CN104993706B - A current sharing control system and method for parallel connection of two-module DC-DC converters - Google Patents
A current sharing control system and method for parallel connection of two-module DC-DC converters Download PDFInfo
- Publication number
- CN104993706B CN104993706B CN201510411610.5A CN201510411610A CN104993706B CN 104993706 B CN104993706 B CN 104993706B CN 201510411610 A CN201510411610 A CN 201510411610A CN 104993706 B CN104993706 B CN 104993706B
- Authority
- CN
- China
- Prior art keywords
- module
- converter
- phase
- output
- modules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明公开了一种用于两模块DC‑DC变换器并联的均流控制系统及方法,包括输入端并联且输出端并联的两个DC‑DC变换器,在电压环闭环调制下,并联的DC‑DC变换器的输出电压与参考电压之间的差值送至电压调节器,电压调节器将根据扰动调节变换器的移相占空比并将该信号送至参数测算模块,参数测算模块根据两个DC‑DC变换器移相占空比的变化量得到与输出电流相关的参数并传送至补偿量计算模块;补偿量计算模块根据与输出电流相关的参数对对应的DC‑DC变换器进行模块间参数不匹配的补偿,实现两个DC‑DC变换器的输出均流。本发明不需要电流互感器对各模块电流进行采样,极大地简化了控制的复杂程度,同时降低了成本。
The invention discloses a current sharing control system and method for parallel connection of two-module DC-DC converters, including two DC-DC converters whose input ends are connected in parallel and whose output ends are connected in parallel. The difference between the output voltage of the DC-DC converter and the reference voltage is sent to the voltage regulator, and the voltage regulator will adjust the phase-shifting duty cycle of the converter according to the disturbance and send the signal to the parameter measurement module. The parameter measurement module The parameters related to the output current are obtained according to the variation of the phase-shift duty cycle of the two DC-DC converters and sent to the compensation amount calculation module; the compensation amount calculation module pairs the corresponding DC-DC converter according to the parameters related to the output current Compensate for parameter mismatch between modules, and realize output current sharing of two DC-DC converters. The invention does not require a current transformer to sample the current of each module, which greatly simplifies the complexity of the control and reduces the cost at the same time.
Description
技术领域technical field
本发明涉及电力电子技术领域,涉及DC-DC变换器领域的两模块输入并联输出并联的相关技术,尤其涉及DC-DC变换器的无电流互感器的并联均流技术。The present invention relates to the technical field of power electronics, to related technologies of parallel connection of input and output of two modules in the field of DC-DC converters, and in particular to the technology of parallel current sharing without current transformers of DC-DC converters.
背景技术Background technique
随着科学技术的发展,大容量电源系统得到越来越广泛的应用,这对DC-DC变换器的电压电流等级、容量、功率密度提出了越来越高的要求。DC-DC变换器输入并联输出并联,能提高整个组合变换器的功率等级,同时单个DC-DC变换器中的变压器容量、开关管的电流应力仍处于较小的值,保证了变换器的小型轻量化和高效率、高功率密度。另外,各个变换器间采用交错并联控制,减少了输入和输出电流纹波,从而减小了滤波电容的容量和体积。With the development of science and technology, large-capacity power supply systems are more and more widely used, which puts forward higher and higher requirements for the voltage and current level, capacity and power density of DC-DC converters. The DC-DC converter input parallel connection and output parallel connection can improve the power level of the entire combined converter, and at the same time, the transformer capacity and the current stress of the switch tube in a single DC-DC converter are still at a small value, ensuring the small size of the converter Lightweight and high efficiency, high power density. In addition, interleaved parallel control is adopted among the converters, which reduces the input and output current ripple, thus reducing the capacity and volume of the filter capacitor.
但是,由于元件容差、环境变化等因素的影响,组合变换器中各模块的元件参数不可避免地会存在差异,这将导致模块间的电流不均衡,使开关器件承担不同的电流应力和热应力,从而缩短了开关器件的寿命,降低了整个变换器的效率和可靠性。因此,模块间均流成为输入并联输出并联组合变换器的重要研究方向之一。However, due to the influence of component tolerances, environmental changes and other factors, there will inevitably be differences in the component parameters of each module in the combined converter, which will lead to unbalanced current between modules, and make the switching devices bear different current stress and thermal stress. stress, thereby shortening the life of the switching device and reducing the efficiency and reliability of the entire converter. Therefore, the current sharing between modules has become one of the important research directions of the input-parallel-output parallel combined converter.
目前,输入并联输出并联组合变换器的均流技术主要有下垂法和有源均流法两大类。下垂法通过改变每个模块的输出阻抗来实现模块间均流,主要适用于小功率场合。有源均流法需要电流检测单元对每个模块进行电流采样,控制系统较为复杂,成本较高,且均流母线对噪声的敏感度很高,影响均流效果。At present, there are two main types of current-sharing technologies for input-parallel-output parallel combined converters: the droop method and the active current-sharing method. The droop method achieves current sharing between modules by changing the output impedance of each module, and is mainly suitable for low-power applications. The active current sharing method requires the current detection unit to sample the current of each module, the control system is relatively complex, the cost is high, and the current sharing bus is highly sensitive to noise, which affects the current sharing effect.
总之,现有的输入并联输出并联组合变换器的均流技术不能满足目前的大容量电源系统的需要,亟需一种新型的用于两模块DC-DC变换器并联的均流控制系统及方法。In short, the current sharing technology of the current input-parallel-output parallel combination converter cannot meet the needs of the current large-capacity power supply system, and a new type of current sharing control system and method for parallel connection of two-module DC-DC converters is urgently needed .
发明内容Contents of the invention
为解决现有技术存在的不足,本发明公开了一种用于两模块DC-DC变换器并联的均流控制系统及方法,本发明不需要电流检测单元对各模块电流进行采样就能够实现两并联模块间的均流。In order to solve the deficiencies in the prior art, the present invention discloses a current sharing control system and method for parallel connection of two-module DC-DC converters. Current sharing between parallel modules.
为实现上述目的,本发明的具体方案如下:To achieve the above object, the specific scheme of the present invention is as follows:
一种用于两模块DC-DC变换器并联的均流控制系统,包括输入端并联且输出端并联的两个DC-DC变换器模块,其特征是,在电压环闭环调制下,并联的DC-DC变换器模块的输出电压与参考电压之间的差值送至电压调节器,电压调节器将根据扰动调节变换器的移相占空比并将该信号送至参数测算模块,参数测算模块根据两个DC-DC变换器模块移相占空比的变化量得到与输出电流相关的参数并传送至补偿量计算模块;补偿量计算模块根据与输出电流相关的参数对对应的DC-DC变换器模块进行模块间参数不匹配的补偿,实现两个DC-DC变换器模块的输出均流。A current sharing control system for parallel connection of two-module DC-DC converters, including two DC-DC converter modules whose input ends are connected in parallel and output ends are connected in parallel, and is characterized in that, under voltage loop closed-loop modulation, the parallel DC -The difference between the output voltage of the DC converter module and the reference voltage is sent to the voltage regulator, and the voltage regulator will adjust the phase-shift duty cycle of the converter according to the disturbance and send the signal to the parameter measurement module, the parameter measurement module According to the variation of the phase-shift duty ratio of the two DC-DC converter modules, the parameters related to the output current are obtained and sent to the compensation amount calculation module; the compensation amount calculation module converts the corresponding DC-DC according to the parameters related to the output current The converter module compensates for the parameter mismatch between the modules, and realizes the output current sharing of the two DC-DC converter modules.
进一步的,电压检测电路用于检测并联的DC-DC变换器模块的输出电压。Further, the voltage detection circuit is used to detect the output voltage of the parallel connected DC-DC converter modules.
进一步的,所述两个DC-DC变换器模块的电路结构相同,均包括依次相连的第一全桥桥式电路、高频隔离变压器和第二全桥桥式电路,高频隔离变压器带有折算到原边的漏感,DC-DC变换器模块的输入端及输出端分别并联有电容。Further, the circuit structures of the two DC-DC converter modules are the same, and both include a first full-bridge bridge circuit, a high-frequency isolation transformer and a second full-bridge bridge circuit connected in sequence, and the high-frequency isolation transformer has Converted to the leakage inductance of the primary side, the input terminal and the output terminal of the DC-DC converter module are respectively connected in parallel with capacitors.
一种用于两模块DC-DC变换器并联的均流控制方法,包括:A current sharing control method for parallel connection of two-module DC-DC converters, comprising:
对每个DC-DC变换器模块首先采用共同占空比控制,即每个DC-DC变换器模块的移相占空比相同,均为电压环调节器的输出;For each DC-DC converter module, a common duty cycle control is first adopted, that is, the phase-shifting duty cycle of each DC-DC converter module is the same, which is the output of the voltage loop regulator;
在共同占空比控制下系统稳定后,将第一个DC-DC变换器模块的移相占空比减去一个恒定偏置量,取恒定偏置量为共同占空比的40%,同时保持电压环闭环调节,系统稳定后,计算第一个DC-DC变换器模块的移相占空比的减小量和第二个DC-DC变换器模块的移相占空比的增加量,总的负载电流保持不变,得到与输出电流相关的参数;After the system is stable under the control of the common duty cycle, subtract a constant offset from the phase-shift duty cycle of the first DC-DC converter module, and take the constant bias as 40% of the common duty cycle, and at the same time Keep the closed-loop adjustment of the voltage loop, and after the system is stable, calculate the reduction of the phase-shift duty cycle of the first DC-DC converter module and the increase of the phase-shift duty cycle of the second DC-DC converter module, The total load current remains unchanged, and the parameters related to the output current are obtained;
根据与输出电流相关的参数,选取主模块及辅模块,主模块的移相占空比为电压环调节器的输出,辅模块的移相占空比为电压环调节器的输出加上模块间参数不匹配的补偿量。According to the parameters related to the output current, the main module and the auxiliary module are selected. The phase-shift duty cycle of the main module is the output of the voltage loop regulator, and the phase-shift duty cycle of the auxiliary module is the output of the voltage loop regulator plus the inter-module Amount to compensate for parameter mismatch.
每个DC-DC变换器模块通过调节移相占空比控制输出电压,移相占空比d由下式给出:Each DC-DC converter module controls the output voltage by adjusting the phase-shift duty cycle, and the phase-shift duty cycle d is given by:
其中,为DC-DC变换器模块中第一全桥和第二全桥间的移相角。in, is the phase shift angle between the first full bridge and the second full bridge in the DC-DC converter module.
与输出电流相关的参数由下式给出:The parameters related to the output current are given by:
其中,n1、n2分别为第一、第二个DC-DC变换器模块中变压器的变比,L1、L2分别为第一、第二个DC-DC变换器模块中变压器折算到原边的漏感,Δd1为第一个DC-DC变换器模块的移相占空比的减小量,Δd2为第二个DC-DC变换器模块的移相占空比的增加量。Among them, n 1 and n 2 are the transformation ratios of the transformers in the first and second DC-DC converter modules respectively, and L 1 and L 2 are the conversion ratios of the transformers in the first and second DC-DC converter modules respectively. The leakage inductance of the primary side, Δd 1 is the reduction of the phase-shift duty cycle of the first DC-DC converter module, and Δd 2 is the increase of the phase-shift duty cycle of the second DC-DC converter module .
根据与输出电流相关的参数,选取主模块及辅模块时,若则选取第一个DC-DC变换器模块为主模块、第二个DC-DC变换器模块为辅模块,即令第一个DC-DC变换器模块的移相占空比为电压环调节器的输出,即d1=D,第二个DC-DC变换器模块的移相占空比由下式给出:According to the parameters related to the output current, when selecting the main module and the auxiliary module, if Then select the first DC-DC converter module as the main module and the second DC-DC converter module as the auxiliary module, that is, the phase shift duty cycle of the first DC-DC converter module is equal to that of the voltage loop regulator The output, i.e. d 1 =D, the phase-shifted duty cycle of the second DC-DC converter module is given by:
d2=d1+Δd' (3)d 2 =d 1 +Δd' (3)
其中,Δd'为模块间参数不匹配的补偿量,可由下式给出:Among them, Δd' is the compensation amount for the parameter mismatch between modules, which can be given by the following formula:
若则选取第二个DC-DC变换器模块为主模块,第一个DC-DC变换器模块为辅模块,即令第二个DC-DC变换器模块的移相占空比为电压环调节器的输出,即d2=D,第一个DC-DC变换器模块的移相占空比由下式给出:like Then select the second DC-DC converter module as the main module, and the first DC-DC converter module as the auxiliary module, that is, the phase shift duty cycle of the second DC-DC converter module is equal to that of the voltage loop regulator The output, i.e. d2 = D, the phase shift duty cycle of the first DC-DC converter module is given by:
d1=d2+Δd (5)d 1 =d 2 +Δd (5)
其中,Δd为模块间参数不匹配的补偿量,可由下式给出:Among them, Δd is the compensation amount for the parameter mismatch between modules, which can be given by the following formula:
本发明的有益效果:Beneficial effects of the present invention:
本发明通过扰动变换器的移相占空比,测算出各个模块的与输出电流相关的参数,根据该参数调节各个模块的移相占空比,补偿模块间的参数不匹配,实现模块间的有效均流。本发明不需要电流互感器对各模块电流进行采样,极大地简化了控制的复杂程度,同时降低了成本。The invention measures and calculates the parameters related to the output current of each module by disturbing the phase-shifting duty cycle of the converter, adjusts the phase-shifting duty cycle of each module according to the parameters, compensates the parameter mismatch between modules, and realizes the effective current sharing. The invention does not require a current transformer to sample the current of each module, which greatly simplifies the complexity of the control and reduces the cost at the same time.
附图说明Description of drawings
图1为本发明无电流互感器的均流控制方法的主电路拓扑原理图;Fig. 1 is the main circuit topology principle diagram of the current sharing control method without current transformer of the present invention;
图2为本发明无电流互感器的均流控制方法的控制系统原理图;Fig. 2 is the schematic diagram of the control system of the current sharing control method without current transformer of the present invention;
图3为两模块并联采用共同占空比控制时每个模块的变压器原边漏感电流波形;Figure 3 shows the transformer primary side leakage inductance current waveform of each module when two modules are connected in parallel and adopt common duty cycle control;
图4为两模块并联采用本发明的均流控制方法时每个模块的变压器原边漏感电流波形;Fig. 4 is the transformer primary side leakage inductance current waveform of each module when two modules are connected in parallel and adopt the current sharing control method of the present invention;
图5为两模块并联采用共同占空比控制时每个模块的输出电流波形;Figure 5 shows the output current waveform of each module when two modules are connected in parallel and adopt common duty ratio control;
图6为两模块并联采用本发明的均流控制方法时每个模块的输出电流波形。Fig. 6 is the output current waveform of each module when two modules are connected in parallel and adopt the current sharing control method of the present invention.
具体实施方式:detailed description:
下面结合附图对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing:
作为本发明的一种适用电路,两DC-DC变换器模块并联构成的组合变换器的主电路由两个双主动桥DC-DC变换器模块组成,如图1所示。模块1由全桥桥式电路Hp1、高频隔离变压器T1和全桥桥式电路Hs1连接而成,变压器T1带有折算到原边的漏感L1;模块2由全桥桥式电路Hp2、高频隔离变压器T2和全桥桥式电路Hs2连接而成,变压器T2带有折算到原边的漏感L2;两模块输入端并联输出端并联,输入端并联电容C1,输出端并联电容C2。As an applicable circuit of the present invention, the main circuit of a combined converter composed of two DC-DC converter modules connected in parallel is composed of two dual active bridge DC-DC converter modules, as shown in FIG. 1 . Module 1 is composed of a full bridge circuit H p1 , a high frequency isolation transformer T 1 and a full bridge circuit H s1 , the transformer T 1 has a leakage inductance L 1 converted to the primary side; module 2 is composed of a full bridge Type circuit H p2 , high-frequency isolation transformer T 2 and full-bridge bridge circuit H s2 are connected. Transformer T 2 has a leakage inductance L 2 converted to the primary side; the input ends of the two modules are connected in parallel, the output ends are connected in parallel, and the input ends are connected in parallel The capacitor C 1 is connected in parallel with the capacitor C 2 at the output end.
一种用于两模块DC-DC变换器并联的均流控制方法,首先采用共同占空比控制,在输出电压稳定后,通过扰动变换器的移相占空比,测算出各个模块的与输出电流相关的参数,根据该参数调节各个模块的移相占空比,补偿模块间的参数不匹配,实现有效均流。A current sharing control method for parallel connection of two-module DC-DC converters. Firstly, the common duty cycle control is adopted. After the output voltage is stable, the phase-shift duty cycle of the disturbance converter is used to measure and calculate the output of each module. Current-related parameters, adjust the phase-shift duty cycle of each module according to the parameters, compensate for the parameter mismatch between modules, and achieve effective current sharing.
下面详细介绍本发明实施方式的具体过程:The specific process of the embodiment of the present invention is described in detail below:
本发明的控制系统原理图如图2所示,电压环调节器的输出为D。首先,采用共同占空比控制,模块1的移相占空比与模块2的移相占空比相同,均为电压环调节器的输出,即d1=d2=D。系统达到稳定状态后,两个模块的输出电流Io1、Io2由下式给出:The principle diagram of the control system of the present invention is shown in FIG. 2 , and the output of the voltage loop regulator is D. First, the common duty cycle control is adopted, the phase shift duty cycle of module 1 is the same as that of module 2, both are the output of the voltage loop regulator, ie d 1 =d 2 =D. After the system reaches a steady state, the output currents I o1 and I o2 of the two modules are given by the following formula:
其中,n1、n2分别为变压器T1、T2的变比,L1、L2分别为变压器T1、T2折算到原边的漏感,fs为开关频率。Among them, n 1 and n 2 are the transformation ratios of transformers T 1 and T 2 respectively, L 1 and L 2 are the leakage inductance of transformers T 1 and T 2 converted to the primary side respectively, and f s is the switching frequency.
在保持电压环闭环调制的同时,将模块1的移相占空比调节为共同占空比D减去一个恒定偏置量,取恒定偏置量为共同占空比的40%,系统稳定后,模块1的移相占空比可以表示为:While maintaining the closed-loop modulation of the voltage loop, adjust the phase-shift duty cycle of module 1 to the common duty cycle D minus a constant offset, and take the constant offset as 40% of the common duty cycle. After the system is stable , the phase-shift duty cycle of module 1 can be expressed as:
d1=D-Δd1 (3)d 1 =D-Δd 1 (3)
其中,Δd1为第一个DC-DC变换器模块的移相占空比的减小量。Among them, Δd 1 is the reduction amount of the phase-shift duty cycle of the first DC-DC converter module.
模块2的移相占空比可以表示为:The phase shift duty cycle of module 2 can be expressed as:
d2=D+Δd2 (4)d 2 =D+Δd 2 (4)
其中,Δd2为第二个DC-DC变换器模块的移相占空比的增加量。Among them, Δd 2 is the increment of the phase shift duty cycle of the second DC-DC converter module.
在电压环闭环控制下,总的负载电流保持不变,因此,模块1输出电流的减少量就等于模块2输出电流的增加量。由此可以计算出模块1的电路参数与模块2的电路参数的比值,由下式给出:Under the closed-loop control of the voltage loop, the total load current remains unchanged, therefore, the decrease of the output current of module 1 is equal to the increase of the output current of module 2. From this, the circuit parameters of module 1 can be calculated Circuit parameters with module 2 The ratio of , is given by:
若则选取模块1为主模块,模块2为辅模块,令模块1的移相占空比为电压环调节器输出,即d1=D,模块2的移相占空比d2=d1+Δd',其中Δd'为模块间参数不匹配的补偿量,由下式给出:like Then select module 1 as the main module and module 2 as the auxiliary module, so that the phase-shift duty ratio of module 1 is the output of the voltage loop regulator, that is, d 1 =D, and the phase-shift duty ratio of module 2 d 2 =d 1 + Δd', where Δd' is the compensation amount for parameter mismatch between modules, given by the following formula:
进入稳定状态后,两模块输出电流相等,实现模块间均流;After entering the steady state, the output currents of the two modules are equal to achieve current sharing between modules;
若则选取模块2为主模块,模块1为辅模块,令模块2的移相占空比为电压环调节器输出,即d2=D,模块1的移相占空比为d1=d2+Δd,其中进入稳定状态后,两模块输出电流相等,实现模块间均流。like Then select module 2 as the main module and module 1 as the auxiliary module, so that the phase-shift duty ratio of module 2 is the output of the voltage loop regulator, that is, d 2 =D, and the phase-shift duty ratio of module 1 is d 1 =d 2 +Δd, where After entering the steady state, the output currents of the two modules are equal to realize current sharing among the modules.
图3—图6是本发明用于两模块DC-DC变换器并联的无电流传感器均流控制方法的仿真波形。仿真参数为:输入电压Vin=30V,输出电压Vo=80V,负载Ro=25Ω,开关频率fs=20kHz,输出功率P=256W。模块1的变压器变比n1=1:3.1,漏感L1=23μH;模块2的变压器变比n2=1:3.1,漏感L2=28μH。图3、图5分别为两模块并联采用共同占空比控制时每个模块的变压器原边漏感电流波形和输出电流波形;图4、图6分别为两模块并联采用本发明的均流控制方法时每个模块的变压器原边漏感电流波形和输出电流波形。可以看出,由于每个模块的参数不尽相同,当采用共同占空比控制时,每个模块原边漏感电流和副边输出电流平均值都存在明显偏差,不能很好地均流。而采用本发明的均流控制方法时,每个模块原边漏感电流和副边输出电流平均值都趋向一致,达到了明显的均流效果。3 to 6 are simulation waveforms of the current sensorless current sharing control method for parallel connection of two-module DC-DC converters according to the present invention. The simulation parameters are: input voltage V in =30V, output voltage V o =80V, load Ro=25Ω, switching frequency f s =20kHz, output power P=256W. The transformer transformation ratio n 1 of module 1 =1:3.1, leakage inductance L 1 =23 μH; the transformer transformation ratio n 2 of module 2 =1:3.1, leakage inductance L 2 =28 μH. Fig. 3 and Fig. 5 are respectively the transformer primary side leakage inductance current waveform and output current waveform of each module when two modules are connected in parallel and adopt common duty cycle control; Fig. 4 and Fig. 6 are respectively two modules connected in parallel and adopt the current sharing control of the present invention The method is the transformer primary leakage current waveform and output current waveform of each module. It can be seen that due to the different parameters of each module, when the common duty ratio control is adopted, there is a significant deviation between the primary side leakage inductance current and the secondary side output current of each module, and the current cannot be well balanced. However, when the current sharing control method of the present invention is adopted, the average value of the leakage inductance current of the primary side of each module and the output current of the secondary side tends to be consistent, and an obvious current sharing effect is achieved.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it does not limit the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510411610.5A CN104993706B (en) | 2015-07-14 | 2015-07-14 | A current sharing control system and method for parallel connection of two-module DC-DC converters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510411610.5A CN104993706B (en) | 2015-07-14 | 2015-07-14 | A current sharing control system and method for parallel connection of two-module DC-DC converters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104993706A CN104993706A (en) | 2015-10-21 |
CN104993706B true CN104993706B (en) | 2017-06-16 |
Family
ID=54305473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510411610.5A Expired - Fee Related CN104993706B (en) | 2015-07-14 | 2015-07-14 | A current sharing control system and method for parallel connection of two-module DC-DC converters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104993706B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106469993B (en) * | 2016-11-22 | 2019-05-14 | 江苏通灵电器股份有限公司 | DC parallel stack Miniature inverter system and control method based on current balance |
WO2021016742A1 (en) * | 2019-07-26 | 2021-02-04 | Abb Schweiz Ag | Voltage converter |
CN110474540A (en) * | 2019-08-25 | 2019-11-19 | 南京理工大学 | Current Sensorless current-sharing control method based on two module bi-directional half bridge DC converter crisscross parallels |
CN112910266B (en) * | 2021-02-01 | 2022-04-08 | 南京航空航天大学 | Low-voltage ripple control method under power distribution change of multi-port converter |
CN113241950B (en) * | 2021-04-16 | 2022-07-01 | 国网河北省电力有限公司雄安新区供电公司 | A parallel multi-branch converter and control method |
CN118413111B (en) * | 2023-03-20 | 2025-02-28 | 曲阜师范大学 | A voltage output constraint control method for parallel converters |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064707A (en) * | 2011-01-21 | 2011-05-18 | 浙江大学 | Input parallel and output parallel combination converter under control of common phase-shifting angle |
CN102545630A (en) * | 2012-01-04 | 2012-07-04 | 浙江大学 | Multi-module combined converter with recycling cross rectification function |
CN103248231A (en) * | 2013-04-02 | 2013-08-14 | 浙江大学 | Multiphase current-sharing controlled parallel-connection adjusting circuit and control method |
-
2015
- 2015-07-14 CN CN201510411610.5A patent/CN104993706B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064707A (en) * | 2011-01-21 | 2011-05-18 | 浙江大学 | Input parallel and output parallel combination converter under control of common phase-shifting angle |
CN102545630A (en) * | 2012-01-04 | 2012-07-04 | 浙江大学 | Multi-module combined converter with recycling cross rectification function |
CN103248231A (en) * | 2013-04-02 | 2013-08-14 | 浙江大学 | Multiphase current-sharing controlled parallel-connection adjusting circuit and control method |
Non-Patent Citations (3)
Title |
---|
Common-Duty-Ratio Control of Input-Parallel Output-Parallel(IPOP) Connected DC-DC Converter Modules With Automatic Sharing of Currents;Jianjiang Shi et al.;《IEEE Transaction on Power Electronics》;20120731;第27卷(第7期);第3277-3291页 * |
Sensorless Current Estimation and Sharing in Multiphase Buck Converters;Raymond F.Foley et al.;《IEEE Transactions on Power Electrics》;20120630;第27卷(第6期);第2936-2946页 * |
采用无电流传感器实现两相BUCK变换器的均流方法;杜炜等;《电源学报》;20110131(第1期);第85-90页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104993706A (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104935177B (en) | Current-sharing control system and control method used for multi-module parallel combination DC-DC converter | |
CN104993706B (en) | A current sharing control system and method for parallel connection of two-module DC-DC converters | |
CN107579670B (en) | Constant voltage output control system of synchronous rectification primary side feedback flyback power supply | |
CN108832834B (en) | A DC-AC three-port converter and its AC side current sharing control method | |
TWI584548B (en) | DC link module and operation method thereof | |
US9203322B2 (en) | Power conversion apparatus and power correction method | |
CN101540510B (en) | Method for eliminating secondary pulsation interference on middle DC side in two-stage grid-connected system | |
CN108631603B (en) | Control method for suppressing direct current bus voltage oscillation based on full-bridge converter | |
US9438126B2 (en) | Power conversion device and power conversion method | |
CN109347343A (en) | A multi-port energy storage converter and method capable of realizing multi-distributed energy storage | |
US20160105120A1 (en) | Power conversion apparatus | |
CN103414335B (en) | The distributed pressure equalizing control method of a kind of modular i SOS combined system | |
US9425698B2 (en) | Power conversion apparatus and method | |
CN112152469A (en) | Repetitive control method for three-phase AC electronic load | |
US12126256B2 (en) | Control circuit and AC-DC power supply applying the same | |
CN109245318A (en) | The integrated four port hybrid energy storage devices of one kind and its control method | |
CN110474540A (en) | Current Sensorless current-sharing control method based on two module bi-directional half bridge DC converter crisscross parallels | |
CN106849682A (en) | A kind of three-phase crisscross parallel LLC resonant converter voltage stabilizing current-sharing control method | |
CN106921155B (en) | The control method of DC bipolar power supply system Voltage unbalance | |
WO2022260885A1 (en) | Single stage power factor correcting synchronous harmonic converter | |
CN107332284B (en) | A kind of microgrid inverter droop control method unanimously controlled based on reactive current | |
TWI750649B (en) | Power converting device and method with high frequency inverter module compensating low frequency inverter module | |
WO2019019784A1 (en) | High-voltage power supply circuit | |
CN116505757B (en) | Interleaved parallel LLC resonant converter and current sharing method | |
KR102627065B1 (en) | Modular plug-in power decoupling circuit that directly replaces electrolytic capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170616 |