[go: up one dir, main page]

CN104953199A - Metal doping LiMn(1-x-y)NixCoyO2 compounded by lithium ion battery positive electrode waste, as well as preparation method and application of metal doping LiMn(1-x-y)NixCoyO2 - Google Patents

Metal doping LiMn(1-x-y)NixCoyO2 compounded by lithium ion battery positive electrode waste, as well as preparation method and application of metal doping LiMn(1-x-y)NixCoyO2 Download PDF

Info

Publication number
CN104953199A
CN104953199A CN201510242512.3A CN201510242512A CN104953199A CN 104953199 A CN104953199 A CN 104953199A CN 201510242512 A CN201510242512 A CN 201510242512A CN 104953199 A CN104953199 A CN 104953199A
Authority
CN
China
Prior art keywords
positive electrode
active material
lithium
electrode active
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510242512.3A
Other languages
Chinese (zh)
Other versions
CN104953199B (en
Inventor
谢勇冰
曹宏斌
张西华
宁朋歌
林晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201510242512.3A priority Critical patent/CN104953199B/en
Publication of CN104953199A publication Critical patent/CN104953199A/en
Application granted granted Critical
Publication of CN104953199B publication Critical patent/CN104953199B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种利用锂离子电池正极废料合成的金属掺杂镍钴锰酸锂及其制备方法和用途,所述制备方法包括:除去锂离子电池正极废料中的粘结剂和导电剂,得到正极活性物质;测定正极活性物质的元素组成;调节正极活性物质中Ni、Co、Mn或M中的一种或至少两种的含量,使其摩尔比符合分子式LiNixMnyCo1–x–y–zMzO2中Ni、Co、Mn与M的摩尔比,得到正极活性物质前驱体粉末;再加入锂源,利用高温固相反应得到金属掺杂镍钴锰酸锂。该方法适用范围广,操作简单,成本低,避免了二次污染,实现了废旧锂离子电池中正极活性物质的短程清洁循环,并且制备得到的金属掺杂镍钴锰酸锂电化学性能优良。

The invention provides a metal-doped nickel-cobalt lithium manganese oxide synthesized by using the positive electrode waste of lithium-ion batteries and its preparation method and application. The preparation method comprises: removing the binder and conductive agent in the positive electrode waste of lithium-ion batteries, Obtain the positive electrode active material; measure the elemental composition of the positive electrode active material; adjust the content of one or at least two of Ni, Co, Mn or M in the positive electrode active material so that the molar ratio conforms to the molecular formula LiNi x Mn y Co 1–x The molar ratio of Ni, Co, Mn and M in –y–z M z O 2 is used to obtain the precursor powder of positive electrode active material; then add lithium source, and use high-temperature solid-state reaction to obtain metal-doped nickel-cobalt lithium manganese oxide. The method has wide applicability, simple operation, low cost, avoids secondary pollution, realizes a short-range cleaning cycle of positive electrode active materials in waste lithium ion batteries, and the prepared metal-doped nickel-cobalt lithium manganese oxide has excellent electrochemical performance.

Description

利用锂离子电池正极废料合成的金属掺杂镍钴锰酸锂及其制备方法和用途Metal-doped nickel-cobalt lithium manganese oxide synthesized by lithium-ion battery positive electrode waste and its preparation method and use

技术领域technical field

本发明属于二次资源循环利用和循环经济技术领域,涉及一种锂离子电池正极废料的回收和循环利用方法,尤其涉及一种利用锂离子电池正极废料合成的金属掺杂镍钴锰酸锂及其制备方法和用途。The invention belongs to the technical field of secondary resource recycling and circular economy, and relates to a method for recycling and recycling lithium-ion battery positive electrode waste, in particular to a metal-doped nickel-cobalt lithium manganate synthesized by using lithium-ion battery positive electrode waste and Its preparation method and use.

背景技术Background technique

由于锂离子电池具有充电电压高、能量密度高、循环寿命长、安全性好、无记忆效应和自放电小等优点,自20世纪90年代以来已广泛应用于移动电话、笔记本电脑、摄像机、数码相机和医疗器械等便携式电子产品。近几年随着锂离子电池技术的迅猛发展,目前其已成为混合电动汽车、纯电动汽车和智能电网电源的有力竞争者。同时,由于消费电子产品更新速度的加快和锂离子电池在交通和智能电网领域的进一步应用,未来几年对锂离子电池的需求将会持续增长。Due to the advantages of high charging voltage, high energy density, long cycle life, good safety, no memory effect and small self-discharge, lithium-ion batteries have been widely used in mobile phones, notebook computers, video cameras, digital batteries since the 1990s. Portable electronics such as cameras and medical devices. With the rapid development of lithium-ion battery technology in recent years, it has become a strong competitor for hybrid electric vehicles, pure electric vehicles and smart grid power supplies. At the same time, due to the accelerated update of consumer electronics and the further application of lithium-ion batteries in the fields of transportation and smart grids, the demand for lithium-ion batteries will continue to grow in the next few years.

随着锂离子电池的广泛应用,大量的废旧锂离子电池及其生产过程中产生的废料将随之而产生。与城市生活垃圾不同,这些废旧锂离子电池及其生产废料中含有有毒有害的重金属和有机电解液,如处理不当,这些废弃物将会对生态环境和人体健康造成严重威胁。另外,这些废弃物中平均含有12%~18%的钴、1.2%~1.8%的锂、8%~10%的铜、4%~8%的铝和约30%的壳体合金,均为锂离子电池生产的原材料。因此,若能高效回收这些废旧锂离子电池及其生产废料中的金属,实现这些金属在生产过程中的闭环循环,不仅能够避免其对环境和人体的威胁,而且能够促进锂离子电池行业的可持续发展和产业升级。With the widespread application of lithium-ion batteries, a large number of waste lithium-ion batteries and the waste generated in the production process will be produced. Different from municipal solid waste, these waste lithium-ion batteries and their production waste contain toxic and harmful heavy metals and organic electrolytes. If not handled properly, these wastes will pose a serious threat to the ecological environment and human health. In addition, these wastes contain an average of 12% to 18% cobalt, 1.2% to 1.8% lithium, 8% to 10% copper, 4% to 8% aluminum and about 30% shell alloys, all of which are lithium Raw material for ion battery production. Therefore, if the metals in these waste lithium-ion batteries and their production waste can be recovered efficiently, and the closed-loop circulation of these metals in the production process can be realized, it can not only avoid the threat to the environment and human body, but also promote the sustainable development of the lithium-ion battery industry. Sustainable development and industrial upgrading.

锂离子电池正极材料约占整个电池生产成本的30%~50%,是锂离子电池中资源化价值最高的部分,也是废旧锂离子电池回收的重点和难点。钴酸锂具有较好的电化学性能,是市售锂离子电池中最常见的正极材料,现有的废旧锂离子电池回收技术主要针对钴酸锂为正极活性物质的锂离子电池。然而,由于钴酸锂存在成本较高、钴的毒性高以及其资源的有限性等缺点,近年来具有层状结构的镍酸锂(LiNiO2)、锰酸锂(LiMnO2)、二元复合正极材料(LiNixCo1– xO2、LiNixMn1–xO2、LiCo1–xMnxO2)、三元复合正极材料(LiNixCoyMnl–x–yO2、LiNixCoyAll–x–yO2)以及具有尖晶石结构的锰酸锂(LiMn2O4)被相继研发出来。其中,由于三元复合正极材料具有高可逆充放电容量、较好的安全性能、较低的使用成本等优势,有望推动锂离子电池在动力电池、储能电站等领域的进一步应用。但是,目前基于上述新开发出来的正极活性物质的废锂离子电池的回收技术非常匮乏,故研发针对上述正极活性物质,尤其是混合正极活性物质的废旧锂离子电池回收技术已刻不容缓。Lithium-ion battery anode materials account for about 30% to 50% of the entire battery production cost, which is the part with the highest resource value in lithium-ion batteries, and is also the focus and difficulty of recycling waste lithium-ion batteries. Lithium cobaltate has good electrochemical properties and is the most common positive electrode material in commercially available lithium-ion batteries. The existing waste lithium-ion battery recycling technology is mainly aimed at lithium-ion batteries in which lithium cobaltate is the positive electrode active material. However, due to the disadvantages of high cost, high toxicity of cobalt and limited resources of lithium cobalt oxide, lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), binary composite Cathode materials (LiNi x Co 1– x O 2 , LiNi x Mn 1–x O 2 , LiCo 1–x Mn x O 2 ), ternary composite cathode materials (LiNi x Co y Mn l–x–y O 2 , LiNi x Co y All l–x–y O 2 ) and lithium manganese oxide (LiMn 2 O 4 ) with a spinel structure have been developed successively. Among them, due to the advantages of high reversible charge and discharge capacity, good safety performance, and low cost of use, the ternary composite cathode material is expected to promote the further application of lithium-ion batteries in power batteries, energy storage power stations and other fields. However, at present, the recovery technology of waste lithium ion batteries based on the above-mentioned newly developed positive electrode active materials is very scarce, so it is urgent to develop waste lithium ion battery recycling technologies for the above-mentioned positive electrode active materials, especially mixed positive electrode active materials.

CN 103199320A公开了一种镍钴锰三元正极材料回收利用的方法,所述方法为:采用热处理去除粘结剂回收镍钴锰三元正极材料,继而通过还原酸浸、加碱除铝和以氢氧化钠为沉淀剂共沉淀法制备镍钴锰三元前驱体的技术路线回收镍钴锰三元正极材料。然而,这种方法工艺过于复杂,并且成本较高,且不可避免地会产生含重金属的废水,因此需要配套相应的污水处理设施。谌谷春等人研究了废旧锂电池中镍钴锰的回收及正极材料LiCo1/3Ni1/3Mn1/3O2的制备,以废旧锂电池为原料,经过手工拆壳、电池芯粉碎、热处理、筛分得到含废正极材料的粉料;粉料通过H2SO4+H2O2溶液浸出-黄钠铁矾法除铁-碳酸氢氨除铝-N902萃取铜-加料配比-共沉淀合成前驱体-煅烧的工艺流程,合成得到LiCo1/3Ni1/3Mn1/3O2正极材料(无机化学学报,2011,27(10),1987-1992)。所述方法实现了废旧锂离子电池的循环利用,但是该方法同样存在工艺复杂以及二次污染等问题。CN 103199320A discloses a method for recycling nickel-cobalt-manganese ternary positive electrode materials. The method is as follows: heat treatment is used to remove the binder to recover nickel-cobalt-manganese ternary positive electrode materials, and then reductive acid leaching, addition of alkali to remove aluminum and Sodium hydroxide is used as a precipitating agent. The technical route for preparing nickel-cobalt-manganese ternary precursors by co-precipitation method is to recover nickel-cobalt-manganese ternary positive electrode materials. However, the process of this method is too complicated, and the cost is high, and it will inevitably produce waste water containing heavy metals, so corresponding sewage treatment facilities are required. Chen Guchun and others studied the recovery of nickel, cobalt and manganese in waste lithium batteries and the preparation of positive electrode materials LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , using waste lithium batteries as raw materials, after manual shelling, battery cores Grinding, heat treatment, and sieving to obtain powder containing spent positive electrode materials; powder is leached through H 2 SO 4 +H 2 O 2 solution - iron removal by jarosite method - aluminum removal with ammonium bicarbonate - copper extraction with N902 - addition of ingredients Ratio-co-precipitation synthesis precursor-calcination process, and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 cathode material was synthesized (Journal of Inorganic Chemistry, 2011, 27(10), 1987-1992). The method realizes the recycling of waste lithium-ion batteries, but the method also has problems such as complicated process and secondary pollution.

为了提高锂离子电池正极活性物质的电化学性能,通常采用过渡金属离子掺杂及其化合物包覆等技术对正极活性物质进行改性。因此,未来的锂离子电池的金属组成将越来越复杂,由此导致了分离回收的正极废料中会含有一些其它的金属。同时,在锂离子电池拆解过程中,正负极集流体中的铝、铜也有可能会混入到分离下来的正极材料中。上述这些都为废锂离子电池回收技术的研发提出了新的挑战。In order to improve the electrochemical performance of the positive electrode active material of lithium-ion batteries, technologies such as transition metal ion doping and compound coating are usually used to modify the positive electrode active material. Therefore, the metal composition of lithium-ion batteries in the future will become more and more complex, which will lead to the separation and recovery of positive electrode waste will contain some other metals. At the same time, during the disassembly process of lithium-ion batteries, the aluminum and copper in the positive and negative current collectors may also be mixed into the separated positive electrode materials. All of the above pose new challenges for the research and development of waste lithium-ion battery recycling technology.

到目前为止还没有一种能回收混有杂质金属的正极废料、尤其是混合正极废料的短程清洁循环技术。So far, there is no short-range cleaning cycle technology that can recycle cathode scrap mixed with impurity metals, especially mixed cathode scrap.

发明内容Contents of the invention

针对现有技术的不足,为了解决废锂离子电池回收技术工艺流程长、处理成本高、适用范围窄、二次污染等问题以及填补相关技术的空白,本发明的目的在于提供一种利用锂离子电池正极废料合成的金属掺杂镍钴锰酸锂及其制备方法和用途,所述方法克服了现有技术的缺点,提高了锂离子电池正极材料的电化学性能。In view of the deficiencies in the prior art, in order to solve the problems of long process flow, high processing cost, narrow scope of application, secondary pollution, etc. of waste lithium ion battery recycling technology and to fill the gaps in related technologies, the purpose of the present invention is to provide a lithium ion battery Metal-doped nickel-cobalt lithium manganese oxide synthesized from battery positive electrode waste and its preparation method and application, the method overcomes the shortcomings of the prior art and improves the electrochemical performance of lithium ion battery positive electrode materials.

为达此目的,本发明采用以下技术方案:For reaching this purpose, the present invention adopts following technical scheme:

一方面,本发明提供了一种利用锂离子电池正极废料合成金属掺杂镍钴锰酸锂的方法,所述金属掺杂镍钴锰酸锂具有如下组成:LiNixMnyCo1–x–y–zMzO2,其中,M为Cu、Al、Fe、Mg、Cr、Ti、Ce或Y中的任一种或至少两种,0<x<1,0<y<1,0<z<0.1,且0<x+y+z<1;In one aspect, the present invention provides a method for synthesizing metal-doped nickel-cobalt lithium manganese oxide by using lithium-ion battery positive electrode waste, and the metal-doped nickel-cobalt lithium manganese oxide has the following composition: LiNi x Mn y Co 1-x- y–z M z O 2 , where M is any one or at least two of Cu, Al, Fe, Mg, Cr, Ti, Ce or Y, 0<x<1, 0<y<1, 0 <z<0.1, and 0<x+y+z<1;

所述方法包括如下步骤:The method comprises the steps of:

(1)除去锂离子电池正极废料中的粘结剂和导电剂,得到正极活性物质;(1) remove the binder and the conductive agent in the positive electrode waste of the lithium ion battery to obtain the positive electrode active material;

(2)测定正极活性物质的元素组成;(2) Determination of the elemental composition of the positive electrode active material;

(3)根据正极活性物质的元素组成,调节正极活性物质中Ni、Co、Mn或M中的一种或至少两种的含量,使其摩尔比符合分子式LiNixMnyCo1–x–y–zMzO2中Ni、Co、Mn与M的摩尔比,并得到正极活性物质前驱体粉末;(3) According to the element composition of the positive electrode active material, adjust the content of one or at least two of Ni, Co, Mn or M in the positive electrode active material so that the molar ratio conforms to the molecular formula LiNi x Mn y Co 1–x–y -zMzO2In the molar ratio of Ni, Co, Mn and M, and obtain positive electrode active material precursor powder;

(4)向正极活性物质前驱体粉末中加入锂源,利用高温固相反应得到金属掺杂镍钴锰酸锂。(4) Adding a lithium source to the positive electrode active material precursor powder, and using a high-temperature solid-state reaction to obtain metal-doped nickel-cobalt lithium manganese oxide.

本发明所述的方法将从锂离子电池正极废料中分离下来的正极材料进行高温焙烧,得到正极活性物质;然后调节正极活性物质中的Ni、Co、Mn或M中的一种或至少两种的含量,使元素组成以及含量符合目标产物LiNixMnyCo1–x–y–zMzO2,得到正极活性物质前驱体粉末;再向得到的前驱体粉末中配入锂源,通过高温固相烧结合成金属掺杂的镍钴锰酸锂。According to the method of the present invention, the positive electrode material separated from the positive electrode waste of lithium ion battery is subjected to high-temperature roasting to obtain the positive electrode active material; then one or at least two of Ni, Co, Mn or M in the positive electrode active material are adjusted Content, so that the element composition and content meet the target product LiNi x Mn y Co 1–x–y–z M z O 2 , to obtain the positive active material precursor powder; then add lithium source to the obtained precursor powder, through Synthesis of metal-doped nickel-cobalt-lithium manganese oxide by high-temperature solid-state sintering.

本发明提供的利用锂离子电池正极废料合成金属掺杂镍钴锰酸锂的方法,适用范围广,操作简单,成本低,避免了采用共沉淀法技术回收锂离子电池正极废料所产生的含重金属高浓度氨氮废水对环境的二次污染,实现了废旧锂离子电池中正极活性物质的短程清洁循环。The method for synthesizing metal-doped nickel-cobalt lithium manganese oxide by using the positive electrode waste of lithium-ion batteries provided by the present invention has wide application range, simple operation and low cost, and avoids heavy metals produced by recycling the positive electrode waste of lithium-ion batteries by co-precipitation technology. The secondary pollution of high-concentration ammonia-nitrogen wastewater to the environment has realized the short-range cleaning cycle of positive active materials in waste lithium-ion batteries.

所述金属掺杂镍钴锰酸锂的分子式为:LiNixMnyCo1–x–y–zMzO2。其中,M为Cu、Al、Fe、Mg、Cr、Ti、Ce或Y中的任一种或至少两种的组合,典型但非限制性的组合有:Cu与Al,Al与Mg,Ce与Y,Mg与Ti,Al、Mg与Cr,Fe、Mg与Cr,Cr、Ti、Ce与Y等;0<x<1,0<y<1,0<z<0.1,且0<x+y+z<1;如x为1/2、1/3、1/4、1/5、1/6、1/7或1/10等,y为1/2、1/3、1/4、1/5、1/6、1/7或1/10等,z为1/20、1/30、1/40、1/50、1/60、1/70或1/80等。The molecular formula of the metal-doped nickel-cobalt lithium manganese oxide is: LiNi x Mn y Co 1-x-y-z M z O 2 . Among them, M is any one or a combination of at least two of Cu, Al, Fe, Mg, Cr, Ti, Ce or Y. Typical but non-limiting combinations are: Cu and Al, Al and Mg, Ce and Y, Mg and Ti, Al, Mg and Cr, Fe, Mg and Cr, Cr, Ti, Ce and Y, etc.; 0<x<1, 0<y<1, 0<z<0.1, and 0<x+ y+z<1; if x is 1/2, 1/3, 1/4, 1/5, 1/6, 1/7 or 1/10, etc., y is 1/2, 1/3, 1/ 4, 1/5, 1/6, 1/7 or 1/10 etc., z is 1/20, 1/30, 1/40, 1/50, 1/60, 1/70 or 1/80 etc.

步骤(1)所述正极活性物质是:镍基氧化物、钴基氧化物、锰基氧化物、经M掺杂的镍基氧化物、经M掺杂的钴基氧化物、经M掺杂的锰基氧化物、M化合物包覆改性的镍基氧化物、M化合物包覆改性的钴基氧化物或M化合物包覆改性的锰基氧化物中的任一种或至少两种的组合。典型但非限制性的正极活性物质组合有:镍基氧化物与钴基氧化物、锰基氧化物与经M掺杂的镍基氧化物、经M掺杂的钴基氧化物与经M掺杂的锰基氧化物、M化合物包覆改性的镍基氧化物与M化合物包覆改性的钴基氧化物或M化合物包覆改性的锰基氧化物、镍基氧化物与钴基氧化物等。所述M化合物为含有金属M的化合物。The positive electrode active material in step (1) is: nickel-based oxide, cobalt-based oxide, manganese-based oxide, M-doped nickel-based oxide, M-doped cobalt-based oxide, M-doped Any one or at least two of manganese-based oxides, nickel-based oxides coated with M compounds, cobalt-based oxides coated with M compounds, or manganese-based oxides coated with M compounds The combination. Typical but non-limiting positive electrode active material combinations include: nickel-based oxides and cobalt-based oxides, manganese-based oxides and M-doped nickel-based oxides, M-doped cobalt-based oxides and M-doped Miscellaneous manganese-based oxides, M compound-coated modified nickel-based oxides and M compound-coated modified cobalt-based oxides or M compound-coated modified manganese-based oxides, nickel-based oxides and cobalt-based oxides, etc. The M compound is a compound containing metal M.

优选地,所述M来源于分离锂离子电池正极废料得到正极活性物质过程中混入的杂质金属或正极活性物质由于掺杂或包覆改性所引入的金属。Preferably, the M is derived from impurity metals mixed in the process of separating the positive electrode waste of lithium-ion batteries to obtain the positive electrode active material or metals introduced by the positive electrode active material due to doping or coating modification.

优选地,所述M来源于正极活性物质由于掺杂或包覆改性所引入的金属。Preferably, the M is derived from the metal introduced by the positive electrode active material due to doping or coating modification.

步骤(1)所述正极活性物质中碳的质量分数低于0.001%。The mass fraction of carbon in the positive electrode active material in step (1) is lower than 0.001%.

优选地,步骤(1)通过焙烧锂离子电池正极废料得到正极活性物质。Preferably, step (1) obtains the positive electrode active material by roasting the lithium ion battery positive electrode waste.

优选地,所述焙烧的温度为400~1000℃,如500℃、600℃、700℃、800℃、900℃或950℃等,优选为500~800℃。Preferably, the calcination temperature is 400-1000°C, such as 500°C, 600°C, 700°C, 800°C, 900°C or 950°C, etc., preferably 500-800°C.

优选地,所述焙烧的时间为2~8h,如2.5h、3h、4h、5h、6h、7h或7.5h等,优选为4~6h。Preferably, the calcination time is 2-8h, such as 2.5h, 3h, 4h, 5h, 6h, 7h or 7.5h, etc., preferably 4-6h.

优选地,所述焙烧在高温炉内进行。Preferably, the calcination is carried out in a high temperature furnace.

步骤(2)将所述正极活性物质加入到强酸性溶液中加热消解后再测定所述正极活性物质的元素组成。所述强酸性溶液可为无机强酸性溶液或有机强酸性溶液,所述强酸性溶液能够达到将正极活性物质中的金属元素溶解出来即可,优选为王水。Step (2) adding the positive electrode active material into a strong acid solution, heating and digesting, and then measuring the elemental composition of the positive electrode active material. The strong acidic solution can be an inorganic strong acidic solution or an organic strong acidic solution, and the strong acidic solution can dissolve the metal elements in the positive electrode active material, preferably aqua regia.

优选地,所述加热消解的时间为1~6h,如2h、3h、4h、5h或5.5h等。Preferably, the heating and digestion time is 1 to 6 hours, such as 2 hours, 3 hours, 4 hours, 5 hours or 5.5 hours.

优选地,步骤(2)利用ICP–OES测定所述正极活性物质的元素组成。Preferably, step (2) uses ICP-OES to determine the elemental composition of the positive electrode active material.

步骤(3)向所述正极活性物质中加入Ni源、Co源、Mn源或M源中的任一种或至少两种来调节所述正极活性物质中元素的含量。Step (3) adding any one or at least two of Ni source, Co source, Mn source or M source to the positive electrode active material to adjust the content of elements in the positive electrode active material.

优选地,所述Ni源、Co源、Mn源或M源独立地为Ni、Co、Mn或M的氧化物、氯化物、硫酸盐、硝酸盐、乙酸盐或草酸盐。Preferably, the source of Ni, Co, Mn or M is independently an oxide, chloride, sulfate, nitrate, acetate or oxalate of Ni, Co, Mn or M.

优选地,步骤(3)所述正极活性物质与加入的Ni源、Co源、Mn源或M源研磨后得到正极活性物质前驱体粉末,研磨时间为8~24h,如9h、10h、12h、15h、17h、18h、19h、20h、22h或23h等。所述研磨能够达到将正极活性物质与Ni源、Co源、Mn源或M源混合均匀的效果即可,即所述物质在经研磨后的混合物中任一点均匀分布、无堆积,典型但非限制性的研磨设备有球磨机等。Preferably, the positive electrode active material described in step (3) is ground with the added Ni source, Co source, Mn source or M source to obtain a positive electrode active material precursor powder, and the grinding time is 8 to 24 hours, such as 9h, 10h, 12h, 15h, 17h, 18h, 19h, 20h, 22h or 23h, etc. The grinding can achieve the effect of uniformly mixing the positive electrode active material with the Ni source, Co source, Mn source or M source, that is, the material is evenly distributed at any point in the ground mixture without accumulation, typical but not Restrictive grinding equipment includes ball mills and the like.

步骤(4)所述锂源为碳酸锂、氯化锂、硫酸锂、硝酸锂、乙酸锂或草酸锂的任一种或至少两种的混合物,典型但非限制性的混合物有:碳酸锂与氯化锂、硫酸锂与硝酸锂、乙酸锂与草酸锂或碳酸锂、氯化锂与乙酸锂等。The lithium source described in step (4) is lithium carbonate, lithium chloride, lithium sulfate, lithium nitrate, lithium acetate or lithium oxalate, or a mixture of at least two, typical but non-limiting mixtures are: lithium carbonate and lithium oxalate Lithium chloride, lithium sulfate and lithium nitrate, lithium acetate and lithium oxalate or lithium carbonate, lithium chloride and lithium acetate, etc.

优选地,步骤(4)中加入的锂源使Li的物质的量与Ni、Co、Mn和M的总的物质的量之比为1.05~1.1,即n(Li)/(n(Ni)+n(Co)+n(Mn)+n(M))=1.05~1.1,如物质的量之比为1.06、1.07、1.08、1.09或1.1等。加入过量的锂源是为了避免高温固相反应中锂的挥发导致Li与Ni、Co、Mn及M总的物质的量之比不足1:1。Preferably, the lithium source added in step (4) makes the ratio of the amount of Li material to the total material amount of Ni, Co, Mn and M be 1.05 to 1.1, i.e. n(Li)/(n(Ni) +n(Co)+n(Mn)+n(M))=1.05~1.1, such as the ratio of the amount of substances is 1.06, 1.07, 1.08, 1.09 or 1.1, etc. Adding an excess of lithium source is to avoid the volatilization of lithium in the high-temperature solid-state reaction, resulting in a ratio of Li to the total amount of Ni, Co, Mn and M that is less than 1:1.

优选地,步骤(4)所述高温固相反应的温度为800~900℃,如810℃、820℃、830℃、840℃、850℃、860℃、870℃、880℃或890℃等,反应时间为15~20h,如16h、17h、17.5h、18h、19h或19.5h等。Preferably, the temperature of the high-temperature solid-state reaction in step (4) is 800-900°C, such as 810°C, 820°C, 830°C, 840°C, 850°C, 860°C, 870°C, 880°C or 890°C, etc., The reaction time is 15-20h, such as 16h, 17h, 17.5h, 18h, 19h or 19.5h.

优选地,步骤(4)所述高温固相反应时的升温速率为2~10℃·min-1,如3℃·min-1、4℃·min-1、5℃·min-1、6℃·min-1、7℃·min-1、8℃·min-1或9℃·min-1等。Preferably, the heating rate during the high-temperature solid-state reaction in step (4) is 2 to 10°C·min -1 , such as 3°C·min -1 , 4°C·min -1 , 5°C·min -1 , 6°C·min -1 , ℃·min -1 , 7°C·min -1 , 8°C·min -1 or 9°C·min -1 , etc.

优选地,步骤(4)所述高温固相反应在有氧气氛中进行。Preferably, the high-temperature solid-state reaction in step (4) is carried out in an aerobic atmosphere.

优选地,步骤(4)所述高温固相反应为:以2~10℃·min-1的速率升温至800~900℃后,于有氧气氛中恒温焙烧15~20h,然后以1~5℃·min-1的速率降温至10~60℃,得到金属掺杂镍钴锰酸锂。Preferably, the high-temperature solid-state reaction in step (4) is as follows: after raising the temperature to 800-900°C at a rate of 2-10°C·min -1 , roasting at a constant temperature in an aerobic atmosphere for 15-20 hours, and then heating at a temperature of 1-5 The temperature is lowered at a rate of ℃·min -1 to 10-60 ℃ to obtain metal-doped nickel-cobalt lithium manganese oxide.

步骤(4)将锂源与正极活性物质前驱体粉末进行研磨和过筛处理后再进行高温固相反应。Step (4) Grinding and sieving the lithium source and the precursor powder of the positive electrode active material, and then performing a high-temperature solid-state reaction.

优选地,所述研磨在球磨机上进行。Preferably, the grinding is performed on a ball mill.

优选地,所述过筛的目数为200~1000目,如300目、500目、600目、700目、800目或900目等。Preferably, the mesh of the sieve is 200-1000 mesh, such as 300 mesh, 500 mesh, 600 mesh, 700 mesh, 800 mesh or 900 mesh.

作为优选的技术方案,本发明提供了一种利用锂离子电池正极废料合成金属掺杂镍钴锰酸锂的方法,所述方法包括如下步骤:As a preferred technical solution, the present invention provides a method for synthesizing metal-doped nickel-cobalt lithium manganese oxide using lithium-ion battery positive electrode waste, the method comprising the following steps:

(1)将分离得到的锂离子电池正极废料置于高温炉中焙烧,除去其中的粘结剂和导电剂,得到正极活性物质;(1) placing the separated lithium-ion battery positive electrode waste material in a high-temperature furnace for roasting, removing the binder and conductive agent therein to obtain the positive electrode active material;

(2)测定所述正极活性物质的元素组成;(2) Determining the elemental composition of the positive active material;

(3)根据正极活性物质的元素组成,调节所述正极活性物质中Ni、Co、Mn或M的含量,使其摩尔比符合分子式LiNixMnyCo1–x–y–zMzO2中Ni、Co、Mn与M的摩尔比,得到正极活性物质前驱体粉末;(3) According to the element composition of the positive electrode active material, adjust the content of Ni, Co, Mn or M in the positive electrode active material so that the molar ratio conforms to the molecular formula LiNi x Mn y Co 1–x–y–z M z O 2 In the molar ratio of Ni, Co, Mn and M, the positive electrode active material precursor powder is obtained;

(4)向正极活性物质前驱体粉末中加入锂源,使Li与Ni、Co、Mn和M的总和的摩尔比为1.05~1.1,然后以2~10℃·min-1的速率升温至800~900℃后,于有氧气氛中恒温焙烧15~20h,再以1~5℃·min-1的速率降温至10~60℃,得到金属掺杂镍钴锰酸锂。(4) Add a lithium source to the positive electrode active material precursor powder so that the molar ratio of Li to the sum of Ni, Co, Mn and M is 1.05 to 1.1, and then raise the temperature to 800 at a rate of 2 to 10°C·min -1 After ~900°C, it is roasted at a constant temperature in an oxygen atmosphere for 15-20 hours, and then cooled to 10-60°C at a rate of 1-5°C·min -1 to obtain metal-doped nickel-cobalt lithium manganese oxide.

另一方面,本发明提供了一种利用如上所述方法制备得到的金属掺杂镍钴锰酸锂。In another aspect, the present invention provides a metal-doped nickel-cobalt lithium manganese oxide prepared by the above-mentioned method.

本发明还提供了一种利用如上所述方法制备得到的金属掺杂镍钴锰酸锂的用途,其用于锂离子电池正极材料领域。The present invention also provides a use of the metal-doped nickel-cobalt lithium manganese oxide prepared by the above-mentioned method, which is used in the field of positive electrode materials for lithium-ion batteries.

与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:

(1)本发明提供的利用锂离子电池正极废料合成金属掺杂镍钴锰酸锂的方法直接将分离下来的正极材料中的杂质金属作为掺杂元素合成金属掺杂的镍钴锰酸锂,不仅缩短了工艺流程、降低了除杂的成本,更重要的是通过金属掺杂提高了镍钴锰酸锂的电化学性能。(1) The method provided by the present invention utilizes lithium-ion battery anode waste to synthesize metal-doped nickel-cobalt lithium manganese oxide directly using the impurity metal in the separated positive electrode material as a doping element to synthesize metal-doped nickel-cobalt lithium manganese oxide, Not only the process flow is shortened, the cost of impurity removal is reduced, but more importantly, the electrochemical performance of lithium nickel cobalt manganese oxide is improved through metal doping.

(2)本发明提供的利用锂离子电池正极废料合成金属掺杂镍钴锰酸锂的方法采用高温固相法合成金属掺杂的镍钴锰酸锂,避免了现有工艺中共沉淀法所产生的含重金属高浓度氨氮废水而带来的环境污染风险,节约了增设废水处理设施的投资。(2) The method for synthesizing metal-doped nickel-cobalt lithium manganese oxide by using lithium-ion battery positive electrode waste provided by the present invention adopts high-temperature solid-phase method to synthesize metal-doped nickel-cobalt lithium manganese oxide, which avoids the generation of co-precipitation method in the existing process The risk of environmental pollution caused by high-concentration ammonia nitrogen wastewater containing heavy metals saves the investment in additional wastewater treatment facilities.

(3)本发明提供的利用锂离子电池正极废料合成金属掺杂镍钴锰酸锂的方法适用范围广,适用于大规模处理锂离子电池正极废料。(3) The method for synthesizing metal-doped nickel-cobalt lithium manganese oxide by using the positive electrode waste of lithium ion batteries provided by the present invention has a wide range of applications, and is suitable for large-scale treatment of positive electrode waste of lithium ion batteries.

附图说明Description of drawings

图1为实施例1中合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质的XRD图谱;Fig. 1 is the LiNi 1/3 Mn 1/3 Co 1/3-1/20 Al 1/20 O synthesized in embodiment 1 The XRD pattern of positive electrode active material;

图2为实施例1中合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质的SEM图像;Fig. 2 is the SEM image of LiNi 1/3 Mn 1/3 Co 1/3-1/20 Al 1/20 O 2 positive electrode active materials synthesized in embodiment 1;

图3为实施例1中合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质的首次充放电曲线;Fig. 3 is LiNi 1/3 Mn 1/3 Co 1/3-1/20 Al 1/20 O 2 synthesized in embodiment 1 first charge and discharge curve of positive electrode active material;

图4为实施例1中合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质的循环性能曲线;Fig. 4 is the LiNi 1/3 Mn 1/3 Co 1/3-1/20 Al 1/20 O 2 synthesized in embodiment 1 cycle performance curve of positive electrode active material;

图5为实施例1中合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质充放电循环过程的库伦效率曲线。FIG. 5 is a Coulombic efficiency curve of the LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 cathode active material synthesized in Example 1 during the charge-discharge cycle.

具体实施方式Detailed ways

下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and through specific implementation methods. It should be clear to those skilled in the art that the embodiments are only for helping to understand the present invention, and should not be regarded as specific limitations on the present invention.

实施例1Example 1

取利用CN102751549B所述的方法分离出的含有少量杂质铝的镍钴锰酸锂正极材料10g,按照以下步骤合成铝掺杂的镍钴锰酸锂正极活性物质,具体步骤如下:Take 10 g of nickel-cobalt lithium manganate positive electrode material containing a small amount of impurity aluminum separated by the method described in CN102751549B, and synthesize an aluminum-doped nickel-cobalt lithium manganate positive electrode active material according to the following steps, the specific steps are as follows:

(1)将分离下来的含有少量杂质铝的镍钴锰酸锂正极废料置于600℃恒温电阻炉中焙烧5h,得到正极活性物质,采用红外碳硫分析仪检测正极活性物质中碳的质量分数低于0.001%,表明正极活性物质中的导电剂和粘结剂被完全去除。(1) Put the separated nickel cobalt lithium manganese oxide positive electrode waste containing a small amount of impurity aluminum in a constant temperature resistance furnace at 600 ° C for 5 hours to obtain the positive active material, and use an infrared carbon-sulfur analyzer to detect the mass fraction of carbon in the positive active material If it is less than 0.001%, it indicates that the conductive agent and binder in the positive electrode active material are completely removed.

(2)取0.5g步骤(1)得到的正极活性物质加入到王水中,加热消解2h,使其中的金属组分完全溶解后用ICP–OES分析测定,具体结果见表1。(2) Add 0.5 g of the positive electrode active material obtained in step (1) into aqua regia, heat and digest for 2 hours, and then use ICP-OES to analyze and measure the metal components in it. The specific results are shown in Table 1.

表1正极活性物质中金属的质量百分含量Table 1 The mass percentage of metal in the positive electrode active material

金属Metal NiNi Coco Mnmn LiLi AlAl 质量含量(wt.%)Mass content (wt.%) 21.3621.36 22.5122.51 20.9320.93 8.278.27 1.731.73

(3)根据正极活性物质中金属的质量含量及待合成的铝掺杂镍钴锰酸锂的分子式LiNi1/3Mn1/3Co1/3–1/20Al1/20O2中Ni、Mn、Co和Al的原子个数比,配入六水合硝酸镍、六水合硝酸钴、四水合硝酸锰或氢氧化铝使得Ni与Mn、Ni与Co和Ni与Al的摩尔比分别为1:1、1.176:1和6.667:1,然后用球磨机研磨10h,使上述混合物充分研磨并混合均匀,得到正极活性物质前驱体粉末。(3) According to the mass content of the metal in the positive electrode active material and the molecular formula of the aluminum-doped nickel-cobalt lithium manganate to be synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 in Ni , Mn, Co and Al atomic number ratio, mixed with nickel nitrate hexahydrate, cobalt nitrate hexahydrate, manganese nitrate tetrahydrate or aluminum hydroxide so that the molar ratios of Ni to Mn, Ni to Co and Ni to Al are 1 respectively :1, 1.176:1 and 6.667:1, and then grind for 10h with a ball mill, so that the above-mentioned mixture is fully ground and mixed uniformly to obtain the positive electrode active material precursor powder.

(4)向步骤(3)得到的正极活性物质前驱体粉末中配入碳酸锂,使Li的物质的量与Ni、Co、Mn和Al的总的物质的量之比为1.05~1.1,用球磨机充分研磨并混合均匀后过200目标准筛,将过筛后得到的物质置于高温炉中,以2℃·min–1速率升温至900℃后,于有氧气氛中恒温焙烧15h,然后以5℃·min-1的速率降温至10℃,得到铝掺杂的镍钴锰酸锂正极活性物质LiNi1/3Mn1/3Co1/3–1/20Al1/20O2。图1为合成的铝掺杂的镍钴锰酸锂正极活性物质LiNi1/3Mn1/3Co1/3–1/20Al1/20O2的XRD图谱;图2为合成的铝掺杂的镍钴锰酸锂正极活性物质LiNi1/3Mn1/3Co1/3–1/20Al1/20O2的SEM图像。(4) add lithium carbonate to the positive electrode active material precursor powder that step (3) obtains, make the ratio of the amount of substance of Li and the total amount of substance of Ni, Co, Mn and Al be 1.05~1.1, use After the ball mill is fully ground and mixed evenly, pass through a 200-mesh standard sieve, place the sieved material in a high-temperature furnace, heat up to 900°C at a rate of 2°C min -1 , and then roast it at a constant temperature in an aerobic atmosphere for 15 hours, then The temperature was lowered to 10°C at a rate of 5°C·min -1 to obtain an aluminum-doped nickel-cobalt lithium manganate cathode active material LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 . Figure 1 is the XRD pattern of the synthesized aluminum-doped nickel-cobalt lithium manganate cathode active material LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 ; Figure 2 is the synthesized aluminum-doped SEM images of LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 doped nickel-cobalt lithium manganate cathode active material.

由图1可知,所合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质衍射峰峰型尖锐、无杂相、晶体发育良好,具有典型的α-NaFeO2层状结构,属六方晶系;由图2可知,所合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质形貌为类球形,一次粒子粒径为1μm–2μm,二次粒子为一次粒子的团聚体。It can be seen from Figure 1 that the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 cathode active material has sharp diffraction peaks, no impurity phases, and well-developed crystals, with a typical The layered structure of α-NaFeO 2 belongs to the hexagonal crystal system; as can be seen from Figure 2, the morphology of the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 positive electrode active material is similar to Spherical, the primary particle size is 1μm–2μm, and the secondary particle is an aggregate of primary particles.

利用上述制备得到的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质组装纽扣电池:A button battery was assembled using the LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 cathode active material prepared above:

取步骤(4)合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质2g,按正极活性物质:乙炔黑:聚偏氟乙烯的质量比为84:8:8配入乙炔黑和聚偏氟乙烯,再加入N-甲基吡咯烷酮(NMP),混合均匀后调成浆料,涂覆在铝箔集流体上,于65℃真空干燥箱中干燥24h后组装成正极。在手套箱内将该正极、金属锂片(负极)、Celgard隔膜和电解液(EC:DMC=1:1的1mol·L–1LiPF6溶液)组装成纽扣电池。Get the synthetic LiNi 1/3 Mn 1/3 Co 1/3-1/20 Al 1/20 O 2 g of the positive electrode active material in step (4), according to the positive electrode active material: acetylene black: the mass ratio of polyvinylidene fluoride is 84:8:8 Add acetylene black and polyvinylidene fluoride, then add N-methylpyrrolidone (NMP), mix well and make a slurry, coat it on the aluminum foil current collector, and dry it in a vacuum oven at 65°C After 24h, the positive electrode was assembled. The positive electrode, metal lithium sheet (negative electrode), Celgard separator and electrolyte (EC:DMC=1:1 1mol L -1 LiPF 6 solution) were assembled into a button battery in a glove box.

用LAND CT2001A电池测试系统测定所组装的纽扣电池的充放电性能,对所组装的纽扣电池在2.8-4.5V,0.1C倍率下测试合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质的电化学性能。所制备的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质在上述测试条件下的首次充放电、循环性能和库伦效率曲线见图3、图4和图5。Use the LAND CT2001A battery test system to measure the charge and discharge performance of the assembled button battery, test the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1 for the assembled button battery at 2.8-4.5V, 0.1C magnification Electrochemical performance of /20 Al 1/20 O 2 cathode active material. The first charge and discharge, cycle performance and coulombic efficiency curves of the prepared LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 cathode active material under the above test conditions are shown in Figure 3 and Figure 4 and Figure 5.

由图3、图4和图5可知,所合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质在2.8-4.5V、0.1C倍率下首次充放电容量分别为204.5mAh·g1和160.9mAh·g1,首次放电效率为78.7%,不可逆容量为21.3%,经20次充放电循环后其放电容量仍保持在152.1mAh·g1,容量保持率为初始放电容量的94.53%。From Figure 3, Figure 4 and Figure 5, it can be seen that the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 cathode active material was first The charge and discharge capacities are 204.5mAh·g 1 and 160.9mAh·g 1 respectively, the initial discharge efficiency is 78.7%, and the irreversible capacity is 21.3%. After 20 charge and discharge cycles, the discharge capacity remains at 152.1mAh·g 1 . The retention rate was 94.53% of the initial discharge capacity.

实施例2Example 2

按质量比为1:2:1分别取锂离子电池生产过程中产生的钴酸锂(LiCoO2)、镍锰酸锂(LiNi1/2Mn1/2O2)和镍钴锰酸锂(LiNi1/3Co1/3Mn1/3O2)正极废料20g,其中LiNi1/3Co1/3Mn1/3O2是经Al2O3纳米颗粒包覆改性的材料,使用NMP溶解粘结剂分离出上述混合正极材料,按照以下步骤合成铝掺杂的镍钴锰酸锂正极活性物质,具体步骤如下:Lithium cobalt oxide (LiCoO 2 ), lithium nickel manganese oxide (LiNi 1/2 Mn 1/2 O 2 ) and lithium nickel cobalt manganese oxide ( LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) positive electrode waste 20g, wherein LiNi 1/3 Co 1/3 Mn 1/3 O 2 is a material modified by Al 2 O 3 nanoparticles coating, using NMP dissolves the binder to separate the above-mentioned mixed positive electrode material, and synthesizes an aluminum-doped nickel-cobalt lithium manganate positive electrode active material according to the following steps, and the specific steps are as follows:

(1)将分离下来的含有少量Al2O3的混合正极废料置于400℃恒温电阻炉中焙烧8h,得到正极活性物质,采用红外碳硫分析仪检测正极活性物质中碳的质量分数低于0.001%,表明正极活性物质中已不含导电剂和粘结剂。(1) The separated mixed positive electrode waste containing a small amount of Al 2 O 3 was placed in a constant temperature resistance furnace at 400°C for 8 hours to obtain the positive active material, and an infrared carbon-sulfur analyzer was used to detect that the mass fraction of carbon in the positive active material was lower than 0.001%, indicating that the positive electrode active material does not contain the conductive agent and the binder.

(2)正极活性物质中金属含量的分析方法同实施例1,具体结果见表2。(2) The analysis method of the metal content in the positive electrode active material is the same as in Example 1, and the specific results are shown in Table 2.

表2正极活性物质中金属的质量含量Table 2 Mass content of metal in positive electrode active material

金属Metal NiNi Coco Mnmn LiLi AlAl 质量含量(wt.%)Mass content (wt.%) 19.2719.27 20.3520.35 22.7622.76 12.9812.98 1.261.26

(3)根据正极活性物质中金属的质量含量和待合成的铝掺杂镍钴锰酸锂的分子式LiNi1/3Mn1/3Co1/3–1/20Al1/20O2中Ni、Mn、Co和Al的原子个数比,配入氧化镍、四氧化三钴、二氧化锰或氧化铝使得Ni与Mn、Ni与Co及Ni与Al的摩尔比分别为1:1、1.176:1和6.667:1,然后用球磨机研磨8h,使上述混合物充分研磨并混合均匀,得到正极活性物质前驱体粉末。(3) According to the mass content of the metal in the positive electrode active material and the molecular formula of the aluminum-doped nickel-cobalt lithium manganate to be synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 in Ni , Mn, Co and Al atomic number ratio, with nickel oxide, cobalt tetraoxide, manganese dioxide or aluminum oxide so that the molar ratios of Ni and Mn, Ni and Co and Ni and Al are 1:1, 1.176:1 and 6.667:1, and then grind for 8h with a ball mill, so that the above mixture is fully ground and mixed uniformly to obtain the positive electrode active material precursor powder.

(4)向步骤(3)得到的正极活性物质前驱体粉末中配入乙酸锂,使Li的物质的量与Ni、Co、Mn和Al的总的物质的量之比为1.05~1.1,用球磨机充分研磨并混合均匀后过800目标准筛,将过筛后得到的物质置于高温炉中,以5℃·min–1速率升温至850℃后,于有氧气氛中恒温焙烧18h,然后3℃·min-1的速率降温至40℃,得到铝掺杂的镍钴锰酸锂正极活性物质LiNi1/3Mn1/3Co1/3–1/20Al1/20O2(4) add lithium acetate to the positive electrode active material precursor powder that step (3) obtains, make the ratio of the amount of substance of Li and the total amount of substance of Ni, Co, Mn and Al be 1.05~1.1, use After the ball mill is fully ground and mixed evenly, pass through a 800-mesh standard sieve, place the sieved material in a high-temperature furnace, heat up to 850°C at a rate of 5°C min -1 , and then roast it at a constant temperature in an oxygen atmosphere for 18 hours, then The temperature was lowered to 40°C at a rate of 3°C·min -1 to obtain an aluminum-doped nickel-cobalt lithium manganate cathode active material LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 .

利用实施例1所述的方法对制备得到的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2进行XRD和SEM表征。表征结果说明,本实施例制备得到的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2为纯相的层状材料,XRD图谱中无杂质峰;其形貌为类球形,一次颗粒粒径为2μm–3μm,二次颗粒为一次颗粒的团聚体。The prepared LiNi 1/3 Mn 1/3 Co 1/3-1/20 Al 1/20 O 2 was characterized by XRD and SEM using the method described in Example 1. The characterization results show that the LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 prepared in this example is a layered material with a pure phase, and there are no impurity peaks in the XRD spectrum; its morphology It is spherical, the primary particle size is 2μm-3μm, and the secondary particle is an aggregate of primary particles.

利用上述制备得到的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质组装纽扣电池:A button battery was assembled using the LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 cathode active material prepared above:

取合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质3g,按正极活性物质:乙炔黑:聚偏氟乙烯的质量比为80:15:5配入乙炔黑与聚偏氟乙烯,正极制作方法、纽扣电池组装方法以及电化学性能测试方法同实施例1。Get the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 3 g of positive electrode active material, according to the mass ratio of positive electrode active material: acetylene black: polyvinylidene fluoride is 80:15: 5. Add acetylene black and polyvinylidene fluoride. The positive electrode manufacturing method, button cell assembly method and electrochemical performance testing method are the same as in Example 1.

电化学测试结果表明,所合成的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2正极活性物质在2.8-4.5V、0.1C倍率下首次充放电容量分别为211.9mAh·g1和172.2mAh·g1,首次放电效率为81.3%,不可逆容量为18.7%,经20次充放电循环后其放电容量仍保持在164.7mAh·g1,容量保持率为初始放电容量的95.64%。The electrochemical test results show that the first charge and discharge capacity of the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/20 Al 1/20 O 2 positive electrode active material at 2.8-4.5V and 0.1C rate are respectively 211.9mAh·g 1 and 172.2mAh·g 1 , the first discharge efficiency is 81.3%, the irreversible capacity is 18.7%, after 20 charge-discharge cycles, the discharge capacity still remains at 164.7mAh·g 1 , and the capacity retention rate is the initial discharge 95.64% of capacity.

对比实施例1与实施例2可知:Comparing Example 1 and Example 2 as can be seen:

实施例1中的铝是在正极材料分离过程中混入的,其仍以金属箔片的形式存在,故需要充分研磨以混合均匀,才能保证这些金属进入到镍钴锰酸锂晶体的晶格内。实施例2所处理的正极材料是金属化合物包覆改性的材料,其以化合物粉末的形式存在。从实施例1与实施例2的实验结果可以看出,实施例2合成的材料由于使用的是金属化合物包覆改性的材料,其制备得到的LiNi1/3Mn1/3Co1/3–1/20Al1/20O2电化学性能更佳。The aluminum in Example 1 is mixed in during the separation process of the positive electrode material, and it still exists in the form of metal foil, so it needs to be fully ground to mix evenly, so as to ensure that these metals enter the crystal lattice of nickel cobalt lithium manganese oxide . The positive electrode material treated in Example 2 is a metal compound-coated and modified material, which exists in the form of compound powder. From the experimental results of Example 1 and Example 2, it can be seen that the material synthesized in Example 2 uses a metal compound coated modified material, and the prepared LiNi 1/3 Mn 1/3 Co 1/3 –1/20 Al 1/20 O 2 has better electrochemical performance.

实施例3Example 3

分别取从锂离子电池中分离下来的钴酸锂(LiCoO2)正极废料10g和镍锰酸锂(LiNi1/2Mn1/2O2)正极废料20g,采用NMP溶解粘结剂分离出上述混合正极废料中的正极材料,并混合均匀,其中含有少量废锂离子电池拆解分离时混入的细小铜箔碎片,按照以下步骤合成铜掺杂的镍钴锰酸锂正极活性物质,具体步骤如下:Take respectively 10 g of lithium cobalt oxide (LiCoO 2 ) positive electrode waste and 20 g of lithium nickel manganese oxide (LiNi 1/2 Mn 1/2 O 2 ) positive electrode waste separated from lithium-ion batteries, and use NMP to dissolve the binder to separate the above-mentioned Mix the positive electrode material in the positive electrode waste and mix evenly, which contains a small amount of fine copper foil fragments mixed in when the waste lithium ion battery is disassembled and separated. Follow the steps below to synthesize the copper-doped nickel-cobalt lithium manganate positive electrode active material. The specific steps are as follows :

(1)将分离下来的含有少量铜箔碎片的混合正极废料置于1000℃马弗炉中焙烧2h,得到正极活性物质,采用红外碳硫分析仪检测正极活性物质中碳的质量分数低于0.001%,表明正极材料中不含有导电剂和粘结剂。(1) Put the separated mixed positive electrode waste containing a small amount of copper foil fragments in a muffle furnace at 1000°C for 2 hours to obtain the positive active material, and use an infrared carbon-sulfur analyzer to detect that the mass fraction of carbon in the positive active material is less than 0.001 %, indicating that the positive electrode material does not contain conductive agents and binders.

(2)步骤(1)得到的正极活性物质中金属含量的分析方法同实施例1,具体结果见表3。(2) The analysis method of the metal content in the positive electrode active material obtained in step (1) is the same as in Example 1, and the specific results are shown in Table 3.

表3正极活性物质中金属的质量含量Table 3 Mass content of metal in positive electrode active material

金属Metal NiNi Coco Mnmn LiLi CuCu 质量含量(wt.%)Mass content (wt.%) 23.7223.72 19.5519.55 21.0421.04 10.5710.57 1.341.34

(3)根据正极活性物质中金属的质量含量和待合成的铜掺杂镍钴锰酸锂的分子式LiNi1/3Mn1/3Co1/3–1/15Cu1/15O2中Ni、Mn、Co和Cu的原子个数比,配入四水合醋酸镍、四水合醋酸钴、四水合醋酸锰或硝酸铜使得Ni与Mn、Ni与Co及Ni与Cu的摩尔比分别为1:1、1.25:1和5:1,然后用球磨机研磨24h,使上述混合物充分研磨并混合均匀,得到正极活性物质前驱体粉末。(3) According to the mass content of the metal in the positive electrode active material and the molecular formula of the copper-doped nickel-cobalt lithium manganate to be synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/15 Cu 1/15 O 2 Ni in , Mn, Co and Cu atomic number ratio, mix nickel acetate tetrahydrate, cobalt acetate tetrahydrate, manganese acetate tetrahydrate or copper nitrate so that the molar ratios of Ni and Mn, Ni and Co and Ni and Cu are respectively 1: 1. 1.25:1 and 5:1, and then use a ball mill to grind for 24 hours, so that the above mixture is fully ground and mixed uniformly to obtain a positive electrode active material precursor powder.

(4)向步骤(3)得到的正极活性物质前驱体粉末中配入草酸锂和乙酸锂,使Li的物质的量与Ni、Co、Mn和Al的总的物质的量之比为1.05~1.1,用球磨机充分研磨并混合均匀后过1000目标准筛,将过筛后得到的物质置于高温炉中,以10℃·min–1速率升温至800℃后,于有氧气氛中恒温焙烧20h,然后缓慢降至60℃,得到铜掺杂的镍钴锰酸锂正极活性物质LiNi1/3Mn1/3Co1/3–1/15Cu1/15O2(4) add lithium oxalate and lithium acetate to the positive electrode active material precursor powder that step (3) obtains, make the ratio of the amount of substance of Li and the total amount of substance of Ni, Co, Mn and Al be 1.05~ 1.1, use a ball mill to fully grind and mix evenly, pass through a 1000-mesh standard sieve, place the sieved material in a high-temperature furnace, heat up to 800°C at a rate of 10°C·min -1 , and then roast at a constant temperature in an aerobic atmosphere 20h, and then slowly lowered to 60°C to obtain copper-doped nickel-cobalt lithium manganese oxide positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3–1/15 Cu 1/15 O 2 .

利用实施例1所述的方法对合成的LiNi1/3Mn1/3Co1/3–1/15Cu1/15O2进行XRD和SEM表征。表征结果为:所合成的LiNi1/3Mn1/3Co1/3–1/15Cu1/15O2为纯相的层状材料,XRD图谱中没有检测到其它衍射峰;形貌为类球形,一次颗粒粒径为1μm–3μm,二次颗粒为一次颗粒的团聚体。Using the method described in Example 1, the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/15 Cu 1/15 O 2 was characterized by XRD and SEM. The characterization results are: the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/15 Cu 1/15 O 2 is a pure-phase layered material, and no other diffraction peaks are detected in the XRD pattern; the morphology is Spherical, the primary particle size is 1μm–3μm, and the secondary particle is an aggregate of primary particles.

利用上述方法得到的LiNi1/3Mn1/3Co1/3–1/15Cu1/15O2正极活性物质组装纽扣电池:Utilize the LiNi 1/3 Mn 1/3 Co 1/3–1/15 Cu 1/15 O 2 cathode active material obtained by the above method to assemble a button battery:

取合成的LiNi1/3Mn1/3Co1/3–1/15Cu1/15O2正极活性物质5g,按正极活性物质:乙炔黑:聚偏氟乙烯的质量比为80:10:10配入乙炔黑和聚偏氟乙烯,正极制作方法、纽扣电池组装方法以及电化学性能测试方法同实施例1。Take the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/15 Cu 1/15 O 5 g of positive electrode active material, according to the mass ratio of positive electrode active material: acetylene black: polyvinylidene fluoride is 80:10: 10 was mixed with acetylene black and polyvinylidene fluoride, and the positive electrode manufacturing method, button battery assembly method and electrochemical performance testing method were the same as in Example 1.

电化学测试结果表明,所合成的LiNi1/3Mn1/3Co1/3–1/15Cu1/15O2正极活性物质在2.8-4.5V、0.1C倍率下首次充放电容量分别为202.9mAh·g1和158.7mAh·g1,首次放电效率为78.2%,不可逆容量为21.8%,经20次充放电循环后其放电容量仍保持在151.9mAh·g1,容量保持率为初始放电容量的95.7%。The electrochemical test results show that the first charge and discharge capacity of the synthesized LiNi 1/3 Mn 1/3 Co 1/3–1/15 Cu 1/15 O 2 positive electrode active material at 2.8-4.5V and 0.1C rate are respectively 202.9mAh·g 1 and 158.7mAh·g 1 , the initial discharge efficiency is 78.2%, and the irreversible capacity is 21.8%. After 20 charge-discharge cycles, the discharge capacity remains at 151.9mAh·g 1 , and the capacity retention rate is the initial discharge 95.7% of capacity.

申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the detailed methods of the present invention through the above-mentioned examples, but the present invention is not limited to the above-mentioned detailed methods, that is, it does not mean that the present invention must rely on the above-mentioned detailed methods to be implemented. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Claims (10)

1.一种利用锂离子电池正极废料合成金属掺杂镍钴锰酸锂的方法,其特征在于,所述金属掺杂镍钴锰酸锂具有如下组成:LiNixMnyCo1–x–y–zMzO2,其中,M为Cu、Al、Fe、Mg、Cr、Ti、Ce或Y中的任一种或至少两种,0<x<1,0<y<1,0<z<0.1,且0<x+y+z<1;1. A method utilizing lithium-ion battery cathode waste to synthesize metal-doped nickel-cobalt lithium manganese oxide, characterized in that, said metal-doped nickel-cobalt lithium manganese oxide has the following composition: LiNi x Mn y Co 1-x-y -z M z O 2 , wherein M is any one or at least two of Cu, Al, Fe, Mg, Cr, Ti, Ce or Y, 0<x<1, 0<y<1, 0<z<0.1, and 0<x+y+z<1; 所述方法包括如下步骤:The method comprises the steps of: (1)除去锂离子电池正极废料中的粘结剂和导电剂,得到正极活性物质;(1) remove the binder and the conductive agent in the positive electrode waste of the lithium ion battery to obtain the positive electrode active material; (2)测定正极活性物质的元素组成;(2) Determination of the elemental composition of the positive electrode active material; (3)根据正极活性物质的元素组成,调节正极活性物质中Ni、Co、Mn或M中的一种或至少两种的含量,使其摩尔比符合分子式LiNixMnyCo1–x–y–zMzO2中Ni、Co、Mn与M的摩尔比,以得到正极活性物质前驱体粉末;(3) According to the element composition of the positive electrode active material, adjust the content of one or at least two of Ni, Co, Mn or M in the positive electrode active material so that the molar ratio conforms to the molecular formula LiNi x Mn y Co 1–x–y -zMzO2In the molar ratio of Ni, Co, Mn and M, to obtain positive active material precursor powder; (4)向正极活性物质前驱体粉末中加入锂源,利用高温固相反应得到金属掺杂镍钴锰酸锂。(4) Adding a lithium source to the positive electrode active material precursor powder, and using a high-temperature solid-state reaction to obtain metal-doped nickel-cobalt lithium manganese oxide. 2.根据权利要求1所述的方法,其特征在于,步骤(1)所述正极活性物质是:镍基氧化物、钴基氧化物、锰基氧化物、经M掺杂的镍基氧化物、经M掺杂的钴基氧化物、经M掺杂的锰基氧化物、M化合物包覆改性的镍基氧化物、M化合物包覆改性的钴基氧化物或M化合物包覆改性的锰基氧化物中的任一种或至少两种的组合;2. The method according to claim 1, wherein the anode active material in step (1) is: nickel-based oxide, cobalt-based oxide, manganese-based oxide, M-doped nickel-based oxide , M-doped cobalt-based oxide, M-doped manganese-based oxide, M compound-coated modified nickel-based oxide, M compound-coated modified cobalt-based oxide, or M compound-coated modified Any one or a combination of at least two of the manganese-based oxides; 优选地,所述M来源于分离锂离子电池正极废料得到正极活性物质过程中混入的杂质金属或正极活性物质由于掺杂或包覆改性所引入的金属;Preferably, the M is derived from the impurity metal mixed in the process of separating the positive electrode waste of lithium-ion batteries to obtain the positive electrode active material or the metal introduced by the positive electrode active material due to doping or coating modification; 优选地,所述M来源于正极活性物质由于掺杂或包覆改性所引入的金属。Preferably, the M is derived from the metal introduced by the positive electrode active material due to doping or coating modification. 3.根据权利要求1或2所述的方法,其特征在于,步骤(1)所述正极活性物质中碳的质量分数低于0.001%;3. The method according to claim 1 or 2, characterized in that, the mass fraction of carbon in the positive electrode active material described in step (1) is lower than 0.001%; 优选地,步骤(1)通过焙烧锂离子电池正极废料得到正极活性物质;Preferably, step (1) obtains the positive electrode active material by roasting the lithium ion battery positive electrode waste; 优选地,所述焙烧的温度为400~1000℃,优选为500~800℃;Preferably, the calcination temperature is 400-1000°C, preferably 500-800°C; 优选地,所述焙烧的时间为2~8h,优选为4~6h;Preferably, the roasting time is 2 to 8 hours, preferably 4 to 6 hours; 优选地,所述焙烧在高温炉内进行。Preferably, the calcination is carried out in a high temperature furnace. 4.根据权利要求1-3之一所述的方法,其特征在于,步骤(2)将所述正极活性物质加入到强酸性溶液中加热消解后再测定所述正极活性物质的元素组成;4. The method according to any one of claims 1-3, characterized in that, step (2) adds the positive electrode active material to a strong acidic solution, heats and digests it, and then measures the elemental composition of the positive electrode active material; 优选地,所述加热消解的时间为1~6h;Preferably, the heating and digestion time is 1 to 6 hours; 优选地,步骤(2)利用ICP–OES测定所述正极活性物质的元素组成。Preferably, step (2) uses ICP-OES to determine the elemental composition of the positive electrode active material. 5.根据权利要求1-4之一所述的方法,其特征在于,步骤(3)向所述正极活性物质中加入Ni源、Co源、Mn源或M源中的任一种或至少两种来调节所述正极活性物质中元素的含量;5. The method according to any one of claims 1-4, characterized in that, step (3) adds any one or at least two of Ni source, Co source, Mn source or M source to the positive electrode active material. species to adjust the content of elements in the positive active material; 优选地,所述Ni源、Co源、Mn源或M源独立地为Ni、Co、Mn或M的氧化物、氯化物、硫酸盐、硝酸盐、乙酸盐或草酸盐;Preferably, the source of Ni, Co, Mn or M is independently an oxide, chloride, sulfate, nitrate, acetate or oxalate of Ni, Co, Mn or M; 优选地,步骤(3)所述正极活性物质与加入的Ni源、Co源、Mn源或M源研磨后得到正极活性物质前驱体粉末,研磨时间为8~24h。Preferably, the cathode active material in step (3) is ground with the added Ni source, Co source, Mn source or M source to obtain a cathode active material precursor powder, and the grinding time is 8-24 hours. 6.根据权利要求1-5之一所述的方法,其特征在于,步骤(4)所述锂源为碳酸锂、氯化锂、硫酸锂、硝酸锂、乙酸锂或草酸锂的任一种或至少两种的混合物;6. according to the described method of one of claim 1-5, it is characterized in that, the lithium source described in step (4) is lithium carbonate, lithium chloride, lithium sulfate, lithium nitrate, lithium acetate or lithium oxalate any one or a mixture of at least two; 优选地,步骤(4)中加入的锂源使Li的物质的量与Ni、Co、Mn和M的总的物质的量之比为1.05~1.1;Preferably, the lithium source added in step (4) makes the ratio of the amount of Li to the total amount of Ni, Co, Mn and M 1.05 to 1.1; 优选地,步骤(4)所述高温固相反应的温度为800~900℃,反应时间为15~20h;Preferably, the temperature of the high-temperature solid-phase reaction in step (4) is 800-900° C., and the reaction time is 15-20 h; 优选地,步骤(4)所述高温固相反应时的升温速率为2~10℃·min-1Preferably, the heating rate during the high temperature solid phase reaction in step (4) is 2-10°C·min -1 ; 优选地,步骤(4)所述高温固相反应在有氧气氛中进行;Preferably, the high-temperature solid-phase reaction described in step (4) is carried out in an oxygen atmosphere; 优选地,步骤(4)所述高温固相反应为:以2~10℃·min-1的速率升温至800~900℃后,于有氧气氛中恒温焙烧15~20h,然后以1~5℃·min-1的速率降温至10~60℃,得到金属掺杂镍钴锰酸锂。Preferably, the high-temperature solid-state reaction in step (4) is as follows: after raising the temperature to 800-900°C at a rate of 2-10°C·min -1 , roasting at a constant temperature in an aerobic atmosphere for 15-20 hours, and then heating at a temperature of 1-5 The temperature is lowered at a rate of ℃·min -1 to 10-60 ℃ to obtain metal-doped nickel-cobalt lithium manganese oxide. 7.根据权利要求1-6之一所述的方法,其特征在于,步骤(4)将锂源与正极活性物质前驱体粉末进行研磨和过筛处理后再进行高温固相反应;7. The method according to any one of claims 1-6, characterized in that, step (4) carries out high-temperature solid-state reaction after grinding and sieving the lithium source and positive electrode active material precursor powder; 优选地,所述研磨在球磨机上进行;Preferably, the grinding is carried out on a ball mill; 优选地,所述过筛的目数为200~1000目。Preferably, the mesh size of the sieve is 200-1000 mesh. 8.根据权利要求1-7之一所述的方法,其特征在于,所述方法包括如下步骤:8. The method according to any one of claims 1-7, characterized in that the method comprises the steps of: (1)将分离得到的锂离子电池正极废料置于高温炉中焙烧,除去其中的粘结剂和导电剂,得到正极活性物质;(1) placing the separated lithium-ion battery positive electrode waste material in a high-temperature furnace for roasting, removing the binder and conductive agent therein to obtain the positive electrode active material; (2)测定所述正极活性物质的元素组成;(2) Determining the elemental composition of the positive active material; (3)根据正极活性物质的元素组成,调节所述正极活性物质中Ni、Co、Mn或M的含量,使其摩尔比符合分子式LiNixMnyCo1–x–y–zMzO2中Ni、Co、Mn与M的摩尔比,得到正极活性物质前驱体粉末;(3) According to the element composition of the positive electrode active material, adjust the content of Ni, Co, Mn or M in the positive electrode active material so that the molar ratio conforms to the molecular formula LiNi x Mn y Co 1–x–y–z M z O 2 In the molar ratio of Ni, Co, Mn and M, the positive electrode active material precursor powder is obtained; (4)向正极活性物质前驱体粉末中加入锂源,使Li与Ni、Co、Mn和M的总和的摩尔比为1.05~1.1,然后以2~10℃·min-1的速率升温至800~900℃后,于有氧气氛中恒温焙烧15~20h,再缓慢降至室温,得到金属掺杂镍钴锰酸锂。(4) Add a lithium source to the positive electrode active material precursor powder so that the molar ratio of Li to the sum of Ni, Co, Mn and M is 1.05 to 1.1, and then raise the temperature to 800 at a rate of 2 to 10°C·min -1 After ~900°C, it is roasted at a constant temperature in an oxygen atmosphere for 15-20 hours, and then slowly lowered to room temperature to obtain metal-doped nickel-cobalt lithium manganese oxide. 9.一种根据权利要求1-8之一所述的方法制备得到的金属掺杂镍钴锰酸锂。9. A metal-doped nickel-cobalt lithium manganese oxide prepared by the method according to any one of claims 1-8. 10.一种根据权利要求9所述的金属掺杂镍钴锰酸锂的用途,其用于锂离子电池正极材料领域。10. A use of the metal-doped nickel-cobalt lithium manganese oxide according to claim 9, which is used in the field of positive electrode materials for lithium-ion batteries.
CN201510242512.3A 2015-05-13 2015-05-13 Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use Active CN104953199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510242512.3A CN104953199B (en) 2015-05-13 2015-05-13 Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510242512.3A CN104953199B (en) 2015-05-13 2015-05-13 Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use

Publications (2)

Publication Number Publication Date
CN104953199A true CN104953199A (en) 2015-09-30
CN104953199B CN104953199B (en) 2018-03-13

Family

ID=54167689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510242512.3A Active CN104953199B (en) 2015-05-13 2015-05-13 Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use

Country Status (1)

Country Link
CN (1) CN104953199B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699692A (en) * 2017-09-18 2018-02-16 北京理工大学 A kind of recovery and the method for regenerating waste used anode material for lithium-ion batteries
CN107978816A (en) * 2017-12-28 2018-05-01 中南大学 Method for regenerating and repairing anode material of waste lithium ion battery
CN108288711A (en) * 2018-02-12 2018-07-17 成都理工大学 A kind of quaternary lithium-ion battery positive electrode material and preparation method
CN108400399A (en) * 2018-02-02 2018-08-14 昆明理工大学 A kind of method that waste lithium manganese oxide battery prepares lithium manganese phosphate/carbon positive electrode
WO2018192121A1 (en) * 2017-04-18 2018-10-25 中科过程(北京)科技有限公司 Method for efficiently recovering positive electrode material precursor and lithium carbonate from positive electrode waste material of lithium ion battery
CN109546144A (en) * 2018-11-29 2019-03-29 广东佳纳能源科技有限公司 The preparation method and applications of ternary precursor
CN109742476A (en) * 2019-01-09 2019-05-10 东北师范大学 A kind of recycling method of waste lithium ion battery cathode material
CN109837392A (en) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 The recycling and regeneration method of lithium ion battery anode material waste material
CN109888214A (en) * 2019-02-15 2019-06-14 天津巴莫科技股份有限公司 A kind of modified nickel-cobalt-manganese ternary material and preparation method thereof
CN110010990A (en) * 2019-03-27 2019-07-12 欣旺达电子股份有限公司 There is the method for the nickel-cobalt-manganese ternary material of alumina-coated layer using retired lithium ion battery as raw material preparation
CN110518219A (en) * 2019-09-04 2019-11-29 中南大学 The nickelic gradient nickel cobalt manganese aluminium quaternary positive electrode of core-shell structure and preparation method
CN111063866A (en) * 2018-10-16 2020-04-24 中国科学院宁波材料技术与工程研究所 A kind of composite material and preparation method thereof
CN113488715A (en) * 2021-07-21 2021-10-08 昆明理工大学 Method for directly regenerating high-voltage positive electrode material by using waste lithium cobalt oxide battery
CN114302862A (en) * 2019-08-29 2022-04-08 诺沃尼克斯电池技术解决方案公司 Lithium transition metal oxide and precursor microparticles and methods
CN114597532A (en) * 2022-03-15 2022-06-07 清华大学深圳国际研究生院 Method for directly regenerating failed lithium cobaltate positive electrode into high-voltage lithium cobaltate positive electrode and product
CN114597412A (en) * 2022-03-09 2022-06-07 厦门海辰新能源科技有限公司 Application of positive electrode slurry containing fluorine-free binder in reduction of metal impurities in positive electrode plate
CN114830408A (en) * 2020-11-27 2022-07-29 Liv能源株式会社 Method for preparing regenerated positive active material using waste secondary battery
EP3951979A4 (en) * 2019-12-16 2022-08-17 Lg Chem, Ltd. Method for separating transition metal from waste cathode material
CN115286048A (en) * 2022-07-25 2022-11-04 广东邦普循环科技有限公司 Positive electrode material precursor and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585187A (en) * 2004-06-09 2005-02-23 南开大学 Method for regenerating anode materials of waste lithium ion secondary battery
CN102208706A (en) * 2011-05-04 2011-10-05 合肥国轩高科动力能源有限公司 Recycling and regenerating treatment method for waste lithium iron phosphate battery positive electrode material
CN103915661A (en) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 Method for direct recovery and restoration of lithium ion battery positive electrode material
CN103956533A (en) * 2014-03-28 2014-07-30 华南师范大学 Method for preparing cathode material of lithium ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585187A (en) * 2004-06-09 2005-02-23 南开大学 Method for regenerating anode materials of waste lithium ion secondary battery
CN102208706A (en) * 2011-05-04 2011-10-05 合肥国轩高科动力能源有限公司 Recycling and regenerating treatment method for waste lithium iron phosphate battery positive electrode material
CN103915661A (en) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 Method for direct recovery and restoration of lithium ion battery positive electrode material
CN103956533A (en) * 2014-03-28 2014-07-30 华南师范大学 Method for preparing cathode material of lithium ion battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018192121A1 (en) * 2017-04-18 2018-10-25 中科过程(北京)科技有限公司 Method for efficiently recovering positive electrode material precursor and lithium carbonate from positive electrode waste material of lithium ion battery
CN107699692A (en) * 2017-09-18 2018-02-16 北京理工大学 A kind of recovery and the method for regenerating waste used anode material for lithium-ion batteries
CN107978816A (en) * 2017-12-28 2018-05-01 中南大学 Method for regenerating and repairing anode material of waste lithium ion battery
CN108400399A (en) * 2018-02-02 2018-08-14 昆明理工大学 A kind of method that waste lithium manganese oxide battery prepares lithium manganese phosphate/carbon positive electrode
CN108400399B (en) * 2018-02-02 2020-07-07 昆明理工大学 Method for preparing lithium manganese phosphate/carbon cathode material from waste lithium manganate battery
CN108288711A (en) * 2018-02-12 2018-07-17 成都理工大学 A kind of quaternary lithium-ion battery positive electrode material and preparation method
CN111063866A (en) * 2018-10-16 2020-04-24 中国科学院宁波材料技术与工程研究所 A kind of composite material and preparation method thereof
CN109546144A (en) * 2018-11-29 2019-03-29 广东佳纳能源科技有限公司 The preparation method and applications of ternary precursor
CN109546144B (en) * 2018-11-29 2020-07-31 广东佳纳能源科技有限公司 Preparation method and application of ternary precursor
CN109742476A (en) * 2019-01-09 2019-05-10 东北师范大学 A kind of recycling method of waste lithium ion battery cathode material
CN109837392A (en) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 The recycling and regeneration method of lithium ion battery anode material waste material
CN109888214A (en) * 2019-02-15 2019-06-14 天津巴莫科技股份有限公司 A kind of modified nickel-cobalt-manganese ternary material and preparation method thereof
CN110010990A (en) * 2019-03-27 2019-07-12 欣旺达电子股份有限公司 There is the method for the nickel-cobalt-manganese ternary material of alumina-coated layer using retired lithium ion battery as raw material preparation
CN114302862A (en) * 2019-08-29 2022-04-08 诺沃尼克斯电池技术解决方案公司 Lithium transition metal oxide and precursor microparticles and methods
CN110518219A (en) * 2019-09-04 2019-11-29 中南大学 The nickelic gradient nickel cobalt manganese aluminium quaternary positive electrode of core-shell structure and preparation method
CN110518219B (en) * 2019-09-04 2023-08-01 中南大学 Core-shell structured high nickel gradient nickel-cobalt-manganese-aluminum quaternary positive electrode material and preparation method thereof
EP3951979A4 (en) * 2019-12-16 2022-08-17 Lg Chem, Ltd. Method for separating transition metal from waste cathode material
US12266771B2 (en) 2019-12-16 2025-04-01 Lg Chem, Ltd. Method for separating transition metal from waste positive electrode material
CN114830408A (en) * 2020-11-27 2022-07-29 Liv能源株式会社 Method for preparing regenerated positive active material using waste secondary battery
CN113488715A (en) * 2021-07-21 2021-10-08 昆明理工大学 Method for directly regenerating high-voltage positive electrode material by using waste lithium cobalt oxide battery
CN113488715B (en) * 2021-07-21 2024-10-25 昆明理工大学 Method for directly regenerating high-voltage positive electrode material by using waste lithium cobaltate battery
CN114597412A (en) * 2022-03-09 2022-06-07 厦门海辰新能源科技有限公司 Application of positive electrode slurry containing fluorine-free binder in reduction of metal impurities in positive electrode plate
CN114597412B (en) * 2022-03-09 2023-04-21 厦门海辰储能科技股份有限公司 Use of positive electrode slurry containing fluorine-free binder in reducing metal impurities in positive electrode sheet
CN114597532A (en) * 2022-03-15 2022-06-07 清华大学深圳国际研究生院 Method for directly regenerating failed lithium cobaltate positive electrode into high-voltage lithium cobaltate positive electrode and product
CN115286048A (en) * 2022-07-25 2022-11-04 广东邦普循环科技有限公司 Positive electrode material precursor and preparation method and application thereof

Also Published As

Publication number Publication date
CN104953199B (en) 2018-03-13

Similar Documents

Publication Publication Date Title
CN104953199B (en) Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use
Sa et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream
CN112374553B (en) Method for recycling and regenerating retired lithium ion battery anode material
Yao et al. Recycling and synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 from waste lithium ion batteries using d, l-malic acid
CN113265704B (en) Method for preparing flake single crystal ternary electrode material with exposed {010} crystal face by regenerating waste lithium ion battery
CN109546254B (en) Treatment method of waste nickel cobalt lithium manganate ion battery positive electrode material
CN102983326B (en) Spherical lithium-nickel-cobalt composite oxide positive electrode material preparation method
CN109119711B (en) A method for preparing high-voltage positive electrode material by using waste lithium cobalt oxide battery
CN108417923A (en) A method for recycling and reusing cathode materials of decommissioned lithium iron phosphate batteries
CN104993121B (en) A kind of nickel manganese blending anode material for lithium-ion batteries and preparation method thereof
CN106910887B (en) A lithium-rich manganese-based positive electrode material, a preparation method thereof, and a lithium ion battery comprising the positive electrode material
Li et al. Preparation and electrochemical properties of re-synthesized LiCoO 2 from spent lithium-ion batteries
CN102157726B (en) Method for preparing high-voltage cathode material lithium-nickel-manganese-oxygen
CN104241630B (en) Lithium nickel cobalt manganate hollow sphere as well as preparation method and application thereof
CN106981651A (en) Rubidium and/or the tertiary cathode material and preparation method, lithium ion battery of caesium doping
CN108054371A (en) A kind of high-tap density, high magnification and long-life lithium-rich manganese-based anode material and preparation method thereof
CN102891299A (en) High-rate lithium ion battery cathode material and preparation method and application thereof
CN105185979A (en) Hollow structure lithium-ion battery positive electrode material and preparation method thereof
WO2023071396A1 (en) Positive electrode material for sodium-ion battery, and preparation method therefor and application thereof
CN106006762A (en) Preparation of pedal-layered Ni-Co-Mn ternary material precursor and application of precursor as cathode material for lithium ion cell
CN108899537A (en) lithium ion battery L iNixCoyMnl-x-yO2Preparation method of positive electrode material
CN115621598A (en) A kind of waste NCM523 type ternary lithium battery cathode material recycling method
CN116093482B (en) Recycling method and application of waste lithium ion battery anode material
CN105958063A (en) Preparation method of nickel-cobalt-aluminum cathode material used for lithium-ion battery
CN101774563A (en) High-voltage positive electrode material used by lithium ion battery and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant