CN105021846A - Six-axis integrated miniature acceleration sensor and manufacturing method therefor - Google Patents
Six-axis integrated miniature acceleration sensor and manufacturing method therefor Download PDFInfo
- Publication number
- CN105021846A CN105021846A CN201510390863.9A CN201510390863A CN105021846A CN 105021846 A CN105021846 A CN 105021846A CN 201510390863 A CN201510390863 A CN 201510390863A CN 105021846 A CN105021846 A CN 105021846A
- Authority
- CN
- China
- Prior art keywords
- sensitive
- silicon
- fixed frame
- structural support
- inertial mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 230000001133 acceleration Effects 0.000 title description 37
- 238000000034 method Methods 0.000 claims abstract description 23
- 229910052710 silicon Inorganic materials 0.000 claims description 42
- 239000010703 silicon Substances 0.000 claims description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 39
- 235000012431 wafers Nutrition 0.000 claims description 27
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 24
- 239000010410 layer Substances 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 239000007853 buffer solution Substances 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- 238000000206 photolithography Methods 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 6
- 238000009616 inductively coupled plasma Methods 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 6
- 230000033001 locomotion Effects 0.000 claims description 6
- 238000001020 plasma etching Methods 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- OFLYIWITHZJFLS-UHFFFAOYSA-N [Si].[Au] Chemical compound [Si].[Au] OFLYIWITHZJFLS-UHFFFAOYSA-N 0.000 claims description 3
- 239000000872 buffer Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 238000001459 lithography Methods 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims description 3
- 238000001465 metallisation Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 239000010408 film Substances 0.000 claims 2
- 239000010409 thin film Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 8
- 238000007907 direct compression Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 17
- 230000004044 response Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Landscapes
- Pressure Sensors (AREA)
- Micromachines (AREA)
Abstract
本发明公开了一种六轴一体式微加速度传感器及其制作方法,通过键合连接在一起的上、下盖板、感测芯片。所述感测芯片包括从固定外框对角线引出四根梁与中间的“小岛”相连,使得外框架中间“小岛”、外框架对角线上的梁、外框架成为一个整体—固定框架,每个惯性感测单元由惯性质量块、结构支撑梁、敏感微梁组成,所述每个惯性质量块成梯形,且其上底边中间部分有延伸向下底边的结构支撑梁;结构支撑梁的两侧,有敏感微梁将梯形惯性质量块的上底边与固定框架中间“小岛”相连。敏感微梁由于结构微小的特点,在敏感芯片加载时将会集中主要的应力,且易形成直拉直压的简单应力状态,非常有利于轴间解耦。本发明,结构简单紧凑、易加工。
The invention discloses a six-axis integrated micro-acceleration sensor and a manufacturing method thereof, comprising upper and lower cover plates and a sensing chip connected together by bonding. The sensing chip includes four beams drawn from the diagonal of the fixed outer frame and connected to the middle "island", so that the "island" in the middle of the outer frame, the beams on the diagonal of the outer frame, and the outer frame form a whole— A fixed frame, each inertial sensing unit is composed of an inertial mass block, a structural support beam, and a sensitive micro-beam, each of the inertial mass blocks is trapezoidal, and the middle part of the upper bottom edge has a structural support beam extending to the lower bottom edge ; On both sides of the structural support beam, there are sensitive micro-beams connecting the upper bottom edge of the trapezoidal inertial mass block with the "island" in the middle of the fixed frame. Due to the small structure of the sensitive microbeam, the main stress will be concentrated when the sensitive chip is loaded, and it is easy to form a simple stress state of direct tension and direct compression, which is very conducive to decoupling between axes. The invention has a simple and compact structure and is easy to process.
Description
技术领域 technical field
本发明涉及了硅微加速度计领域,特别涉及一种压阻式六轴高量程微加速度传感器及其制作方法。 The invention relates to the field of silicon micro-accelerometers, in particular to a piezoresistive six-axis high-range micro-accelerometer and a manufacturing method thereof.
背景技术 Background technique
加速度传感器是指一种能够测量物体运动加速度的传感器。灵敏度、线性度、轴间耦合度、响应速度,响应频带宽度,稳定性等是其主要的性能指标。而微加速度传感器属于加速度传感器的一种,是新发展起来的微机电系统(MEMS)的重要组成部分,随着半导体工业的发展,特别是MEMS工艺的发展,越来越多的高性能、低能耗、价格低廉的微加速度传感器逐渐应用到各行各业,不断地改变着人们的生活和工作方式。而高量程加速度传感器作为一种特殊的惯性测量器件目前主要应用于军事和航空等领域。随着近年来侵彻武器系统的发展和对爆炸冲击现象的深入研究,人们对于高量程加速度传感器的性能也逐渐提高—要求传感器有大量程、大的响应带宽,高的固有频率,以便能够准确、快速地响应被测加速度信号。 An acceleration sensor refers to a sensor that can measure the acceleration of an object's motion. Sensitivity, linearity, inter-axis coupling, response speed, response frequency bandwidth, stability, etc. are its main performance indicators. The micro-accelerometer is a kind of acceleration sensor and is an important part of the newly developed micro-electromechanical system (MEMS). With the development of the semiconductor industry, especially the development of MEMS technology, more and more high-performance, low-energy Micro-acceleration sensors with low power consumption and low price are gradually applied to all walks of life, constantly changing the way people live and work. As a special inertial measurement device, the high-range acceleration sensor is mainly used in military and aviation fields. With the development of penetrating weapon systems and the in-depth study of explosive shock phenomena in recent years, people have gradually improved the performance of high-range acceleration sensors—the sensors are required to have a large range, large response bandwidth, and high natural frequency in order to be able to accurately , Quickly respond to the measured acceleration signal.
目前国内外的研究侵彻武器等所用的高量程加速度传感器基本都是单轴的,而即使有多轴的也是多个单轴的简单组合,这样不仅体积较大,而且还会引入安装误差。专利CN 101692099报道了一种具有零飘补偿的压阻式双轴加速度计,虽然解决了压阻式的温度漂移问题,且具有较高固有频率,但其是两个单轴的敏感元件的组合,且也只能测两个方向的运动,而物体空间内六个自由度运动还有4个运动无法被测量到,这无法满足侵彻武器等研究的全方位测量、精确控制的要求。 At present, the high-range acceleration sensors used in the research of penetration weapons at home and abroad are basically single-axis, and even if there are multiple axes, it is a simple combination of multiple single-axis, which is not only large in size, but also introduces installation errors. Patent CN 101692099 reports a piezoresistive dual-axis accelerometer with zero drift compensation. Although it solves the problem of piezoresistive temperature drift and has a high natural frequency, it is a combination of two uniaxial sensitive elements , and can only measure motion in two directions, and four motions in the six degrees of freedom in the object space cannot be measured, which cannot meet the requirements of all-round measurement and precise control for research on penetrating weapons.
发明内容 Contents of the invention
本发明的目的在于克服上述现有技术不足,提供一种六轴一体式高量程微加速度传 感器及其制作方法。针对现有高g微加速度计的问题,本发明结构简单紧凑,易于批量加工生产、频带宽、适用范围广,轴间耦合小。 The object of the present invention is to overcome the above-mentioned deficiencies in the prior art, and provide a six-axis integrated high-range micro-acceleration sensor and a manufacturing method thereof. Aiming at the problems of the existing high-g micro-accelerometer, the invention has a simple and compact structure, is easy to process and produce in batches, has a wide frequency range, a wide application range, and small coupling between axes.
为解决上述技术问题,本发明采用以下技术方案。 In order to solve the above technical problems, the present invention adopts the following technical solutions.
一种六轴一体式高量程微加速度传感器,它包括通过键合连接在一起的敏感芯片、上盖板以及下盖板三部分,所述敏感芯片是由四个传感单元组成,每个传感单元包括结构支撑梁、敏感微梁、惯性质量块以及固定框架,所述每个惯性质量块由一根结构支撑梁和两根敏感微梁与固定框架中间岛部分相连,组成悬臂梁—质量块系统,所述两根敏感微梁以结构支撑梁为中心对称分布,连接质量块与固定框架中间岛之间,所述每个敏感微梁上均有一个掺杂敏感电阻用以构成惠斯通电桥进行六轴向运动间的感测与解耦。 A six-axis integrated high-range micro-acceleration sensor, which includes three parts: a sensitive chip connected together by bonding, an upper cover and a lower cover. The sensitive chip is composed of four sensing units, each sensor The sensing unit includes a structural support beam, a sensitive microbeam, an inertial mass block and a fixed frame, and each inertial mass block is connected to the middle island part of the fixed frame by a structural support beam and two sensitive microbeams to form a cantilever beam-mass In the block system, the two sensitive micro-beams are distributed symmetrically around the structural support beam, connecting the mass block and the middle island of the fixed frame, and each sensitive micro-beam has a doped sensitive resistor to form a Wheatstone bridge Sensing and decoupling between six-axis motion.
所述固定框架由固定外框、外框对角线、中间岛组成;外框对角线处于中间,将固定外框与中间岛连接,其高度方向尺寸一致;所述中间岛为固定框架中间的方形柱。 The fixed frame is composed of a fixed outer frame, a diagonal line of the outer frame, and an intermediate island; the diagonal line of the outer frame is in the middle, and the fixed outer frame is connected with the intermediate island, and the dimensions in the height direction are consistent; the intermediate island is the middle of the fixed frame. square column.
所述惯性质量块整体为梯形柱;所述固定框架中间岛为固定框架中间结构,其通过固定框架外框对角线与固定框架外框相连,并且通过结构支撑梁、敏感微梁与惯性质量块相连。 The inertial mass block is a trapezoidal column as a whole; the middle island of the fixed frame is the middle structure of the fixed frame, which is connected to the outer frame of the fixed frame through the diagonal line of the outer frame of the fixed frame, and is connected with the inertial mass through the structural support beam, the sensitive micro-beam The blocks are connected.
所述固定框架上设有八个补偿电阻,所述补偿电阻通过与敏感电阻并联、串联共同组成6组惠斯通电桥。 Eight compensating resistors are arranged on the fixed frame, and the compensating resistors are connected in parallel and in series with sensitive resistors to form 6 groups of Wheatstone bridges.
所述结构支撑梁长度方向垂直于惯性质量块的上、下底边,且位于梯形惯性质量块的中间,连接固定框架中间岛结构与梯形惯性质量块,并一直延伸接近梯形质量块下底边处,所述结构支撑梁的厚度与惯性质量块一样。 The length direction of the structural support beam is perpendicular to the upper and lower bottom edges of the inertial mass, and is located in the middle of the trapezoidal inertial mass, connects the middle island structure of the fixed frame and the trapezoidal inertial mass, and extends close to the lower bottom of the trapezoidal mass , the thickness of the structural support beam is the same as that of the inertial mass.
一种六轴一体式高量程微加速度传感器制作方法, A method for manufacturing a six-axis integrated high-range micro-acceleration sensor,
1)选用N型SOI硅片,结构层硅厚度为10±1μm,中间二氧化硅隔离层厚度为1~1.5μm,衬底层硅为500μm,清洗硅片表面后,采用热氧化的方法在上、下面制备一层200~300nm SiO2薄膜; 1) Select N-type SOI silicon wafers, the thickness of the structural layer silicon is 10±1 μm, the thickness of the intermediate silicon dioxide isolation layer is 1-1.5 μm, and the thickness of the substrate layer silicon is 500 μm. After cleaning the surface of the silicon wafer, use the method of thermal oxidation on the , prepare a layer of 200 ~ 300nm SiO 2 film below;
2)将硅片正面光刻,然后用氢氟酸缓冲液BOE液去除露出的SiO2,并以去除SiO2处为窗口进行B扩散形成掺杂电阻:敏感电阻、参考电阻; 2) Lithograph the front side of the silicon wafer, then remove the exposed SiO 2 with the hydrofluoric acid buffer BOE solution, and perform B-diffusion with the removed SiO 2 as the window to form doped resistors: sensitive resistors, reference resistors;
3)氢氟酸缓冲液BOE洗去上表层SiO2,然后继续进行薄层氧化硅片,重复步骤2),不同的是重掺杂硼B制作欧姆接触区; 3) Hydrofluoric acid buffer solution BOE washes away the upper surface layer SiO2, and then proceeds to thin-layer silicon oxide wafer, repeating step 2), the difference is that the ohmic contact area is made by heavily doping boron B;
4)金属化;在硅片正面光刻,并用溅射—剥离法制备金引线;然后,再加热至363±5℃,保持20~30min形成稳定的局部金硅二相; 4) Metallization; lithography on the front side of the silicon wafer, and prepare gold wires by sputtering-lift-off method; then, heat to 363±5°C and keep for 20-30min to form a stable local gold-silicon two-phase;
5)正面梁形状刻蚀:正面光刻,溅射—剥离法制备图形化铝掩蔽膜,然后感应耦合等离子刻蚀ICP刻蚀出结构支撑梁、敏感微梁质量块的形状,厚度为器件层厚度10±1μm; 5) Front beam shape etching: Front photolithography, sputtering-stripping method to prepare patterned aluminum masking film, and then inductively coupled plasma etching ICP to etch out the shape of structural support beams and sensitive micro-beam masses, with a thickness of Thickness 10±1μm;
6)硅片背面光刻,20%~22%质量分数的四甲基氢氧化铵在85~90℃水浴湿法刻蚀出硅质量块活动区域; 6) Photolithography on the back of the silicon wafer, 20% to 22% by mass fraction of tetramethylammonium hydroxide wet etching in a water bath at 85 to 90°C to form the active area of the silicon mass block;
7)硅片背面光刻,溅射—剥离法制备图形化铝膜,然后反应等离子刻蚀RIE刻蚀出惯性质量块,刻蚀厚度为衬底硅层的厚度; 7) Photolithography on the back of the silicon wafer, sputtering-stripping method to prepare a patterned aluminum film, and then reactive plasma etching RIE to etch out the inertial mass, and the etching thickness is the thickness of the silicon layer of the substrate;
8)氢氟酸缓冲液BOE腐蚀梁结构处硅片1~1.5μm SiO2隔离层释放梁结构; 8) Hydrofluoric acid buffer solution BOE corrodes the beam structure at the silicon wafer 1-1.5 μm SiO 2 isolation layer to release the beam structure;
9)上盖板的一面光刻,且用氢氟酸缓冲液BOE刻蚀出质量块向上活动区域,活动区域高度亦为考虑阻尼特性后的高度; 9) One side of the upper cover is photo-etched, and the upward active area of the mass block is etched with hydrofluoric acid buffer solution BOE, and the height of the active area is also the height after considering the damping characteristics;
10)将硅片用阳极键合的方法与上盖板、下盖板密封连接,制作玻璃—硅片—玻璃的三明治结构; 10) The silicon wafer is sealed and connected with the upper cover plate and the lower cover plate by anodic bonding to make a glass-silicon wafer-glass sandwich structure;
11)器件封装: 11) Device package:
a.采用机械式划片机按划片道划片,制作敏感加速度计芯片;b.将上述芯片用AB胶贴入封装用陶瓷方形管壳;c.用金丝球焊机将细金引线与敏感芯片上焊盘一一对应键合;d.将陶瓷管壳装上密封管壳帽,并用AB胶密封。 a. Use a mechanical dicing machine to scribe according to the dicing lane to make a sensitive accelerometer chip; b. Paste the above-mentioned chip into the ceramic square shell for packaging with AB glue; c. Use a gold wire ball welding machine to connect the fine gold wire and The pads on the sensitive chip are bonded one by one; d. Install the ceramic shell with a sealed shell cap and seal it with AB glue.
所述上盖板、下盖板材料为美国康宁7740玻璃或者德国肖特BF33阳极键合用玻璃。 The materials of the upper cover and the lower cover are American Corning 7740 glass or German Schott BF33 glass for anodic bonding.
与现有技术相比,本发明的优点在于: Compared with the prior art, the present invention has the advantages of:
1)本发明结构、工艺以及读出电路十分简单。通过简单、对称、巧妙设计的敏感单元,以及对应的作为读出电路的惠斯通电桥,可以实现空间六个轴向自由度加速度的全解耦,其理论分析轴间耦合度为零。 1) The structure, process and readout circuit of the present invention are very simple. Through the simple, symmetrical and ingeniously designed sensitive unit, and the corresponding Wheatstone bridge as the readout circuit, the full decoupling of the acceleration of the six axial degrees of freedom in space can be realized, and the theoretical analysis of the coupling degree between axes is zero.
2)本发明利用SOI硅片制作传感器,使得微梁的厚度尺寸能够精准的控制。此外,由于SOI硅片的绝缘、绝热特性,本工艺制作的传感器还具有低环境噪声,较好耐高温性。 2) The present invention uses SOI silicon wafers to make sensors, so that the thickness and size of the microbeams can be precisely controlled. In addition, due to the insulation and heat insulation characteristics of SOI silicon wafers, the sensors produced by this process also have low environmental noise and good high temperature resistance.
3)本发明利用与质量块同厚度的大刚度的结构支撑梁使得优选尺寸的整个芯片的固有频率>18KHz,使其具有很宽的频带,适应面广;此外,其还使得传感器在高量程作用下仍能线性地正常工作,,其z轴、x/y轴方向轴线加速度量程分别达到100,000gn,10,000gn,其中gn为单位重力加速度值。 3) The present invention utilizes a structural support beam with large rigidity with the same thickness as the mass block to make the natural frequency of the entire chip of the preferred size > 18KHz, so that it has a very wide frequency band and is widely applicable; in addition, it also enables the sensor to operate in a high range Under the action, it can still work linearly and normally, and its z-axis and x/y-axis axis acceleration ranges reach 100,000g n and 10,000g n respectively, where g n is the unit gravity acceleration value.
4)本发明在敏感芯片上制作的所有掺杂电阻,包括敏感电阻和参考电阻均为同一工艺所制作,其物理性质相似度高,温度补偿性能更好,零点漂移更小。 4) All the doped resistors made on the sensitive chip of the present invention, including sensitive resistors and reference resistors, are made by the same process, with high similarity in physical properties, better temperature compensation performance, and smaller zero point drift.
5)本发明合理设计质量块活动间隙,并采用一定真空条件下键合封装,以获得0.7左右的阻尼比,加之传感器有较高的固有频率,使得传感器具有较好的动态性能以及较大的Q值。 5) The present invention rationally designs the movable gap of the mass block, and adopts bonding and packaging under certain vacuum conditions to obtain a damping ratio of about 0.7. In addition, the sensor has a higher natural frequency, so that the sensor has better dynamic performance and larger Q value.
本发明的制作方法具有工艺简单,操作简便,加工效率高,可靠性好,容易批量化生产的特点。 The preparation method of the invention has the characteristics of simple process, convenient operation, high processing efficiency, good reliability and easy batch production.
附图说明 Description of drawings
图1是本发明的整体结构示意图; Fig. 1 is the overall structural representation of the present invention;
图2是本发明的加速度敏感芯片的结构示意图; Fig. 2 is the structural representation of the acceleration sensitive chip of the present invention;
图3是本发明中敏感电阻与参考电阻布片图, Fig. 3 is a layout diagram of sensitive resistor and reference resistor in the present invention,
图4是本发明中解耦示意图: Fig. 4 is a schematic diagram of decoupling in the present invention:
图(a)为加载z轴向线加速度Az时候,敏感芯片简化受力变形图; Figure (a) is a simplified force deformation diagram of the sensitive chip when the z-axis linear acceleration Az is applied;
图(b)为加载y轴向线加速度Ay的时候,敏感芯片简化受力变形图; Figure (b) is a simplified force deformation diagram of the sensitive chip when the y-axis linear acceleration Ay is applied;
图(c)为加载x轴向线加速度Ax的时候,敏感芯片简化受力变形图; Figure (c) is a simplified force deformation diagram of the sensitive chip when the x-axis linear acceleration Ax is loaded;
图(d)为加载z轴向角加速度Ez的时候,敏感芯片简化受力变形图; Figure (d) is a simplified force deformation diagram of the sensitive chip when the z-axis angular acceleration Ez is loaded;
图(e)为加载x轴向角加速度Ex的时候,敏感芯片简化受力变形图; Figure (e) is a simplified force deformation diagram of the sensitive chip when the x-axis angular acceleration Ex is applied;
图(f)为加载y轴向角加速度Ey的时候,敏感芯片简化受力变形图; Figure (f) is a simplified force deformation diagram of the sensitive chip when the y-axis angular acceleration Ey is loaded;
g表为六轴向加速度/角加速度感测与解耦表; The g table is the six-axis acceleration/angular acceleration sensing and decoupling table;
图5是本发明中解耦电路原理图: Fig. 5 is a schematic diagram of decoupling circuit in the present invention:
图(a)为x轴和y轴轴向线加速度以及角加速度的解耦感测电路图; Figure (a) is a decoupling sensing circuit diagram of x-axis and y-axis axial linear acceleration and angular acceleration;
图(b)为z轴向线加速度解耦感测的细节电路图, Figure (b) is a detailed circuit diagram of z-axis linear acceleration decoupling sensing,
图(c)为z轴向线加速度解耦感测整体电路图; Figure (c) is the overall circuit diagram of z-axis linear acceleration decoupling sensing;
图(b)和(c)图共同组成z轴向线加速度解耦感测电路图, Figures (b) and (c) together form a z-axis linear acceleration decoupling sensing circuit diagram,
图(d)为z轴向解耦感测的细节电路图, Figure (d) is a detailed circuit diagram of z-axis decoupling sensing,
图(e)为z轴向解耦感测的整体电路图。 Figure (e) is the overall circuit diagram of z-axis decoupling sensing.
图(d)和(e)图共同组成z轴向角加速度解耦感测电路图, Figures (d) and (e) together form a z-axis angular acceleration decoupling sensing circuit diagram,
具体实施方式 Detailed ways
下面将结合附图对本发明作进一步详细说明。 The present invention will be described in further detail below in conjunction with the accompanying drawings.
1.整体结构: 1. Overall structure:
如图1、图2、图3所示,它包括通过键合连接在一起的敏感芯片3、上盖板1与下盖板2;所述敏感芯片3是由四个传感单元组成,每个传感单元包括结构支撑梁4、敏感微梁5、惯性质量块6以及固定框架7;所述每个惯性质量块6由一根结构支撑梁4和两根敏感微梁5与固定框架7中间岛部分相连,组成悬臂梁—质量块系统;所述两根微梁5以结构支撑梁4对称分布于质量块6与固定框架7的中间岛之间,所述每个敏感微梁5 上均有一个掺杂敏感电阻9,所述固定框架的外框上均匀分布有8个掺杂型参考电阻8,用以与敏感电阻共同构成若干惠斯通电桥以进行六轴向运动间的感测与解耦,见图5。所述结构支撑梁4刚度较大,用以提高整体感测结构的刚度,进而提升固有频率,工作带宽及响应速度。其中结构支撑梁4、敏感微梁5以及惯性质量块6均为结构;敏感电阻9和参考电阻8为淡硼掺杂工艺制作半导体掺杂电阻。图3中,每个惯性敏感单元中的两个敏感电阻均分布在敏感微梁上远离中间结构支撑梁的一侧;梁长方向上,敏感电阻分布在靠近惯性质量块或者靠近固定框架中间“岛”结构的一侧;参考电阻则均匀分布在固定框架的外框四个直角附近处。 As shown in Fig. 1, Fig. 2 and Fig. 3, it includes a sensitive chip 3, an upper cover plate 1 and a lower cover plate 2 connected together by bonding; the sensitive chip 3 is composed of four sensing units, each Each sensing unit comprises a structural support beam 4, a sensitive microbeam 5, an inertial mass 6 and a fixed frame 7; each of the inertial mass 6 consists of a structural support beam 4, two sensitive microbeams 5 and a fixed frame 7 The middle islands are partially connected to form a cantilever-mass system; the two microbeams 5 are symmetrically distributed between the mass 6 and the middle island of the fixed frame 7 with the structural support beam 4, and each sensitive microbeam 5 Each has a doped sensitive resistor 9, and 8 doped reference resistors 8 are evenly distributed on the outer frame of the fixed frame to form a number of Wheatstone bridges together with the sensitive resistors for sensing between six-axis movements. Measurement and decoupling, see Figure 5. The structural support beam 4 has relatively high rigidity, which is used to increase the rigidity of the overall sensing structure, thereby increasing the natural frequency, working bandwidth and response speed. The structural support beam 4, the sensitive microbeam 5 and the inertial mass 6 are all structures; the sensitive resistor 9 and the reference resistor 8 are semiconductor-doped resistors made by light boron doping process. In Figure 3, the two sensitive resistors in each inertial sensing unit are distributed on the side of the sensitive micro-beam away from the support beam of the intermediate structure; in the beam length direction, the sensitive resistors are distributed near the inertial mass or near the middle of the fixed frame" One side of the "island" structure; the reference resistors are evenly distributed around the four right angles of the outer frame of the fixed frame.
如图3所示,本发明共设计了16个掺杂电阻,其中8个敏感电阻9,8个参考电阻8。所述16个掺杂电阻均为同一步工艺制作,以保证均一性;电阻的形式是一字型,复合形式以尽可能提高灵敏度,减小耦合度。 As shown in FIG. 3 , the present invention designs a total of 16 doping resistors, including 8 sensitive resistors 9 and 8 reference resistors 8 . The 16 doped resistors are all produced in the same process to ensure uniformity; the resistors are in the form of a straight line, and the composite form is used to increase the sensitivity as much as possible and reduce the coupling degree.
六轴一体式高量程微加速度传感器,其尺寸为:1)总体尺寸为:长*宽*高=3.4*3.4*0.5mm3;敏感微梁尺寸为:长*宽*高=*0.04*0.04*0.01mm3;结构支撑梁尺寸:长*宽*高=1.04*0.06*0.49mm3;单个惯性质量块的体积为:等效底面积*高=((2.42+0.34)*1.04/2-1.04*0.16)*0.49mm3; The size of the six-axis integrated high-range micro-acceleration sensor is: 1) The overall size is: length*width*height=3.4*3.4*0.5mm 3 ; the size of the sensitive micro-beam is: length*width*height=*0.04*0.04 *0.01mm 3 ; Structural support beam size: length * width * height = 1.04*0.06*0.49mm 3 ; The volume of a single inertial mass is: equivalent bottom area * height = ((2.42+0.34)*1.04/2- 1.04*0.16)*0.49mm 3 ;
2.六轴向加速度解耦。 2. Six-axis acceleration decoupling.
如图3、图4及图5所示,当沿Z轴正向加载线加速度Az的时候,四个质量块由于惯性作用保持不动,而固定框架与外界加速度一致,这时所有的敏感电阻状态均为受拉。如图4,a.;当沿y轴正向加载线加速度Ay时候,由于结构支撑梁4厚度与惯性质量块6一样,刚度较大且在其正中间,故而平行于x轴的4根敏感微梁几乎不受力。只有垂直于x轴的4根微梁由于变形受力,且电阻R1.1、电阻R3.1受压,电阻R1.2、电阻R3.2受拉,如图4,b.所示;当沿x轴正向加载线加速度Ax,同理,质量块6由于惯性保持不动,只有电阻R2.1、电阻R4.1受拉,电阻R2.2、电阻R4.2受压,如图4,c。所示; 当沿z轴正向加载角加速度Ez时,所有的敏感微梁5将在xoy平面弯曲,由此造成:电阻R1.1、电阻R4.1、电阻R2.2、电阻R3.2受压,电阻R1.2、电阻R4.2、电阻R2.1、电阻R3.1受拉,如图4,d。所示;当沿x轴正向加载角加速度Ex时候,由于结构的对称性,平行于x轴的微梁几乎无应力感应,而垂直于x轴的微梁则表现出一侧受拉:电阻R4.1、电阻R4.2,另一侧受压电阻R2.1、电阻R2.2,如图4,e.所示;当沿y轴正向加载角加速度Ey时,同理,电阻R1.1、电阻R1.2受拉,电阻R3.1、电阻R3.2受压,其余基本不受力,如图4,f所示。 As shown in Figure 3, Figure 4 and Figure 5, when the linear acceleration Az is loaded along the Z axis in the positive direction, the four mass blocks remain still due to inertia, and the fixed frame is consistent with the external acceleration. At this time, all sensitive resistors The state is in tension. As shown in Figure 4, a.; when the linear acceleration Ay is loaded in the positive direction along the y-axis, since the thickness of the structural support beam 4 is the same as that of the inertial mass 6, the stiffness is relatively large and it is in the middle of it, so the four sensitive beams parallel to the x-axis Microbeams are almost stress-free. Only the four microbeams perpendicular to the x-axis are stressed due to deformation, and the resistors R1.1 and R3.1 are under pressure, and the resistors R1.2 and R3.2 are under tension, as shown in Figure 4, b.; when Load the linear acceleration Ax in the positive direction along the x-axis. Similarly, the mass block 6 remains stationary due to inertia, and only the resistors R2.1 and R4.1 are pulled, and the resistors R2.2 and R4.2 are pressed, as shown in Figure 4 , c. As shown; When the angular acceleration Ez is applied positively along the z-axis, all sensitive micro-beams 5 will bend on the xoy plane, resulting in: resistance R1.1, resistance R4.1, resistance R2.2, resistance R3.2 Under pressure, resistance R1.2, resistance R4.2, resistance R2.1, resistance R3.1 are pulled, as shown in Figure 4, d. As shown; when the angular acceleration Ex is positively loaded along the x-axis, due to the symmetry of the structure, the microbeams parallel to the x-axis have almost no stress induction, while the microbeams perpendicular to the x-axis show one side tension: resistance R4.1, resistor R4.2, the other side pressure resistor R2.1, resistor R2.2, as shown in Figure 4, e.; when the angular acceleration Ey is loaded in the positive direction along the y-axis, similarly, the resistor R1 .1. The resistor R1.2 is pulled, the resistors R3.1 and R3.2 are pressed, and the rest are basically not stressed, as shown in Figure 4, f.
综上,六轴向加速度加载后的敏感微梁5上敏感电阻9处的受力情况可以概括如图4,g.解耦表所示。其特点为:对应于Ax、Ay、Ez加载,同一质量块的两个敏感微梁敏感电阻处应力状态是大小一样,方向相反。且对应于Ax、Ay加载时候,微梁应力状态与序号对应“整齐”,如电阻R1.1和电阻R3.1及电阻R2.1和电阻R4.1应力状态一致。而对应于Ez加载,则是电阻R1.1和电阻R3.2及电阻R4.1和电阻R2.2应力状态一样;对应于AZ、Ex、Ey加载,同一质量块的两个敏感微梁敏感电阻处应力状态完全相同;且对应于Ex、Ey加载时候,所有敏感电阻应力矢量之和在忽略其他误差时候必为零,而Az加载时不为零。 In summary, the stress at the sensitive resistor 9 on the sensitive micro-beam 5 after six-axis acceleration loading can be summarized as shown in Fig. 4, g. decoupling table. Its characteristics are: corresponding to the loading of Ax, Ay, and Ez, the stress states at the sensitive resistors of the two sensitive microbeams of the same mass block are the same in magnitude and opposite in direction. And corresponding to the loading of Ax and Ay, the stress state of the microbeam corresponds to the serial number "tidy", such as the stress state of the resistance R1.1 and the resistance R3.1 and the resistance R2.1 and the resistance R4.1 are consistent. And corresponding to Ez loading, the stress state of resistance R1.1 and resistance R3.2 and resistance R4.1 and resistance R2.2 are the same; corresponding to AZ, Ex, Ey loading, two sensitive microbeams of the same mass are sensitive The stress states at the resistors are exactly the same; and when Ex and Ey are loaded, the sum of all sensitive resistor stress vectors must be zero when other errors are ignored, but it is not zero when Az is loaded.
根据上述特点,设计解耦电路图如图5所示,Ay读出电桥中,电阻R1.1与电阻R3.1及电阻R1.2与电阻R3.2为对臂,且这两对彼此为邻臂;Ax读出电桥中,电阻R2.1与电阻R4.1及电阻R2.2与电阻R4.2为对臂,且这两对彼此为邻臂;Ey读出电桥中,电阻R1.1与电阻R1.2及电阻R3.1与电阻R3.2为对臂,且这两对相互为邻臂;Az读出电桥中,电阻R1.1与电阻R1.2、电阻R2.1与电阻R2.2、电阻R3.1与电阻R3.2及电阻R4.1与电阻R4.2为对臂,加上8个参考电阻8,分别共同组成4个惠斯通半桥,分别输出Vout-Az1、Vout-Az2、Vout-Az3、Vout-Az4。最后通过将4个半桥的输出串联起来,作为z轴向线加速度响应输出;Ez读出电桥中,电阻R1.1与电阻R3.2及电阻R1.2与电阻R3.1 为对,输出Vout-Ez1,电阻R2.1与电阻R4.2及电阻R2.2与电阻R4.1为对,输出Vout-Ez2,将两个全桥的输出串联起来作为z轴向角加速度响应输出。 According to the above characteristics, the designed decoupling circuit diagram is shown in Figure 5. In the Ay readout bridge, the resistor R1.1 and the resistor R3.1 and the resistor R1.2 and the resistor R3.2 are opposite arms, and these two pairs are mutually Adjacent arm; in Ax readout bridge, resistance R2.1 and resistance R4.1 and resistance R2.2 and resistance R4.2 are opposite arms, and these two pairs are adjacent arms to each other; in Ey readout bridge, resistance R1.1 and resistor R1.2 and resistor R3.1 and resistor R3.2 are opposite arms, and these two pairs are adjacent arms to each other; in the Az readout bridge, resistor R1.1 and resistor R1.2, resistor R2 .1 and resistor R2.2, resistor R3.1 and resistor R3.2, resistor R4.1 and resistor R4.2 are opposite arms, and 8 reference resistors 8 are added to form 4 Wheatstone half-bridges respectively. Output Vout-Az1, Vout-Az2, Vout-Az3, Vout-Az4 respectively. Finally, by connecting the outputs of the four half-bridges in series, it is used as the z-axis linear acceleration response output; in the Ez readout bridge, the resistor R1.1 and the resistor R3.2 and the resistor R1.2 and the resistor R3.1 are pairs, Output Vout-Ez1, resistor R2.1 and resistor R4.2 and resistor R2.2 and resistor R4.1 are a pair, output Vout-Ez2, and connect the outputs of the two full bridges in series as the z-axis angular acceleration response output.
3.本发明一种六轴一体式高量程微加速度传感器的制作方法为: 3. The manufacturing method of a six-axis integrated high-range micro-acceleration sensor of the present invention is:
1)选用N型SOI硅片,结构层硅厚度为10±1μm,中间二氧化硅隔离层厚度为1~1.5μm,衬底层硅为500μm,清洗硅片表面后,采用热氧化的方法在上、下面制备一层200~300nm SiO2薄膜; 1) Select N-type SOI silicon wafers, the thickness of the structural layer silicon is 10±1 μm, the thickness of the intermediate silicon dioxide isolation layer is 1-1.5 μm, and the thickness of the substrate layer silicon is 500 μm. After cleaning the surface of the silicon wafer, use the method of thermal oxidation on the , prepare a layer of 200 ~ 300nm SiO 2 film below;
2)将硅片正面光刻,然后用氢氟酸缓冲液BOE液去除露出的SiO2,并以去除SiO2处为窗口进行B扩散形成掺杂电阻:敏感电阻9、参考电阻10; 2) Lithograph the front side of the silicon wafer, then remove the exposed SiO 2 with the hydrofluoric acid buffer BOE solution, and perform B-diffusion with the SiO 2 removed as the window to form doped resistors: sensitive resistor 9, reference resistor 10;
3)氢氟酸缓冲液BOE洗去上表层SiO2,然后继续进行薄层氧化硅片,重复步骤2),不同的是重掺杂硼(B)制作欧姆接触区; 3) Hydrofluoric acid buffer solution BOE washes away the upper surface layer SiO2, and then proceeds to thin-layer silicon oxide wafer, repeating step 2), the difference is that heavily doped boron (B) is used to make the ohmic contact area;
4)金属化;在硅片正面光刻,并用溅射—剥离法制备金引线;然后,再加热至363±5℃,保持20~30min形成稳定的局部金硅二相; 4) Metallization; lithography on the front side of the silicon wafer, and prepare gold wires by sputtering-lift-off method; then, heat to 363±5°C and keep for 20-30min to form a stable local gold-silicon two-phase;
5)正面梁形状刻蚀:正面光刻,溅射—剥离法制备图形化铝掩蔽膜,然后感应耦合等离子刻蚀(ICP)刻蚀出结构支撑梁4、敏感微梁5质量块6的形状,厚度为器件层厚度10±1μm; 5) Front beam shape etching: front photolithography, sputtering-lift-off method to prepare patterned aluminum masking film, and then inductively coupled plasma etching (ICP) to etch out the shape of structural support beam 4 and sensitive microbeam 5 mass block 6 , with a thickness of 10±1 μm for the device layer;
6)硅片背面光刻,20%~22%质量分数的四甲基氢氧化铵在85~90℃水浴湿法刻蚀出硅质量块活动区域, 6) Photolithography on the back of the silicon wafer, 20% to 22% by mass fraction of tetramethylammonium hydroxide wet etching in a water bath at 85 to 90°C to form the active area of the silicon mass block,
7)硅片背面光刻,溅射—剥离法制备图形化铝膜,然后反应等离子刻蚀RIE刻蚀出惯性质量块6,刻蚀厚度为衬底硅层的厚度; 7) Photolithography on the back of the silicon wafer, sputtering-stripping method to prepare a patterned aluminum film, and then reactive plasma etching (RIE) to etch out the inertial mass 6, and the etching thickness is the thickness of the silicon layer of the substrate;
8)氢氟酸缓冲液BOE腐蚀梁结构处硅片1~1.5μm SiO2隔离层释放梁结构; 8) Hydrofluoric acid buffer solution BOE corrodes the beam structure at the silicon wafer 1-1.5 μm SiO 2 isolation layer to release the beam structure;
9)上盖板的一面光刻,且用氢氟酸缓冲液BOE刻蚀出质量块向上活动区域,活动区域高度亦为考虑阻尼特性后的高度; 9) One side of the upper cover is photo-etched, and the upward active area of the mass block is etched with hydrofluoric acid buffer solution BOE, and the height of the active area is also the height after considering the damping characteristics;
10)将硅片用阳极键合的方法与上盖板1、下盖板2密封连接,制作玻璃—硅片—玻 璃的三明治结构; 10) The silicon chip is sealed and connected with the upper cover plate 1 and the lower cover plate 2 by anodic bonding, so as to make a glass-silicon chip-glass sandwich structure;
11)器件封装: 11) Device package:
a.采用机械式划片机按划片道划片,制作敏感加速度计芯片;b.将上述芯片用AB胶贴入封装用陶瓷方形管壳;c.用金丝球焊机将细金引线与敏感芯片上焊盘一一对应键合;d.将陶瓷管壳装上密封管壳帽,并用AB胶密封。 a. Use a mechanical dicing machine to scribe according to the dicing lane to make a sensitive accelerometer chip; b. Paste the above-mentioned chip into the ceramic square shell for packaging with AB glue; c. Use a gold wire ball welding machine to connect the fine gold wire and The pads on the sensitive chip are bonded one by one; d. Install the ceramic shell with a sealed shell cap and seal it with AB glue.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510390863.9A CN105021846B (en) | 2015-07-06 | 2015-07-06 | A kind of six axis one type micro acceleration sensors and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510390863.9A CN105021846B (en) | 2015-07-06 | 2015-07-06 | A kind of six axis one type micro acceleration sensors and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105021846A true CN105021846A (en) | 2015-11-04 |
CN105021846B CN105021846B (en) | 2018-04-17 |
Family
ID=54411963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510390863.9A Expired - Fee Related CN105021846B (en) | 2015-07-06 | 2015-07-06 | A kind of six axis one type micro acceleration sensors and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105021846B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106324282A (en) * | 2016-08-16 | 2017-01-11 | 中国科学院声学研究所 | A kind of accelerometer system, accelerometer probe and preparation method thereof |
CN107643424A (en) * | 2017-09-21 | 2018-01-30 | 中国电子科技集团公司第四十九研究所 | A kind of pressure resistance type MEMS acceleration chips and preparation method thereof |
CN110371921A (en) * | 2019-07-17 | 2019-10-25 | 西安交通大学 | Twin shaft pressure drag acceleration sensor chip and preparation method thereof in a kind of face |
CN112955752A (en) * | 2018-09-13 | 2021-06-11 | 离子地球物理学公司 | Multi-axis single mass accelerometer |
CN113348369A (en) * | 2019-04-19 | 2021-09-03 | 日商爱和谊日生同和保险公司 | Collision determination method, collision determination system, and computer program |
CN113697759A (en) * | 2021-07-09 | 2021-11-26 | 中国电子科技集团公司第十三研究所 | MEMS inertial sensor based on flexible substrate and preparation method |
CN114113679A (en) * | 2020-07-30 | 2022-03-01 | 意法半导体股份有限公司 | Wide-bandwidth MEMS accelerometer for vibration detection |
CN116519977A (en) * | 2023-07-05 | 2023-08-01 | 河北科昕电子科技有限公司 | A miniature six-axis inertial sensor with integrated accelerometer and gyroscope |
CN117572021A (en) * | 2024-01-17 | 2024-02-20 | 中国工程物理研究院电子工程研究所 | Sensitive structure and acceleration sensor |
CN118624936A (en) * | 2024-05-29 | 2024-09-10 | 西安石油大学 | A fiber grating three-dimensional vector acceleration sensor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1281986A (en) * | 2000-08-25 | 2001-01-31 | 华北工学院微米纳米技术研究中心 | Integrated silicon microresistance type acceleration sensor and its manufacturing method |
US20020002864A1 (en) * | 2000-07-10 | 2002-01-10 | Terje Kvisteroey | Accelerometer |
JP2003172745A (en) * | 2001-09-26 | 2003-06-20 | Hitachi Metals Ltd | Semiconductor acceleration sensor |
CN1603743A (en) * | 2004-11-12 | 2005-04-06 | 中国科学院上海微系统与信息技术研究所 | Piezoresistive micromechanical gyroscope with micro-beam direct pull direct compression structure and manufacturing method |
CN102155944A (en) * | 2011-03-08 | 2011-08-17 | 西安交通大学 | Six-axis microtype inertial sensor integrating accelerometer and gyroscope and application method thereof |
CN103293336A (en) * | 2013-07-02 | 2013-09-11 | 中国工程物理研究院电子工程研究所 | Double-cantilever beam type micro-mechanical acceleration sensor |
US20130270657A1 (en) * | 2010-09-18 | 2013-10-17 | Fairchild Semiconductor Corporation | Micromachined monolithic 6-axis inertial sensor |
CN103575932A (en) * | 2013-11-20 | 2014-02-12 | 大连理工大学 | MEMS piezoresistive accelerometer |
CN103900546A (en) * | 2012-12-28 | 2014-07-02 | 微机电科技香港有限公司 | Micro-electromechanical six-axis inertial sensor |
KR101482400B1 (en) * | 2013-04-29 | 2015-01-13 | 삼성전기주식회사 | Micro Electro Mechanical Systems Component |
-
2015
- 2015-07-06 CN CN201510390863.9A patent/CN105021846B/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020002864A1 (en) * | 2000-07-10 | 2002-01-10 | Terje Kvisteroey | Accelerometer |
CN1281986A (en) * | 2000-08-25 | 2001-01-31 | 华北工学院微米纳米技术研究中心 | Integrated silicon microresistance type acceleration sensor and its manufacturing method |
JP2003172745A (en) * | 2001-09-26 | 2003-06-20 | Hitachi Metals Ltd | Semiconductor acceleration sensor |
CN1603743A (en) * | 2004-11-12 | 2005-04-06 | 中国科学院上海微系统与信息技术研究所 | Piezoresistive micromechanical gyroscope with micro-beam direct pull direct compression structure and manufacturing method |
US20130270657A1 (en) * | 2010-09-18 | 2013-10-17 | Fairchild Semiconductor Corporation | Micromachined monolithic 6-axis inertial sensor |
CN102155944A (en) * | 2011-03-08 | 2011-08-17 | 西安交通大学 | Six-axis microtype inertial sensor integrating accelerometer and gyroscope and application method thereof |
CN103900546A (en) * | 2012-12-28 | 2014-07-02 | 微机电科技香港有限公司 | Micro-electromechanical six-axis inertial sensor |
KR101482400B1 (en) * | 2013-04-29 | 2015-01-13 | 삼성전기주식회사 | Micro Electro Mechanical Systems Component |
CN103293336A (en) * | 2013-07-02 | 2013-09-11 | 中国工程物理研究院电子工程研究所 | Double-cantilever beam type micro-mechanical acceleration sensor |
CN103575932A (en) * | 2013-11-20 | 2014-02-12 | 大连理工大学 | MEMS piezoresistive accelerometer |
Non-Patent Citations (4)
Title |
---|
刘岩等: "多梁结构压阻式测振加速度传感器", 《西安交通大学学报》 * |
吴仲城等: "一体化结构六维加速度传感器设计", 《仪器仪表学报》 * |
唐富荣等: "六轴加速度计的结构原理与阻尼振动设计", 《传感技术学报》 * |
陈光焱等: "硅微加速度传感器的对称梁岛结构设计", 《信息与电子工程》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106324282A (en) * | 2016-08-16 | 2017-01-11 | 中国科学院声学研究所 | A kind of accelerometer system, accelerometer probe and preparation method thereof |
CN107643424A (en) * | 2017-09-21 | 2018-01-30 | 中国电子科技集团公司第四十九研究所 | A kind of pressure resistance type MEMS acceleration chips and preparation method thereof |
CN107643424B (en) * | 2017-09-21 | 2020-03-17 | 中国电子科技集团公司第四十九研究所 | Piezoresistive MEMS acceleration chip and manufacturing method thereof |
CN112955752A (en) * | 2018-09-13 | 2021-06-11 | 离子地球物理学公司 | Multi-axis single mass accelerometer |
CN113348369A (en) * | 2019-04-19 | 2021-09-03 | 日商爱和谊日生同和保险公司 | Collision determination method, collision determination system, and computer program |
CN110371921B (en) * | 2019-07-17 | 2022-04-05 | 西安交通大学 | In-plane double-shaft piezoresistive acceleration sensor chip and preparation method thereof |
CN110371921A (en) * | 2019-07-17 | 2019-10-25 | 西安交通大学 | Twin shaft pressure drag acceleration sensor chip and preparation method thereof in a kind of face |
CN114113679A (en) * | 2020-07-30 | 2022-03-01 | 意法半导体股份有限公司 | Wide-bandwidth MEMS accelerometer for vibration detection |
CN113697759A (en) * | 2021-07-09 | 2021-11-26 | 中国电子科技集团公司第十三研究所 | MEMS inertial sensor based on flexible substrate and preparation method |
CN116519977A (en) * | 2023-07-05 | 2023-08-01 | 河北科昕电子科技有限公司 | A miniature six-axis inertial sensor with integrated accelerometer and gyroscope |
CN116519977B (en) * | 2023-07-05 | 2023-10-17 | 河北科昕电子科技有限公司 | Inertial sensor of miniature six-axis integrated accelerometer gyroscope |
CN117572021A (en) * | 2024-01-17 | 2024-02-20 | 中国工程物理研究院电子工程研究所 | Sensitive structure and acceleration sensor |
CN117572021B (en) * | 2024-01-17 | 2024-04-05 | 中国工程物理研究院电子工程研究所 | Sensitive structure and acceleration sensor |
CN118624936A (en) * | 2024-05-29 | 2024-09-10 | 西安石油大学 | A fiber grating three-dimensional vector acceleration sensor |
Also Published As
Publication number | Publication date |
---|---|
CN105021846B (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105021846B (en) | A kind of six axis one type micro acceleration sensors and preparation method thereof | |
CN108507709B (en) | Preparation method of resonant pressure sensor | |
CN101692099B (en) | Piezoresistive double-shaft micro-accelerometer with on-chip zero offset compensation and manufacturing method thereof | |
CN104698222B (en) | Three axle single-chip integration resonant capacitance formula silicon micro accerometers and its processing method | |
CN101858929B (en) | Capacitive micro-acceleration sensor with symmetrically combined elastic beam structure and production method thereof | |
CN103941041B (en) | A kind of single mass three-shaft mems accelerometer of three-frame structure | |
CN102778583B (en) | Silicon substrate-based quartz resonance acceleration sensor chip with four-beam structure | |
CN102435776B (en) | Single-chip integrated eight-beam-arm triaxial accelerometer | |
CN103115720B (en) | Quartz girder resonant mode micro-pressure sensor chip with silicon substrate single island structure | |
CN105137121A (en) | Preparation method of low-stress acceleration meter | |
CN107796955B (en) | Multi-beam type single-mass in-plane biaxial acceleration sensor chip and preparation method thereof | |
CN106908626B (en) | A capacitive micro-accelerometer sensitive structure | |
CN105182005B (en) | A kind of accelerometer | |
CN103575932B (en) | A MEMS piezoresistive accelerometer | |
CN102128953A (en) | Capacitive micro-acceleration sensor with symmetrically inclined folded beam structure | |
CN109387191B (en) | High-temperature adaptive MEMS planar resonant gyroscope structure | |
CN107817364B (en) | A MEMS direct-pull direct-compression two-axis accelerometer chip and its preparation method | |
CN101216498A (en) | Dual spindle differential capacitance type micromechanical accelerameter | |
CN101271124A (en) | L-shaped beam piezoresistive micro-accelerometer and manufacturing method thereof | |
CN106771358A (en) | A kind of full quartz resonance accelerometer of miniature differential formula | |
CN111812355B (en) | A low stress sensitivity silicon microresonant accelerometer structure | |
CN104198762A (en) | Eight-beam symmetrical silicon micro-accelerometer | |
CN107101629B (en) | A Silicon Micromachined Graphene Beam Resonant Gyroscope | |
CN110531114B (en) | A pure axial deformation MEMS triaxial piezoresistive accelerometer chip and preparation method thereof | |
CN109765404B (en) | Accelerometer chip based on QoS technology, processing technology and accelerometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210929 Address after: 528000 4th floor, No. 5 Shilong Avenue, Lunjiao Yange village committee, Shunde District, Foshan City, Guangdong Province (residence declaration) Patentee after: Foshan Shunde Xincao mechanical equipment Co.,Ltd. Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an Patentee before: XI'AN JIAOTONG University |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180417 |