[go: up one dir, main page]

CN104979404A - Lateral double-diffused metal oxide semiconductorfield-effect transistor with ladder field oxygen - Google Patents

Lateral double-diffused metal oxide semiconductorfield-effect transistor with ladder field oxygen Download PDF

Info

Publication number
CN104979404A
CN104979404A CN201510267184.2A CN201510267184A CN104979404A CN 104979404 A CN104979404 A CN 104979404A CN 201510267184 A CN201510267184 A CN 201510267184A CN 104979404 A CN104979404 A CN 104979404A
Authority
CN
China
Prior art keywords
oxide layer
region
field oxide
channel
drift region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510267184.2A
Other languages
Chinese (zh)
Inventor
段宝兴
曹震
袁小宁
袁嵩
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510267184.2A priority Critical patent/CN104979404A/en
Publication of CN104979404A publication Critical patent/CN104979404A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0281Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • H10D30/603Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs  having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/109Reduced surface field [RESURF] PN junction structures
    • H10D62/111Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • H10D62/116Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • H10D64/516Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提出了一种新型超结横向双扩散金属氧化物半导体场效应管(SJ-LDMOS),包括在LDMOS漂移区的表面形成SJ层,并利用两步浅槽隔离(STI)技术在Super Junction上方形成阶梯场氧化层的新型半导体器件,一方面利用电场调制效应使器件表面的电场分布更加均匀,从而增加器件的击穿电压;另一方面由于阶梯场氧化层靠近器件沟道处的较薄氧化层厚度较小,在开启状态下场板下方的漂移区表面存在更多的多数载流子积累,并且在薄阶梯氧化层下方器件纵向的电流通道变宽从而大幅度地降低了器件的导通电阻。

The present invention proposes a novel super-junction lateral double-diffused metal oxide semiconductor field effect transistor (SJ-LDMOS), including forming an SJ layer on the surface of the LDMOS drift region, and using two-step shallow trench isolation (STI) technology in the Super Junction A new type of semiconductor device with a stepped field oxide layer formed on the top, on the one hand, uses the electric field modulation effect to make the electric field distribution on the device surface more uniform, thereby increasing the breakdown voltage of the device; The thickness of the oxide layer is small, and there are more majority carrier accumulations on the surface of the drift region under the field plate in the on state, and the vertical current channel of the device under the thin stepped oxide layer is widened, which greatly reduces the conduction of the device resistance.

Description

一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管A lateral double-diffused metal-oxide-semiconductor field-effect transistor with step field oxygen

技术领域technical field

本发明涉及半导体器件领域,特别是涉及一种横向双扩散金属氧化物半导体场效应管。The invention relates to the field of semiconductor devices, in particular to a lateral double-diffused metal oxide semiconductor field effect transistor.

背景技术Background technique

将超结SJ(Super Junction)技术应用于LDMOS(Lateral Double-diffusedMOSFET)形成SJ-LDMOS结构是LDMOS器件研究的热点。由于SJ-LDMOS在一定的击穿电压BV(Breakdown Voltage)条件下具有非常低的导通电阻RON,打破了传统功率MOS器件的极限关系,已被广泛应用于超低功耗PIC(Power Integrated Circuit)设计中。然而在SJ-LDMOS实现的过程中遇到了许多问题,包括衬底辅助耗尽效应SAD(Substrate Assisted Depletion),即在P型硅衬底上实现的SJ-LDMOS,由于N柱漂移区同时被相邻P柱和P型衬底辅助耗尽,导致Super Junction的电荷不能完全补偿,造成BV大幅度降低。Applying super junction SJ (Super Junction) technology to LDMOS (Lateral Double-diffused MOSFET) to form SJ-LDMOS structure is a hotspot in the research of LDMOS devices. Because SJ-LDMOS has a very low on-resistance R ON under a certain breakdown voltage BV (Breakdown Voltage), it breaks the limit relationship of traditional power MOS devices, and has been widely used in ultra-low power PIC (Power Integrated Circuit) is being designed. However, many problems have been encountered in the process of realizing SJ-LDMOS, including the substrate-assisted depletion effect SAD (Substrate Assisted Depletion), that is, the SJ-LDMOS realized on a P-type silicon substrate, because the N-pillar drift region is simultaneously phased The auxiliary depletion of the adjacent P-pillars and the P-type substrate causes the charge of the Super Junction to not be fully compensated, resulting in a significant decrease in BV.

具有缓冲层(Buffer)SJ-LDMOS结构能够有效地减少衬底辅助耗尽的影响,并且该结构与传统BCD(Bipolar-CMOS-DMOS)工艺兼容。在传统的BCD工艺中,制造Buffer SJ-LDMOS漂移区场氧和器件之间隔离氧化层时采用硅的局部氧化LOCOS(Local Oxidation of Silicon)技术。由于LOCOS的高温工艺一方面会使超结的N柱与P柱相互扩散严重增加,另一方面由于场氧化层生长的过程中吸硼排磷的效应使超结的N柱与P柱浓度不相同,导致电荷不能完全补偿,从而使得器件的电学特性较差。The SJ-LDMOS structure with a buffer layer (Buffer) can effectively reduce the influence of the substrate-assisted depletion, and the structure is compatible with the traditional BCD (Bipolar-CMOS-DMOS) process. In the traditional BCD process, the LOCOS (Local Oxidation of Silicon) technology of silicon is used to manufacture the field oxygen in the Buffer SJ-LDMOS drift region and the isolation oxide layer between the devices. Due to the high temperature process of LOCOS, on the one hand, the interdiffusion between the N column and the P column of the super junction will be seriously increased; Similarly, the charge cannot be fully compensated, so that the electrical characteristics of the device are poor.

浅槽隔离STI(Shallow Trench Isolation)技术与LOCOS技术相比工作温度较低,可以很好地解决以上问题。然而在采用STI BCD工艺制造SJ-LDMOS过程中,为了降低工艺成本,在漂移区上场氧化层的厚度是由器件之间的隔离深度决定的,SJ-LDMOS的性能受到了器件BCD工艺的限制。虽然器件之间的厚场氧化层满足隔离的条件,但是器件的性能并没有得到很好的优化,在提高器件耐压的同时比导通电阻也大幅度增加。Compared with LOCOS technology, shallow trench isolation STI (Shallow Trench Isolation) technology has a lower operating temperature, which can well solve the above problems. However, in the process of manufacturing SJ-LDMOS by STI BCD process, in order to reduce the process cost, the thickness of the field oxide layer on the drift region is determined by the isolation depth between devices, and the performance of SJ-LDMOS is limited by the BCD process of the device. Although the thick field oxide layer between the devices meets the isolation conditions, the performance of the devices has not been well optimized, and the specific on-resistance also increases significantly while increasing the withstand voltage of the device.

发明内容Contents of the invention

本发明提出了一种横向双扩散金属氧化物半导体场效应管,旨在有效优化SJ-LDMOS击穿电压与比导通电阻的矛盾。The invention proposes a lateral double-diffused metal oxide semiconductor field effect transistor, aiming at effectively optimizing the contradiction between the breakdown voltage and specific on-resistance of SJ-LDMOS.

本发明的技术方案如下:Technical scheme of the present invention is as follows:

横向双扩散金属氧化物半导体场效应晶体管,包括:Lateral double-diffused metal-oxide-semiconductor field-effect transistors, including:

半导体材料的衬底;Substrates of semiconductor materials;

在所述衬底上生长的外延层,作为缓冲层;an epitaxial layer grown on said substrate as a buffer layer;

在所述外延层上形成相邻接的基区和漂移区,漂移区注入N柱和P柱相间排列形成超结漂移区;An adjacent base region and a drift region are formed on the epitaxial layer, and the drift region is implanted with N columns and P columns arranged alternately to form a super junction drift region;

位于超结漂移区上相邻接的场氧化层和漏区,其中场氧化层与沟道保持间距;a field oxide layer and a drain region adjacent to the superjunction drift region, wherein the field oxide layer is spaced from the channel;

在所述基区上利用双扩散技术形成的沟道,在所述基区上形成沟道衬底接触并与靠近沟道一侧短接形成源区;A channel is formed on the base region using double diffusion technology, and a channel substrate contact is formed on the base region and shorted to a side close to the channel to form a source region;

位于沟道上方的栅绝缘层以及栅极;a gate insulating layer and a gate located above the channel;

分别在源区和漏区上形成的源极和漏极;a source electrode and a drain electrode formed on the source region and the drain region, respectively;

在以上与现有技术相同的结构基础上,本发明的结构改变主要是:On the same structural basis as the prior art above, the structural changes of the present invention are mainly:

所述场氧化层为阶梯型,即其中靠近沟道的区域为深度较浅的薄场氧化层,靠近以及邻接漏区的区域为深度较深的厚场氧化层;所述栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分。The field oxide layer is a ladder type, that is, the area close to the channel is a thin field oxide layer with a shallow depth, and the area close to and adjacent to the drain region is a thick field oxide layer with a deep depth; the gate insulating layer and gate The pole extends from above the channel to cover the portion of the thin field oxide layer.

基于上述基本方案,本发明还进一步做如下优化限定和改进:Based on the above-mentioned basic scheme, the present invention further makes the following optimization limitations and improvements:

薄场氧化层的厚度约为厚场氧化层的厚度的1/2时,器件的特性为最优。When the thickness of the thin field oxide layer is about 1/2 of the thickness of the thick field oxide layer, the characteristics of the device are optimal.

阶梯场氧化层的厚场氧化层根据器件的具体耐压要求设计特定的厚度,例如:当器件耐压为100~300V时,厚场氧化层的厚度约为1μm;当器件耐压为300~700V时,厚场氧化层的厚度约为1.5μm。The thick field oxide layer of the stepped field oxide layer is designed with a specific thickness according to the specific withstand voltage requirements of the device. For example: when the device withstand voltage is 100-300V, the thickness of the thick field oxide layer is about 1 μm; when the device withstand voltage is 300-300V At 700V, the thickness of the thick field oxide layer is about 1.5μm.

当阶梯场氧化层的阶梯拐角位置为器件漂移区的中间位置附近时,器件的性能最优。When the step corner position of the step field oxide layer is near the middle position of the drift region of the device, the performance of the device is optimal.

相应的,制作本发明的场效应管器件的方法的特别之处就在于:在形成有源区时,首先在超结漂移区表面靠近沟道的区域利用STI技术形成深度较浅的薄场氧化层,保证栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分;然后在超结漂移区表面靠近漏端的区域以及多个所述横向双扩散金属氧化物半导体场效应管(注:通常制作此类器件都是多个器件共同制作)之间的相互隔离处利用STI技术形成深度较深的厚场氧化层,即在超结漂移区的表面形成阶梯状的场氧化层。Correspondingly, the special feature of the method for manufacturing the field effect transistor device of the present invention is that when forming the active region, firstly, a shallower thin field oxide layer is formed by using STI technology on the surface of the superjunction drift region close to the channel. Layer, to ensure that the gate insulating layer and the gate extend from above the channel to cover the part of the thin field oxide layer; then in the region near the drain terminal on the surface of the superjunction drift region and a plurality of the lateral double-diffused metal oxide semiconductor field effect transistors ( Note: Usually, such devices are made together by multiple devices) and the isolation between them is formed by STI technology to form a thick field oxide layer with a deep depth, that is, a stepped field oxide layer is formed on the surface of the super junction drift region.

本发明技术方案的有益效果如下:The beneficial effects of the technical solution of the present invention are as follows:

本发明在LDMOS的漂移区表面形成Super Junction,一方面降低了漂移区的导通电阻;另一方面消除了衬底辅助耗尽效应,使得器件具有很高的击穿电压。在器件漂移区上方,形成阶梯场氧化层,是对传统漂移区上具有单层厚氧化层SJ-LDMOS的改进和创新。The present invention forms a Super Junction on the surface of the drift region of the LDMOS, on the one hand, reduces the on-resistance of the drift region; on the other hand, eliminates the substrate auxiliary depletion effect, so that the device has a high breakdown voltage. Above the drift region of the device, a stepped field oxide layer is formed, which is an improvement and innovation to the SJ-LDMOS with a single-layer thick oxide layer on the traditional drift region.

在SJ-LDMOS漂移区的表面通过两步STI技术形成阶梯场氧化层。一方面,阶梯场氧化层对器件漂移区的表面电场进行调制,使得漂移区的表面电场分布更加均匀,从而有效的提高了器件击穿电压。另一方面,由于靠近沟道处的场氧化层变薄,在开启状态下场板下方的漂移区表面存在更高浓度的多数载流子积累,并且在较薄阶氧化层下方器件纵向方向上的电流通道变宽,从而大幅度地降低了器件的导通电阻,使得器件的整体性能得到优化。A stepped field oxide layer is formed on the surface of the SJ-LDMOS drift region by two-step STI technology. On the one hand, the stepped field oxide layer modulates the surface electric field in the drift region of the device, making the distribution of the surface electric field in the drift region more uniform, thereby effectively increasing the breakdown voltage of the device. On the other hand, due to the thinning of the field oxide layer near the channel, there is a higher concentration of majority carrier accumulation on the surface of the drift region below the field plate in the on state, and in the device longitudinal direction under the thinner oxide layer The current channel is widened, thereby greatly reducing the on-resistance of the device, so that the overall performance of the device is optimized.

附图说明Description of drawings

图1为本发明实施例的结构示意图(正视图);Fig. 1 is the structural representation (front view) of the embodiment of the present invention;

图2为本发明实施例的三维剖视示意图(为了便于标注,对超结、漂移区绝缘层以及阶梯场氧化层等作了部分立体断面);2 is a schematic three-dimensional cross-sectional view of an embodiment of the present invention (for ease of labeling, a partial three-dimensional cross-section is made for the superjunction, the drift region insulating layer, and the stepped field oxide layer);

附图标号说明:Explanation of reference numbers:

1-源极;2-栅极,包括延伸到场氧化层上方部分形成的场板;3-栅绝缘层;4-阶梯场氧化层;5-漏电极;6-漏区;7-N柱与P柱相间形成的超结漂移区;8-缓冲层;9-衬底;10-基区;11-源区;12-沟道;1-source; 2-gate, including the field plate extending to the part formed above the field oxide layer; 3-gate insulating layer; 4-step field oxide layer; 5-drain electrode; 6-drain region; 7-N column and The superjunction drift region formed by P columns alternately; 8-buffer layer; 9-substrate; 10-base region; 11-source region; 12-channel;

具体实施方式detailed description

如图1所示,本发明具有阶梯场氧的横向双扩散金属氧化物半导体场效应管结构包括:As shown in Figure 1, the structure of the lateral double-diffused metal-oxide-semiconductor field-effect transistor with stepped field oxygen in the present invention includes:

半导体材料的衬底9;a substrate 9 of semiconductor material;

位于衬底上的外延层作为器件的缓冲层8;The epitaxial layer on the substrate serves as the buffer layer 8 of the device;

分别位于缓冲层8上两端的基区10和漏区6,漏区上面为漏极5;The base region 10 and the drain region 6 respectively located at both ends of the buffer layer 8, and the drain region 5 is above the drain region;

位于基区表面的源区11和沟道12;source region 11 and channel 12 located on the surface of the base region;

源区表面形成源极1,沟道12上面为栅绝缘层3位于栅极2下方;The source electrode 1 is formed on the surface of the source region, and the gate insulating layer 3 is located below the gate 2 on the channel 12;

沟道与漏区之间漂移区表面形成N柱和P柱相间排列的超结漂移区7;On the surface of the drift region between the channel and the drain region, a super junction drift region 7 with N columns and P columns arranged alternately is formed;

超结漂移区7上方为阶梯场氧化层4;Above the super junction drift region 7 is a stepped field oxide layer 4;

薄场氧化层的厚度为41,厚场氧化层的厚度为42。The thickness of the thin field oxide layer is 41, and the thickness of the thick field oxide layer is 42.

在LDMOS漂移区的表面形成Super Junction层,可以有效降低漂移区的导通电阻。又由于Super Junction下方为缓冲层,可以有效解决衬底辅助耗尽效应,使得器件具有很高的击穿电压。为了进一步优化器件的特性,解决场氧化层厚度受到器件之间隔离氧化层厚度限制的问题,利用两步STI技术在超结漂移区上形成阶梯场氧化层。根据电场调制原理,阶梯场氧化层对漂移区表面的电场进行调制,使其电场分布更加均匀,进一步提高了器件的击穿电压。又由于靠近沟道的薄场氧化层厚度较小,在漂移区表面场板下方区域多数载流积累的浓度增加,并且在薄场氧化层下方电流的导通路径变宽,从而大幅度地降低了器件的导通电阻。Forming a Super Junction layer on the surface of the LDMOS drift region can effectively reduce the on-resistance of the drift region. And because the buffer layer under the Super Junction can effectively solve the substrate-assisted depletion effect, the device has a high breakdown voltage. In order to further optimize the characteristics of the device and solve the problem that the thickness of the field oxide layer is limited by the thickness of the isolation oxide layer between devices, a two-step STI technique is used to form a stepped field oxide layer on the superjunction drift region. According to the principle of electric field modulation, the stepped field oxide layer modulates the electric field on the surface of the drift region, making the electric field distribution more uniform and further improving the breakdown voltage of the device. And because the thickness of the thin field oxide layer near the channel is small, the concentration of the majority of current carriers accumulated in the region below the surface field plate in the drift region increases, and the conduction path of the current under the thin field oxide layer becomes wider, thereby greatly reducing the on-resistance of the device.

以N沟道LDMOS为例,具体可以通过以下步骤进行制备:Taking N-channel LDMOS as an example, it can be prepared by the following steps:

1)半绝缘材料(包括Si、SiC和GaAs等)的衬底上外延N型缓冲层;1) Epitaxial N-type buffer layer on the substrate of semi-insulating material (including Si, SiC and GaAs, etc.);

2)在缓冲层上左端形成P型基区;2) forming a P-type base region on the left end of the buffer layer;

3)自基区至漏区注入若干相间排列的高浓度的N柱和P柱,形成超结漂移区;3) From the base region to the drain region, a number of high-concentration N columns and P columns arranged alternately are injected to form a super junction drift region;

4)利用两步STI技术,形成有源区同时在超结漂移区上形成阶梯场氧化层;场氧化层的阶梯拐角位置为超结漂移区的中点位置;其中,薄场氧化层的厚度为厚场氧化层的厚度的1/2;耐压要求为100~300V时,厚场氧化层的厚度为1μm;耐压要求为300~700V时,厚场氧化层的厚度为1.5μm;4) Using two-step STI technology to form the active region and form a stepped field oxide layer on the super junction drift region; the step corner position of the field oxide layer is the midpoint position of the super junction drift region; where the thickness of the thin field oxide layer It is 1/2 of the thickness of the thick-field oxide layer; when the withstand voltage requirement is 100-300V, the thickness of the thick-field oxide layer is 1μm; when the withstand voltage requirement is 300-700V, the thickness of the thick-field oxide layer is 1.5μm;

5)在沟道上面形成栅氧化层并淀积多晶硅、刻蚀多晶硅和栅氧化层,形成栅极;5) Form a gate oxide layer on the channel and deposit polysilicon, etch the polysilicon and gate oxide layer to form a gate;

6)在基区利用双扩散技术注入形成沟道,同时在右端注入形成漏区;6) Use double-diffusion technology to implant in the base region to form a channel, and at the same time implant to form a drain region at the right end;

7)在基区左端形成沟道衬底接触;7) forming a channel substrate contact at the left end of the base region;

8)在器件表面淀积钝化层,并刻蚀接触孔;8) Deposit a passivation layer on the surface of the device, and etch the contact hole;

9)淀积金属并刻蚀形成漏极和源极。9) Deposit metal and etch to form drain and source.

经实验,该器件的性能较之于传统器件大幅度提升,在两种器件漂移区长度相同的情况下该器件的击穿电压提高约25%;在两种器件击穿电压相同的情况下比导通电阻下降约30%。After experiments, the performance of the device is greatly improved compared with the traditional device, and the breakdown voltage of the device is increased by about 25% when the drift region length of the two devices is the same; The on-resistance dropped by about 30%.

当然,本发明中的LDMOS也可以为P型沟道,其结构与N沟道LDMOS等同,亦应属于本申请权利要求的保护范围,在此不再赘述。Of course, the LDMOS in the present invention can also be a P-type channel, and its structure is equivalent to that of an N-channel LDMOS, which should also belong to the protection scope of the claims of the present application, and will not be repeated here.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and replacements can also be made, these improvements and replacements The scheme also falls within the protection scope of the present invention.

Claims (5)

1.一种横向双扩散金属氧化物半导体场效应晶体管,包括:1. A lateral double-diffused metal-oxide-semiconductor field-effect transistor, comprising: 半导体材料的衬底;Substrates of semiconductor materials; 在所述衬底上生长的外延层,作为缓冲层;an epitaxial layer grown on said substrate as a buffer layer; 在所述外延层上形成相邻接的基区和漂移区,漂移区注入N柱和P柱相间排列形成超结漂移区;An adjacent base region and a drift region are formed on the epitaxial layer, and the drift region is implanted with N columns and P columns arranged alternately to form a super junction drift region; 位于超结漂移区上相邻接的场氧化层和漏区,其中场氧化层与沟道保持间距;a field oxide layer and a drain region adjacent to the superjunction drift region, wherein the field oxide layer is spaced from the channel; 在所述基区上利用双扩散技术形成的沟道,在所述基区上形成沟道衬底接触并与靠近沟道一侧短接形成源区;A channel is formed on the base region using double diffusion technology, and a channel substrate contact is formed on the base region and shorted to a side close to the channel to form a source region; 位于沟道上方的栅绝缘层以及栅极;a gate insulating layer and a gate located above the channel; 分别在源区和漏区上形成的源极和漏极;a source electrode and a drain electrode formed on the source region and the drain region, respectively; 其特征在于:It is characterized by: 所述场氧化层为阶梯型,即其中靠近沟道的区域为深度较浅的薄场氧化层,靠近以及邻接漏区的区域为深度较深的厚场氧化层;所述栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分。The field oxide layer is a ladder type, that is, the area close to the channel is a thin field oxide layer with a shallow depth, and the area close to and adjacent to the drain region is a thick field oxide layer with a deep depth; the gate insulating layer and gate The pole extends from above the channel to cover the portion of the thin field oxide layer. 2.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于:薄场氧化层的厚度为厚场氧化层的厚度的1/2。2. The lateral double diffused metal oxide semiconductor field effect transistor according to claim 1, wherein the thickness of the thin field oxide layer is 1/2 of the thickness of the thick field oxide layer. 3.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于:耐压要求为100~300V时,厚场氧化层的厚度为1μm;耐压要求为300~700V时,厚场氧化层的厚度为1.5μm。3. The lateral double-diffused metal oxide semiconductor field effect transistor according to claim 1, characterized in that: when the withstand voltage requirement is 100-300V, the thickness of the thick field oxide layer is 1 μm; when the withstand voltage requirement is 300-700V , the thickness of the thick field oxide layer is 1.5 μm. 4.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于:所述场氧化层的阶梯拐角位置为超结漂移区的中点位置。4 . The lateral double-diffused metal oxide semiconductor field effect transistor according to claim 1 , wherein the position of the step corner of the field oxide layer is the midpoint position of the superjunction drift region. 5.一种制作权利要求1所述的横向双扩散金属氧化物半导体场效应管的方法,包括以下步骤:5. A method for making the lateral double-diffused metal-oxide-semiconductor field-effect transistor according to claim 1, comprising the following steps: 1)在半导体材料的衬底上外延缓冲层;1) Epitaxial buffer layer on the substrate of semiconductor material; 2)在缓冲层上左端形成基区;2) forming a base region at the left end on the buffer layer; 3)从基区到右端生成超结漂移区,即交替注入高浓度的N柱和P柱;3) A superjunction drift region is generated from the base region to the right end, that is, high-concentration N columns and P columns are alternately injected; 4)形成有源区同时在超结漂移区上形成场氧化层;4) forming an active region and simultaneously forming a field oxide layer on the superjunction drift region; 5)在沟道上面形成栅氧化层并淀积多晶硅、刻蚀多晶硅和栅氧化层,形成栅极;5) Form a gate oxide layer on the channel and deposit polysilicon, etch the polysilicon and gate oxide layer to form a gate; 6)在基区利用双扩散技术注入形成沟道,同时在超结漂移区的右端注入形成漏区;6) In the base region, a channel is formed by implanting double diffusion technology, and at the same time, a drain region is formed by implanting at the right end of the superjunction drift region; 7)在基区左端形成沟道衬底接触;7) forming a channel substrate contact at the left end of the base region; 8)在整个表面淀积钝化层,并刻蚀接触孔;8) Deposit a passivation layer on the entire surface, and etch the contact hole; 9)淀积金属并刻蚀形成漏极和源极;9) Deposit metal and etch to form drain and source; 其特征在于:It is characterized by: 在形成有源区时,首先在超结漂移区表面靠近沟道的区域利用STI技术形成深度较浅的薄场氧化层,保证栅绝缘层以及栅极自沟道上方延展覆盖至薄场氧化层的部分;然后在超结漂移区表面靠近漏端的区域以及多个所述横向双扩散金属氧化物半导体场效应管之间的相互隔离处利用STI技术形成深度较深的厚场氧化层,即在超结漂移区的表面形成阶梯状的场氧化层。When forming the active region, first use STI technology to form a shallow thin field oxide layer on the surface of the super junction drift region close to the channel to ensure that the gate insulating layer and the gate extend from above the channel to cover the thin field oxide layer part; then use STI technology to form a thick field oxide layer with a deeper depth in the region near the drain end of the superjunction drift region surface and the mutual isolation between a plurality of lateral double-diffused metal-oxide-semiconductor field effect transistors, that is, in A stepped field oxide layer is formed on the surface of the superjunction drift region.
CN201510267184.2A 2015-05-22 2015-05-22 Lateral double-diffused metal oxide semiconductorfield-effect transistor with ladder field oxygen Pending CN104979404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510267184.2A CN104979404A (en) 2015-05-22 2015-05-22 Lateral double-diffused metal oxide semiconductorfield-effect transistor with ladder field oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510267184.2A CN104979404A (en) 2015-05-22 2015-05-22 Lateral double-diffused metal oxide semiconductorfield-effect transistor with ladder field oxygen

Publications (1)

Publication Number Publication Date
CN104979404A true CN104979404A (en) 2015-10-14

Family

ID=54275730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510267184.2A Pending CN104979404A (en) 2015-05-22 2015-05-22 Lateral double-diffused metal oxide semiconductorfield-effect transistor with ladder field oxygen

Country Status (1)

Country Link
CN (1) CN104979404A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063158A (en) * 2017-12-06 2018-05-22 重庆邮电大学 A kind of LDMOS device with groove profile oxide layer and horizontal superjunction
CN109166915A (en) * 2018-08-28 2019-01-08 电子科技大学 A kind of medium superjunction MOS type power semiconductor and preparation method thereof
CN109860276A (en) * 2019-02-14 2019-06-07 长江存储科技有限责任公司 Semiconductor devices and forming method thereof
CN111276532A (en) * 2020-03-17 2020-06-12 合肥晶合集成电路有限公司 Semiconductor device and preparation method thereof
CN111933713A (en) * 2020-09-24 2020-11-13 晶芯成(北京)科技有限公司 Semiconductor device and method for manufacturing the same
CN113228297A (en) * 2021-02-25 2021-08-06 英诺赛科(苏州)科技有限公司 Semiconductor device and method for manufacturing the same
CN113990864A (en) * 2021-12-28 2022-01-28 广州粤芯半导体技术有限公司 Terminal structure layout of semiconductor device
CN114220849A (en) * 2022-02-23 2022-03-22 江苏游隼微电子有限公司 LDMOS device compatible with CMOS process
CN115084235A (en) * 2022-07-25 2022-09-20 北京芯可鉴科技有限公司 LDMOS device, preparation method and chip
US20230207692A1 (en) * 2020-10-29 2023-06-29 United Microelectronics Corp. High voltage semiconductor device including buried oxide layer
CN118136679A (en) * 2024-05-07 2024-06-04 北京智芯微电子科技有限公司 Double-gate LDMOS device based on heterojunction two-dimensional electron gas and manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163992A1 (en) * 2008-12-31 2010-07-01 Kim Mi-Young Semiconductor device and method for fabricating the same
US20100270616A1 (en) * 2009-04-24 2010-10-28 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
CN101916779A (en) * 2010-07-20 2010-12-15 中国科学院上海微系统与信息技术研究所 SOI Superjunction LDMOS Structure Can Completely Eliminate Substrate Assisted Depletion Effect
CN102244092A (en) * 2011-06-20 2011-11-16 电子科技大学 Junction termination structure of transverse high-pressure power semiconductor device
CN102254946A (en) * 2011-01-11 2011-11-23 苏州英诺迅科技有限公司 Radio frequency transverse diffusion N-type Metal Oxide Semiconductor (MOS) tube and manufacturing method thereof
CN102361031A (en) * 2011-10-19 2012-02-22 电子科技大学 Semiconductor device used for SOI (silicon-on-insulator) high-voltage integrated circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163992A1 (en) * 2008-12-31 2010-07-01 Kim Mi-Young Semiconductor device and method for fabricating the same
US20100270616A1 (en) * 2009-04-24 2010-10-28 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
CN101916779A (en) * 2010-07-20 2010-12-15 中国科学院上海微系统与信息技术研究所 SOI Superjunction LDMOS Structure Can Completely Eliminate Substrate Assisted Depletion Effect
CN102254946A (en) * 2011-01-11 2011-11-23 苏州英诺迅科技有限公司 Radio frequency transverse diffusion N-type Metal Oxide Semiconductor (MOS) tube and manufacturing method thereof
CN102244092A (en) * 2011-06-20 2011-11-16 电子科技大学 Junction termination structure of transverse high-pressure power semiconductor device
CN102361031A (en) * 2011-10-19 2012-02-22 电子科技大学 Semiconductor device used for SOI (silicon-on-insulator) high-voltage integrated circuit

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063158A (en) * 2017-12-06 2018-05-22 重庆邮电大学 A kind of LDMOS device with groove profile oxide layer and horizontal superjunction
CN109166915A (en) * 2018-08-28 2019-01-08 电子科技大学 A kind of medium superjunction MOS type power semiconductor and preparation method thereof
CN109860276A (en) * 2019-02-14 2019-06-07 长江存储科技有限责任公司 Semiconductor devices and forming method thereof
CN109860276B (en) * 2019-02-14 2022-08-09 长江存储科技有限责任公司 Semiconductor device and method of forming the same
CN111276532A (en) * 2020-03-17 2020-06-12 合肥晶合集成电路有限公司 Semiconductor device and preparation method thereof
CN111933713A (en) * 2020-09-24 2020-11-13 晶芯成(北京)科技有限公司 Semiconductor device and method for manufacturing the same
CN111933713B (en) * 2020-09-24 2021-02-05 晶芯成(北京)科技有限公司 Semiconductor device and method of manufacturing the same
US20230207692A1 (en) * 2020-10-29 2023-06-29 United Microelectronics Corp. High voltage semiconductor device including buried oxide layer
US12040396B2 (en) * 2020-10-29 2024-07-16 United Microelectronics Corp. High voltage semiconductor device including buried oxide layer
CN113228297A (en) * 2021-02-25 2021-08-06 英诺赛科(苏州)科技有限公司 Semiconductor device and method for manufacturing the same
US12154968B2 (en) 2021-02-25 2024-11-26 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing the same
CN113990864B (en) * 2021-12-28 2022-03-18 广州粤芯半导体技术有限公司 Termination structure layout of semiconductor devices
CN113990864A (en) * 2021-12-28 2022-01-28 广州粤芯半导体技术有限公司 Terminal structure layout of semiconductor device
CN114220849A (en) * 2022-02-23 2022-03-22 江苏游隼微电子有限公司 LDMOS device compatible with CMOS process
CN115084235B (en) * 2022-07-25 2023-01-17 北京芯可鉴科技有限公司 LDMOS device, preparation method and chip
CN115084235A (en) * 2022-07-25 2022-09-20 北京芯可鉴科技有限公司 LDMOS device, preparation method and chip
CN118136679A (en) * 2024-05-07 2024-06-04 北京智芯微电子科技有限公司 Double-gate LDMOS device based on heterojunction two-dimensional electron gas and manufacturing method
CN118136679B (en) * 2024-05-07 2024-07-09 北京智芯微电子科技有限公司 Dual-gate LDMOS device based on heterojunction two-dimensional electron gas and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN104979404A (en) Lateral double-diffused metal oxide semiconductorfield-effect transistor with ladder field oxygen
CN110998842B (en) Integrated circuit, LDMOS and fabrication method with ladder JFET, bottom gate and ballast drift
US8058129B2 (en) Lateral double diffused MOS device and method for manufacturing the same
CN108847423B (en) Semiconductor device and method for manufacturing the same
CN103489912B (en) A kind of high-voltage junction field-effect transistor
KR20100064263A (en) A semiconductor device and method for manufacturing the same
CN101916779B (en) SOI super junction LDMOS structure capable of completely eliminating substrate-assisted depletion effect
CN104835836B (en) A kind of lateral super-junction bilateral diffusion metal oxide semiconductor field-effect tube with dual field modulation
JP2010225833A (en) Semiconductor device
CN104124274A (en) Super junction lateral double diffusion metal oxide semiconductor field effect transistor and manufacturing method thereof
CN107093622A (en) A kind of longitudinal super-junction bilateral diffusion metal oxide semiconductor FET with semi-insulating polysilicon layer
CN105870189B (en) A Lateral Superjunction Double Diffused Metal Oxide Semiconductor Field Effect Transistor with Bulk Electric Field Modulation Effect
CN107093623A (en) A kind of vertical double-diffusion metal-oxide-semiconductor field effect transistor with broad-band gap backing material
JP6618615B2 (en) Laterally diffused metal oxide semiconductor field effect transistor
CN106129117A (en) A kind of lateral double-diffused metallic oxide semiconductor tube of high reliability
CN107579119B (en) Longitudinal super-junction double-diffusion metal oxide semiconductor field effect transistor with composite dielectric layer and manufacturing method thereof
CN106298943B (en) A lateral double-diffused metal-oxide-semiconductor field effect transistor with bulk electric field modulation
CN106129116B (en) A Folded Transverse Double Diffusion Metal Oxide Semiconductor Field Effect Transistor with Variable K Dielectric
CN110429137B (en) VDMOS with partial gallium nitride/silicon semiconductor material heterojunction and method of making the same
CN110212026B (en) Superjunction MOS device structure and preparation method thereof
CN103426913B (en) A kind of partial SOI ultra-junction high-voltage power semiconductor device
CN104332501B (en) NLDMOS device and its manufacture method
CN108091695A (en) Vertical bilateral diffusion field-effect tranisistor and preparation method thereof
CN103325834B (en) The formation method of transistor and channel length thereof
CN106206738A (en) A kind of accumulation type power DMOS device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151014

RJ01 Rejection of invention patent application after publication