Satellite ground physical simulation system superhigh precision attitude measurement method and device
Technical field
The present invention relates to measuring technique, be related to a kind of satellite ground physical simulation system superhigh precision attitude measurement method and
Device.
Background technique
For spacecraft once emitting will be difficult to repair, special running environment makes its ground simulation test seem especially
Important, therefore, researching and analysing for spacecraft ground artificial system has great importance, wherein the core of ground artificial system
Heart equipment is exactly three-axis air-bearing table.
The air film that three-axis air-bearing table relies on compressed air to be formed between air-bearing and bearing block keeps simulation stage body floating
It rises, so that approximate friction free relative motion condition is realized, to simulate spacecraft disturbance torque suffered by outer space very
Small mechanical environment.As spacecraft motion simulator, it is real that three-axis air-bearing table carries out Physical Simulation for Satellite Control Systems
The performance for testing checking system is important means and method in spacecraft development process.
Three-axis air-bearing table needs dynamically to provide the appearances such as attitude angle, angular speed by attitude measurement system during the test
State information, to complete control closed loop, due to the special construction of three-axis air-bearing table, the previous device for turntable measurement is (as revolved
Transformation depressor, inductosyn, photoelectric code disk, grating etc.) it is not suitable for the measurement of three-axis air-bearing table, need to consider new measurement
Method and apparatus.And in current practice, the height of attitude measurement system precision is directly related to the effect of l-G simulation test
Fruit.
It is found through searching document, Chinese invention patent application number: 201110249979.2, patent name is three-axis air-bearing table
High-precision attitude angle measuring devices and methods therefor, the patent three-axis air-bearing table table top bottom surrounding install guide rail, window-blind and
Marker, artificial lighting system and digital CCD camera are mounted on lifting platform.Digital CCD camera acquires marker
Image and be transferred on the computer of responsible image procossing, by marker carry out sub-pixel positioning, obtain marker
Accurate coordinates, to calculate the relative attitude angle between marker and digital CCD camera.But due to lacking in system building
It falls into, measurement accuracy is restricted, to influence its practical use scope.
Chinese invention patent application number: 201310134631.8, patent name are as follows: three-axis air-bearing table high-precision attitude angle and
Angular velocity measurement device, the patent install intelligent side head, gyroscope and kaleidoscope prism on the platform of three-axis air-bearing table,
Laser tracker and two photoelectric auto-collimators are installed, according to laser tracker, two photoelectric auto-collimators and gyroscope under platform
Data directly obtain posture information.But the patent handles part in data filtering, there is no consider deviation quaternary digital-to-analogue
For 1 constraint condition, directly adopt Kalman filtering, be easy to cause error variance matrix occur it is unusual, lead to data scatter, posture
Determine failure.The patent does not account for laser tracker and the attitude parameter conversion of photoelectric auto-collimator output information, gyro
Instrument measures the processes such as coordinate system calibration.It is carried out in addition, data processing is arranged under platform with communications portion, does not meet practical feelings
Condition.
Document " three-axis air-bearing table single frame servo angle measurement systematic research " (be published in aerospace journal, volume 1996,17,
4th phase, the page number: 71-74) in, Zhang Xiaoyou, Liu Dun and the Li Jisu of Beijing Control Engineering Inst. of Harbin Institute of Technology etc.
A kind of single frame servo measurement scheme is proposed, which installs one on air floating table pedestal can be around air floating table center plumb line
The arc arms of rotation, and transportable balladeur train is installed on it, pass through the rotation of sensitive arc arms and the traverse measurement of balladeur train
The posture information of air floating table.When the system needs to increase complicated mechanical system and sensor system, mechanism is complicated, engineer application
It is more difficult, and its precision is limited by mechanical device and sensor, is extremely difficult to high-precision.
Summary of the invention
The purpose of the present invention is to provide a kind of satellite ground physical simulation system superhigh precision attitude measurement method and dresses
It sets.
The technology used in the present invention is as follows: a kind of satellite ground physical simulation system superhigh precision attitude measuring,
The equipment of use includes the first photoelectric auto-collimator, the second photoelectric auto-collimator, kaleidoscope prism and computer;First photoelectric auto
Straight instrument and the second photoelectric auto-collimator are installed under three-axis air-bearing table platform, the first photoelectric auto-collimator and the second photoelectric auto-collimator
Mutual installation in 90 °, kaleidoscope prism are mounted on three-axis air-bearing table platform, and computer is mounted under three-axis air-bearing table platform, the first light
Electric autocollimator and the second photoelectric auto-collimator are connect with computer;When work, the first photoelectric auto-collimator and the second photoelectricity are certainly
Collimator receives the infrared light of kaleidoscope prism reflection, obtain kaleidoscope prism with respect to the first photoelectric auto-collimator and the second photoelectricity oneself
The posture of collimator, and be sent to computer, computer receive the defeated of the first photoelectric auto-collimator and the second photoelectric auto-collimator
Information out determines algorithm according to double infrared vector postures, carries out data fusion and coordinate system conversion process, finally provide three axis gas
The posture information of floating platform.
The present invention also has the feature that
1, using a kind of survey that satellite ground physical simulation system superhigh precision attitude measuring obtains as described above
Amount method is as follows:
Step 1: two photoelectric auto-collimators receive the infrared light of kaleidoscope prism reflection, obtain kaleidoscope prism with respect to photoelectricity
The posture of autocollimator;
Step 2: photoelectric auto-collimator is sent to computer under platform by data line;
Step 3: computer receives the output information of photoelectric auto-collimator, determines algorithm according to double infrared vector postures, into
Row data fusion and coordinate system conversion process, finally provide the posture information of three-axis air-bearing table;
Double infrared vector postures determine that algorithm is as follows:
Two reference vector V being not parallel to each other are selected in reference frame V1, V2, their seats in kinetic coordinate system U
It is designated as U1, U2.Then attitude matrix AUVMeet condition:
U1=AUVV1, U2=AUVV2 (1)
Using the malalignment of reference vector, orthogonal coordinate system R is established in V system, each axis unit vector is respectively:
Similarly, orthogonal coordinate system S is established in U system, each axis unit vector is respectively:
Then
MS=AUVMR (4)
MS=[R1 R2 R3], MR=[S1 S2 S3] (5)
Then
The advantages and features of the present invention:
The posture that the present invention is applicable not only to three-axis air-bearing table determines problem, equally can also apply to other spacecrafts
In ground physical analogue system, there is wide application range.Photoelectric auto-collimator measurement accuracy with higher cooperates appearance
State determines algorithm, and the measurement of posture superhigh precision may be implemented.Experiments verify that attitude measurement accuracy is better than 1 ".
Detailed description of the invention
Fig. 1 is the composition schematic diagram of superhigh precision attitude measuring;
Fig. 2 is the calibration system coordinate system and measurement coordinate system schematic diagram of kaleidoscope prism;
Fig. 3 is each coordinate system schematic diagram;
Fig. 4 is each coordinate system transformational relation schematic diagram;
Fig. 5 is X-axis attitude angle;
Fig. 6 is Y-axis attitude angle;
Fig. 7 is Z axis attitude angle.
Specific embodiment
The invention will be further described for citing with reference to the accompanying drawing.
Embodiment 1:
In conjunction with Fig. 1, satellite ground physical simulation system superhigh precision attitude measurement method of the present invention and device, use are set
Standby includes the first photoelectric auto-collimator 1, the second photoelectric auto-collimator 2, kaleidoscope prism 3 and computer 4.First photoelectric auto-collimator
1 and second photoelectric auto-collimator 2 it is mutually in 90 ° be installed under the platform of three-axis air-bearing table, installation site can be according to requirement of experiment tune
It is whole;Kaleidoscope prism 3 is mounted on the platform of three-axis air-bearing table;Computer 4 is mounted under the platform of three-axis air-bearing table;Two radicals are according to transmission
Line is separately connected the first photoelectric auto-collimator 1, the second photoelectric auto-collimator 2 and computer 4 by USB interface.First photoelectricity is certainly
Collimator 1 and the second photoelectric auto-collimator 2 receive the infrared light that kaleidoscope prism 3 reflects, and obtain kaleidoscope prism 3 certainly with respect to photoelectricity
The posture of collimator is sent to computer 4 by data line.Computer 4 receives the first photoelectric auto-collimator 1 and the second light
The output information of electric autocollimator 2 determines algorithm according to double infrared vector postures, carries out at data fusion and coordinate system conversion
Reason, finally provides the posture information of three-axis air-bearing table.Photoelectric auto-collimator measurement accuracy with higher, cooperation posture, which determines, to be calculated
The measurement of posture superhigh precision may be implemented in method.
A kind of satellite ground physical simulation system superhigh precision attitude measurement method, steps are as follows:
Step 1: the first photoelectric auto-collimator 1 and the second photoelectric auto-collimator 2 receive the infrared light that kaleidoscope prism 3 reflects
Line obtains posture of the kaleidoscope prism 3 with respect to the first photoelectric auto-collimator 1 and the second photoelectric auto-collimator 2.
Step 2: the first photoelectric auto-collimator 1 and the second photoelectric auto-collimator 2 are sent to computer by data line
4。
Step 3: computer 4 receives the output information of the first photoelectric auto-collimator 1 and the second photoelectric auto-collimator 2, according to
Double infrared vector postures determine algorithm, carry out data fusion and coordinate system conversion process, finally provide the posture of three-axis air-bearing table
Information.
Satellite ground physical simulation system superhigh precision attitude measuring of the present invention, wherein photoelectric auto-collimator can select
With the commercial product of current maturation, if Tyler Corporations of Britain Ultra is serial or the Related product of Muller company of Germany, measurement accuracy
Better than 1 ".Under the platform of first photoelectric auto-collimator 1 and the installation mutually in 90 ° of the second photoelectric auto-collimator 2 and three-axis air-bearing table,
Installation site can be adjusted according to requirement of experiment.
Kaleidoscope prism 3 is mounted on platform middle plate, close to laminate outer to guarantee visual field.In experimentation, four sides
The platform of prism 3 and three-axis air-bearing table moves together.
Embodiment 2:
The measuring principle of photoelectric auto-collimator in the present invention is as follows:
Photoelectric auto-collimator emits infrared light, and infrared light reaches to be reflected in kaleidoscope prism plane, then by photoelectricity
Autocollimator receives, and position of the photoelectric auto-collimator according to reflected hot spot on lens plane provides reflection light phase
To the posture of photoelectric auto-collimator, i.e. posture of the kaleidoscope prism with respect to photoelectric auto-collimator.
In conjunction with Fig. 2, a photoelectric auto-collimator can only provide kaleidoscope prism in the two-dimensional signal in space, i.e. pitch angle and partially
Navigate angle, can not sensitive roll angle so being used cooperatively using two photoelectric auto-collimators mutually compensate other side on rolling direction
Freedom degree, realize measurement to kaleidoscope prism 3 d pose.
The calibration coordinate system for defining kaleidoscope prism is OL-XLYLZL, measurement coordinate system is OD-XDYDZD。
For the first photoelectric auto-collimator 1, can sensitive kaleidoscope prism around XDAxis and ZDThe attitude angle x of axis1, z1;For
Second photoelectric auto-collimator 2, sensitive is kaleidoscope prism around YDAxis and ZDThe attitude angle y of axis2, z2。
Embodiment 3:
Attitude measurement method in the present invention is as follows:
Step 1: as shown in figure 3, defining coordinate system.
1. geographic coordinate system OG-XGYGZG
OG: local geographical location.
XG: along local east-west direction, refer to that east is positive.
YG: along local North and South direction, refer to that north is positive.
ZG: vertical geography horizontal plane refers to that day is positive.
2. the body coordinate system O of three-axis air-bearing tableB-XBYBZB
3. the calibration coordinate system O of kaleidoscope prismL-XLYLZL
4. the measurement coordinate system O of kaleidoscope prismD-XDYDZD
5. initial time, the body coordinate system of three-axis air-bearing table
6. current time, the body coordinate system of three-axis air-bearing table
7. initial time, the calibration coordinate system of kaleidoscope prism
8. current time, the calibration coordinate system of kaleidoscope prism
9. initial time, the measurement coordinate system of kaleidoscope prism
10. current time, the measurement coordinate system of kaleidoscope prism
Step 2: determining relative attitude.
Algorithm is determined according to double infrared vector postures, calculates the relative motion posture of kaleidoscope prism measurement coordinate system
Due to photoelectric auto-collimator cannot attitudes vibration in sensitive rolling axis direction, so corresponding first photoelectric auto-collimation
Instrument 1 and the second photoelectric auto-collimator 2 consider two unit vector V along autosensitization axis respectively1, V2, so as to avoid to rolling
The discussion of corner.
V1, V2?Under expression:
V1=[0 1 0]T, V2=[1 0 0]T (7)
First photoelectric auto-collimator 1 exports OD-XDYDZDAroundAxis andThe corner x of axis1, z1;Second photoelectric auto-collimation
Instrument 2 exports OD-XDYDZDAroundAxis andThe corner y of axis2, z2。
Turn sequence according to pitching after first yawing, calculates V1, V2?Under expression U1, U2:
Wherein Rx(x1) indicate prism aroundAxis rotates x1The direction cosine matrix at angle, Rz(Z1) indicate prism aroundAxis
Rotate Z1The direction cosine matrix at angle, Ry(y2) indicate prism aroundAxis rotates y2The direction cosine matrix at angle, Rz(z2) indicate rib
Mirror aroundAxis rotates z2The direction cosine matrix at angle.
Two orthogonal coordinate systems R, S are established respectively, wherein MSIt is the unit coordinate matrix of S system, MRIt is the unit coordinate of R system
Matrix;
The then relative motion posture of kaleidoscope prism measurement coordinate systemAre as follows:
Step 3: determining absolute pose.
In conjunction with the coordinate system transformational relation of Fig. 4, the absolute pose of the body coordinate system of three-axis air-bearing table relative to the earth is soughtAnd attitude angle
The relative motion posture of known kaleidoscope prism measurement coordinate systemIn conjunction with kaleidoscope prism OD-XDYDZDAnd OL-
XLYLZLBetween transformational relation ADL, the installation matrix A of kaleidoscope prismLB, the relative motion posture of this system of three-axis air-bearing tableAre as follows:
Wherein ABLIt is ALBTransposed matrix, ALDIt is ADLTransposed matrix.
If calibrating the initial attitude of three-axis air-bearing table relative to the earth before attitude measurementSo
Obtain the absolute pose of the body coordinate system of axis air floating table relative to the earth
Calculate absolute pose angleExperiments verify that three-axis attitude measurement accuracy is better than 1 ", realize superelevation
Precision posture is determining, as illustrated in figs. 5-7:
WhereinRepresenting matrixIn the 1st row the 2nd arrange corresponding element,Representing matrixIn the 1st row
The corresponding element of 1st column,Representing matrixIn the 1st row the 3rd arrange corresponding element,Representing matrixIn
2nd row the 3rd arranges corresponding element,Representing matrixIn the 3rd row the 3rd arrange corresponding element.