[go: up one dir, main page]

CN105022881B - A kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization - Google Patents

A kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization Download PDF

Info

Publication number
CN105022881B
CN105022881B CN201510434862.XA CN201510434862A CN105022881B CN 105022881 B CN105022881 B CN 105022881B CN 201510434862 A CN201510434862 A CN 201510434862A CN 105022881 B CN105022881 B CN 105022881B
Authority
CN
China
Prior art keywords
mrow
msub
optimization
carrier
guidance law
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510434862.XA
Other languages
Chinese (zh)
Other versions
CN105022881A (en
Inventor
段海滨
李俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201510434862.XA priority Critical patent/CN105022881B/en
Publication of CN105022881A publication Critical patent/CN105022881A/en
Application granted granted Critical
Publication of CN105022881B publication Critical patent/CN105022881B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)

Abstract

The present invention is a kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization, and implementation step is:Step 1:Build carrier-borne aircraft and stern flow Simulink emulation modules;Step 2:Initialize dove colony optimization algorithm parameter;Step 3:Design cost function;Step 4:Guidance law parameter to be optimized is set in Simulink;Step 5:Optimizing is carried out using the map compass operator of dove colony optimization algorithm;Step 6:Optimizing is carried out using the terrestrial reference operator of dove colony optimization algorithm;Step 7:Store results are simultaneously verified.This method can effectively reduce the work difficulty for flying control designer, and improve robustness of the carrier landing guidance rule to stern flow interference.

Description

一种基于鸽群优化的舰载机自主着舰导引律设计方法A Design Method of Guidance Law for Carrier Aircraft Autonomous Landing Based on Pigeon Group Optimization

技术领域technical field

本发明是一种基于鸽群优化的舰载机自主着舰导引律设计方法,属于舰载机技术领域。The invention relates to a design method of a carrier-based aircraft's autonomous landing guidance law based on pigeon group optimization, and belongs to the technical field of carrier-based aircraft.

背景技术Background technique

舰载机是国防中的重要力量,在各国海军中扮演者重要的角色。舰载机技术是各国研究的热点,体现了一个国家的国防技术实力,国内外许多学者都对舰载机相关各项技术进行过深入的研究。舰载飞机和陆基飞机有着很大的不同,海上的特殊环境给舰载机着舰带来了巨大的挑战,舰载机需要在航母甲板上降落,而航母甲板长度有限,不可能为舰载机提供更大的滑跑距离,因此舰载机必须在降落时成功钩住四道拦阻索中的一道以实现减速的目的。航母在海上会受到海浪的作用而导致其甲板发生六自由度的运动,如果不加入补偿会造成舰载机触舰点的偏差。另外,对舰载机着舰影响很大的一个因素就是航母尾流的影响,航母在海面上行进,或者有风吹过甲板时,对在航母后面产生气流干扰,尾流会使得舰载机偏离给定的下滑道,对着舰安全造成影响。Carrier-based aircraft is an important force in national defense and plays an important role in the navies of various countries. Carrier-based aircraft technology is a research hotspot in various countries, reflecting a country's national defense technical strength. Many scholars at home and abroad have conducted in-depth research on various technologies related to carrier-based aircraft. There is a big difference between carrier-based aircraft and land-based aircraft. The special environment at sea brings huge challenges to carrier-based aircraft landing. The carrier aircraft provides a greater rolling distance, so the carrier aircraft must successfully hook one of the four arresting cables when landing to achieve the purpose of deceleration. The aircraft carrier will be affected by the waves at sea, which will cause its deck to move in six degrees of freedom. If compensation is not added, it will cause deviations in the contact point of the carrier-based aircraft. In addition, a factor that has a great impact on carrier-based aircraft landing is the influence of the aircraft carrier's wake. When the aircraft carrier is moving on the sea, or when the wind blows across the deck, it will interfere with the airflow behind the aircraft carrier. The wake will make the carrier-based aircraft Deviation from a given glide path will affect the safety of the ship.

手动着舰会受到天气因素和人为因素的影响,不能保证在恶劣条件下的着舰安全,因此出现了自主着舰技术,可以实现舰载机全天候自主着舰。导引律优化设计是自主着舰技术重要的组成部分。在设计舰载机着舰导引律时,需要对导引律进行优化,使得着舰导引律对尾流干扰的鲁棒性增强,提高舰载机对下滑道的跟踪精度,达到安全着舰的目的。着舰的不同阶段会根据具体需求使用不同的导引律参数,这些参数采用人工调参的方法很难达到最优的效果,也会给设计人员带来极大的工作负担,因此开发出一种自动优化方法进行导引律参数调整是十分必要的技术,不仅可以降低设计人员的工作负荷,还可以提高系统性能。Manual landing will be affected by weather factors and human factors, and it cannot guarantee the safety of landing under harsh conditions. Therefore, autonomous landing technology has emerged, which can realize carrier-based aircraft autonomously landing around the clock. Guidance law optimization design is an important part of autonomous ship landing technology. When designing the landing guidance law of a carrier-based aircraft, it is necessary to optimize the guidance law, so that the robustness of the landing guidance law to wake interference can be enhanced, and the tracking accuracy of the carrier-based aircraft on the glide slope can be improved to achieve safe landing. purpose of the ship. Different guidance law parameters will be used in different phases of landing according to specific requirements. It is difficult to achieve optimal results by manual tuning of these parameters, and it will also bring a huge workload to designers. Therefore, a It is a very necessary technology to adjust the parameters of the guidance law with this automatic optimization method, which can not only reduce the workload of the designer, but also improve the system performance.

群体智能是仿生智能的一个重要分支,人们通过对自然界生物群体的观察,受到自然界中生物群体行为的启发,在此基础上总体提升,将其行为模式用数学的方式描述出来。在群体智能模型的基础上,人们提出了群体智能优化算法的概念,用生物群体的行为模式来求解优化问题。鸽群算法(Pigeon Inspired Optimization,PIO)是Haibin Duan在2014年提出的一种新型的启发式群智能优化算法,该算法受到鸽子群体行为的启发,根据鸽子在寻找目标的过程中,先后依据磁场和地标作为指示的行为特点,建立起地图罗盘和地标两种算法机制。Swarm intelligence is an important branch of bionic intelligence. People are inspired by the behavior of biological groups in nature through observation of biological groups in nature. On this basis, they are generally improved, and their behavior patterns are described mathematically. On the basis of the swarm intelligence model, people put forward the concept of swarm intelligence optimization algorithm, which uses the behavior patterns of biological groups to solve optimization problems. Pigeon Inspired Optimization (PIO) is a new heuristic swarm intelligence optimization algorithm proposed by Haibin Duan in 2014. The algorithm is inspired by the group behavior of pigeons. Based on the behavior characteristics of landmarks and landmarks, two algorithm mechanisms of map compass and landmarks are established.

鸽群在寻找目的地的过程中,会先参照太阳和磁场进行初步定位,然后依照地标进行精确定位,根据这一特性,鸽群算法提出了两种相对应的算子,分别为地图罗盘算子和地标机制,来模拟鸽群的这种特性,并将这两种算子结合起来解决优化问题。In the process of finding the destination, the pigeon flock will first refer to the sun and the magnetic field for preliminary positioning, and then perform precise positioning according to the landmarks. According to this characteristic, the pigeon flock algorithm proposes two corresponding operators, which are map compass calculation The operator and the landmark mechanism are used to simulate this characteristic of the pigeon flock, and these two operators are combined to solve the optimization problem.

(1)地图罗盘算子(1) Map compass operator

在地图和罗盘算子中,鸽群根据地图和罗盘的指引方式前进,在D维空间里,第i只鸽子的位置信息Xi和速度信息Vi每一代更新一次,具体的更新准则如下式所示:In the map and compass operator, the group of pigeons advances according to the guidance of the map and compass. In the D-dimensional space, the position information X i and velocity information V i of the i-th pigeon are updated every generation. The specific update criteria are as follows: Shown:

Vi(t)=Vi(t-1)·e-Rt+rand·(Xg-Xi(t-1)) (1)V i (t) = V i (t-1) e - Rt + rand (X g -X i (t-1)) (1)

Xi(t)=Xi(t-1)+Vi(t) (2)X i (t)=X i (t-1)+V i (t) (2)

式中,R为地图和罗盘因子,rand是一个从0到1之间随机产生的一个随机数,Xg是当前迭代次数下的全局最优位置,通过比较所有鸽子的位置信息来获得。地图罗盘算子示意图如附图1所示,图中最右边的鸽子为拥有全局最优位置信息的鸽子,细箭头表示鸽子之前的速度矢量,粗箭头表示该机制作用下,鸽子速度的调整矢量方向,两个速度矢量相叠加后的结果就是当前鸽子的速度矢量。In the formula, R is the map and compass factor, rand is a random number generated randomly from 0 to 1, and X g is the global optimal position under the current number of iterations, which is obtained by comparing the position information of all pigeons. The schematic diagram of the map compass operator is shown in Figure 1. The pigeon on the far right in the figure is the pigeon with the global optimal position information. The thin arrow indicates the previous speed vector of the pigeon, and the thick arrow indicates the adjustment vector of the pigeon's speed under the action of this mechanism. direction, the result of the superposition of the two speed vectors is the current speed vector of the pigeon.

(2)地标算子(2) Landmark operator

由于鸽子在寻找目的地的后期,主要依靠的是地标来进行目标的导引,为此根据其行为特性提出地标算子。该算子规定,每一代的鸽群数目减半,为了更快的到达目的地,剩下的鸽子直接飞向目的地。具体的更新准则如下式所示:Since the pigeon mainly relies on the landmarks to guide the target in the later stage of finding the destination, a landmark operator is proposed according to its behavior characteristics. The operator stipulates that the number of pigeons in each generation is halved, and in order to reach the destination faster, the remaining pigeons fly directly to the destination. The specific update criteria are as follows:

Xi(t)=Xi(t-1)+rand·(Xc(t)-Xi(t-1)) (5)X i (t)=X i (t-1)+rand (X c (t)-X i (t-1)) (5)

在上式中,Np为鸽群的数目,fitness是鸽子位置信息的代价函数,为了求得代价函数的最小值,可以取fmin作为目标函数,Xc是鸽群的加权位置中心。地标算子的示意图如附图2所示,圆圈外面的鸽子脱离鸽群,中心位置的鸽子为剩余鸽子的目的地,剩下的鸽群迅速向目的中心靠拢。鸽群算法的整体流程图如附图3所示。In the above formula, N p is the number of pigeon flocks, fitness is the cost function of pigeon position information, in order to obtain the minimum value of the cost function, f min can be taken as the objective function, and X c is the weighted position center of the pigeon flock. The schematic diagram of the landmark operator is shown in Figure 2. The pigeons outside the circle leave the group, the pigeons in the center are the destination of the remaining pigeons, and the remaining pigeons quickly move towards the center of the target. The overall flowchart of the pigeon swarm algorithm is shown in Figure 3.

发明内容Contents of the invention

1、发明目的:1. Purpose of the invention:

本发明提出了一种基于鸽群优化的舰载机自主着舰导引律设计方法,其目的是提供一种着舰导引律智能参数整定方法,以降低设计人员的工作难度,并且提高导引律对舰尾流干扰的鲁棒性。The present invention proposes a design method for autonomous landing guidance law of carrier-based aircraft based on pigeon group optimization. Robustness of gravitational law to ship wake disturbance.

该方法利用舰载机Simulink控制仿真模型,在控制模型中构建典型的舰尾流干扰模块,通过仿真得到舰载机闭环系统在舰尾流干扰下偏离给定下滑道的误差,在此误差基础上构建优化问题目标函数,利用鸽群优化算法求解出优化的导引律参数值。This method uses the Simulink control simulation model of the ship-borne aircraft, constructs a typical ship wake interference module in the control model, and obtains the error of the closed-loop system of the ship-borne aircraft deviating from the given glide slope under the interference of the ship wake through simulation. The objective function of the optimization problem is constructed on the above, and the optimal guidance law parameter value is obtained by using the pigeon group optimization algorithm.

2、技术方案:2. Technical solution:

本发明利用群智能优化算法全局搜索能力强,应用性广等特点,开发一种基于鸽群优化算法的舰载机自主着舰导引律优化设计方法,该方法的步骤如下:The present invention utilizes the characteristics of strong global search capability and wide applicability of the swarm intelligence optimization algorithm, and develops a carrier-based aircraft autonomous landing guidance law optimization design method based on the pigeon swarm optimization algorithm. The steps of the method are as follows:

步骤一:搭建舰载机和舰尾流Simulink仿真模块Step 1: Build the Simulink simulation module of carrier aircraft and ship wake

本方法中的舰尾流模型考虑了以下四个分量:大气紊流、稳态航母尾流扰动、周期性航母尾流扰动和随机性航母尾流扰动。The ship wake model in this method considers the following four components: atmospheric turbulence, steady-state aircraft carrier wake disturbance, periodic aircraft carrier wake disturbance and random aircraft carrier wake disturbance.

U1和W1分别为水平大气紊流分量和垂直大气紊流分量。采用单位白噪声经过成型滤波器滤波得到,它们的空间功率谱密度如下式所示:U 1 and W 1 are the horizontal atmospheric turbulence component and the vertical atmospheric turbulence component, respectively. The unit white noise is obtained by filtering with a shaping filter, and their spatial power spectral densities are shown in the following formula:

U2和W2分别为水平尾流稳态分量和垂直尾流稳态分量。它们可以通过分段线性化的方法得到,其曲线的具体形状如附图4所示。U 2 and W 2 are the steady-state component of the horizontal wake and the steady-state component of the vertical wake, respectively. They can be obtained by piecewise linearization, and the specific shape of the curve is shown in Figure 4.

U3和W3分别为水平尾流周期分量和垂直尾流周期分量,它们可以通过公式计算的方法得到,其具体计算公式如下式所示:U 3 and W 3 are the periodic component of the horizontal wake and the periodic component of the vertical wake respectively, which can be obtained by formula calculation, and the specific calculation formula is shown in the following formula:

其中,in,

公式中,ωs为纵摇频率,θs为纵摇幅度,Vwod为甲板风,V=10m/s舰载机进场速度,X为飞机离舰距离,P为随机相位。In the formula, ω s is the pitch frequency, θ s is the pitch amplitude, V wod is the deck wind, V = 10m/s carrier aircraft approach speed, X is the distance of the aircraft from the ship, and P is the random phase.

U4和W4分别为水平尾流随机分量和垂直尾流随机分量。采用单位白噪声经过成型滤波器滤波得到,其计算公式如下式所示:U 4 and W 4 are the random component of the horizontal wake and the random component of the vertical wake, respectively. The unit white noise is obtained by filtering with a shaping filter, and its calculation formula is shown in the following formula:

其中,rand是随机数,σ(x)和τ(x)是与距离有关的系数,其形状在附图5中给出。Among them, rand is a random number, σ(x) and τ(x) are coefficients related to distance, and their shapes are given in Figure 5.

舰载机模型以及其使用的内环自动驾驶仪由具体的设计需求给出。The carrier aircraft model and the inner ring autopilot it uses are given by specific design requirements.

步骤二:初始化鸽群优化算法参数Step 2: Initialize the parameters of the pigeon group optimization algorithm

(1)初始化优化参数维数D(1) Initialize the optimization parameter dimension D

本方法中优化的参数为舰载机自主着舰导引律中的参数,可以根据导引律的形式不同而改变。The parameters optimized in this method are the parameters in the guidance law of the autonomous landing of the carrier-based aircraft, which can be changed according to the form of the guidance law.

(2)初始化种群数量M(2) Initialize the population size M

群智能优化算法的种群数量M对优化效果影响很大。一般种群数量的选择为优化问题维数3-5倍。The population size M of the swarm intelligence optimization algorithm has a great influence on the optimization effect. The selection of the general population size is 3-5 times the dimension of the optimization problem.

(3)初始化衰减系数R(3) Initialize the attenuation coefficient R

衰减系数R应用在鸽群算法的地图罗盘算子中,它影响粒子自身速度的衰减快慢。The attenuation coefficient R is applied in the map compass operator of the pigeon swarm algorithm, and it affects the attenuation speed of the particle's own velocity.

(4)初始化种群位置和速度(4) Initialize the population position and speed

在搜索空间没设定群体的位置上限Pmax和位置下限Pmin,以及速度上限Vmax和速度下限Vmin。给种群中的每个粒子都初始化一个初始的位置xi和初始的速度ViThe upper limit P max and the lower limit P min of the position, the upper limit V max and the lower limit V min of the speed of the group are not set in the search space. Initialize an initial position x i and initial velocity V i for each particle in the population.

(5)设置算法代数(5) Set Algorithm Algebra

鸽群优化算法有两个算子,分别是地图罗盘算子和地标算子,算法运算前需要分别设定两个算法运行的最大代数NC1和NC2The pigeon swarm optimization algorithm has two operators, namely the map compass operator and the landmark operator. Before the algorithm operation, it is necessary to set the maximum algebra NC 1 and NC 2 of the two algorithms respectively.

步骤三:设计代价函数Step 3: Design the cost function

代价函数的设定在着舰导引律的优化中十分关键,它的设定直接影响优化效果。本方法中,优化导引律参数的目标是使舰载机在着舰过程中的舰尾流干扰下偏离指定下滑道的位移最小,并且控制量输入尽可能小。因此定义如下的代价函数:The setting of the cost function is very critical in the optimization of the landing guidance law, and its setting directly affects the optimization effect. In this method, the goal of optimizing the parameters of the guidance law is to minimize the displacement of the carrier-based aircraft from the designated glide path under the interference of the ship's wake during the landing process, and the control input should be as small as possible. So define the following cost function:

其中,hc为指定下滑道高度指令,h为舰载机高度,θc为给内环自动驾驶仪的俯仰角指令,θcss为稳态时的俯仰角指令,w1和w2为权重,t1和t2为设计者关心的时间段。Among them, hc is the specified glide slope height command, h is the height of the carrier aircraft, θ c is the pitch angle command for the inner ring autopilot, θ css is the pitch angle command in steady state, w 1 and w 2 are weights , t 1 and t 2 are the time periods concerned by the designer.

步骤四:在Simulink中设置待优化的导引律参数Step 4: Set the guidance law parameters to be optimized in Simulink

将优化算法中的参数传递给Simulink模型,在Simulink模块的初始化函数中载入写有导引律参数值的.mat文件,在Simulink中导引律参数增益模块中写入定义好的导引律参数变量名。Pass the parameters in the optimization algorithm to the Simulink model, load the .mat file with the parameter value of the guidance law in the initialization function of the Simulink module, and write the defined guidance law in the guidance law parameter gain module in Simulink Parameter variable name.

步骤五:利用PIO地图罗盘算子进行寻优Step 5: Use the PIO map compass operator to optimize

利用初始化的群体位置和速度,根据初始的个体的代价函数值选取全局最优位置Xg。根据公式Vi(t)=Vi(t-1)·e-Rt+rand·(Xg-Xi(t-1))(1)和公式Xi(t)=Xi(t-1)+Vi(t)(2)中的公式更新每个个体的速度Vi和位置xi,计算新生成粒子的代价函数值,如果新粒子的代价函数值比全局最优位置的代价函数值更低,则把新生成的粒子位置定义为新的全局最优位置Xg。反复应用地图罗盘算子进行寻优,直到运行代数大于地图罗盘算子最大代数NC1时停止。Using the initialized group position and velocity, select the global optimal position X g according to the initial individual cost function value. According to the formula V i (t) = V i (t-1) · e -Rt + rand · (X g -X i (t-1)) (1) and the formula Xi ( t) = Xi ( t- 1) The formula in +V i (t) (2) updates the velocity V i and position x i of each individual, and calculates the cost function value of the newly generated particle. If the cost function value of the new particle is lower than the cost of the global optimal position If the function value is lower, the newly generated particle position is defined as the new global optimal position X g . Repeatedly apply the map compass operator to optimize until the running algebra is greater than the maximum algebra NC 1 of the map compass operator and stop.

步骤六:利用PIO地标算子进行寻优Step 6: Use the PIO landmark operator to optimize

利用地图罗盘算子寻优的结果作为地标算子的初始群体,根据公式Xc(t)=∑Xi(t)·fitness(Xi(t))/∑fitness(Xi(t))(4)和公式Xi(t)=Xi(t-1)+rand·(Xc(t)-Xi(t-1))(5)中的公式更新每个个体的速度Vi和位置xi,计算新生成粒子的代价函数值,如果新粒子的代价函数值比全局最优位置的代价函数值更低,则把新生成的粒子位置定义为新的全局最优位置Xg。根据公式Np(t)=Np(t-1)/2(3)计算新种群的群体数量,根据公式(3)计算的结果舍弃群体中代价函数较大的一部分个体,选择当前群体中较优的群体作为保留群体进行下一轮寻优,反复应用地标算子进行寻优,直到运行代数大于地标算子最大代数NC2时停止。Using the optimization result of the map compass operator as the initial population of the landmark operator, according to the formula X c (t)=∑X i (t)·fitness(X i (t))/∑fitness(X i (t)) The formula in (4) and the formula X i (t)=X i (t-1)+rand (X c (t)-X i (t-1)) (5) updates the velocity V i of each individual and position x i , calculate the cost function value of the newly generated particle, if the cost function value of the new particle is lower than the cost function value of the global optimal position, define the newly generated particle position as the new global optimal position X g . According to the formula N p (t) = N p (t-1)/2 (3) to calculate the population size of the new population, according to the calculation results of the formula (3), discard some individuals with a larger cost function in the population, and select The better group is used as the reserved group for the next round of optimization, and the landmark operator is repeatedly used for optimization until the number of running algebra is greater than the maximum number of NC 2 of the landmark operator.

步骤七:储存结果并验证Step 7: Store the result and verify

地标算子优化的结果被视为最终的导引律优化结果,将此结果保存在.mat文件中,在Simulink模块中调用该.mat文件,使用优化的导引律参数进行仿真,观察舰载机在尾流干扰下对指定下滑道的跟踪精度,评估导引律优化的结果。若对优化结果不满意,可以调整优化时使用的代价函数,重新启动算法进行优化,直到得到满意的优化结果。The result of landmark operator optimization is regarded as the final guidance law optimization result. This result is saved in a .mat file, and the .mat file is called in the Simulink module, and the optimized guidance law parameters are used for simulation. The tracking accuracy of the aircraft on the specified glideslope under the wake disturbance is evaluated to evaluate the results of the optimization of the guidance law. If you are not satisfied with the optimization result, you can adjust the cost function used in optimization, restart the algorithm for optimization, until you get a satisfactory optimization result.

3、优点及效果:3. Advantages and effects:

本发明提出了一种基于鸽群优化的舰载机自主着舰导引律设计方法,其目的是提供一种着舰导引律智能参数整定方法。本方法有效降低了控制律设计人员的工作难度,并且提高了导引律对舰尾流干扰的鲁棒性。在不同的着舰环境下,对导引律的性能需求不同,通过修改优化问题的代价函数,本方法可以根据具体需求快速地设计出满足要求的导引律参数,减轻设计人员工作负担。The present invention proposes a design method for the autonomous landing guidance law of a carrier-based aircraft based on pigeon group optimization, and aims to provide an intelligent parameter setting method for the landing guidance law. This method effectively reduces the work difficulty of the control law designers, and improves the robustness of the guidance law to the ship's wake disturbance. In different landing environments, the performance requirements of the guidance law are different. By modifying the cost function of the optimization problem, this method can quickly design the guidance law parameters that meet the requirements according to the specific requirements, and reduce the workload of designers.

附图说明Description of drawings

图1鸽群优化算法地图罗盘算子示意图。Figure 1 Schematic diagram of the map compass operator of the pigeon swarm optimization algorithm.

图2鸽群优化算法地标算子示意图。Fig. 2 Schematic diagram of the landmark operator of the pigeon swarm optimization algorithm.

图3鸽群优化算法整体流程图。Figure 3 The overall flow chart of the pigeon group optimization algorithm.

图4a水平尾流稳态分量示意图。Fig. 4a Schematic diagram of the steady-state components of the horizontal wake.

图4b垂直尾流稳态分量示意图。Fig. 4b Schematic diagram of the steady-state component of the vertical wake.

图5aσ(x)随着舰距离变化曲线示意图。Figure 5. Schematic diagram of the variation curve of aσ(x) with ship distance.

图5bτ(x)随着舰距离变化曲线示意图。Figure 5b Schematic diagram of the curve of τ(x) changing with the distance from the ship.

图6舰载机着舰控制总体框图。Figure 6 The overall block diagram of carrier aircraft landing control.

图7a合成的水平尾流干扰示意图。Fig. 7a Schematic diagram of synthetic horizontal wake interference.

图7b合成的垂直尾流干扰示意图。Fig. 7b Schematic diagram of the synthesized vertical wake interference.

图8代价函数进化曲线示意图。Figure 8 Schematic diagram of the evolution curve of the cost function.

图9舰尾流干扰下的下滑道偏差示意图。Figure 9. Schematic diagram of glide slope deviation under ship wake interference.

图10着舰过程中的迎角响应示意图。Figure 10 is a schematic diagram of the angle of attack response during landing.

图11着舰过程中的速度响应示意图。Fig. 11 Schematic diagram of velocity response during landing.

图12着舰过程中的俯仰角响应示意图。Fig. 12 Schematic diagram of pitch angle response during landing.

图13着舰过程中自动驾驶仪指令输入示意图。图14本发明流程框图。Figure 13 Schematic diagram of autopilot command input during landing. Fig. 14 is a flow chart of the present invention.

图中标号及符号说明如下:The labels and symbols in the figure are explained as follows:

Nc——优化算法迭代次数Nc - the number of iterations of the optimization algorithm

N——不满足条件(否)N - does not meet the conditions (no)

Y——满足条件(是)Y - meet the conditions (yes)

θc——自动驾驶仪俯仰角指令θ c ——autopilot pitch angle command

δe——升降舵指令δ e ——elevator command

T——油门推力指令T——throttle thrust command

herror——高度误差h error ——height error

α——迎角α——angle of attack

V——速度V - speed

θ——俯仰角θ——pitch angle

具体实施方式Detailed ways

见图1—图14,下面通过一个具体的舰载机自主着舰导引律优化实例来验证本发明所提出的设计方法的有效性,本实例中用到的舰尾流干扰来源于美军标MIL28785C中给出的气流扰动模型,使用的舰载机模型为F-18纵向非线性模型,使用的内环自动驾驶仪为俯仰角指令形式,舰载机纵向控制中同时使用了进场动力补偿系统。本实例中舰载机速度为70m/s,大约在84s前后完成着舰。实验计算机配置为i5-4210M处理器,2.60Ghz主频,4G内存,软件为MATLAB 2013b版本。See Fig. 1-Fig. 14, verify the effectiveness of the design method proposed by the present invention through a specific carrier-based aircraft autonomous landing guidance law optimization example below, the ship wake disturbance used in this example comes from the U.S. military standard The airflow disturbance model given in MIL28785C, the carrier aircraft model used is the F-18 longitudinal nonlinear model, the inner ring autopilot used is in the form of pitch angle command, and the approach power compensation is also used in the longitudinal control of the carrier aircraft system. In this example, the speed of the carrier-based aircraft is 70m/s, and the landing is completed around 84s. The experimental computer configuration is i5-4210M processor, 2.60Ghz main frequency, 4G memory, and the software is MATLAB 2013b version.

见图14,本实例的具体实现步骤如下:See Figure 14, the specific implementation steps of this example are as follows:

步骤一:搭建舰载机和舰尾流Simulink仿真模块Step 1: Build the Simulink simulation module of carrier aircraft and ship wake

本实例中的舰尾流模型考虑了一下四个分量:大气紊流、稳态航母尾流扰动、周期性航母尾流扰动和随机性航母尾流扰动。The ship wake model in this example considers four components: atmospheric turbulence, steady-state aircraft carrier wake disturbance, periodic aircraft carrier wake disturbance, and random aircraft carrier wake disturbance.

U1和W1分别为水平大气紊流分量和垂直大气紊流分量。采用单位白噪声经过成型滤波器滤波得到,它们的空间功率谱密度如下式所示:U 1 and W 1 are the horizontal atmospheric turbulence component and the vertical atmospheric turbulence component, respectively. The unit white noise is obtained by filtering with a shaping filter, and their spatial power spectral densities are shown in the following formula:

U2和W2分别为水平尾流稳态分量和垂直尾流稳态分量。它们可以通过分段线性化的方法得到,其曲线的具体形状如附图4所示。U 2 and W 2 are the steady-state component of the horizontal wake and the steady-state component of the vertical wake, respectively. They can be obtained by piecewise linearization, and the specific shape of the curve is shown in Figure 4.

U3和W3分别为水平尾流周期分量和垂直尾流周期分量,它们可以通过公式计算的方法得到,其具体计算公式如下式所示:U 3 and W 3 are the periodic component of the horizontal wake and the periodic component of the vertical wake respectively, which can be obtained by formula calculation, and the specific calculation formula is shown in the following formula:

其中,in,

公式中,ωs=0.7rad/s为纵摇频率,θs=1.414rad为纵摇幅度,Vwod=10m/s为甲板风,V=10m/s为舰载机进场速度,X为飞机离舰距离,其范围是[-5000,0]m,P为随机相位,其取值在[0,2π]之间。In the formula, ω s = 0.7rad/s is the pitch frequency, θ s = 1.414rad is the pitch amplitude, V wod = 10m/s is the deck wind, V = 10m/s is the approach speed of the carrier aircraft, and X is The distance from the aircraft to the ship, the range is [-5000,0]m, P is the random phase, and its value is between [0,2π].

U4和W4分别为水平尾流随机分量和垂直尾流随机分量。采用单位白噪声经过成型滤波器滤波得到,其计算公式如下式所示:U 4 and W 4 are the random component of the horizontal wake and the random component of the vertical wake, respectively. The unit white noise is obtained by filtering with a shaping filter, and its calculation formula is shown in the following formula:

其中,rand是随机数,σ(x)和τ(x)是与距离有关的系数,其形状在附图5中给出。舰载机着舰控制总体框图如附图6所示,仿真中使用的合成的舰尾流干扰如附图7所示。Among them, rand is a random number, σ(x) and τ(x) are coefficients related to distance, and their shapes are given in Figure 5. The overall block diagram of carrier-based aircraft landing control is shown in Figure 6, and the synthesized ship wake disturbance used in the simulation is shown in Figure 7.

步骤二:初始化鸽群优化算法参数Step 2: Initialize the parameters of the pigeon group optimization algorithm

(1)初始化优化参数维数D(1) Initialize the optimization parameter dimension D

本实例中优化的参数为舰载机自主着舰导引律中的参数,默认的导引律为PID-DD(比例、积分、微分、二阶微分)形式,因此需要优化的参数为4个,设定优化参数维数D=4。The optimized parameters in this example are the parameters in the guidance law of the autonomous landing of the carrier-based aircraft. The default guidance law is in the form of PID-DD (proportional, integral, differential, second-order differential), so there are 4 parameters to be optimized , set the optimization parameter dimension D=4.

(2)初始化种群数量M(2) Initialize the population size M

群智能优化算法的种群数量M对优化效果影响很大。一般种群数量的选择为优化问题维数3-5倍。本实例中种群数量的默认值为15。The population size M of the swarm intelligence optimization algorithm has a great influence on the optimization effect. The selection of the general population size is 3-5 times the dimension of the optimization problem. The default value of population size in this example is 15.

(3)初始化衰减系数R(3) Initialize the attenuation coefficient R

衰减系数R应用在鸽群算法的地图罗盘算子中,它影响粒子自身速度的衰减快慢。本实例中衰减系数R的默认值为0.1。The attenuation coefficient R is applied in the map compass operator of the pigeon swarm algorithm, and it affects the attenuation speed of the particle's own velocity. The default value of the attenuation coefficient R in this example is 0.1.

(4)初始化种群位置和速度(4) Initialize the population position and speed

在搜索空间没设定群体的位置上限Pmax=[3,3,5,5]和位置下限Pmin=[0,0,0,0],以及速度上限Vmax=0.2(Pmax-Pmin)和速度下限Vmin=0.2(Pmin-Pmax)。给种群中的每个粒子都初始化一个初始的位置xi和初始的速度ViThe upper limit of position P max =[3,3,5,5] and the lower limit of position P min =[0,0,0,0] of the group are not set in the search space, and the upper limit of velocity V max =0.2(P max -P min ) and the lower speed limit V min =0.2(P min −P max ). Initialize an initial position x i and initial velocity V i for each particle in the population.

(5)设置算法代数(5) Set Algorithm Algebra

鸽群优化算法有两个算子,分别是地图罗盘算子和地标算子,算法运算前需要分别设定两个算法运行的最大代数NC1=15和NC2=20。The pigeon swarm optimization algorithm has two operators, namely the map compass operator and the landmark operator. Before the algorithm operation, it is necessary to set the maximum algebra NC 1 =15 and NC 2 =20 respectively.

步骤三:设计代价函数Step 3: Design the cost function

代价函数的设定在着舰导引律的优化中十分关键,它的设定直接影响优化效果。本方法中,优化导引律参数的目标是使舰载机在着舰过程中的舰尾流干扰下偏离指定下滑道的位移最小,并且控制量输入尽可能小。因此定义如下的代价函数:The setting of the cost function is very critical in the optimization of the landing guidance law, and its setting directly affects the optimization effect. In this method, the goal of optimizing the parameters of the guidance law is to minimize the displacement of the carrier-based aircraft from the designated glide path under the interference of the ship's wake during the landing process, and the control input should be as small as possible. So define the following cost function:

其中,hc为指定的下滑道高度指令,它是一条斜率恒定的直线,初始值为305.8m,斜率为-4.2706m/s。h为舰载机高度,θc为给内环自动驾驶仪的俯仰角指令,θcss=-3.2deg为稳态时的俯仰角指令,w1=1和w2=0.2为权重系数,t1=20s和t2=83s为设计者关心的时间段。Among them, h c is the specified glide path height command, which is a straight line with a constant slope, the initial value is 305.8m, and the slope is -4.2706m/s. h is the height of the carrier aircraft, θ c is the pitch angle command for the inner ring autopilot, θ css = -3.2deg is the pitch angle command in steady state, w 1 = 1 and w 2 = 0.2 are the weight coefficients, t 1 = 20s and t 2 =83s are the time periods concerned by the designer.

步骤四:在Simulink中设置待优化的导引律参数Step 4: Set the guidance law parameters to be optimized in Simulink

将优化算法中的参数传递给Simulink模型,在Simulink模块的初始化函数中载入写有导引律参数值的“Kopt.mat”文件,在Simulink中导引律参数增益模块中写入定义好的导引律参数变量Kopt(1),Kopt(2),Kopt(3),Kopt(4),这四个变量分别对应比例、积分、微分和二阶微分的增益。Pass the parameters in the optimization algorithm to the Simulink model, load the "Kopt.mat" file with the value of the guidance law parameter in the initialization function of the Simulink module, and write the defined value in the guidance law parameter gain module in Simulink Guidance law parameter variables Kopt(1), Kopt(2), Kopt(3), Kopt(4), these four variables correspond to the gain of proportional, integral, differential and second order differential respectively.

步骤五:利用PIO地图罗盘算子进行寻优Step 5: Use the PIO map compass operator to optimize

利用初始化的群体位置和速度,根据初始的个体的代价函数值选取全局最优位置Xg。更新每个个体的速度Vi和位置xi,计算新生成粒子的代价函数值,如果新粒子的代价函数值比全局最优位置的代价函数值更低,则把新生成的粒子位置定义为新的全局最优位置Xg。反复应用地图罗盘算子进行寻优,直到运行代数大于地图罗盘算子最大代数NC1时停止。Using the initialized group position and velocity, select the global optimal position X g according to the initial individual cost function value. Update the velocity V i and position xi of each individual, and calculate the cost function value of the newly generated particle. If the cost function value of the new particle is lower than the cost function value of the global optimal position, the newly generated particle position is defined as The new global optimal position X g . Repeatedly apply the map compass operator to optimize until the running algebra is greater than the maximum algebra NC 1 of the map compass operator and stop.

步骤六:利用PIO地标算子进行寻优Step 6: Use the PIO landmark operator to optimize

利用地图罗盘算子寻优的结果作为地标算子的初始群体,更新每个个体的速度Vi和位置xi,计算新生成粒子的代价函数值,如果新粒子的代价函数值比全局最优位置的代价函数值更低,则把新生成的粒子位置定义为新的全局最优位置Xg。根据公式(3)计算新种群的群体数量,根据公式(3)计算的结果舍弃群体中代价函数较大的一部分个体,选择当前群体中较优的群体作为保留群体进行下一轮寻优,反复应用地标算子进行寻优,直到运行代数大于地标算子最大代数NC2时停止。Use the optimization results of the map compass operator as the initial population of the landmark operator, update the velocity V i and position xi of each individual, and calculate the cost function value of the newly generated particles. If the cost function value of the new particle is better than the global optimal If the cost function value of the position is lower, the newly generated particle position is defined as the new global optimal position X g . Calculate the number of groups in the new population according to the formula (3), discard some individuals with a larger cost function in the group according to the calculation result of the formula (3), and select the better group in the current group as the reserved group for the next round of optimization, repeat Apply the landmark operator to optimize until the running algebra is greater than the maximum algebra NC 2 of the landmark operator and stop.

步骤七:储存结果并验证Step 7: Store the result and verify

地标算子优化的结果被视为最终的导引律优化结果,本次优化的结果为Kopt(1)=2.156,Kopt(2)=0.403,Kopt(3)=2.974,Kopt(4)=3.185。将此结果保存在“Kopt.mat”文件中,在Simulink模块中调用该“Kopt.mat”文件,使用优化的导引律参数进行仿真,观察舰载机在尾流干扰下对指定下滑道的跟踪精度,评估导引律优化的结果。优化过程的代价函数进化曲线如附图8所示,偏离下滑道的误差如附图9所示,着舰过程中的迎角响应、速度响应和俯仰角响应分别如附图10-附图12所示,内环俯仰角指令输入如图13所示。若对优化结果不满意,可以调整优化时使用的代价函数,重新启动算法进行优化,直到得到满意的优化结果。The result of landmark operator optimization is regarded as the final guidance law optimization result. The result of this optimization is Kopt(1)=2.156, Kopt(2)=0.403, Kopt(3)=2.974, Kopt(4)=3.185 . Save this result in the "Kopt.mat" file, call the "Kopt.mat" file in the Simulink module, use the optimized guidance law parameters for simulation, and observe the behavior of the carrier-based aircraft on the specified glide slope under wake disturbance. Tracking accuracy, evaluating the results of guidance law optimization. The evolution curve of the cost function in the optimization process is shown in Figure 8, the error of deviation from the glideslope is shown in Figure 9, and the angle of attack response, velocity response and pitch angle response during the landing process are shown in Figure 10-Figure 12 As shown, the pitch angle command input of the inner ring is shown in Figure 13. If you are not satisfied with the optimization result, you can adjust the cost function used in optimization, restart the algorithm for optimization, until you get a satisfactory optimization result.

通过上述优化过程,可以得到一组对舰尾流具有较强鲁棒性的导引律参数,优化中代价函数的进化曲线如附图8所示,着舰仿真结果图如附图9-13所示,从仿真结果中可以看出,舰载机在着舰过程中偏离下滑道的位移较小,系统整体性能令人满意。Through the above optimization process, a set of guidance law parameters with strong robustness to the ship’s wake can be obtained. The evolution curve of the cost function during optimization is shown in Figure 8, and the landing simulation results are shown in Figure 9-13 As shown, it can be seen from the simulation results that the displacement of the carrier-based aircraft from the glideslope during the landing process is small, and the overall performance of the system is satisfactory.

Claims (1)

1.一种基于鸽群优化的舰载机自主着舰导引律设计方法,其特征在于:该方法具体步骤如下:1. A carrier-based aircraft autonomous landing guidance law design method based on pigeon swarm optimization, is characterized in that: the specific steps of the method are as follows: 步骤一:搭建舰载机和舰尾流Simulink仿真模块Step 1: Build the Simulink simulation module of carrier aircraft and ship wake 舰尾流模型考虑了以下四个分量:大气紊流、稳态航母尾流扰动、周期性航母尾流扰动和随机性航母尾流扰动;The ship wake model considers the following four components: atmospheric turbulence, steady-state aircraft carrier wake disturbance, periodic aircraft carrier wake disturbance and random aircraft carrier wake disturbance; U1和W1分别为水平大气紊流分量和垂直大气紊流分量,采用单位白噪声经过成型滤波器滤波得到,它们的空间功率谱密度如下式所示:U 1 and W 1 are the horizontal atmospheric turbulence component and the vertical atmospheric turbulence component, respectively, which are obtained by filtering with unit white noise through a shaping filter, and their spatial power spectral densities are shown in the following formula: <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Phi;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <mo>=</mo> <mfrac> <mn>5.663</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>30.48</mn> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Phi;</mi> <msub> <mi>W</mi> <mn>1</mn> </msub> </msub> <mo>=</mo> <mfrac> <mn>2.0275</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>30.48</mn> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>&amp;Phi;</mi><msub><mi>U</mi>mi><mn>1</mn></msub></msub><mo>=</mo><mfrac><mn>5.663</mn><mrow><mn>1</mn><mo>+</mo><msup><mrow><mo>(</mo><mn>30.48</mn><mi>&amp;Omega;</mi><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>&amp;Phi;</mi><msub><mi>W</mi><mn>1</mn></msub></msub><mo>=</mo><mfrac><mn>2.0275</mn><mrow><mn>1</mn><mo>+</mo><msup><mrow><mo>(</mo><mn>30.48</mn><mi>&amp;Omega;</mi><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> U2和W2分别为水平尾流稳态分量和垂直尾流稳态分量,它们通过分段线性化的方法得到;U 2 and W 2 are the steady-state components of the horizontal wake and the steady-state components of the vertical wake, respectively, which are obtained by piecewise linearization; U3和W3分别为水平尾流周期分量和垂直尾流周期分量,它们通过公式计算的方法得到,其具体计算公式如下式所示:U 3 and W 3 are the periodic component of the horizontal wake and the periodic component of the vertical wake respectively, which are obtained by formula calculation, and the specific calculation formula is shown in the following formula: <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>2.22</mn> <mo>+</mo> <mn>0.0009</mn> <mi>X</mi> <mo>)</mo> </mrow> <mi>C</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>W</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>4.98</mn> <mo>+</mo> <mn>0.0018</mn> <mi>X</mi> <mo>)</mo> </mrow> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>U</mi><mn>3</mn></msub><mo>=</mo><msub><mi>&amp;theta;</mi><mi>s</mi></msub><msub><mi>V</mi><mrow><mi>w</mi><mi>o</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>2.22</mn><mo>+</mo><mn>0.0009</mn><mi>X</mi><mo>)</mo></mrow><mi>C</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>W</mi><mn>3</mn></msub><mo>=</mo><msub><mi>&amp;theta;</mi><mi>s</mi></msub><msub><mi>V</mi><mrow><mi>w</mi><mi>o</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>4.98</mn><mo>+</mo><mn>0.0018</mn><mi>X</mi><mo>)</mo></mrow><mi>C</mi></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow> 其中,in, <mrow> <mi>C</mi> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>{</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>&amp;lsqb;</mo> <mi>t</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mi>V</mi> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <mn>0.85</mn> <msub> <mi>V</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>d</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>X</mi> <mrow> <mn>0.85</mn> <msub> <mi>V</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>d</mi> </mrow> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>P</mi> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>C</mi><mo>=</mo><mi>c</mi><mi>o</mi><mi>s</mi><mo>{</mo><msub><mi>&amp;omega;</mi><mi>s</mi></msub><mo>&amp;lsqb;</mo><mi>t</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>V</mi><mo>-</mo><msub><mi>V</mi><mrow><mi>w</mi><mi>o</mi><mi>d</mi></mrow></msub></mrow><mrow><mn>0.85</mn><msub><mi>V</mi><mrow><mi>w</mi><mi>o</mi><mi>d</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>+</mo><mfrac><mi>X</mi><mrow><mn>0.85</mn><msub><mi>V</mi><mrow><mi>w</mi><mi>o</mi><mi>d</mi></mrow></msub></mrow></mfrac><mo>&amp;rsqb;</mo><mo>+</mo><mi>P</mi><mo>}</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow> 公式中,ωs为纵摇频率,θs为纵摇幅度,Vwod为甲板风,V=10m/s舰载机进场速度,X为飞机离舰距离,P为随机相位;In the formula, ω s is the pitch frequency, θ s is the pitch amplitude, V wod is the deck wind, V = 10m/s carrier aircraft approach speed, X is the distance of the aircraft from the ship, and P is the random phase; U4和W4分别为水平尾流随机分量和垂直尾流随机分量,采用单位白噪声经过成型滤波器滤波得到,其计算公式如下式所示:U 4 and W 4 are the random component of the horizontal wake and the random component of the vertical wake respectively, which are obtained by using unit white noise and filtered by a shaping filter, and their calculation formula is shown in the following formula: <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mn>4</mn> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <mfrac> <mi>s</mi> <mrow> <mi>s</mi> <mo>+</mo> <mn>0.1</mn> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mn>10</mn> <mi>&amp;pi;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msqrt> <mrow> <mn>2</mn> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mn>4</mn> </msub> <mo>=</mo> <msub> <mi>W</mi> <mn>4</mn> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <mfrac> <mi>s</mi> <mrow> <mi>s</mi> <mo>+</mo> <mn>0.1</mn> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mn>10</mn> <mi>&amp;pi;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <mn>0.035</mn> <msub> <mi>V</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>d</mi> </mrow> </msub> <msqrt> <mn>6.66</mn> </msqrt> </mrow> <mrow> <mn>3.33</mn> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>U</mi><mn>4</mn></msub><mo>=</mo><mo>&amp;lsqb;</mo><mi>r</mi><mi>a</mi><mi>n</mi><mi>d</mi><mo>&amp;rsqb;</mo><mo>&amp;CenterDot;</mo><mo>&amp;lsqb;</mo><mfrac><mi>s</mi><mrow><mi>s</mi><mo>+</mo><mn>0.1</mn></mrow></mfrac><mo>&amp;rsqb;</mo><mi>sin</mi><mrow><mo>(</mo><mn>10</mn><mi>&amp;pi;</mi><mi>t</mi><mo>)</mo></mrow><mfrac><mrow><mi>&amp;sigma;</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msqrt><mrow><mn>2</mn><mi>&amp;tau;</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msqrt></mrow><mrow><mi>&amp;tau;</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>V</mi><mn>4</mn></msub><mo>=</mo><msub><mi>W</mi><mn>4</mn></msub><mo>=</mo><mo>&amp;lsqb;</mo><mi>r</mi><mi>a</mi><mi>n</mi><mi>d</mi><mo>&amp;rsqb;</mo><mo>&amp;CenterDot;</mo><mo>&amp;lsqb;</mo><mfrac><mi>s</mi><mrow><mi>s</mi><mo>+</mo><mn>0.1</mn></mrow></mfrac><mo>&amp;rsqb;</mo><mi>sin</mi><mrow><mo>(</mo><mn>10</mn><mi>&amp;pi;</mi><mi>t</mi><mo>)</mo></mrow><mfrac><mrow><mn>0.035</mn><msub><mi>V</mi><mrow><mi>w</mi><mi>o</mi><mi>d</mi></mrow></msub><msqrt><mn>6.66</mn></msqrt></mrow><mrow><mn>3.33</mn><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow> 其中,rand是随机数,σ(x)和τ(x)是与距离有关的系数,舰载机模型以及其使用的内环自动驾驶仪由具体的设计需求给出;Among them, rand is a random number, σ(x) and τ(x) are coefficients related to distance, and the carrier aircraft model and the inner ring autopilot used by it are given by specific design requirements; 步骤二:初始化鸽群优化算法参数Step 2: Initialize the parameters of the pigeon group optimization algorithm (1)初始化优化参数维数D(1) Initialize the optimization parameter dimension D 优化的参数为舰载机自主着舰导引律中的参数,根据导引律的形式不同而改变;The optimized parameters are the parameters in the guidance law of the autonomous landing of the carrier-based aircraft, which vary according to the form of the guidance law; (2)初始化种群数量M(2) Initialize the population size M 群智能优化算法的种群数量M对优化效果影响很大,一般种群数量的选择为优化问题维数3-5倍;The population size M of the swarm intelligence optimization algorithm has a great influence on the optimization effect, and the selection of the general population size is 3-5 times the dimension of the optimization problem; (3)初始化衰减系数R(3) Initialize the attenuation coefficient R 衰减系数R应用在鸽群算法的地图罗盘算子中,它影响粒子自身速度的衰减快慢;The attenuation coefficient R is applied in the map compass operator of the pigeon group algorithm, which affects the attenuation speed of the particle's own velocity; (4)初始化种群位置和速度(4) Initialize the population position and speed 在搜索空间设定群体的位置上限Pmax和位置下限Pmin,以及速度上限Vmax和速度下限Vmin;给种群中的每个个体的位置xi和速度Vi都赋予初始值;Set the upper limit P max and the lower limit P min of the group in the search space, as well as the upper limit V max and the lower limit V min of the speed; assign initial values to the position x i and speed V i of each individual in the population; <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mi>min</mi> </msub> <mo>+</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>V</mi> <mi>min</mi> </msub> <mo>+</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>x</mi><mi>i</mi></msub><mo>=</mo><msub><mi>P</mi><mi>min</mi></msub><mo>+</mo><mi>r</mi><mi>a</mi><mi>n</mi><mi>d</mi><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><msub><mi>P</mi><mi>max</mi></msub><mo>-</mo><msub><mi>P</mi><mi>min</mi></msub><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><msub><mi>V</mi><mi>min</mi></msub><mo>+</mo><mi>r</mi><mi>a</mi><mi>n</mi><mi>d</mi><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><msub><mi>V</mi><mi>max</mi></msub><mo>-</mo><msub><mi>V</mi><mi>min</mi></msub><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow> (5)设置算法代数(5) Set Algorithm Algebra 鸽群优化算法有两个算子,分别是地图罗盘算子和地标算子,算法运算前需要分别设定两个算法运行的最大代数NC1和NC2The pigeon group optimization algorithm has two operators, which are the map compass operator and the landmark operator. Before the algorithm operation, the maximum algebra NC 1 and NC 2 of the two algorithms need to be set respectively; 步骤三:设计代价函数Step 3: Design the cost function 代价函数的设定在着舰导引律的优化中十分关键,它的设定直接影响优化效果;优化导引律参数的目标是使舰载机在着舰过程中的舰尾流干扰下偏离指定下滑道的位移最小,并且控制量输入尽可能小,因此定义如下的代价函数:The setting of the cost function is very critical in the optimization of the landing guidance law, and its setting directly affects the optimization effect; the goal of optimizing the parameters of the guidance law is to make the carrier-based aircraft deviate from the The displacement of the specified glideslope is the smallest, and the control input is as small as possible, so the following cost function is defined: <mrow> <mi>cos</mi> <mi> </mi> <mi>t</mi> <mo>=</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <munderover> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>2</mn> </msub> </munderover> <mo>|</mo> <mrow> <msub> <mi>h</mi> <mi>c</mi> </msub> <mo>-</mo> <mi>h</mi> </mrow> <mo>|</mo> <mi>d</mi> <mi>t</mi> <mo>+</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <munderover> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>2</mn> </msub> </munderover> <mo>|</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>c</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> </mrow> <mo>|</mo> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>cos</mi><mi></mi><mi>t</mi><mo>=</mo><msub><mi>w</mi><mn>1</mn></msub><munderover><mo>&amp;Integral;</mo><msub><mi>t</mi><mn>1</mn></msub><msub><mi>t</mi><mn>2</mn></msub></munderover><mo>|</mo><mrow><msub><mi>h</mi><mi>c</mi></msub><mo>-</mo><mi>h</mi></mrow><mo>|</mo><mi>d</mi><mi>t</mi><mo>+</mo><msub><mi>w</mi><mn>2</mn></msub><munderover><mo>&amp;Integral;</mo><msub><mi>t</mi><mn>1</mn></msub><msub><mi>t</mi><mn>2</mn></msub></munderover><mo>|</mo><mrow><msub><mi>&amp;theta;</mi><mi>c</mi></msub><mo>-</mo><msub><mi>&amp;theta;</mi><mrow><mi>c</mi><mi>s</mi><mi>s</mi></mrow></msub></mrow><mo>|</mo><mi>d</mi><mi>t</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow> 其中,hc为指定下滑道高度指令,h为舰载机高度,θc为给内环自动驾驶仪的俯仰角指令,θcss为稳态时的俯仰角指令,w1和w2为权重,t1和t2为设计者关心的时间段;Among them, hc is the specified glide slope height command, h is the height of the carrier aircraft, θ c is the pitch angle command for the inner ring autopilot, θ css is the pitch angle command in steady state, w 1 and w 2 are weights , t 1 and t 2 are the time periods concerned by the designer; 步骤四:在Simulink中设置待优化的导引律参数Step 4: Set the guidance law parameters to be optimized in Simulink 将优化算法中的参数传递给Simulink模型,在Simulink模块的初始化函数中载入写有导引律参数值的.mat文件,在Simulink中导引律参数增益模块中写入定义好的导引律参数变量名;Pass the parameters in the optimization algorithm to the Simulink model, load the .mat file with the parameter value of the guidance law in the initialization function of the Simulink module, and write the defined guidance law in the guidance law parameter gain module in Simulink parameter variable name; 步骤五:利用鸽群优化地图罗盘算子进行寻优Step 5: Use the pigeon group to optimize the map compass operator for optimization 利用初始化的群体位置和速度,根据初始的个体的代价函数值选取全局最优位置Xg;根据公式Vi(t)=Vi(t-1)·e-Rt+rand·(Xg-Xi(t-1))(1)和公式Xi(t)=Xi(t-1)+Vi(t)(2)中的公式更新每个个体的速度Vi和位置xi,计算新生成粒子的代价函数值,如果新粒子的代价函数值比全局最优位置的代价函数值更低,则把新生成的粒子位置定义为新的全局最优位置Xg;反复应用地图罗盘算子进行寻优,直到运行代数大于地图罗盘算子最大代数NC1时停止;Using the initialized group position and velocity, select the global optimal position X g according to the initial individual cost function value; according to the formula V i (t)=V i (t-1) e -Rt +rand (X g - The formula in Xi(t-1))(1) and the formula Xi(t)=Xi(t-1)+ Vi ( t)(2 ) updates each individual's velocity V i and position x i , calculate the cost function value of newly generated particles, if the cost function value of the new particle is lower than the cost function value of the global optimal position, then define the position of the newly generated particle as the new global optimal position X g ; repeatedly apply the map The compass operator performs optimization until the running algebra is greater than the maximum algebra NC 1 of the map compass operator; 步骤六:利用鸽群优化地标算子进行寻优Step 6: Use pigeon group optimization landmark operator to optimize 利用地图罗盘算子寻优的结果作为地标算子的初始群体,根据公式Xc(t)=∑Xi(t)·fitness(Xi(t))/∑fitness(Xi(t))(4)和公式Xi(t)=Xi(t-1)+rand·(Xc(t)-Xi(t-1))(5)中的公式更新每个个体的速度Vi和位置xi,计算新生成粒子的代价函数值,如果新粒子的代价函数值比全局最优位置的代价函数值更低,则把新生成的粒子位置定义为新的全局最优位置Xg;根据公式Xp(t)=Np(t-1)/2(3)计算新种群的群体数量,根据公式(3)计算的结果舍弃群体中代价函数较大的一部分个体,选择当前群体中较优的群体作为保留群体进行下一轮寻优,反复应用地标算子进行寻优,直到运行代数大于地标算子最大代数NC2时停止;Using the optimization result of the map compass operator as the initial population of the landmark operator, according to the formula X c (t)=∑X i (t)·fitness(X i (t))/∑fitness(X i (t)) The formula in (4) and the formula X i (t)=X i (t-1)+rand (X c (t)-X i (t-1)) (5) updates the velocity V i of each individual and position x i , calculate the cost function value of the newly generated particle, if the cost function value of the new particle is lower than the cost function value of the global optimal position, define the newly generated particle position as the new global optimal position X g ; According to the formula X p (t) = N p (t-1)/2 (3) to calculate the population size of the new population, according to the result calculated by the formula (3), discard a part of individuals with a larger cost function in the population, and select the current population The better group among them is used as the reserved group for the next round of optimization, and the landmark operator is repeatedly used for optimization until the running algebra is greater than the maximum algebra NC 2 of the landmark operator; 步骤七:储存结果并验证Step 7: Store the result and verify 地标算子优化的结果被视为最终的导引律优化结果,将此结果保存在.mat文件中,在Simulink模块中调用该.mat文件,使用优化的导引律参数进行仿真,观察舰载机在尾流干扰下对指定下滑道的跟踪精度,评估导引律优化的结果;若对优化结果不满意,调整优化时使用的代价函数,重新启动算法进行优化,直到得到满意的优化结果。The result of landmark operator optimization is regarded as the final guidance law optimization result. This result is saved in a .mat file, and the .mat file is called in the Simulink module, and the optimized guidance law parameters are used for simulation. The tracking accuracy of the designated glideslope under wake interference is evaluated to evaluate the results of the optimization of the guidance law; if the optimization results are not satisfied, the cost function used in the optimization is adjusted, and the algorithm is restarted for optimization until a satisfactory optimization result is obtained.
CN201510434862.XA 2015-07-22 2015-07-22 A kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization Active CN105022881B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510434862.XA CN105022881B (en) 2015-07-22 2015-07-22 A kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510434862.XA CN105022881B (en) 2015-07-22 2015-07-22 A kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization

Publications (2)

Publication Number Publication Date
CN105022881A CN105022881A (en) 2015-11-04
CN105022881B true CN105022881B (en) 2018-02-02

Family

ID=54412848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510434862.XA Active CN105022881B (en) 2015-07-22 2015-07-22 A kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization

Country Status (1)

Country Link
CN (1) CN105022881B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469422A (en) * 2015-11-13 2016-04-06 北京航空航天大学 Target tracking method based on pigeon intelligent optimization Kalman filtering parameters
CN105652664B (en) * 2016-02-29 2018-05-11 北京航空航天大学 A kind of explicit forecast Control Algorithm of quadrotor unmanned plane based on dove group's optimization
CN105759609B (en) * 2016-02-29 2018-05-11 北京航空航天大学 A kind of carrier-borne aircraft autonomous landing on the ship method based on explicit non-linear Model Predictive Control
CN105976018B (en) * 2016-04-22 2018-12-18 大连理工大学 Discrete dove group's method for monitoring structural health conditions sensors location
CN106339355B (en) * 2016-08-31 2019-01-11 哈尔滨工程大学 A kind of short-term track on-line prediction method of carrier landing
CN106950833B (en) * 2017-03-28 2019-06-14 南京航空航天大学 Satellite Attitude Dynamic Programming Method Based on Improved PIO Algorithm
CN112182889B (en) * 2020-09-30 2022-12-16 北京石油化工学院 A Construction Method of Linear Model of Carrier Aircraft Landing Longitudinal Motion Considering Wind Disturbance
CN113885320B (en) * 2021-09-26 2024-02-23 北京航空航天大学 Aircraft random robust control method based on mixed quantum pigeon swarm optimization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971180A (en) * 2014-05-09 2014-08-06 北京航空航天大学 Continuous optimization problem solving method based on pigeon-inspired optimization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2466177A (en) * 2008-12-03 2010-06-16 Arab Science & Technology Found Bacteriophage selection and breeding
US20140297338A1 (en) * 2013-04-02 2014-10-02 Moonyoung Kang System and Method for Optimizing Ticket Cost over a Travel Itinerary

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971180A (en) * 2014-05-09 2014-08-06 北京航空航天大学 Continuous optimization problem solving method based on pigeon-inspired optimization

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Pigeon-Inspired optimization approach to multiple UAVs formation reconfiguration controller design;Xiaomin Zhang等;《Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference》;20140810;第2707-2712页 *
小型舰载无人机侧向自主着舰引导技术;郑峰婴等;《南京航空航天大学学报》;20130228;第45卷(第1期);第82-87页 *

Also Published As

Publication number Publication date
CN105022881A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
CN105022881B (en) A kind of carrier-borne aircraft autonomous landing on the ship Guidance Law Design method based on dove group optimization
CN106441308B (en) A kind of Path Planning for UAV based on adaptive weighting dove group&#39;s algorithm
Yang et al. Automatic carrier landing system multilayer parameter design based on Cauchy mutation pigeon-inspired optimization
CN106774400B (en) Unmanned aerial vehicle three-dimensional track guidance method based on inverse dynamics
CN108919640B (en) Method for realizing self-adaptive multi-target tracking of unmanned aerial vehicle
CN111158383B (en) Track tracking control method of unmanned aerial vehicle based on disturbance observer and RBFNN
Wu et al. Dynamics modeling and trajectory optimization for unmanned aerial-aquatic vehicle diving into the water
Lawrance et al. A guidance and control strategy for dynamic soaring with a gliding UAV
CN110889170B (en) Method for estimating falling angle and attack angle of large-angle attack target of aircraft
CN113156985B (en) Robust anti-disturbance flight control method for fixed-wing UAV obstacle avoidance based on preset performance
CN109445449A (en) A kind of high subsonic speed unmanned plane hedgehopping control system and method
CN114442640B (en) Track tracking control method for unmanned surface vehicle
CN110377034A (en) A kind of waterborne vessel track following Global robust sliding-mode control based on dragonfly algorithm optimization
CN107390531A (en) The hypersonic aircraft control method of parameter learning finite time convergence control
CN113110604A (en) Path dynamic planning method based on artificial potential field
Tao et al. Modeling and control of a powered parafoil in wind and rain environments
CN109375642A (en) An energy-saving control method for unmanned aerial vehicles
Sandström et al. Fighter pilot behavior cloning
CN112596548B (en) Multi-unmanned aerial vehicle consistency formation control method in annular task mode
Tang et al. Trajectory tracking control for fixed-wing UAV based on DDPG
Zhang et al. Small fixed-wing unmanned aerial vehicle path following under low altitude wind shear disturbance
CN115454099B (en) Unmanned ship course active disturbance rejection control method based on variable weight self-adaptive pigeon group parameter fitting
Zhen et al. Aircraft control method based on deep reinforcement learning
Kim et al. Deep neural network-based feedback control for dynamic soaring of unpowered aircraft
CN116560403A (en) Intelligent time collaborative guidance method, system and equipment for hypersonic aircraft

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant