CN104961094A - Cell microarray structure based on MEMS process and preparation method of cell microarray structure - Google Patents
Cell microarray structure based on MEMS process and preparation method of cell microarray structure Download PDFInfo
- Publication number
- CN104961094A CN104961094A CN201510430395.3A CN201510430395A CN104961094A CN 104961094 A CN104961094 A CN 104961094A CN 201510430395 A CN201510430395 A CN 201510430395A CN 104961094 A CN104961094 A CN 104961094A
- Authority
- CN
- China
- Prior art keywords
- cell microarray
- silicon
- silicon substrate
- etching process
- mems technology
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000002493 microarray Methods 0.000 title claims abstract description 39
- 230000008569 process Effects 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 50
- 239000010703 silicon Substances 0.000 claims abstract description 50
- 238000000708 deep reactive-ion etching Methods 0.000 claims abstract description 23
- 239000002070 nanowire Substances 0.000 claims abstract description 20
- 238000005516 engineering process Methods 0.000 claims abstract description 19
- 230000003647 oxidation Effects 0.000 claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 21
- 238000005530 etching Methods 0.000 claims description 18
- 238000004140 cleaning Methods 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 7
- 238000000206 photolithography Methods 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000001312 dry etching Methods 0.000 abstract description 6
- 238000010923 batch production Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 21
- 239000000243 solution Substances 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000021164 cell adhesion Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010668 complexation reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000005543 nano-size silicon particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 230000003075 superhydrophobic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000035992 intercellular communication Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005329 nanolithography Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种基于MEMS工艺的细胞微阵列结构及其制备方法,所述结构分为槽型结构、柱型结构。所述槽型结构主要通过一次DRIE干法刻蚀结合热氧化工艺实现;柱型结构主要通过两次DRIE干法刻蚀结合热氧化工艺实现,且其阵列单元中的硅微纳米线只位于柱顶端;以上结构所采用的制备方法均为成熟的MEMS工艺,具有制作成本低、制作周期短、可批量制作等优点。
The invention relates to a cell microarray structure based on MEMS technology and a preparation method thereof. The structure is divided into a groove structure and a column structure. The groove structure is mainly realized by one DRIE dry etching combined with a thermal oxidation process; the pillar structure is mainly realized by two DRIE dry etching combined with a thermal oxidation process, and the silicon micro-nano wires in the array unit are only located on the pillars. Top: The preparation methods used in the above structures are all mature MEMS technology, which has the advantages of low production cost, short production cycle, and batch production.
Description
技术领域technical field
本发明涉及用于细胞生物学研究的细胞微阵列结构,尤其涉及采用MEMS工艺制作在硅基衬底上的不同细胞微阵列。属于微电子机械系统领域。The invention relates to a cell microarray structure used for cell biology research, in particular to different cell microarrays fabricated on a silicon base substrate by MEMS technology. It belongs to the field of microelectromechanical systems.
背景技术Background technique
目前,细胞与衬底之间的相互作用在生物与化学界引起了巨大的关注。对于生物传感、植入式生物材料以及组织工程领域而言,如何控制细胞在特定的区域黏附是急需解决的一个问题。具有纳米粗糙度的表面结构(比如纳米针、纳米突起以及纳米孔等)对细胞有黏附作用,这些纳米结构已经可以通过一系列方法实现,包括纳米压印、电子束纳米光刻以及注塑等方法。Currently, the interaction between cells and substrates has attracted great attention in the fields of biology and chemistry. For the fields of biosensing, implantable biomaterials, and tissue engineering, how to control cell adhesion in a specific area is an urgent problem to be solved. Surface structures with nanometer roughness (such as nanoneedles, nanoprotrusions, and nanopores, etc.) have an adhesion effect on cells. These nanostructures have been realized by a series of methods, including nanoimprinting, electron beam nanolithography, and injection molding. .
以微机电系统(MEMS)为基础的细胞微阵列芯片受到科研人员广泛重视。通过微加工技术在基底上构建微尺度的图形结构,并通过物理化学修饰对表面进行改性,使得细胞在特定区域实现选择性黏附,从而形成有序的细胞微阵列。在细胞微阵列芯片上通过对培养环境的控制或者对黏附区域的特定设计,分析细胞的生长行为变化及相关成分的改变,可进行对细胞分化、转染、细胞间通讯等生物学和基因组文库筛选、药物筛选等医学研究。与荧光分析手段和计算图像处理技术相结合,二维平面的细胞阵列芯片具有便捷聚焦、高通量筛选和快速数据处理的优点,提高了实验效率;同时实现了实验平台的小型化,有效降低了科研成本。Cell microarray chips based on microelectromechanical systems (MEMS) have been widely valued by researchers. Micro-scale graphic structures are constructed on the substrate by micro-fabrication technology, and the surface is modified by physical and chemical modification, so that cells can achieve selective adhesion in specific areas, thereby forming an ordered cell microarray. On the cell microarray chip, through the control of the culture environment or the specific design of the adhesion area, the changes in the growth behavior of cells and the changes in related components can be analyzed, and biological and genomic libraries such as cell differentiation, transfection, and intercellular communication can be carried out. Screening, drug screening and other medical research. Combined with fluorescence analysis methods and computational image processing technology, the two-dimensional planar cell array chip has the advantages of convenient focusing, high-throughput screening and fast data processing, which improves the experimental efficiency; at the same time, it realizes the miniaturization of the experimental platform, effectively reducing the research costs.
发明内容Contents of the invention
为了克服生物学上的药物筛选等传统实验分析方法具有需要大数量的样本以及无法进行实时分析的缺点,本发明提供一种基于MEMS工艺的细胞微阵列结构制备方法,该方法至少包括以下步骤:In order to overcome the shortcomings of traditional experimental analysis methods such as biological drug screening that require a large number of samples and cannot be analyzed in real time, the present invention provides a method for preparing a cell microarray structure based on MEMS technology, which at least includes the following steps:
1)提供一硅衬底;1) providing a silicon substrate;
2)在所述硅衬底上表面旋涂光刻胶,光刻并显影形成图形化阵列结构;2) spin-coating photoresist on the upper surface of the silicon substrate, photolithography and developing to form a patterned array structure;
3)采用DRIE刻蚀工艺在所述硅衬底上形成硅微纳米线;3) using a DRIE etching process to form silicon micro-nano wires on the silicon substrate;
4)进行热氧化,形成氧化硅层。4) Perform thermal oxidation to form a silicon oxide layer.
作为本发明的优选方案之一,所述步骤3)采用DRIE刻蚀工艺在所述硅衬底上形成硅微纳米线的具体工艺如下:采用DRIE刻蚀工艺在所述硅衬底上形成深槽,该深槽中形成有若干直径为200-1000纳米,高度11-12微米的硅微纳米线。As one of the preferred solutions of the present invention, the step 3) adopts the DRIE etching process to form silicon micro-nanowires on the silicon substrate. The specific process is as follows: adopt the DRIE etching process to form deep The deep groove is formed with a number of silicon micro-nano wires with a diameter of 200-1000 nanometers and a height of 11-12 micrometers.
作为本发明的优选方案之一,所述步骤1)中的硅衬底为SOI硅片。As one of the preferred solutions of the present invention, the silicon substrate in step 1) is an SOI silicon wafer.
作为本发明的优选方案之一,所述步骤3)采用DRIE刻蚀工艺在所述硅衬底上形成硅微纳米线的具体工艺如下:采用DRIE刻蚀工艺刻蚀至SOI硅片的埋层氧化层,形成柱状结构;去除光刻胶后再次进行DRIE刻蚀工艺,在所述柱状结构上形成硅微纳米线。As one of the preferred solutions of the present invention, the step 3) adopts the DRIE etching process to form silicon micro-nano wires on the silicon substrate. The specific process is as follows: adopt the DRIE etching process to etch the buried layer of the SOI silicon wafer an oxide layer to form a columnar structure; after removing the photoresist, perform a DRIE etching process again to form silicon micro-nano wires on the columnar structure.
作为本发明的优选方案之一,所述步骤1)中的硅衬底为单面抛光(100)晶向n型单晶硅片。As one of the preferred solutions of the present invention, the silicon substrate in step 1) is a single-sided polished (100) crystal-oriented n-type single crystal silicon wafer.
作为本发明的优选方案之一,所述步骤1)中还包括清洗硅衬底的步骤。As one of the preferred solutions of the present invention, the step 1) also includes the step of cleaning the silicon substrate.
作为本发明的优选方案之一,所述步骤2)中图形化阵列结构为圆形阵列,每个圆半径为10um,相邻圆心距为40um。As one of the preferred solutions of the present invention, the patterned array structure in step 2) is a circular array, each circle has a radius of 10um, and the distance between adjacent circle centers is 40um.
本发明还提供一种细胞微阵列结构。The invention also provides a cell microarray structure.
本发明采用工艺成熟的MEMS技术,实现简易快速地制备不同的微阵列结构,微阵列结构制作完成后,划片取得所需大小的微阵列芯片,将微阵列芯片放入细胞培养液中进行细胞黏附培养,细胞会自动粘附生长在经过处理的超亲水纳米氧化硅区域,最终得到所设计的定点可控的细胞微阵列结构。The present invention adopts MEMS technology with mature technology to realize simple and rapid preparation of different microarray structures. Adhesion culture, the cells will automatically adhere and grow on the treated super-hydrophilic nano-silica region, and finally obtain the designed cell microarray structure with controllable fixed point.
附图说明Description of drawings
图1a-1b为本发明所述槽型结构示意图。Figures 1a-1b are schematic diagrams of the groove structure of the present invention.
图2a-2b为本发明所述柱型结构示意图。2a-2b are schematic diagrams of the columnar structure of the present invention.
图3为本发明所述槽型结构制作流程示意图。Fig. 3 is a schematic diagram of the manufacturing process of the groove structure of the present invention.
图4为本发明所述槽型结构SEM图。Fig. 4 is an SEM image of the groove structure of the present invention.
图5为本发明所述槽型结构的细胞黏附荧光图。Fig. 5 is a fluorescence image of cell adhesion of the trough structure of the present invention.
图6为本发明所述柱型结构制作流程示意图。Fig. 6 is a schematic diagram of the manufacturing process of the columnar structure of the present invention.
图7为本发明所述柱型结构SEM图。Fig. 7 is an SEM image of the columnar structure of the present invention.
元件标号说明Component designation description
硅衬底 3Silicon substrate 3
图形化光刻胶 4、8Patterned photoresist 4, 8
硅微纳米线 5、10Silicon micro-nano wires 5, 10
氧化硅层 6、11Silicon oxide layer 6, 11
柱状结构 9Columnar structure 9
非微阵列结构区域 2Non-microarray structure area 2
圆形阵列 1circular array 1
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the diagrams provided in the following embodiments are only schematically illustrating the basic ideas of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
本发明采用工艺成熟的MEMS技术,实现简易快速地制备不同的微阵列结构。The invention adopts the MEMS technology with mature technology to realize simple and rapid preparation of different microarray structures.
本发明中槽型结构和柱形结构是利用MEMS干法刻蚀工艺结合热氧化工艺实现。制备工艺流程如下所述。The groove structure and the column structure in the present invention are realized by using MEMS dry etching process combined with thermal oxidation process. The preparation process flow is as follows.
槽型结构的主要制作流程为:The main production process of the groove structure is as follows:
(1)选择合适硅片并清洗。(1) Select a suitable silicon wafer and clean it.
(2)光刻以形成所需微阵列图形。(2) Photolithography to form the desired microarray pattern.
(3)通过DRIE(Deep Reactive Ion Etching,深反应离子刻蚀)干法刻蚀工艺在微阵列单元中形成硅微纳米线。(3) Silicon micro-nano wires are formed in the microarray unit by DRIE (Deep Reactive Ion Etching, deep reactive ion etching) dry etching process.
(4)去胶并进行热氧化,将微阵列单元中硅微纳米线转变为氧化硅纳米线结构,从而使得微阵列区域从超疏水性转变为超亲水性。(4) Degumming and thermal oxidation are performed to transform the silicon micro-nanowires in the microarray unit into a silicon oxide nanowire structure, so that the microarray area is transformed from superhydrophobic to superhydrophilic.
柱型结构的主要制作流程为:The main production process of the column structure is as follows:
(1)选择合适硅片并清洗。(1) Select a suitable silicon wafer and clean it.
(2)光刻以形成所需微阵列图形。(2) Photolithography to form the desired microarray pattern.
(3)通过DRIE干法刻蚀工艺形成柱型结构。(3) Forming a columnar structure through a DRIE dry etching process.
(4)去胶,再次通过DRIE干法刻蚀工艺在硅柱上形成硅微纳米线。(4) Degelling, and forming silicon micro-nano wires on the silicon pillars by DRIE dry etching process again.
(5)进行热氧化,将微阵列单元中硅微纳米线转变为氧化硅纳米线结构,从而使得微阵列区域从超疏水性转变为超亲水性。。(5) Thermal oxidation is performed to transform the silicon micro-nanowires in the microarray unit into a silicon oxide nanowire structure, so that the microarray area changes from superhydrophobic to superhydrophilic. .
微阵列结构制作完成后,划片取得所需大小的微阵列芯片,将微阵列芯片放入细胞培养液中进行细胞黏附培养,细胞会自动粘附生长在经过处理的超亲水纳米氧化硅区域,最终得到所设计的定点可控的细胞微阵列结构。After the microarray structure is fabricated, the microarray chip of the required size is obtained by slicing, and the microarray chip is placed in the cell culture medium for cell adhesion culture, and the cells will automatically adhere and grow on the treated super-hydrophilic nano-silicon oxide area , and finally get the designed fixed-point controllable cell microarray structure.
实施例1Example 1
如图1a-1b、图2a-2b所示,本发明结构1为细胞黏附区域,2为平面硅区域。As shown in Fig. 1a-1b and Fig. 2a-2b, structure 1 of the present invention is a cell adhesion region, and structure 2 is a planar silicon region.
如图3所示,槽型结构的主要制作流程为:As shown in Figure 3, the main manufacturing process of the groove structure is as follows:
(1)选择单面抛光(100)晶向n型单晶硅片3,进行半导体行业标准清洗工艺。(1) Select single-side polished (100) crystal-oriented n-type single crystal silicon wafer 3, and perform a standard cleaning process in the semiconductor industry.
标准清洗是为了除去原子、离子不可见的污染。将硅片先用成分比为H2SO4:H2O2=5:1或4:1的酸性液清洗。清洗液的强氧化性,将有机物分解而除去;用超纯水冲洗后,再用成分比为H2O:H2O2:NH4OH=5:2:1或5:1:1或7:2:1的碱性清洗液清洗,由于H2O2的氧化作用和NH4OH的络合作用,许多金属离子形成稳定的可溶性络合物而溶于水;然后使用成分比为H2O:H2O2:HCL=7:2:1或5:2:1的酸性清洗液,由于H2O2的氧化作用和盐酸的溶解,以及氯离子的络合性,许多金属生成溶于水的络离子,从而达到清洗的目的。Standard cleaning is to remove invisible contamination of atoms and ions. The silicon chip is first cleaned with an acid solution with a composition ratio of H2SO4:H2O2=5:1 or 4:1. The strong oxidizing property of the cleaning solution can decompose and remove the organic matter; after washing with ultra-pure water, use an alkali with a composition ratio of H2O:H2O2:NH4OH=5:2:1 or 5:1:1 or 7:2:1 Due to the oxidation of H2O2 and the complexation of NH4OH, many metal ions form stable soluble complexes and dissolve in water; then use a composition ratio of H2O:H2O2:HCL=7:2:1 or 5 : 2:1 acidic cleaning solution, due to the oxidation of H2O2, the dissolution of hydrochloric acid, and the complexation of chloride ions, many metals generate complex ions that are soluble in water, so as to achieve the purpose of cleaning.
(2)涂胶光刻并显影,形成图形化光刻胶层4,本实施例中为圆形阵列1。(2) Coating photolithography and developing to form a patterned photoresist layer 4, which is a circular array 1 in this embodiment.
(3)进行DRIE刻蚀工艺。在区域2中形成深槽,槽中有若干直径200-1000纳米,高度11-12微米的硅微纳米线5。(3) Performing a DRIE etching process. A deep groove is formed in the region 2, and there are several silicon micro-nano wires 5 with a diameter of 200-1000 nanometers and a height of 11-12 micrometers in the groove.
DRIE刻蚀工艺采用ALCATEL刻蚀机,可是原理是对处于低压状态下的容器内的气体C4F8、SF6和O2施以电压,使这些粒子形成等离子体,借着离子对硅片表面进行轰击,高速刻蚀未被掩蔽的Si,利用C4F8保护刻蚀的侧壁,以达到深宽比好的效果,利用氧气对刻蚀下来的残渣进行迅速的清理,使刻蚀结果具有极佳的各向异性以及较好的选择性。The DRIE etching process uses an ALCATEL etching machine, but the principle is to apply a voltage to the gas C4F8, SF6 and O2 in a container under a low pressure state, so that these particles form a plasma, and the surface of the silicon wafer is bombarded by ions. Etching the unmasked Si, using C4F8 to protect the etched sidewall to achieve a good aspect ratio, using oxygen to quickly clean up the etched residue, so that the etching result has excellent anisotropy and better selectivity.
(4)去胶并进行热氧化,形成氧化硅层6。(4) Degelling and performing thermal oxidation to form a silicon oxide layer 6 .
氧化时间1小时,温度1100摄氏度,形成氧化硅层;所述氧化工艺不仅限于此。The oxidation time is 1 hour and the temperature is 1100 degrees Celsius to form a silicon oxide layer; the oxidation process is not limited to this.
(5)在SEM下观察其形貌,如图5所示。(5) Observe its morphology under SEM, as shown in FIG. 5 .
槽型结构制作完成后,在划片后的微阵列芯片上进行细胞培养与生长,实现细胞微阵列结构。图4和图5所示为制作的循环肿瘤细胞微阵列的荧光显微照片。After the trough structure is fabricated, cells are cultured and grown on the diced microarray chip to realize the cell microarray structure. Figure 4 and Figure 5 show the fluorescent micrographs of the fabricated circulating tumor cell microarray.
实施例2Example 2
如图6所示,柱型结构的主要制作流程为:As shown in Figure 6, the main production process of the column structure is as follows:
(1)选择一SOI硅片7,其顶层硅厚度为20um,进行标准清洗。(1) Select an SOI silicon wafer 7, the thickness of the top silicon layer is 20um, and perform standard cleaning.
(2)涂胶、光刻并显影,形成图形化光刻胶层8,本实施例中为圆形阵列结构。(2) Glue coating, photolithography and development to form a patterned photoresist layer 8, which is a circular array structure in this embodiment.
(3)进行DRIE刻蚀工艺直至埋层氧化层,形成柱状结构9。(3) Perform a DRIE etching process until the buried oxide layer is formed to form a columnar structure 9 .
(4)去胶,并再次进行DRIE工艺,在硅柱上形成硅微纳米线10。(4) Removing the gel, and performing the DRIE process again to form silicon micro-nanowires 10 on the silicon pillars.
(5)进行热氧化,形成纳米氧化硅层11。(5) performing thermal oxidation to form the nano-silicon oxide layer 11 .
(6)在SEM下观察其形貌,如图7所示。(6) Observe its morphology under SEM, as shown in FIG. 7 .
本发明设计并制备可以把细胞固定在特定区域的细胞微阵列结构。利用这种微阵列结构,能够在不同时刻提供药物对细胞影响的完整信息,减少重复实验的次数,并且只需要少量的样本,从而为生物研究人员提供一个方便高效的实验平台。The invention designs and prepares a cell microarray structure that can fix cells in a specific area. The use of this microarray structure can provide complete information on the effects of drugs on cells at different times, reduce the number of repeated experiments, and only require a small number of samples, thus providing a convenient and efficient experimental platform for biological researchers.
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention shall still be covered by the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510430395.3A CN104961094A (en) | 2015-07-21 | 2015-07-21 | Cell microarray structure based on MEMS process and preparation method of cell microarray structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510430395.3A CN104961094A (en) | 2015-07-21 | 2015-07-21 | Cell microarray structure based on MEMS process and preparation method of cell microarray structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104961094A true CN104961094A (en) | 2015-10-07 |
Family
ID=54215227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510430395.3A Pending CN104961094A (en) | 2015-07-21 | 2015-07-21 | Cell microarray structure based on MEMS process and preparation method of cell microarray structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104961094A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105384145A (en) * | 2015-11-19 | 2016-03-09 | 中国科学院微电子研究所 | Embedded nano forest structure and preparation method thereof |
CN108831898A (en) * | 2018-05-08 | 2018-11-16 | 苏州解光语半导体科技有限公司 | A solid-state multispectral sensor |
CN111701629A (en) * | 2020-07-03 | 2020-09-25 | 清华大学 | Superhydrophobic micropit array chip and preparation method and device thereof |
CN111777031A (en) * | 2020-07-15 | 2020-10-16 | 京东方科技集团股份有限公司 | Biological detection chip substrate and preparation method thereof |
CN115683440A (en) * | 2022-11-18 | 2023-02-03 | 哈尔滨工业大学 | High-resolution graphene heterojunction air pressure sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256134A1 (en) * | 2008-04-14 | 2009-10-15 | Buchine Brent A | Process for Fabricating Nanowire Arrays |
CN101792112A (en) * | 2010-03-03 | 2010-08-04 | 北京大学 | Micro fluid control detection device based on surface-enhanced Raman scattering active substrate |
CN102269724A (en) * | 2011-06-23 | 2011-12-07 | 西安交通大学 | Manufacturing method of oriented nano-fiberized three-dimensional stereoscopic interdigital electrode of semiconductor gas-sensitive sensor |
CN102701141A (en) * | 2012-05-28 | 2012-10-03 | 西北工业大学 | Method for manufacturing high depth-to-width ratio micro-nano composite structure |
CN102951591A (en) * | 2012-11-20 | 2013-03-06 | 华中科技大学 | Micro-channel structure for catching circulating tumor cells and preparation method thereof |
CN103413787A (en) * | 2013-08-29 | 2013-11-27 | 厦门大学 | Preparation method of step-shaped oxide layer Au/SiO2/Si nano-column memory device |
CN104756260A (en) * | 2012-10-25 | 2015-07-01 | 韩国生产技术研究院 | Method for manufacturing solar cells having nano-micro composite structure on silicon substrate and solar cells manufactured thereby |
-
2015
- 2015-07-21 CN CN201510430395.3A patent/CN104961094A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256134A1 (en) * | 2008-04-14 | 2009-10-15 | Buchine Brent A | Process for Fabricating Nanowire Arrays |
CN101792112A (en) * | 2010-03-03 | 2010-08-04 | 北京大学 | Micro fluid control detection device based on surface-enhanced Raman scattering active substrate |
CN102269724A (en) * | 2011-06-23 | 2011-12-07 | 西安交通大学 | Manufacturing method of oriented nano-fiberized three-dimensional stereoscopic interdigital electrode of semiconductor gas-sensitive sensor |
CN102701141A (en) * | 2012-05-28 | 2012-10-03 | 西北工业大学 | Method for manufacturing high depth-to-width ratio micro-nano composite structure |
CN104756260A (en) * | 2012-10-25 | 2015-07-01 | 韩国生产技术研究院 | Method for manufacturing solar cells having nano-micro composite structure on silicon substrate and solar cells manufactured thereby |
CN102951591A (en) * | 2012-11-20 | 2013-03-06 | 华中科技大学 | Micro-channel structure for catching circulating tumor cells and preparation method thereof |
CN103413787A (en) * | 2013-08-29 | 2013-11-27 | 厦门大学 | Preparation method of step-shaped oxide layer Au/SiO2/Si nano-column memory device |
Non-Patent Citations (1)
Title |
---|
A. RANELLA, ET AL.: "Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures", 《ACTA BIOMATERIALIA》, vol. 6, 18 January 2010 (2010-01-18), pages 2711 - 2720, XP002691330, DOI: 10.1016/j.actbio.2010.01.016 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105384145A (en) * | 2015-11-19 | 2016-03-09 | 中国科学院微电子研究所 | Embedded nano forest structure and preparation method thereof |
CN105384145B (en) * | 2015-11-19 | 2018-01-09 | 中国科学院微电子研究所 | Embedded nano forest structure and preparation method thereof |
CN108831898A (en) * | 2018-05-08 | 2018-11-16 | 苏州解光语半导体科技有限公司 | A solid-state multispectral sensor |
CN111701629A (en) * | 2020-07-03 | 2020-09-25 | 清华大学 | Superhydrophobic micropit array chip and preparation method and device thereof |
CN111777031A (en) * | 2020-07-15 | 2020-10-16 | 京东方科技集团股份有限公司 | Biological detection chip substrate and preparation method thereof |
CN111777031B (en) * | 2020-07-15 | 2024-07-16 | 京东方科技集团股份有限公司 | Biological detection chip substrate and preparation method thereof |
CN115683440A (en) * | 2022-11-18 | 2023-02-03 | 哈尔滨工业大学 | High-resolution graphene heterojunction air pressure sensor |
CN115683440B (en) * | 2022-11-18 | 2023-11-03 | 哈尔滨工业大学 | High-resolution graphene heterojunction air pressure sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104961094A (en) | Cell microarray structure based on MEMS process and preparation method of cell microarray structure | |
Duan et al. | Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion | |
CN102337213B (en) | Polydimethylsiloxane (PDMS)-based three-dimensional single cell culture chip and controllable preparation method thereof | |
Clark et al. | Template-directed self-assembly of 10-μ m-sized hexagonal plates | |
Kim et al. | Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings | |
Clark et al. | Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays | |
CN102173376B (en) | Preparation method for small silicon-based nano hollow array with orderly heights | |
CN102447011B (en) | Method for manufacturing solar cell photoanode and product thereof | |
US8753526B2 (en) | Porous thin film having holes and a production method therefor | |
Kim et al. | Wettability-controllable super water-and moderately oil-repellent surface fabricated by wet chemical etching | |
CN106395737B (en) | Preparation method of micro-nano-scale structure array with gradient change of material surface morphology | |
CN103122311B (en) | Flexible three-dimensional single-cell targeted cultivating chip and controllable preparation method thereof | |
CN103626119A (en) | Preparation method of nano metal ball bowl array structure | |
US20200016595A1 (en) | Metal assisted chemical etching for fabricating high aspect ratio and straight silicon nanopillar arrays for sorting applications | |
CN102795592A (en) | Selective etching reparation method and application of PDMS (polydimethylsiloxane) elastomer surface hard film layer | |
CN101823685A (en) | Bionic micro/nano structure preparing method | |
CN103604797A (en) | Micro-fluidic chip with surface-enhanced Raman activity and preparation method thereof | |
Zhang et al. | Enlargement of diatom frustules pores by hydrofluoric acid etching at room temperature | |
CN105741980A (en) | Flexible self-support graphene conductive thin film with microstructure pattern on surface and preparation method of flexible self-support graphene conductive thin film | |
CN106115613A (en) | A kind of large area monolayer compact nanometer microsphere thin film assemble method, device and the using method of device | |
CN112543678A (en) | Patterned microfluidic devices and methods of making the same | |
Zhou et al. | Controlled cell patterning on bioactive surfaces with special wettability | |
KR101596991B1 (en) | Fabrication method of hydrogel having multi probe submicrostructures and biomolecular nano-patterning method using hydrogel multi probes | |
CN105947970A (en) | Ordered large-area single-layer microspheres/nanospheres assisted by template and preparation method thereof | |
CN102899244A (en) | Solid phase-digital PCR (Polymerase Chain Reaction) chip and method for fabricating solid phase-digital PCR chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151007 |