CN104974718A - Refrigerant and applications thereof - Google Patents
Refrigerant and applications thereof Download PDFInfo
- Publication number
- CN104974718A CN104974718A CN201510370935.3A CN201510370935A CN104974718A CN 104974718 A CN104974718 A CN 104974718A CN 201510370935 A CN201510370935 A CN 201510370935A CN 104974718 A CN104974718 A CN 104974718A
- Authority
- CN
- China
- Prior art keywords
- refrigerant
- pentafluoropropane
- dimethyl ether
- performance
- fluoroethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 48
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims abstract description 43
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 claims abstract description 23
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims description 8
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 abstract description 33
- 230000007613 environmental effect Effects 0.000 abstract description 16
- 238000005057 refrigeration Methods 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 abstract description 5
- 238000009833 condensation Methods 0.000 abstract description 3
- 230000005494 condensation Effects 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 3
- 239000004338 Dichlorodifluoromethane Substances 0.000 abstract description 2
- 230000006378 damage Effects 0.000 abstract description 2
- 235000019404 dichlorodifluoromethane Nutrition 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 description 10
- 238000009835 boiling Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/122—Halogenated hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种低GWP(温室效应潜能)值、高效能冰箱混合制冷剂,包括1,1,1,3,3-五氟丙烷(C3H3F5,R245fa),氟乙烷(C2H5F,R161)和二甲醚(C2H6O,DME),其所占质量百分比为:1,1,1,3,3-五氟丙烷:2%~15%;氟乙烷:0%~20%;二甲醚:65%~98%。该混合制冷剂的ODP(臭氧破坏潜能)为0,GWP值小于120,环保性能优异,且单位质量、单位容积制冷量与R12(二氯二氟甲烷,氟利昂)相当,COP(制冷性能系数)略高于R12,同时具有与R12较为接近的蒸发和冷凝压力,可直接充注于原使用R12的制冷系统,具有替代成本低和节能环保优点。The invention discloses a low GWP (Greenhouse Effect Potential) value, high-efficiency refrigerator mixed refrigerant, including 1,1,1,3,3-pentafluoropropane (C 3 H 3 F 5 , R245fa), fluoroethane (C 2 H 5 F, R161) and dimethyl ether (C 2 H 6 O, DME), the mass percentage of which is: 1,1,1,3,3-pentafluoropropane: 2%~15%; Fluoroethane: 0%~20%; Dimethyl ether: 65%~98%. The ODP (Ozone Destruction Potential) of the mixed refrigerant is 0, the GWP value is less than 120, and the environmental protection performance is excellent, and the cooling capacity per unit mass and unit volume is equivalent to R12 (dichlorodifluoromethane, Freon), and the COP (refrigeration coefficient of performance) It is slightly higher than R12, and has the evaporation and condensation pressure closer to R12. It can be directly charged into the refrigeration system that originally used R12. It has the advantages of low replacement cost, energy saving and environmental protection.
Description
技术领域 technical field
本发明涉及一种制冷剂,具体涉及一种家用冰箱系统中,不破坏大气臭氧层(ODP为0)、温室效应极低且热力学性能优良的制冷剂混合物。 The invention relates to a refrigerant, in particular to a refrigerant mixture in a household refrigerator system that does not destroy the atmospheric ozone layer (ODP is 0), has extremely low greenhouse effect and has excellent thermodynamic properties.
背景技术 Background technique
制冷剂是制冷系统实现能量转化和利用的载体,其热力学性能的优劣对系统能量利用效率起至关重要的作用。近年来,臭氧层破坏和温室效应两大环境问题引发了全球性的关注。二氯二氟甲烷(CCl2F2,R12)作为一种曾经很长一段时间应用于冰箱制冷系统、具有较高制冷效率的制冷剂,由于含有氯原子而破环臭氧层,同时又具有较高的温室效应潜能,已经被禁止生产和使用。 Refrigerant is the carrier of energy conversion and utilization in the refrigeration system, and its thermodynamic performance plays a crucial role in the energy utilization efficiency of the system. In recent years, the two major environmental problems of ozone layer depletion and greenhouse effect have aroused global attention. Dichlorodifluoromethane (CCl 2 F 2 , R12), as a refrigerant that has been used in refrigerator refrigeration systems for a long time and has high refrigeration efficiency, destroys the ozone layer because it contains chlorine atoms, and at the same time has high The greenhouse effect potential, has been banned production and use.
新型环保节能工质要求具有更加优良的环境性能。首先,臭氧破坏潜能(ODP)为0,温室效应潜能(GWP)较小;其次,安全性能好,即可燃性较低或不可燃;第三,毒性小,符合国家相关规定;第四,热力学性能优良,具有较高的循环效率。一般地,已有的纯质制冷剂很难满足替代制冷剂的所有要求,混合制冷剂可能会集中各组元优势,形成满足环保、安全和性能等诸多要求的新型制冷剂。同时混合制冷剂使用成本低廉,有助于缓解我国应对淘汰CFCs和HCFCs类制冷剂和产业升级面临的压力。 The new environment-friendly and energy-saving working fluid requires better environmental performance. First, the ozone destruction potential (ODP) is 0, and the greenhouse effect potential (GWP) is small; second, the safety performance is good, that is, low flammability or non-flammability; third, the toxicity is small, in line with relevant national regulations; fourth, thermodynamics Excellent performance and high cycle efficiency. Generally, existing pure refrigerants are difficult to meet all the requirements of alternative refrigerants, and mixed refrigerants may concentrate the advantages of each component to form a new type of refrigerant that meets many requirements such as environmental protection, safety and performance. At the same time, the cost of mixed refrigerants is low, which will help alleviate the pressure faced by my country in dealing with the elimination of CFCs and HCFCs refrigerants and industrial upgrading.
但是,目前混合制冷剂的主元均为HFCs类物质,ODP值均为0,却具有较高的GWP值,不能作为长期替代制冷剂。公开号为CN101671544A的发明专利,提出了组元为R22、R142b和R21的混合制冷剂用于替代R12。该混合制冷剂所有组元均含有氯原子,其ODP值不为零,因此不能称为环保型制冷剂。公开号为CN1740262A的发明专利,提出了组元为R290、R600a和THT(四氢噻酚)的混合制冷剂,用于替代R12时的质量配比为:61%、38.5%和0.5%。其中组元R290和R600a均为易燃易爆物质且占有99.5%的质量比例,限制了混合制冷剂的充灌量。公开号为CN101307223A的发明专利提出组元为R134、R152a和R600a的混合制冷剂,其优化质量配比为1% ~ 25%、40% ~ 81%和18% ~ 35%。该制冷剂具有较小的冷凝、蒸发滑移温度,热力学性能略低于R12,但由于含有较大质量配比的R134a和R152a,而这两种制冷剂GWP均较高,因此环保性能较差。公开号为CN101003723A的发明专利公开了一种组元为R152a、R227ea和R125的混合制冷剂,三种组元均具有较高的GWP值,因此不具备较好的环保性能。 However, the main components of the current mixed refrigerants are all HFCs, and the ODP value is 0, but they have a high GWP value, so they cannot be used as long-term replacement refrigerants. The invention patent with the publication number CN101671544A proposes a mixed refrigerant whose components are R22, R142b and R21 to replace R12. All components of this mixed refrigerant contain chlorine atoms, and its ODP value is not zero, so it cannot be called an environmentally friendly refrigerant. The invention patent with the publication number CN1740262A proposes a mixed refrigerant whose components are R290, R600a and THT (tetrahydrothiophene), and the mass ratio when used to replace R12 is: 61%, 38.5% and 0.5%. Among them, the components R290 and R600a are both flammable and explosive substances and account for 99.5% by mass, which limits the charging amount of the mixed refrigerant. The invention patent with the publication number CN101307223A proposes a mixed refrigerant whose components are R134, R152a and R600a, and its optimized mass ratio is 1% to 25%, 40% to 81% and 18% to 35%. This refrigerant has a small condensation and evaporation glide temperature, and its thermodynamic performance is slightly lower than that of R12, but because it contains a large mass ratio of R134a and R152a, and the GWP of these two refrigerants is high, the environmental performance is poor. . The invention patent with publication number CN101003723A discloses a mixed refrigerant whose components are R152a, R227ea and R125. All three components have high GWP values, so they do not have good environmental performance.
现有的专利中提出的制冷剂混合物往往存在GWP值偏高、或具有可燃性、或容积制冷量较小、或温度滑移较大等缺点,因此开发具有较高制冷性能、更好的与现有系统兼容性以及具有更佳环保性能的冰箱制冷剂显得尤为急迫。 The refrigerant mixtures proposed in existing patents often have disadvantages such as high GWP value, or flammability, or small volumetric cooling capacity, or large temperature glide, so the development of refrigerants with higher refrigeration performance and better compatibility with Refrigerator refrigerants that are compatible with existing systems and have better environmental performance are particularly urgent.
发明内容 Contents of the invention
本发明旨在提供一种混合制冷剂,该种混合制冷剂的环保性能和热力学性能接近或优于R12,可在使用R12的系统中不改变任何部件直接替代使用,是一种低替代成本的制冷剂。 The present invention aims to provide a mixed refrigerant whose environmental protection performance and thermodynamic performance are close to or better than R12, which can be directly replaced without changing any parts in the system using R12, and is a low replacement cost. Refrigerant.
本发明提供的一种制冷剂,包括下列质量百分比的原料: A kind of refrigerant provided by the present invention comprises the raw material of following mass percentage:
1,1,1,3,3-五氟丙烷:2% ~ 15%; 1,1,1,3,3-Pentafluoropropane: 2% ~ 15%;
氟乙烷:0% ~20%; Fluoroethane: 0% ~ 20%;
二甲醚:65% ~ 98%; Dimethyl ether: 65% ~ 98%;
其中各组元质量百分比和为100%。 The sum of the mass percentages of each component is 100%.
作为一种优选方案,上述制冷剂,包括下列质量百分比的原料: As a preferred version, the above-mentioned refrigerant includes the following raw materials in mass percentage:
1,1,1,3,3-五氟丙烷:2% ~ 14%; 1,1,1,3,3-Pentafluoropropane: 2% ~ 14%;
二甲醚:86% ~ 98%; Dimethyl ether: 86% ~ 98%;
其中各组元质量百分比和为100%。 The sum of the mass percentages of each component is 100%.
进一步地,上述制冷剂,包括下列质量百分比的原料: Further, the above-mentioned refrigerant includes the following raw materials in mass percentage:
1,1,1,3,3-五氟丙烷: 7% ~ 12%; 1,1,1,3,3-Pentafluoropropane: 7% ~ 12%;
二甲醚: 88% ~ 93%; Dimethyl ether: 88% ~ 93%;
其中各组元质量百分比和为100%。 The sum of the mass percentages of each component is 100%.
作为另一种优选方案,上述制冷剂,包括下列质量百分比的原料: As another preferred solution, the above-mentioned refrigerant includes the following raw materials in mass percentage:
1,1,1,3,3-五氟丙烷:8% ~ 10 %; 1,1,1,3,3-Pentafluoropropane: 8% ~ 10%;
氟乙烷:10% ~20%; Fluoroethane: 10% ~ 20%;
二甲醚:70% ~ 82%; Dimethyl ether: 70% ~ 82%;
其中各组元质量百分比和为100%。 The sum of the mass percentages of each component is 100%.
本发明提供了所述的制冷剂在家用冰箱中替代R12的应用。 The invention provides the application of the refrigerant to replace R12 in household refrigerators.
本发明提供的混合制冷剂适合用于替代R12,尤其适合在家用冰箱中用于替代R12。当在在家用冰箱中用于替代R12时,所述家用冰箱系统可以不改变任何设备部件,直接充灌所述混合制冷剂以替代R12。 The mixed refrigerant provided by the invention is suitable for replacing R12, especially suitable for replacing R12 in household refrigerators. When used in a household refrigerator to replace R12, the household refrigerator system may directly charge the mixed refrigerant to replace R12 without changing any equipment components.
本发明的有益效果: Beneficial effects of the present invention:
(1)环境性能优良,ODP值为0,GWP值小于120; (1) Excellent environmental performance, ODP value is 0, GWP value is less than 120;
(2)添加阻燃成分1,1,1,3,3-五氟丙烷,可以削弱混合制冷剂的可燃性,提高安全性,增加制冷剂的充灌量; (2) Adding the flame retardant component 1,1,1,3,3-pentafluoropropane can weaken the flammability of the mixed refrigerant, improve safety, and increase the refrigerant charge;
(3)蒸发压力、冷凝压力、压比和单位容积制冷量等均与R12相当,温度滑移较小,COP值接近或优于R12; (3) The evaporating pressure, condensing pressure, pressure ratio and cooling capacity per unit volume are all equivalent to R12, the temperature glide is small, and the COP value is close to or better than R12;
(4)可以不改变设备任何部件的前提下,直接充灌于原使用R12的家用冰箱系统。 (4) On the premise of not changing any parts of the equipment, it can be directly charged to the original household refrigerator system using R12.
具体实施方式 Detailed ways
下面通过实施例来进一步说明本发明,但不局限于以下实施例。 The present invention is further illustrated by the following examples, but not limited to the following examples.
本发明提供的制冷剂,其制备方法是将1,1,1,3,3-五氟丙烷,氟乙烷和二甲醚按照其相应的质量配比在液相状态下进行物理混合。 The refrigerant provided by the invention is prepared by physically mixing 1,1,1,3,3-pentafluoropropane, fluoroethane and dimethyl ether in a liquid state according to their corresponding mass proportions.
上述组分中的1,1,1,3,3-五氟丙烷 (阻燃剂),分子量为134.05 g·mol-1,标准沸点为-15.14℃,临界温度为154.01℃,临界压力为3.651 MPa, GWP值为858。 The 1,1,1,3,3-pentafluoropropane (flame retardant) in the above components has a molecular weight of 134.05 g·mol -1 , a standard boiling point of -15.14°C, a critical temperature of 154.01°C, and a critical pressure of 3.651 MPa, GWP value is 858.
上述组分中的氟乙烷,分子量为46.06 g·mol-1,标准沸点为-34.55℃,临界温度为102.15℃,临界压力为5.091 MPa, GWP值为4。 Fluoroethane in the above components has a molecular weight of 46.06 g·mol -1 , a standard boiling point of -34.55°C, a critical temperature of 102.15°C, a critical pressure of 5.091 MPa, and a GWP of 4.
上述组分中的二甲醚,其分子量为46.07g·mol-1,标准沸点为-24.78℃,临界温度为127.15℃,临界压力为5.337 MPa,GWP值为0。 The dimethyl ether in the above components has a molecular weight of 46.07g·mol -1 , a standard boiling point of -24.78°C, a critical temperature of 127.15°C, a critical pressure of 5.337 MPa, and a GWP value of 0.
下面列出几种实施例来说明本发明的具体实施过程,但本发明并非仅限于以下几种实施例,凡包含本发明组元和配比,以及与本发明中的混合制冷剂筛选思路和实施方式均属本发明保护范围。 Several examples are listed below to illustrate the specific implementation process of the present invention, but the present invention is not limited to the following examples, all of which include the components and proportions of the present invention, as well as the screening ideas and concepts of mixed refrigerants in the present invention. The implementation modes all belong to the protection scope of the present invention.
实施例1:将1,1,1,3,3-五氟丙烷和二甲醚按照5∶95的质量百分比在液相状态下进行物理混合。 Example 1: 1,1,1,3,3-pentafluoropropane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 5:95.
实施例2:将1,1,1,3,3-五氟丙烷和二甲醚按照7∶93的质量百分比在液相状态下进行物理混合。 Example 2: 1,1,1,3,3-pentafluoropropane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 7:93.
实施例3:将1,1,1,3,3-五氟丙烷和二甲醚按照9∶91的质量百分比在液相状态下进行物理混合。 Example 3: 1,1,1,3,3-pentafluoropropane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 9:91.
实施例4:将1,1,1,3,3-五氟丙烷和二甲醚按照11∶89的质量百分比在液相状态下进行物理混合。 Example 4: 1,1,1,3,3-pentafluoropropane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 11:89.
实施例5:将1,1,1,3,3-五氟丙烷和二甲醚按照13∶87的质量百分比在液相状态下进行物理混合。 Example 5: 1,1,1,3,3-pentafluoropropane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 13:87.
实施例6:将1,1,1,3,3-五氟丙烷,氟乙烷和二甲醚按照8∶10∶82的质量百分比在液相状态下进行物理混合。 Example 6: 1,1,1,3,3-pentafluoropropane, fluoroethane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 8:10:82.
实施例7:将1,1,1,3,3-五氟丙烷,氟乙烷和二甲醚按照8∶20∶72的质量百分比在液相状态下进行物理混合。 Example 7: 1,1,1,3,3-pentafluoropropane, fluoroethane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 8:20:72.
实施例8:将1,1,1,3,3-五氟丙烷,氟乙烷和二甲醚按照10∶10∶80的质量百分比在液相状态下进行物理混合。 Example 8: 1,1,1,3,3-pentafluoropropane, fluoroethane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 10:10:80.
实施例9:将1,1,1,3,3-五氟丙烷,氟乙烷和二甲醚按照10∶20∶70的质量百分比在液相状态下进行物理混合。 Example 9: 1,1,1,3,3-pentafluoropropane, fluoroethane and dimethyl ether were physically mixed in a liquid state at a mass percentage of 10:20:70.
通过分析上述实施例,并与R12的性能做比较,可以发现本发明的特点和效果。下面通过具体数据来分析上述实施例与R12的环保性能和热力性能。 By analyzing the above embodiment and comparing it with the performance of R12, the characteristics and effects of the present invention can be found. The environmental protection performance and thermal performance of the above-mentioned embodiment and R12 are analyzed through specific data below.
1、环保性能 1. Environmental performance
表1比较了上述实施例与R12的环保性能。其中ODP值以R12作为基准值并取1.0;GWP值以CO2作为基准值,并取1.0。 Table 1 compares the environmental protection performance of the above-mentioned embodiments and R12. The ODP value takes R12 as the benchmark value and takes 1.0; the GWP value takes CO2 as the benchmark value and takes 1.0.
表1环保性能比较 Table 1 Environmental Performance Comparison
从表中的数据可以看出,本发明的ODP值均为0,且GWP值均小于120,与R12相比具有较为显著的环保性能。 It can be seen from the data in the table that the ODP values of the present invention are all 0, and the GWP values are all less than 120, which has more remarkable environmental performance compared with R12.
2、温度滑移和热力性能 2. Temperature glide and thermal performance
表2温度滑移表 Table 2 Temperature slip table
从表中可见,各实施例的温度滑移均比较小,有利于提高家用冰箱系统的热力学性能。 It can be seen from the table that the temperature glide of each embodiment is relatively small, which is conducive to improving the thermodynamic performance of the household refrigerator system.
本发明计算采用的家用冰箱标准工况为:蒸发温度-23.3℃,冷凝温度54.4℃,过热度11.1℃,过冷度5℃。在此工况下,对上述实施例进行热力学计算得到热力性能(蒸发压力p e、冷凝压力p con、压比π=p con/p e)和相对热力性能(相对COPR、相对单位质量制冷量q m、相对单位容积制冷量q v),并与R12的热力性能比较,见表3。相对热力性能是指各实施例热力性能与R12在上述工况下的热力性能的比值。 The standard operating conditions of the domestic refrigerator used in the calculation of the present invention are: evaporation temperature -23.3°C, condensation temperature 54.4°C, superheat degree 11.1°C, and supercooling degree 5°C. Under this working condition, thermodynamic calculations are carried out on the above examples to obtain thermodynamic performance (evaporating pressure p e , condensing pressure p con , pressure ratio π = p con / p e ) and relative thermodynamic performance (relative COP R , relative refrigeration per unit mass Quantity q m , relative unit volume refrigerating capacity q v ), and compared with the thermal performance of R12, see Table 3. The relative thermal performance refers to the ratio of the thermal performance of each embodiment to the thermal performance of R12 under the above working conditions.
表3热工参数及热力性能的比较 Table 3 Comparison of thermal parameters and thermal performance
可以看出,上述实施例的蒸发压力、冷凝压力以及压比均与R12较为接近;同时单位质量制冷量约为R12的2.8倍,且COP值均大于R12。实施例1-5为二元纯质,其单位容积制冷量较R12略低;实施例6-9为三元纯质,其单位容积制冷量与R12相当。 It can be seen that the evaporating pressure, condensing pressure and pressure ratio of the above embodiment are all close to those of R12; at the same time, the cooling capacity per unit mass is about 2.8 times that of R12, and the COP value is greater than that of R12. Embodiments 1-5 are binary pure substances, and their cooling capacity per unit volume is slightly lower than that of R12; Examples 6-9 are ternary pure substances, and their cooling capacity per unit volume is equivalent to that of R12.
综合来看,本发明实施例中所得的混合制冷剂,具有优异的环保性能,较高的安全性和经济性,可以作为R12的长期替代制冷剂。 In general, the mixed refrigerant obtained in the embodiment of the present invention has excellent environmental performance, high safety and economy, and can be used as a long-term substitute refrigerant for R12.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510370935.3A CN104974718B (en) | 2015-06-30 | 2015-06-30 | A kind of refrigerant and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510370935.3A CN104974718B (en) | 2015-06-30 | 2015-06-30 | A kind of refrigerant and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104974718A true CN104974718A (en) | 2015-10-14 |
CN104974718B CN104974718B (en) | 2018-10-23 |
Family
ID=54271695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510370935.3A Expired - Fee Related CN104974718B (en) | 2015-06-30 | 2015-06-30 | A kind of refrigerant and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104974718B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106479443A (en) * | 2016-09-29 | 2017-03-08 | 太原理工大学 | A kind of environment protection energy-saving type heat pump mixed working fluid and its application |
CN110373157A (en) * | 2019-07-22 | 2019-10-25 | 珠海格力电器股份有限公司 | Refrigerant composition and method for preparing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6641752B2 (en) * | 1996-11-04 | 2003-11-04 | E. I. Du Pont De Nemours And Company | Azeotrope-like compositions containing fluoroethane |
CN101624513A (en) * | 2009-08-03 | 2010-01-13 | 江苏天腾化工有限公司 | Carbon-hydrogen mixed refrigerant for vehicle air-conditioner and preparation method thereof |
CN101624512A (en) * | 2009-08-03 | 2010-01-13 | 江苏天腾化工有限公司 | Carbon-hydrogen mixed refrigerant for air-conditioner and preparation method thereof |
CN103965836A (en) * | 2014-04-02 | 2014-08-06 | 浙江大学 | Environment-friendly refrigerant for automobile air conditioner and preparation method of refrigerant |
-
2015
- 2015-06-30 CN CN201510370935.3A patent/CN104974718B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6641752B2 (en) * | 1996-11-04 | 2003-11-04 | E. I. Du Pont De Nemours And Company | Azeotrope-like compositions containing fluoroethane |
CN101624513A (en) * | 2009-08-03 | 2010-01-13 | 江苏天腾化工有限公司 | Carbon-hydrogen mixed refrigerant for vehicle air-conditioner and preparation method thereof |
CN101624512A (en) * | 2009-08-03 | 2010-01-13 | 江苏天腾化工有限公司 | Carbon-hydrogen mixed refrigerant for air-conditioner and preparation method thereof |
CN103965836A (en) * | 2014-04-02 | 2014-08-06 | 浙江大学 | Environment-friendly refrigerant for automobile air conditioner and preparation method of refrigerant |
Non-Patent Citations (2)
Title |
---|
ZHAO YANG: "Theoretical and experimental investigation on the flame-retarding characteristic of R245fa", 《EXPERIMENTAL THERMAL AND FLUID SCIENCE》 * |
王辉等: "一种新型天然混合工质在汽车空调系统中替代R134a的试验研究", 《流体机械》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106479443A (en) * | 2016-09-29 | 2017-03-08 | 太原理工大学 | A kind of environment protection energy-saving type heat pump mixed working fluid and its application |
CN110373157A (en) * | 2019-07-22 | 2019-10-25 | 珠海格力电器股份有限公司 | Refrigerant composition and method for preparing same |
Also Published As
Publication number | Publication date |
---|---|
CN104974718B (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101824305B (en) | Mixed refrigerant containing trifluoroiodomethane | |
CN104531079A (en) | Mixed refrigerant containing tetrafluoropropene | |
CN103820082B (en) | Environmental protection refrigerant for ultralow-temperature refrigeration system | |
CN101649189B (en) | Environmental mixed refrigerant with trifluoroiodomethane | |
CN101157849A (en) | Environment-friendly type refrigerant | |
CN104974718B (en) | A kind of refrigerant and its application | |
CN104974717B (en) | A kind of environment-friendly and energy-efficient refrigerator refrigerant | |
CN110845997A (en) | Heat transfer medium and composition suitable for cooler | |
CN102241962A (en) | Composition with low global warming potential (GWP) value | |
CN105820800A (en) | Environment-friendly type refrigeration composition | |
CN101649188B (en) | Environment-friendly mixed refrigerant | |
CN105820799A (en) | Environment-friendly type refrigeration composition containing HFO-1234ze(E) | |
CN102229794A (en) | Refrigerant composition with low GWP (Global Warming Potential) value | |
CN106543965B (en) | A kind of ternary mixed refrigerant | |
CN106543963B (en) | An environmentally friendly refrigeration composition | |
CN104263322B (en) | A kind of mixed refrigerant replacing R502 and its preparation method and application | |
CN113388370A (en) | Ternary mixed refrigerant capable of replacing R134a and application thereof | |
CN109810674B (en) | Novel refrigerant replacing R134a | |
CN102766438A (en) | Mixed refrigerant containing trifluoroiodomethane | |
CN102925109B (en) | Mixed refrigerant containing trifluoroiodomethane | |
CN101381595A (en) | A kind of environment-friendly mixed refrigerant for air conditioner | |
CN114605964A (en) | Environment-friendly mixed refrigerant, refrigeration system, method for improving energy efficiency and refrigeration equipment | |
CN1793276A (en) | Environment protection type refrigerant for middle and low temp, refrigerating system | |
CN113980650B (en) | A refrigerant suitable for refrigeration heat pump systems | |
CN102925108A (en) | Mixed refrigerant containing trifluoroiodomethane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181023 |
|
CF01 | Termination of patent right due to non-payment of annual fee |