[go: up one dir, main page]

CN105005036A - Transmission loss compensation method used for short-range MIMO imaging - Google Patents

Transmission loss compensation method used for short-range MIMO imaging Download PDF

Info

Publication number
CN105005036A
CN105005036A CN201510429847.6A CN201510429847A CN105005036A CN 105005036 A CN105005036 A CN 105005036A CN 201510429847 A CN201510429847 A CN 201510429847A CN 105005036 A CN105005036 A CN 105005036A
Authority
CN
China
Prior art keywords
center dot
centerdot
integral
imaging
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510429847.6A
Other languages
Chinese (zh)
Inventor
胡大海
常庆功
杜刘革
王亚海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 41 Research Institute
Original Assignee
CETC 41 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Research Institute filed Critical CETC 41 Research Institute
Priority to CN201510429847.6A priority Critical patent/CN105005036A/en
Publication of CN105005036A publication Critical patent/CN105005036A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提出了一种用于近程MIMO成像的传播损耗补偿方法,重新推导用于近程MIMO双站成像的RMA公式,回波信号考虑近场距离衰减项,公式推导后发现像函数幅度项存在补偿因子,成像处理时补偿相应的参数。本发明的传播损耗补偿方法适用于超宽带近场、远场成像;在不增加任何硬件成本的情况下实现MIMO成像幅度精度补偿,提高成像质量;可适用于一维阵列、二维阵列的二维、三维成像。

The invention proposes a propagation loss compensation method for short-range MIMO imaging, and re-deduces the RMA formula for short-range MIMO dual-station imaging. The echo signal considers the near-field distance attenuation item, and the image function amplitude item is found after the formula is deduced There is a compensation factor, and the corresponding parameters are compensated during imaging processing. The propagation loss compensation method of the present invention is suitable for ultra-wideband near-field and far-field imaging; it can realize MIMO imaging amplitude accuracy compensation without increasing any hardware cost, and improve imaging quality; dimensional and 3D imaging.

Description

一种用于近程MIMO成像的传播损耗补偿方法A Propagation Loss Compensation Method for Short Range MIMO Imaging

技术领域technical field

本发明涉及雷达成像技术领域,特别涉及一种用于近程MIMO成像的传播损耗补偿方法。The invention relates to the technical field of radar imaging, in particular to a propagation loss compensation method for short-range MIMO imaging.

背景技术Background technique

MIMO雷达成像技术是一种新型雷达成像技术,采用多发多收的体制,经过适当处理,可以等效为一个同时独立收发的虚拟阵列,因而所得通道远远多于实际物理阵元数目,大大节省了硬件成本,提高分辨能力,使实时成像成为可能。在近程成像的条件下,天线发射的电磁波为球面波,电磁波传播路径损耗显著影响目标近场成像的幅度精度。MIMO radar imaging technology is a new type of radar imaging technology. It adopts a multi-transmit and multi-receive system. After proper processing, it can be equivalent to a virtual array that transmits and receives independently at the same time. Therefore, the obtained channels are far more than the actual number of physical array elements, which greatly saves The hardware cost is reduced, the resolution ability is improved, and real-time imaging becomes possible. Under the condition of short-range imaging, the electromagnetic wave emitted by the antenna is a spherical wave, and the electromagnetic wave propagation path loss significantly affects the amplitude accuracy of the target near-field imaging.

近程MIMO成像常用算法为距离徙动算法(Range Migration Algorithm,RMA),针对单站RMA近程传播路径损耗问题,国防科技大学雷文太等人提出了改进的三维成像算法,效果明显,但对MIMO成像来说,双站RMA算法更为适用,因为不会引入等效相位中心误差。The commonly used algorithm for short-range MIMO imaging is the Range Migration Algorithm (RMA). Aiming at the problem of single-station RMA short-range propagation path loss, Lei Wentai from the National University of Defense Technology and others proposed an improved three-dimensional imaging algorithm. For MIMO imaging, the bistatic RMA algorithm is more suitable because it will not introduce the equivalent phase center error.

探头阵列成像技术在成像方面潜力巨大,其由多个发射单元和接收单元构成,采用开关控制的工作形式,每次有且只有一对收发天线工作,能够有效的抑制天线之间的耦合,产生出远远多于实际天线数目的虚拟阵列单元,从而大大的节省阵列的硬件成本和建造难度。Probe array imaging technology has great potential in imaging. It is composed of multiple transmitting units and receiving units. It adopts the working form of switch control, and only one pair of transmitting and receiving antennas works at a time, which can effectively suppress the coupling between antennas and generate The number of virtual array units is far more than the number of actual antennas, thereby greatly saving the hardware cost and construction difficulty of the array.

但在近程条件下,信号接收形式为球面波,电磁波传播路径损耗随距离显著衰减,必然严重影响MIMO成像结果的幅度精度,具体表现为距离阵列平面越近幅度越大,导致较远的目标在成像结果上不明显。However, under short-range conditions, the signal receiving form is a spherical wave, and the electromagnetic wave propagation path loss significantly attenuates with distance, which will inevitably seriously affect the amplitude accuracy of MIMO imaging results. Specifically, the closer the distance to the array plane, the larger the amplitude, resulting in farther targets. Not apparent in imaging results.

下面将详细介绍与本发明最相近的现有技术中的方法。The method in the prior art closest to the present invention will be described in detail below.

如图1所示为单站RMA成像算法,单站即收发天线在同一位置(xn,ym,0),设待测目标(x,y,z)反射率函数O(x,y,z),则天线接收回波:As shown in Figure 1, the single-station RMA imaging algorithm is shown. The single-station, that is, the transceiver antenna is at the same position (x n , y m , 0), and the reflectivity function O(x, y, z), then the antenna receives the echo:

sthe s (( xx nno ,, ythe y mm ,, kk )) ∫∫ ∫∫ ∫∫ VV Hh ·· Oo (( xx ,, ythe y ,, zz )) ·· expexp (( -- jkRikB )) RR 22 dVdV -- -- -- (( 11 ))

RR == (( xx -- xx nno )) 22 ++ (( ythe y -- ythe y nno )) 22 ++ zz 22 -- -- -- (( 22 ))

其中,k为波数,R表示目标到天线之间的距离,可见电磁波与R2成反比,传播Among them, k is the wave number, R represents the distance between the target and the antenna, it can be seen that the electromagnetic wave is inversely proportional to R2, and the propagation

损耗补偿即消除它对成像精度的影响。H为常数项幅度,可以忽略。于是,Loss compensation is to eliminate its impact on imaging accuracy. H is the magnitude of the constant term, which can be ignored. then,

Oo (( xx ,, ythe y ,, zz )) == ∫∫ kk dkdk ∫∫ ∫∫ ΛΛ expexp (( jkjk (( xx -- xx nno )) 22 ++ (( ythe y -- ythe y nno )) 22 ++ zz 22 )) sthe s (( xx nno ,, ythe y mm ,, kk )) ·· [[ (( xx -- xx nno )) 22 ++ (( ythe y -- ythe y nno )) 22 ++ zz 22 ]] dxdx nno dydy nno == ∫∫ kk sthe s (( xx nno ,, ythe y mm ,, kk )) ⊗⊗ (( xx 22 ++ ythe y 22 ++ zz 22 )) expexp (( jkjk xx 22 ++ ythe y 22 ++ zz 22 )) dkdk -- -- -- (( 33 ))

根据驻定相位法原理求解上式,可得驻相点坐标为其中,kx,ky分别表示与坐标(x,y)对应的波谱域坐标。式(3)最终可化为Solving the above formula according to the principle of the stationary phase method, the coordinates of the stationary phase point can be obtained as in, k x , ky represent spectral domain coordinates corresponding to coordinates (x, y), respectively. Formula (3) can finally be transformed into

Oo (( xx ,, ythe y ,, zz )) == 11 22 ππ ∫∫ ∫∫ ∫∫ kk SS (( kk xx ,, kk ythe y .. kk )) ·&Center Dot; jj kk 33 zz 33 kk zz 44 ·&Center Dot; expexp [[ jj (( kk xx xx ++ kk ythe y ythe y ++ kk zz zz )) ]] dkdk xx dkdk ythe y dkdk zz -- -- -- (( 44 ))

式中即为单站RMA的传播损耗补偿因子,乘以该补偿因子即可消除传播损耗对成像幅度的影响。In the formula That is, the propagation loss compensation factor of the single station RMA, multiplied by this compensation factor can eliminate the influence of the propagation loss on the imaging amplitude.

目前国内关于多探头阵列成像起步较晚,主要集中在仿真阶段,关于近程路径损耗补偿问题主要以国防科技大学为代表,主要缺点是补偿方法值针对单站或准单站RMA算法,即收发天线位于同一位置或相距很近。At present, the multi-probe array imaging in China started relatively late, mainly in the simulation stage. The short-range path loss compensation problem is mainly represented by the National University of Defense Technology. The main disadvantage is that the compensation method value is based on the single-station or quasi-single-station RMA algorithm, that is The antennas are co-located or very close together.

国外相关研究的文献则相对多一些,如针对基尔霍夫偏移算法的路径衰减补偿,但存在以下问题:There are relatively more foreign related research literatures, such as path attenuation compensation for Kirchhoff migration algorithm, but there are the following problems:

(1)基尔霍夫偏移算法成像处理时间较长,不利于实时成像,因此针对该算法的补偿具有局限性;(1) The imaging processing time of the Kirchhoff migration algorithm is long, which is not conducive to real-time imaging, so the compensation for this algorithm has limitations;

(2)补偿方法的推导原理是基于基尔霍夫偏移算法公式推导的,因此仅仅适用于该算法,不再适用于其他成像处理时间短的算法,适用范围狭窄。(2) The derivation principle of the compensation method is based on the Kirchhoff migration algorithm formula, so it is only applicable to this algorithm, and is no longer applicable to other algorithms with short imaging processing time, and the scope of application is narrow.

发明内容Contents of the invention

针对上述现有技术中的不足,本发明的目的在于提出一种用于近程MIMO成像的传播损耗补偿方法,可以有效的对目标进行三维成像。In view of the deficiencies in the above prior art, the purpose of the present invention is to propose a propagation loss compensation method for short-range MIMO imaging, which can effectively perform three-dimensional imaging on the target.

本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:

一种用于近程MIMO成像的传播损耗补偿方法,包括以下步骤:A propagation loss compensation method for short-range MIMO imaging, comprising the following steps:

步骤(1),首先根据MIMO阵列的布局情况,建立坐标系确定接收信号b(xTx,xRx,yTx,yRx,k)与收发天线坐标、频率对应关系;Step (1), first, according to the layout of the MIMO array, establish a coordinate system to determine the corresponding relationship between the received signal b(x Tx , x Rx , y Tx , y Rx , k) and the coordinates and frequencies of the transmitting and receiving antennas;

步骤(2),对步骤(1)的结果关于坐标(xTx,xRx,yTx,yRx)作四维傅里叶变换得到b(kx_T,kx_R,ky_T,ky_R,k);Step (2), perform four-dimensional Fourier transform on the result of step (1) with respect to coordinates (x Tx , x Rx , y Tx , y Rx ) to obtain b(k x_T , k x_R , ky_T , ky_R , k) ;

步骤(3),对步骤(2)作式(11)所示的变量代换,得到其中,式(11)为:In step (3), the variable substitution shown in formula (11) is performed on step (2) to obtain Among them, formula (11) is:

kk xx == kk xx __ TT ++ kk xx __ RR kk ythe y == kk ythe y __ TT ++ kk ythe y __ RR kk zz == kk zz __ TT ++ kk zz __ RR -- -- -- (( 1111 ))

步骤(4),对步骤(3)的结果乘以传播损耗补偿因子 Step (4), multiply the result of step (3) by the propagation loss compensation factor

步骤(5),对步骤(4)的结果作三维逆傅里叶变换。In step (5), three-dimensional inverse Fourier transform is performed on the result of step (4).

上述用于近程MIMO成像的传播损耗补偿方法中,发射单元坐标(xTx,yTx,0),接收单元坐标(xRx,yRx,0),待测目标坐标位置(x,y,z),其像函数为f(x,y,z),考虑电磁波传输过程中的空间衰减,信号由发射单元发射经过目标散射后,接收单元信号为In the above propagation loss compensation method for short-range MIMO imaging, the coordinates of the transmitting unit (x Tx , y Tx , 0), the coordinates of the receiving unit (x Rx , y Rx , 0), the coordinate position of the target to be measured (x, y, z), its image function is f(x, y, z), considering the spatial attenuation in the process of electromagnetic wave transmission, after the signal is emitted by the transmitting unit and scattered by the target, the signal of the receiving unit is

sthe s (( xx TxTx ,, xx RxRx ,, ythe y TxTx ,, ythe y RxRx ,, kk )) == 11 44 ππ RR TxTx RR RxRx ·&Center Dot; ff (( xx ,, ythe y ,, zz )) ·&Center Dot; ee -- jkjk RR TxTx ·&Center Dot; ee -- jkjk RR RxRx -- -- -- (( 55 ))

其中,k=ω/c表示波数,ω表示工作角频率,c为电磁波在自由空间中传播速度;电磁波由发射单元传播到目标区域距离为RTx,经由目标散射后,由目标传播到接收单元距离为RRx,具体表示如下:Among them, k=ω/c represents the wave number, ω represents the operating angular frequency, c is the propagation speed of electromagnetic waves in free space; the distance of electromagnetic waves from the transmitting unit to the target area is R Tx , and after being scattered by the target, the electromagnetic wave propagates from the target to the receiving unit The distance is R Rx , which is expressed as follows:

RR TxTx == (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 RR RxRx == (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 -- -- -- (( 66 ))

对式(5)关于距离坐标进行4D空间傅里叶变换,分成两个2D空间傅里叶变换的乘积,式(5)的4D空间傅里叶变换化为Carry out 4D space Fourier transform to formula (5) about distance coordinates, divide into the product of two 2D space Fourier transforms, the 4D space Fourier transform of formula (5) is transformed into

SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == 11 44 ππ ff (( xx ,, ythe y ,, zz )) ·&Center Dot; SS TT (( kk xx __ TT ,, kk ythe y __ TT ,, kk )) ·· SS RR (( kk xx __ RR ,, kk ythe y __ RR ,, kk )) -- -- -- (( 77 ))

SS TT (( kk xx __ TT ,, kk ythe y __ TT ,, kk )) == ∫∫ ∫∫ 11 (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 ·&Center Dot; ee -- jkjk (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 ·&Center Dot; ee -- jj kk xx __ TT ·&Center Dot; xx TxTx ·· ee -- jj kk ythe y __ TT ·&Center Dot; ythe y TxTx dxdx TxTx dydy TxTx -- -- -- (( 88 ))

SS RR (( kk xx __ RR ,, kk ythe y __ RR ,, kk )) == 11 (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 ·&Center Dot; ee -- jkjk (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 ·&Center Dot; ee -- jj kk xx __ RR ·&Center Dot; xx RxRx ·· ee -- jj kk ythe y __ RR ·· ythe y RxRx dxdx RxRx dydy RxRx -- -- -- (( 99 ))

根据驻定相位原理,求解式(7),得According to the principle of stationary phase, solving formula (7), we get

SS (( kk xx __ TT .. kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == -- ff (( xx ,, ythe y ,, zz )) ·· ππ kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 kk 33 ·· zz 33 ·· expexp [[ -- jj (( kk zz __ TT ++ kk zz __ RR )) ·&Center Dot; zz ]] ·&Center Dot; expexp [[ -- jj (( kk xx __ TT ++ kk xx __ RR )) xx ]] ·&Center Dot; expexp [[ -- jj (( kk ythe y __ TT ++ kk ythe y __ RR )) ythe y ]] -- -- -- (( 1010 ))

其中, in,

进行变量代换,令To perform variable substitution, let

kk xx == kk xx __ TT ++ kk xx __ RR kk ythe y == kk ythe y __ TT ++ kk ythe y __ RR kk zz == kk zz __ TT ++ kk zz __ RR -- -- -- (( 1111 ))

则(10)式化为Then (10) can be transformed into

SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR .. kk )) == -- ff (( xx ,, ythe y ,, kk )) ·· ππ kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 kk 33 ·· zz 33 ·&Center Dot; expexp [[ -- jj kk xx ·&Center Dot; xx -- jj kk ythe y ·&Center Dot; ythe y -- jj kk ythe y ·&Center Dot; zz ]] -- -- -- (( 1212 ))

设目标区域函数为O(x,y,z),则其回波函数表示为Let the target area function be O(x, y, z), then its echo function is expressed as

bb (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == ∫∫ ∫∫ ∫∫ Oo (( xx ,, ythe y ,, zz )) SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) dxdydzdxdydz == -- ππ kk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 kk 33 zz 33 ·&Center Dot; ∫∫ ∫∫ ∫∫ Oo (( xx ,, ythe y ,, zz )) ff (( xx ,, ythe y ,, zz )) ·&Center Dot; expexp (( -- jj kk xx ·&Center Dot; xx -- jj kk ythe y ·· ythe y -- jj kk zz ·· zz )) dxdydzdxdydz -- -- -- (( 1313 ))

于是,像函数Thus, functions like

ff (( xx ,, ythe y ,, zz )) == -- ∫∫ ∫∫ ∫∫ kk 33 zz 33 ππ kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 ·· bb (( kk xx __ TT ,, kk ythe y __ TT ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) dkdk xx dkdk ythe y dkdk == -- ∫∫ ∫∫ ∫∫ kk 33 zz 33 ππ kk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 ·&Center Dot; (( kk kk zz __ TT ++ kk kk zz __ RR )) -- 11 ·&Center Dot; bb ‾‾ (( kk xx ,, kk ythe y ,, kk zz )) dkdk xx dkdk ythe y dkdk zz == FFFFFF 33 DD. -- 11 [[ -- kk 22 zz 33 ππ ·&Center Dot; kk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 (( kk zz __ RR ++ kk zz __ RR )) ·&Center Dot; bb ‾‾ (( kk xx ,, kk ythe y ,, kk zz )) ]] -- -- -- (( 1414 ))

式中,即为双站RMA传播损耗补偿因子。In the formula, That is, the two-site RMA propagation loss compensation factor.

本发明的有益效果是:The beneficial effects of the present invention are:

(1)适用于超宽带近场、远场成像;(1) Suitable for ultra-wideband near-field and far-field imaging;

(2)在不增加任何硬件成本的情况下实现MIMO成像幅度精度补偿,提高成像质量;(2) Realize the compensation of MIMO imaging amplitude accuracy without increasing any hardware cost, and improve the imaging quality;

(3)可适用于一维阵列、二维阵列的二维、三维成像。(3) It is applicable to two-dimensional and three-dimensional imaging of one-dimensional array and two-dimensional array.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为现有技术中单站RMA成像原理示意图;FIG. 1 is a schematic diagram of the principle of single-station RMA imaging in the prior art;

图2为基于本发明补偿方法的双站RMA成像原理示意图;Fig. 2 is a schematic diagram of the dual-station RMA imaging principle based on the compensation method of the present invention;

图3为本发明的MIMO成像传播损耗补偿流程图;Fig. 3 is a flowchart of MIMO imaging propagation loss compensation of the present invention;

图4(a)为传播损耗补偿前仿真图;Figure 4(a) is a simulation diagram before propagation loss compensation;

图4(b)为传播损耗补偿后仿真图。Figure 4(b) is a simulation diagram after propagation loss compensation.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明提出了一种用于近程MIMO成像的传播损耗补偿方法,重新推导用于近程MIMO双站成像的RMA公式,回波信号考虑近场距离衰减项,公式推导后发现像函数幅度项存在补偿因子,成像处理时补偿相应的参数。The present invention proposes a propagation loss compensation method for short-range MIMO imaging, and re-deduces the RMA formula for short-range MIMO dual-station imaging. The echo signal considers the near-field distance attenuation item, and the image function amplitude item is found after the formula is deduced There is a compensation factor, and the corresponding parameters are compensated during imaging processing.

下面结合附图对本发明的用于近程MIMO成像的传播损耗补偿方法进行详细说明。The propagation loss compensation method for short-range MIMO imaging of the present invention will be described in detail below with reference to the accompanying drawings.

设二维阵列分布如图2所示,发射单元坐标(xTx,yTx,0),接收单元坐标(xRx,yRx,0),目标位置(x,y,z),假设待测目标为一理想散射点,坐标位置(x,y,z),其像函数为f(x,y,z),考虑电磁波传输过程中的空间衰减,信号由发射单元发射经过目标散射后,接收单元信号为Assuming that the two-dimensional array distribution is shown in Figure 2, the coordinates of the transmitting unit (x Tx , y Tx , 0), the coordinates of the receiving unit (x Rx , y Rx , 0), and the target position (x, y, z), assuming that the measured The target is an ideal scattering point, the coordinate position is (x, y, z), and its image function is f(x, y, z). Considering the spatial attenuation in the process of electromagnetic wave transmission, the signal is emitted by the transmitting unit and scattered by the target, and then received The unit signal is

sthe s (( xx TxTx ,, xx RxRx ,, ythe y TxTx ,, ythe y RxRx ,, kk )) == 11 44 ππ RR TxTx RR RxRx ·· ff (( xx ,, ythe y ,, zz )) ·&Center Dot; ee -- jkjk RR TxTx ·· ee -- jkjk RR RxRx -- -- -- (( 55 ))

其中,k=ω/c表示波数,ω表示工作角频率,c为电磁波在自由空间中传播速度。电磁波由发射单元传播到目标区域距离为RTx,经由目标散射后,由目标传播到接收单元距离为RRx,具体表示如下Among them, k=ω/c represents the wave number, ω represents the operating angular frequency, and c represents the propagation speed of electromagnetic waves in free space. The electromagnetic wave propagates from the transmitting unit to the target area at a distance of R Tx , and after being scattered by the target, the distance from the target to the receiving unit is R Rx , specifically expressed as follows

RR TxTx == (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 RR RxRx == (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 -- -- -- (( 66 ))

对式(5)关于距离坐标进行4D空间傅里叶变换,可以分成两个2D空间傅里叶变换的乘积,式(5)的4D空间傅里叶变换可化为Carrying out the 4D space Fourier transform of formula (5) with respect to the distance coordinates can be divided into the product of two 2D space Fourier transforms, and the 4D space Fourier transform of formula (5) can be transformed into

SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == 11 44 ππ ff (( xx ,, ythe y ,, zz )) ·&Center Dot; SS TT (( kk xx __ TT ,, kk ythe y __ TT ,, kk )) ·&Center Dot; SS RR (( kk xx __ RR ,, kk ythe y __ RR ,, kk )) -- -- -- (( 77 ))

SS TT (( kk xx __ TT ,, kk ythe y __ TT ,, kk )) == ∫∫ ∫∫ 11 (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 ·· ee -- jkjk (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 ·· ee -- jj kk xx __ TT ·· xx TxTx ·· ee -- jj kk ythe y __ TT ·· ythe y TxTx dxdx TxTx dydy TxTx -- -- -- (( 88 ))

SS RR (( kk xx __ RR ,, kk ythe y __ RR ,, kk )) == 11 (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 ·· ee -- jkjk (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 ·&Center Dot; ee -- jj kk xx __ RR ·&Center Dot; xx RxRx ·&Center Dot; ee -- jj kk ythe y __ RR ·&Center Dot; ythe y RxRx dxdx RxRx dydy RxRx -- -- -- (( 99 ))

根据驻定相位原理,求解式(7),得According to the principle of stationary phase, solving equation (7), we get

SS (( kk xx __ TT .. kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == -- ff (( xx ,, ythe y ,, zz )) ·&Center Dot; ππ kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 kk 33 ·· zz 33 ·· expexp [[ -- jj (( kk zz __ TT ++ kk zz __ RR )) ·· zz ]] ·&Center Dot; expexp [[ -- jj (( kk xx __ TT ++ kk xx __ RR )) xx ]] ·&Center Dot; expexp [[ -- jj (( kk ythe y __ TT ++ kk ythe y __ RR )) ythe y ]] -- -- -- (( 1010 ))

其中, k z _ T = k 2 - k x _ T 2 - k y _ T 2 , k z _ R = k 2 - k x _ R 2 - k y _ R 2 . in, k z _ T = k 2 - k x _ T 2 - k the y _ T 2 , k z _ R = k 2 - k x _ R 2 - k the y _ R 2 .

进行变量代换,令To perform variable substitution, let

kk xx == kk xx __ TT ++ kk xx __ RR kk ythe y == kk ythe y __ TT ++ kk ythe y __ RR kk zz == kk zz __ TT ++ kk zz __ RR -- -- -- (( 1111 ))

则(10)式可以化为Then (10) can be transformed into

SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR .. kk )) == -- ff (( xx ,, ythe y ,, kk )) ·&Center Dot; ππ kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 kk 33 ·· zz 33 ·· expexp [[ -- jj kk xx ·· xx -- jj kk ythe y ·· ythe y -- jj kk ythe y ·· zz ]] -- -- -- (( 1212 ))

实际应用中目标总是为一片区域,设目标区域函数为O(x,y,z),则其回波函数可表示为In practical applications, the target is always an area, and if the target area function is O(x, y, z), then its echo function can be expressed as

bb (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == ∫∫ ∫∫ ∫∫ Oo (( xx ,, ythe y ,, zz )) SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) dxdydzdxdydz == -- ππ kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 kk 33 zz 33 ·· ∫∫ ∫∫ ∫∫ Oo (( xx ,, ythe y ,, zz )) ff (( xx ,, ythe y ,, zz )) ·&Center Dot; expexp (( -- jj kk xx ·· xx -- jj kk ythe y ·&Center Dot; ythe y -- jj kk zz ·&Center Dot; zz )) dxdydzdxdydz -- -- -- (( 1313 ))

于是,像函数Thus, functions like

ff (( xx ,, ythe y ,, zz )) == -- ∫∫ ∫∫ ∫∫ kk 33 zz 33 ππ kk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 ·&Center Dot; bb (( kk xx __ TT ,, kk ythe y __ TT ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) dkdk xx dkdk ythe y dkdk == -- ∫∫ ∫∫ ∫∫ kk 33 zz 33 ππ kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 ·· (( kk kk zz __ TT ++ kk kk zz __ RR )) -- 11 ·· bb ‾‾ (( kk xx ,, kk ythe y ,, kk zz )) dkdk xx dkdk ythe y dkdk zz == FFFFFF 33 DD. -- 11 [[ -- kk 22 zz 33 ππ ·&Center Dot; kk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 (( kk zz __ RR ++ kk zz __ RR )) ·&Center Dot; bb ‾‾ (( kk xx ,, kk ythe y ,, kk zz )) ]] -- -- -- (( 1414 ))

式中,即为双站RMA传播损耗补偿因子。In the formula, That is, the two-site RMA propagation loss compensation factor.

如图3所示,利用本发明的方法对近程MIMO成像的传播损耗补偿的过程包括以下步骤:As shown in Figure 3, the process of using the method of the present invention to compensate for the propagation loss of short-range MIMO imaging includes the following steps:

步骤(1),首先根据MIMO阵列的布局情况,建立坐标系确定接收信号b(xTx,xRx,yTx,yRx,k)与收发天线坐标、频率对应关系;Step (1), first, according to the layout of the MIMO array, establish a coordinate system to determine the corresponding relationship between the received signal b(x Tx , x Rx , y Tx , y Rx , k) and the coordinates and frequencies of the transmitting and receiving antennas;

步骤(2),对步骤(1)的结果关于坐标(xTx,xRx,yTx,yRx)作四维傅里叶变换得到b(kx_T,kx_R,ky_T,ky_R,k);Step (2), perform four-dimensional Fourier transform on the result of step (1) with respect to coordinates (x Tx , x Rx , y Tx , y Rx ) to obtain b(k x_T , k x_R , ky_T , ky_R , k) ;

步骤(3),对步骤(2)作式(11)所示的变量代换,得到 In step (3), the variable substitution shown in formula (11) is performed on step (2) to obtain

步骤(4),对步骤(3)的结果乘以传播损耗补偿因子 Step (4), multiply the result of step (3) by the propagation loss compensation factor

步骤(5),对步骤(4)的结果作三维逆傅里叶变换。In step (5), three-dimensional inverse Fourier transform is performed on the result of step (4).

根据本发明的补偿方法对多探头阵列进行幅度补偿效果进行对比仿真,图4(a)所示为传播损耗补偿前仿真图,图4(b)所示为传播损耗补偿后仿真图,对比图4的成像结果可以看出,采用本发明的补偿方法,能够有效的提高成像的幅度精度,提高成像质量。According to the compensation method of the present invention, the amplitude compensation effect of the multi-probe array is compared and simulated, and Fig. 4 (a) shows the simulation diagram before the propagation loss compensation, and Fig. 4 (b) shows the simulation diagram after the propagation loss compensation, and the comparison diagram 4, it can be seen that the compensation method of the present invention can effectively improve the amplitude accuracy of imaging and improve the imaging quality.

本发明的传播损耗补偿方法适用于超宽带近场、远场成像;在不增加任何硬件成本的情况下实现MIMO成像幅度精度补偿,提高成像质量;可适用于一维阵列、二维阵列的二维、三维成像。The propagation loss compensation method of the present invention is suitable for ultra-wideband near-field and far-field imaging; it can realize MIMO imaging amplitude accuracy compensation without increasing any hardware cost, and improve imaging quality; dimensional and 3D imaging.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.

Claims (2)

1.一种用于近程MIMO成像的传播损耗补偿方法,其特征在于,包括以下步骤:1. A propagation loss compensation method for short-range MIMO imaging, characterized in that, comprising the following steps: 步骤(1),首先根据MIMO阵列的布局情况,建立坐标系确定接收信号b(xTx,xRx,yTx,yRx,k)与收发天线坐标、频率对应关系;Step (1), first, according to the layout of the MIMO array, establish a coordinate system to determine the corresponding relationship between the received signal b(x Tx , x Rx , y Tx , y Rx , k) and the coordinates and frequencies of the transmitting and receiving antennas; 步骤(2),对步骤(1)的结果关于坐标(xTx,xRx,yTx,yRx)作四维傅里叶变换得到b(kx_T,kx_R,ky_T,ky_R,k);Step (2), perform four-dimensional Fourier transform on the result of step (1) with respect to coordinates (x Tx , x Rx , y Tx , y Rx ) to obtain b(k x_T , k x_R , ky_T , ky_R , k) ; 步骤(3),对步骤(2)作式(11)所示的变量代换,得到其中,式(11)为:In step (3), the variable substitution shown in formula (11) is performed on step (2) to obtain Among them, formula (11) is: kk xx == kk xx __ TT ++ kk xx __ RR kk ythe y == kk ythe y __ TT ++ kk ythe y __ RR kk zz == kk zz __ TT ++ kk zz __ RR -- -- -- (( 1111 )) 步骤(4),对步骤(3)的结果乘以传播损耗补偿因子 Step (4), multiply the result of step (3) by the propagation loss compensation factor 步骤(5),对步骤(4)的结果作三维逆傅里叶变换。In step (5), three-dimensional inverse Fourier transform is performed on the result of step (4). 2.如权利要求1所述的用于近程MIMO成像的传播损耗补偿方法,其特征在于,发射单元坐标(xTx,yTx,0),接收单元坐标(xRx,yRx,0),待测目标坐标位置(x,y,z),其像函数为f(x,y,z),考虑电磁波传输过程中的空间衰减,信号由发射单元发射经过目标散射后,接收单元信号为2. the propagation loss compensation method for short-range MIMO imaging as claimed in claim 1, is characterized in that, transmitting unit coordinates (x Tx , y Tx , 0), receiving unit coordinates (x Rx , y Rx , 0) , the coordinate position (x, y, z) of the target to be measured, its image function is f(x, y, z), considering the spatial attenuation in the process of electromagnetic wave transmission, the signal is emitted by the transmitting unit and scattered by the target, the signal of the receiving unit is sthe s (( xx TxTx ,, xx RxRx ,, ythe y TxTx ,, ythe y RxRx ,, kk )) == 11 44 ππ RR TxTx RR RxRx ·&Center Dot; ff (( xx ,, ythe y ,, zz )) ·&Center Dot; ee -- jkjk RR TxTx ·&Center Dot; ee -- jkjk RR RxRx -- -- -- (( 55 )) 其中,k=ω/c表示波数,ω表示工作角频率,c为电磁波在自由空间中传播速度;电磁波由发射单元传播到目标区域距离为RTx,经由目标散射后,由目标传播到接收单元距离为RRx,具体表示如下:Among them, k=ω/c represents the wave number, ω represents the operating angular frequency, c is the propagation speed of electromagnetic waves in free space; the distance of electromagnetic waves from the transmitting unit to the target area is R Tx , and after being scattered by the target, the electromagnetic wave propagates from the target to the receiving unit The distance is R Rx , which is expressed as follows: RR TxTx == (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 RR RxRx == (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 -- -- -- (( 66 )) 对式(5)关于距离坐标进行4D空间傅里叶变换,分成两个2D空间傅里叶变换的乘积,式(5)的4D空间傅里叶变换化为Carry out 4D space Fourier transform to formula (5) about distance coordinates, divide into the product of two 2D space Fourier transforms, the 4D space Fourier transform of formula (5) is transformed into SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == 11 44 ππ ff (( xx ,, ythe y ,, zz )) ·· SS TT (( kk xx __ TT ,, kk ythe y __ TT .. kk )) ·· SS RR (( kk xx __ RR ,, kk ythe y __ RR ,, kk )) -- -- -- (( 77 )) SS TT (( kk xx __ TT ,, kk ythe y __ TT ,, kk )) == ∫∫ ∫∫ 11 (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 ·· ee -- jkjk (( xx TxTx -- xx )) 22 ++ (( ythe y TxTx -- ythe y )) 22 ++ zz 22 ·&Center Dot; ee -- jj kk xx __ TT ·&Center Dot; xx TxTx ·&Center Dot; ee -- jj kk ythe y __ TT ·&Center Dot; ythe y TxTx dd xx TxTx dydy TxTx -- -- -- (( 88 )) SS RR (( kk xx __ RR ,, kk ythe y __ RR ,, kk )) == ∫∫ ∫∫ 11 (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 ·&Center Dot; ee -- jkjk (( xx RxRx -- xx )) 22 ++ (( ythe y RxRx -- ythe y )) 22 ++ zz 22 ·· ee -- jj kk xx __ RR ·&Center Dot; xx RxRx ·· ee -- jj kk ythe y __ RR ·&Center Dot; ythe y RxRx dd xx RxRx dydy RxRx -- -- -- (( 99 )) 根据驻定相位原理,求解式(7),得According to the principle of stationary phase, solving formula (7), we get SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == -- ff (( xx ,, ythe y ,, zz )) ·· ππ kk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 kk 33 ·&Center Dot; zz 33 ·&Center Dot; expexp [[ -- jj (( kk zz __ TT ++ kk zz __ RR )) ·&Center Dot; zz ]] ·· expexp [[ -- jj (( kk xx __ TT ++ kk xx __ RR )) xx ]] ·· expexp [[ -- jj (( kk ythe y __ TT ++ kk ythe y __ RR )) ythe y ]] -- -- -- (( 1010 )) 其中, k z _ T = k 2 - k x _ T 2 - k y _ T 2 , k z _ R = k 2 - k x _ R 2 - k y _ R 2 . in, k z _ T = k 2 - k x _ T 2 - k the y _ T 2 , k z _ R = k 2 - k x _ R 2 - k the y _ R 2 . 进行变量代换,令To perform variable substitution, let kk xx == kk xx __ TT ++ kk xx __ RR kk ythe y == kk ythe y __ TT ++ kk ythe y __ RR kk zz == kk zz __ TT ++ kk zz __ RR -- -- -- (( 1111 )) 则(10)式化为Then (10) can be transformed into SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == -- ff (( xx ,, ythe y ,, zz )) ·&Center Dot; πkπk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 kk 33 ·&Center Dot; zz 33 ·&Center Dot; expexp [[ -- jj kk xx ·&Center Dot; xx -- jkjk ythe y ·&Center Dot; ythe y -- jkjk ythe y ·&Center Dot; zz ]] -- -- -- (( 1212 )) 设目标区域函数为O(x,y,z),则其回波函数表示为Let the target area function be O(x, y, z), then its echo function is expressed as bb (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) == ∫∫ ∫∫ ∫∫ Oo (( xx ,, ythe y ,, zz )) SS (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) dxdydzdxdydz == -- ππ kk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 kk 33 zz 33 ·&Center Dot; ∫∫ ∫∫ ∫∫ Oo (( xx ,, ythe y ,, zz )) ff (( xx ,, ythe y ,, zz )) ·· expexp (( -- jkjk xx ·· xx -- jkjk ythe y ·· ythe y -- jkjk zz ·&Center Dot; zz )) dxdydzdxdydz -- -- -- (( 1313 )) 于是,像函数Thus, functions like ff (( xx ,, ythe y ,, zz )) == -- ∫∫ ∫∫ ∫∫ kk 33 zz 33 πkπk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 ·&Center Dot; bb (( kk xx __ TT ,, kk xx __ RR ,, kk ythe y __ TT ,, kk ythe y __ RR ,, kk )) dkdk xx dkdk ythe y dkdk == -- ∫∫ ∫∫ ∫∫ kk 33 zz 33 πkπk zz __ TT 11 // 22 ·&Center Dot; kk zz __ RR 11 // 22 ·· (( kk kk zz __ TT ++ kk kk zz __ RR )) -- 11 ·· bb ‾‾ (( kk xx ,, kk ythe y ,, kk zz )) dxdx xx dkdk ythe y dkdk zz == FFFF TT 33 DD. -- 11 [[ -- kk 22 zz 33 ππ ·· kk zz __ TT 11 // 22 ·· kk zz __ RR 11 // 22 (( kk zz __ TT ++ kk zz __ RR )) ·· bb ‾‾ (( kk xx ,, kk ythe y ,, kk zz )) ]] -- -- -- (( 1414 )) 式中,即为双站RMA传播损耗补偿因子。In the formula, That is, the two-site RMA propagation loss compensation factor.
CN201510429847.6A 2015-07-16 2015-07-16 Transmission loss compensation method used for short-range MIMO imaging Pending CN105005036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510429847.6A CN105005036A (en) 2015-07-16 2015-07-16 Transmission loss compensation method used for short-range MIMO imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510429847.6A CN105005036A (en) 2015-07-16 2015-07-16 Transmission loss compensation method used for short-range MIMO imaging

Publications (1)

Publication Number Publication Date
CN105005036A true CN105005036A (en) 2015-10-28

Family

ID=54377772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510429847.6A Pending CN105005036A (en) 2015-07-16 2015-07-16 Transmission loss compensation method used for short-range MIMO imaging

Country Status (1)

Country Link
CN (1) CN105005036A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390215A (en) * 2017-07-04 2017-11-24 吉林大学 A kind of high speed super-resolution MIMO array imaging method
CN108120958A (en) * 2016-11-28 2018-06-05 株式会社万都 Radar installations with multi-input/output antenna
CN108761452A (en) * 2018-07-19 2018-11-06 山东省科学院自动化研究所 The multiple-input and multiple-output array millimeter wave three-dimensional image forming apparatus and method of compensated distance
CN109991600A (en) * 2019-04-19 2019-07-09 山东省科学院自动化研究所 Single-station planar array millimeter wave imaging device and method
CN110609273A (en) * 2019-08-09 2019-12-24 北京理工大学 Error Compensation Method for Wideband MIMO Imaging Radar Array Based on Multiple Specific Targets
CN111708024A (en) * 2020-08-20 2020-09-25 湖南雷远电子科技有限公司 Spliced sparse planar array millimeter wave imaging device and method
CN112285790A (en) * 2020-03-30 2021-01-29 中国科学院地质与地球物理研究所 Method, device and medium for determining attenuation coefficient of electromagnetic wave field

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2334250C1 (en) * 2007-09-21 2008-09-20 Рязанский государственный радиотехнический университет Method of three-dimensional surface imaging of altitude objects by airborne pulse doppler radar data
CN103728591A (en) * 2013-12-17 2014-04-16 河海大学 MIMO radar near-field target efficient real beam direction focusing method
CN104090275A (en) * 2014-07-23 2014-10-08 中国电子科技集团公司第四十一研究所 Amplitude compensating method used for multi-probe array imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2334250C1 (en) * 2007-09-21 2008-09-20 Рязанский государственный радиотехнический университет Method of three-dimensional surface imaging of altitude objects by airborne pulse doppler radar data
CN103728591A (en) * 2013-12-17 2014-04-16 河海大学 MIMO radar near-field target efficient real beam direction focusing method
CN104090275A (en) * 2014-07-23 2014-10-08 中国电子科技集团公司第四十一研究所 Amplitude compensating method used for multi-probe array imaging

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAODONG ZHUGE ET.AL: "Three-Dimensional Near-Field MIMO Array Imaging Using Range Migration Techniques", 《IEEE TRANSACTIONS ON IMAGE PROCESSING》 *
YURI I.ABRAMOVICH ET.AL: "Bi-Static MIMO Radar Operations for Range-Folded Clutter Mitigation", 《ASILOMAR》 *
胡大海等: "MIMO成像技术的插值方法研究", 《微波学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120958A (en) * 2016-11-28 2018-06-05 株式会社万都 Radar installations with multi-input/output antenna
CN108120958B (en) * 2016-11-28 2022-04-08 万都移动系统股份公司 Radar apparatus with multiple-input multiple-output antenna
CN107390215A (en) * 2017-07-04 2017-11-24 吉林大学 A kind of high speed super-resolution MIMO array imaging method
CN107390215B (en) * 2017-07-04 2019-05-14 吉林大学 A kind of high speed super-resolution MIMO array imaging method
CN108761452A (en) * 2018-07-19 2018-11-06 山东省科学院自动化研究所 The multiple-input and multiple-output array millimeter wave three-dimensional image forming apparatus and method of compensated distance
CN108761452B (en) * 2018-07-19 2023-09-08 山东省科学院自动化研究所 Distance-compensated multi-input multi-output array millimeter wave three-dimensional imaging device and method
CN109991600A (en) * 2019-04-19 2019-07-09 山东省科学院自动化研究所 Single-station planar array millimeter wave imaging device and method
CN110609273A (en) * 2019-08-09 2019-12-24 北京理工大学 Error Compensation Method for Wideband MIMO Imaging Radar Array Based on Multiple Specific Targets
CN110609273B (en) * 2019-08-09 2021-11-26 北京理工大学 Broadband MIMO imaging radar array error compensation method based on multiple special display point targets
CN112285790A (en) * 2020-03-30 2021-01-29 中国科学院地质与地球物理研究所 Method, device and medium for determining attenuation coefficient of electromagnetic wave field
CN111708024A (en) * 2020-08-20 2020-09-25 湖南雷远电子科技有限公司 Spliced sparse planar array millimeter wave imaging device and method
CN111708024B (en) * 2020-08-20 2020-11-10 湖南雷远电子科技有限公司 Spliced sparse planar array millimeter wave imaging device and method

Similar Documents

Publication Publication Date Title
CN105005036A (en) Transmission loss compensation method used for short-range MIMO imaging
CN102129067B (en) Ground moving target signal modeling and imaging method for forward scattering radar (FSR)
CN110346794B (en) Distributed radar imaging method for resource optimization configuration
CN103605118B (en) One utilizes polar region to visit ice radar and extracts ice layer of polar region method for position
CN117572435B (en) A multi-beam synthetic aperture sonar high-resolution imaging method based on deconvolution
CN103777186B (en) Decompose and moving target near field radar return characteristic computing method under local irradiation based on wave beam
CN107894591A (en) Through-wall radar diffraction tomography method based on compressed sensing
CN107167771B (en) A kind of the direct wave suppressing method and system of microwave imaging system
CN103616688A (en) Method for improving quality of three-dimensional interferometric inverse synthetic aperture radar image
CN104199026A (en) Backscattering cross section measuring method based on trace scanning two-dimensional near field imaging
CN109283530A (en) A Method for Improving Linearity of Microwave Imaging Using Compressed Sensing
CN104573376A (en) Method of calculating far extrapolation of transient field of electromagnetic scattering through finite difference time domain
CN110109091A (en) A kind of passive radar method for parameter estimation and device for high-speed target
Krishnan et al. Synthetic aperture radar imaging exploiting multiple scattering
CN110705073B (en) High-frequency scattering method for coating complex target with anisotropic medium
CN112764031A (en) Near-field ISAR interference turntable imaging method based on millimeter wave radar
CN107942326A (en) A kind of two-dimentional active MMW imaging method with high universalizable
CN104914425A (en) Super electrically large size strong electromagnetic pulse environment time-frequency-space multi-dimensional analysis model
CN103969642B (en) A kind of phase compensating method for the imaging of many linear transducer arrays
CN103809164A (en) Optimal rear Doppler clutter rejection method for reconstructed reference channel
CN104090275B (en) Amplitude compensating method used for multi-probe array imaging
Wang et al. NUFFT based frequency-wavenumber domain focusing under MIMO array configurations
Thanh et al. Comparison of basic inversion techniques for through-wall imaging using UWB radar
CN108761442B (en) Passive radar target positioning method and device
CN111796277B (en) Through-wall radar rapid imaging method based on unmanned aerial vehicle platform

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151028

RJ01 Rejection of invention patent application after publication