion battery using negative electrode | |
CN111435732A (en) | Anode material for lithium ion battery and preparation method thereof, and lithium ion battery | |
CN108963198A (en) | Positive electrode, negative electrode, preparation method thereof and lithium ion battery comprising positive electrode and negative electrode | |
WO2017197675A1 (en) | Lithium titanate-modified material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151104 |
|
RJ01 | Rejection of invention patent application after publication |