[go: up one dir, main page]

CN104952075A - Laser scanning three-dimensional model-oriented multi-image automatic texture mapping method - Google Patents

Laser scanning three-dimensional model-oriented multi-image automatic texture mapping method Download PDF

Info

Publication number
CN104952075A
CN104952075A CN201510334502.2A CN201510334502A CN104952075A CN 104952075 A CN104952075 A CN 104952075A CN 201510334502 A CN201510334502 A CN 201510334502A CN 104952075 A CN104952075 A CN 104952075A
Authority
CN
China
Prior art keywords
image
model
texture
dimensional
triangular mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510334502.2A
Other languages
Chinese (zh)
Inventor
李定康
刁常宇
邢卫
鲁东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510334502.2A priority Critical patent/CN104952075A/en
Publication of CN104952075A publication Critical patent/CN104952075A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Generation (AREA)

Abstract

本发明公开了一种面向激光扫描三维模型的多图像自动纹理映射方法,包括:使用激光扫描仪获取三维场景的三维点云模型,并形成相应的三角网格模型,利用多图像三维重建系统求解三维场景的三维点云模型以及对应的相机参数,求解三角网格模型和三维点云模型间的旋转矩阵、平移矩阵、缩放矩阵并调整三角网格模型使它与多图像三维重建模型最重合,面向经过调整的三角网格模型利用相机参数进行自动纹理映射得到相应的纹理图像,本发明的多图像自动纹理映射方法极大地改变传统三维模型纹理映射效果不佳的现状,不仅全自动化完成整个纹理映射过程而且得到的结果质量更好。The invention discloses a multi-image automatic texture mapping method for laser scanning three-dimensional models, comprising: using a laser scanner to obtain a three-dimensional point cloud model of a three-dimensional scene, forming a corresponding triangular mesh model, and using a multi-image three-dimensional reconstruction system to solve the problem The 3D point cloud model of the 3D scene and the corresponding camera parameters, solve the rotation matrix, translation matrix, and scaling matrix between the triangular mesh model and the 3D point cloud model, and adjust the triangular mesh model to make it the most coincident with the multi-image 3D reconstruction model, Oriented to the adjusted triangular mesh model, the camera parameters are used to perform automatic texture mapping to obtain corresponding texture images. The multi-image automatic texture mapping method of the present invention greatly changes the current situation of poor texture mapping effects of traditional 3D models, and not only fully automates the entire texture mapping process and the resulting quality is better.

Description

面向激光扫描三维模型的多图像自动纹理映射方法Multi-image automatic texture mapping method for laser scanning 3D model

技术领域technical field

本发明涉及计算机视觉领域,尤其涉及基于多图像的三维重建系统以及激光扫描模型的自动纹理映射,具体涉及一种面向激光扫描三维模型的多图像自动纹理映射方法。The invention relates to the field of computer vision, in particular to a multi-image-based three-dimensional reconstruction system and automatic texture mapping of a laser scanning model, in particular to a multi-image automatic texture mapping method for a laser scanning three-dimensional model.

背景技术Background technique

目前常用的基于多图像的三维重建系统利用图像特征向量之间的匹配关系来达到求解三维场景中相机的内参数矩阵、外参数矩阵以及三维点的世界坐标系坐标。At present, the commonly used 3D reconstruction system based on multiple images uses the matching relationship between image feature vectors to solve the internal parameter matrix, external parameter matrix of the camera in the 3D scene and the coordinates of the world coordinate system of the 3D point.

另一种常用的获取场景三维数据的方法是激光扫描得到三维模型。为了得到场景尽可能丰富的细节,需要使用面着色替代现有三维模型的点着色方式,即三角网格模型上每个三角面片的像素取自纹理图像上的一个三角形纹理区域。由于激光扫描三维模型的几何结构高度准确,多图像三维重建方法得到的相机参数误差很小,可以结合激光扫描三维模型和基于多图像三维重建得到的三维场景描述(每个相机的参数)来计算得到纹理细节丰富的三角网格模型。Another commonly used method to obtain 3D data of a scene is to obtain a 3D model through laser scanning. In order to obtain as much detail as possible in the scene, it is necessary to use surface coloring instead of the point coloring method of the existing 3D model, that is, the pixels of each triangle patch on the triangle mesh model are taken from a triangle texture area on the texture image. Since the geometric structure of the laser scanning 3D model is highly accurate, the error of the camera parameters obtained by the multi-image 3D reconstruction method is very small, which can be calculated by combining the laser scanning 3D model and the 3D scene description (parameters of each camera) obtained based on the multi-image 3D reconstruction. A triangular mesh model with rich texture details is obtained.

基于多图像的三维重建系统的流程是提取每张图像的特征向量,对图像间的特征向量进行匹配,把特征向量的匹配结果作为三维重建的输入,得到每张图像对应的相机参数和三维场景的稠密三维点云,并消除每张图像的畸变得到消除畸变后的图像。The process of the 3D reconstruction system based on multiple images is to extract the feature vector of each image, match the feature vectors between the images, and use the matching result of the feature vector as the input of 3D reconstruction to obtain the camera parameters and 3D scene corresponding to each image The dense 3D point cloud, and eliminate the distortion of each image to obtain the image after distortion.

多图像自动纹理映射需要的输入数据有三角网格模型、每个相机的参数以及对应的图像。The input data required for multi-image automatic texture mapping are triangle mesh model, parameters of each camera and corresponding images.

近年来,纹理映射一直是紧接着基于多图像三维重建进行的,由于基于多图像三维重建得到的三维模型在几何结构上误差较大,最终得到的纹理映射结果不太理想,把激光扫描三维模型引入多图像纹理映射会使得最终的结果细节更丰富。In recent years, texture mapping has been carried out based on multi-image 3D reconstruction. Since the 3D model obtained based on multi-image 3D reconstruction has a large error in geometric structure, the final texture mapping result is not ideal. Laser scanning 3D model Introducing multiple image texture maps will make the final result richer in detail.

发明内容Contents of the invention

针对现有技术的不足,本发明提供了一种面向激光扫描三维模型的多图像自动纹理映射方法。Aiming at the deficiencies of the prior art, the present invention provides a multi-image automatic texture mapping method for laser scanning three-dimensional models.

一种面向激光扫描三维模型的多图像自动纹理映射方法,包括:A multi-image automatic texture mapping method for laser scanning 3D models, comprising:

步骤1、使用激光扫描仪获取三维场景的三维点云模型,并形成相应的三角网格模型;Step 1. Use a laser scanner to obtain a 3D point cloud model of a 3D scene, and form a corresponding triangular mesh model;

步骤2、获取所述三维场景的若干张多方向、多角度的图像,并求解得到每张图像对应的相机内参数矩阵、相机外参数矩阵,以及所述三维场景的稠密三维点云;Step 2. Obtain several multi-directional and multi-angle images of the three-dimensional scene, and solve for each image corresponding to the camera internal parameter matrix, the camera external parameter matrix, and the dense three-dimensional point cloud of the three-dimensional scene;

获取的照片的张数至少为20张。通常使用单反相机对场景进行多方向、多角度的拍照取景以得到相应的多方向、多角度的图像。The number of photos to be acquired must be at least 20. SLR cameras are usually used to take pictures of scenes in multiple directions and angles to obtain corresponding multi-directional and multi-angle images.

步骤3、将所述三角网格模型与所述的稠密三维点云进行匹配得到对齐三角网格模型;Step 3, matching the triangular mesh model with the dense 3D point cloud to obtain an aligned triangular mesh model;

步骤4、根据所有图像、各个图像对应的相机内参数矩阵、相机外参数矩阵以及所述的对齐三角网格模型,采用基于透视投影模型法获取所述对齐三角网格模型上每个三角面片在各个图像中对应的纹理区域并拼接得到相应的纹理图像。Step 4. According to all the images, the camera internal parameter matrix and the external camera parameter matrix corresponding to each image, and the aligned triangular mesh model, obtain each triangle patch on the aligned triangular mesh model by using a perspective projection model method Corresponding texture regions in each image are spliced to obtain corresponding texture images.

本发明的三维场景的三维点云模型使用激光扫描仪扫描场景得到,不是常规的多图像三维重建计算出来的,对于使用激光扫描仪扫描得到的三维点云模型,处理的时候去除三维点云模型的颜色然后进行三角网格化形成相应的三角网格模型。The 3D point cloud model of the 3D scene of the present invention is obtained by scanning the scene with a laser scanner, and is not calculated by conventional multi-image 3D reconstruction. For the 3D point cloud model obtained by scanning with a laser scanner, the 3D point cloud model is removed during processing The colors are then triangulated to form a corresponding triangular mesh model.

作为优选,所述三角网格模型为PLY格式。PLY相比其它表示三维模型的文件格式能更加简单地以元素(三维顶点、纹理坐标、三角面片)列表来存储三角网格模型,Preferably, the triangular mesh model is in PLY format. Compared with other file formats representing 3D models, PLY can store triangular mesh models in a list of elements (3D vertices, texture coordinates, triangular patches) more simply,

技术成熟且易于实现,所述步骤2中利用多图像三维重建方法求解得到每张图像对应的相机内参数矩阵、相机外参数矩阵,以及稠密三维点云。The technology is mature and easy to implement. In the step 2, the multi-image three-dimensional reconstruction method is used to solve the camera internal parameter matrix, camera external parameter matrix and dense three-dimensional point cloud corresponding to each image.

通过匹配使得激光扫描的三维模型(即三角网格模型)和多图像三维重建得到的稠密三维点云这两个模型最重合,保证多图像三维重建得到的相机参数在激光扫描三维模型下有效。作为优选,所述步骤3具体如下:By matching, the two models of the laser scanning 3D model (that is, the triangular mesh model) and the dense 3D point cloud obtained from the multi-image 3D reconstruction are most coincident, ensuring that the camera parameters obtained from the multi-image 3D reconstruction are valid under the laser scanning 3D model. As preferably, the step 3 is specifically as follows:

根据所述三角网格模型和所述稠密三维点云之间的几何相似性(如轮廓等几何特征)计算得到所述三角网格模型和稠密三维点云间的位移矩阵,所述位移矩阵包括旋转矩阵、平移矩阵、缩放矩阵和畸变参数;Calculate the displacement matrix between the triangular mesh model and the dense 3D point cloud according to the geometric similarity between the triangular mesh model and the dense 3D point cloud (geometric features such as contours), the displacement matrix includes Rotation matrix, translation matrix, scaling matrix and distortion parameters;

以所述稠密三维点云作为基准,根据所述的位移矩阵调整三角网格模型的方向、位置、尺寸得到对齐三角网格模型。Taking the dense three-dimensional point cloud as a reference, adjusting the direction, position, and size of the triangular mesh model according to the displacement matrix to obtain an aligned triangular mesh model.

本发明中进行匹配时需要在同一个世界坐标系下进行。In the present invention, matching needs to be performed in the same world coordinate system.

本发明中从所有对应的初始纹理区域选择最终纹理区域时以保证所有三角面片对应的最终纹理区域尽可能来自于同一图像为原则。即在众多可选择的图像中选择覆盖像素最多的那一张,通过在几何拓扑上尽可能选择多的相邻三角面片对应到同一张图像上能够确保纹理映射的效果最优化。In the present invention, when selecting the final texture region from all corresponding initial texture regions, the principle is to ensure that the final texture regions corresponding to all triangular patches come from the same image as much as possible. That is, select the one that covers the most pixels among the many selectable images, and select as many adjacent triangular patches as possible on the geometric topology to correspond to the same image to ensure the optimization of the texture mapping effect.

每个三角面片对应一个纹理区域,将所有三角面片对应的纹理区域拼接为纹理图像时,得到的纹理图像会存在拼接缝隙,为提高得到的纹理图像的质量,作为优选,本发明还包括对拼接得到的纹理图像进行色差弱化处理。Each triangular patch corresponds to a texture region, when the texture regions corresponding to all the triangular patches are spliced into a texture image, there will be splicing gaps in the texture image obtained, in order to improve the quality of the texture image obtained, as a preference, the present invention also includes Perform chromatic aberration weakening processing on the stitched texture image.

本发明中最后得到纹理图像可以为OBJ、MTL、PNG三个文件格式,即面向激光扫描三维模型的多图像自动纹理映射的结果。In the present invention, the finally obtained texture images can be in three file formats: OBJ, MTL, and PNG, that is, the result of multi-image automatic texture mapping for laser scanning three-dimensional models.

与现有技术相比,本发明的面向激光扫描三维模型的多图像自动纹理映射方法极大地提高了三角网格模型的几何精度和纹理映射后模型的细节丰富程度,且容易实现。Compared with the prior art, the multi-image automatic texture mapping method for the laser scanning 3D model of the present invention greatly improves the geometric accuracy of the triangular mesh model and the detail richness of the model after texture mapping, and is easy to implement.

具体实施方式Detailed ways

下面结合具体实施例对本发明进行详细说明,以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。The present invention will be described in detail below in conjunction with specific examples. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form.

本实施例的面向激光扫描三维模型的多图像自动纹理映射方法包括:The multi-image automatic texture mapping method for the laser scanning three-dimensional model of this embodiment includes:

步骤1、使用激光扫描仪扫描场景得到三维点云模型,经过处理得到PLY格式的三角网格模型。Step 1. Use a laser scanner to scan the scene to obtain a 3D point cloud model, and obtain a triangular mesh model in PLY format after processing.

步骤2、使用单反相机对场景进行多方向、多角度的拍照取景,并利用多图像三维重建方法求解得到每张图像对应的相机内参数矩阵、相机外参数矩阵、场景的稠密三维点云。Step 2. Use a single-lens reflex camera to take pictures of the scene in multiple directions and angles, and use the multi-image 3D reconstruction method to solve the camera internal parameter matrix, camera external parameter matrix, and dense 3D point cloud of the scene corresponding to each image.

步骤3、匹配激光扫描三维模型和多图像三维重建得到的稠密三维点云,以多图像三维重建得到的稠密三维点云作为基准,按照三维点云处的几何相似性(轮廓等特征)来求得模型间的旋转矩阵、平移矩阵、缩放矩阵,调整激光扫描三维模型的方向、位置、尺寸使得激光扫描三维模型和多图像三维重建得到的稠密三维点云最重合,得到对齐三角网格模型。Step 3. Matching the laser scanning 3D model and the dense 3D point cloud obtained by multi-image 3D reconstruction, taking the dense 3D point cloud obtained by multi-image 3D reconstruction as a benchmark, and calculating Obtain the rotation matrix, translation matrix, and scaling matrix between the models, and adjust the direction, position, and size of the laser scanning 3D model so that the dense 3D point cloud obtained from the laser scanning 3D model and multi-image 3D reconstruction is the most coincident, and an aligned triangular mesh model is obtained.

通过匹配得到的稠密三维点云这两个模型最重合,保证多图像三维重建得到的相机参数在激光扫描三维模型下有效。The two models of the dense 3D point cloud obtained by matching are the most coincident, ensuring that the camera parameters obtained from the multi-image 3D reconstruction are valid under the laser scanning 3D model.

步骤4、三维场景表达方式的转换,从多图像三维重建方法得到的结果中提取出多图像自动纹理映射能识别的最简洁的三维场景表达方式(相机焦距、旋转矩阵、平移矩阵、畸变参数)以表示该三维场景。Step 4. Conversion of 3D scene expression methods, extracting the most concise 3D scene expression methods (camera focal length, rotation matrix, translation matrix, distortion parameters) that can be recognized by multi-image automatic texture mapping from the results obtained by the multi-image 3D reconstruction method to represent the 3D scene.

步骤5、多图像自动纹理映射,根据透视投影模型和步骤4中提取的三维场景表达方式来求得对齐三维模型上每个三角面片对应的纹理区域并将所有三角面片对应的纹理区域拼接得到相应的纹理图像作为映射结果。Step 5, multi-image automatic texture mapping, according to the perspective projection model and the 3D scene expression method extracted in step 4, obtain and align the texture area corresponding to each triangular patch on the 3D model and splicing the texture areas corresponding to all triangular patches Get the corresponding texture image as the mapping result.

本实施例中针对每个三角面片通过如下方法获取对应的纹理区域:In this embodiment, the corresponding texture area is obtained for each triangular patch by the following method:

采用基于透视投影模型法获取该三角面片在各个图像中对应的纹理区域作为初始纹理区域,然后从所有对应的初始纹理区域选择一个作为最终纹理区域。The texture area corresponding to the triangular surface in each image is obtained by using a perspective projection model method as the initial texture area, and then one of the corresponding initial texture areas is selected as the final texture area.

从所有对应的初始纹理区域选择最终纹理区域时以保证所有三角面片对应的最终纹理区域尽可能来自于同一图像为原则。When selecting the final texture region from all corresponding initial texture regions, it is a principle to ensure that the final texture regions corresponding to all triangular patches come from the same image as much as possible.

在几何拓扑上尽可能选择多的相邻三角面片对应到同一张图像上同时确保纹理映射的效果最优化。On the geometric topology, select as many adjacent triangular patches as possible to correspond to the same image while ensuring the optimization of the texture mapping effect.

以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。The above-mentioned specific embodiments have described the technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned are only the most preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, supplements and equivalent replacements made within the scope shall be included in the protection scope of the present invention.

Claims (7)

1.一种面向激光扫描三维模型的多图像自动纹理映射方法,其特征在于,包括:1. A multi-image automatic texture mapping method for laser scanning three-dimensional models, characterized in that, comprising: 步骤1、使用激光扫描仪获取三维场景的三维点云模型,并形成相应的三角网格模型;Step 1. Use a laser scanner to obtain a 3D point cloud model of a 3D scene, and form a corresponding triangular mesh model; 步骤2、获取所述三维场景的若干张多方向、多角度的图像,并求解得到每张图像对应的相机内参数矩阵、相机外参数矩阵,以及所述三维场景的稠密三维点云;Step 2. Obtain several multi-directional and multi-angle images of the three-dimensional scene, and solve for each image corresponding to the camera internal parameter matrix, the camera external parameter matrix, and the dense three-dimensional point cloud of the three-dimensional scene; 步骤3、将所述三角网格模型与所述的稠密三维点云进行匹配得到对齐三角网格模型;Step 3, matching the triangular mesh model with the dense 3D point cloud to obtain an aligned triangular mesh model; 步骤4、根据所有图像、各个图像对应的相机内参数矩阵、相机外参数矩阵以及所述的对齐三角网格模型,采用基于透视投影模型法获取所述对齐三角网格模型上每个三角面片在各个图像中对应的纹理区域并拼接得到相应的纹理图像。Step 4. According to all the images, the camera internal parameter matrix and the external camera parameter matrix corresponding to each image, and the aligned triangular mesh model, obtain each triangle patch on the aligned triangular mesh model by using a perspective projection model method Corresponding texture regions in each image are spliced to obtain corresponding texture images. 2.如权利要求1所述的面向激光扫描三维模型的多图像自动纹理映射方法,其特征在于,所述三角网格模型为PLY格式。2. the multi-image automatic texture mapping method for laser scanning three-dimensional model as claimed in claim 1, is characterized in that, described triangular mesh model is PLY format. 3.如权利要求1所述的面向激光扫描三维模型的多图像自动纹理映射方法,其特征在于,所述步骤2中利用多图像三维重建方法求解得到每张图像对应的相机内参数矩阵、相机外参数矩阵,以及稠密三维点云。3. the multi-image automatic texture mapping method for laser scanning three-dimensional model as claimed in claim 1, is characterized in that, in described step 2, utilize multi-image three-dimensional reconstruction method to solve and obtain the camera internal parameter matrix corresponding to each image, camera External parameter matrix, and dense 3D point cloud. 4.如权利要求1所述的面向激光扫描三维模型的多图像自动纹理映射方法,其特征在于,所述步骤3具体如下:4. the multi-image automatic texture mapping method for laser scanning three-dimensional model as claimed in claim 1, is characterized in that, described step 3 is specifically as follows: 根据所述三角网格模型和所述稠密三维点云之间的几何相似性计算得到所述三角网格模型和稠密三维点云间的位移矩阵,所述位移矩阵包括旋转矩阵、平移矩阵和缩放矩阵;According to the geometric similarity between the triangular mesh model and the dense 3D point cloud, the displacement matrix between the triangular mesh model and the dense 3D point cloud is calculated, and the displacement matrix includes a rotation matrix, a translation matrix and a scaling matrix. matrix; 以所述稠密三维点云作为基准,根据所述的位移矩阵调整三角网格模型的方向、位置、尺寸得到对齐三角网格模型。Taking the dense three-dimensional point cloud as a reference, adjusting the direction, position, and size of the triangular mesh model according to the displacement matrix to obtain an aligned triangular mesh model. 5.如权利要求1所述的面向激光扫描三维模型的多图像自动纹理映射方法,其特征在于,所述步骤4中针对每个三角面片通过如下方法获取对应的纹理区域:5. the multi-image automatic texture mapping method facing laser scanning three-dimensional model as claimed in claim 1, is characterized in that, in described step 4, obtain corresponding texture area for each triangular surface by the following method: (4-1)采用基于透视投影模型法获取该三角面片在各个图像中对应的纹理区域作为初始纹理区域;(4-1) Obtaining the texture area corresponding to the triangular patch in each image based on the perspective projection model method as the initial texture area; (4-2)从所有对应的初始纹理区域选择一个作为最终纹理区域。(4-2) Select one from all corresponding initial texture regions as the final texture region. 6.如权利要求5所述的面向激光扫描三维模型的多图像自动纹理映射方法,其特征在于,从所有对应的初始纹理区域选择最终纹理区域时以保证所有三角面片对应的最终纹理区域尽可能来自于同一图像为原则。6. the multi-image automatic texture mapping method facing laser scanning three-dimensional model as claimed in claim 5, it is characterized in that, when selecting the final texture region from all corresponding initial texture regions, to ensure that the final texture regions corresponding to all triangle faces are as far as possible Probably derived from the same image as a principle. 7.如权利要求1~6中任意一项所述的面向激光扫描三维模型的多图像自动纹理映射方法,其特征在于,还包括对拼接得到的纹理图像进行色差弱化处理。7. The multi-image automatic texture mapping method for laser scanning three-dimensional models according to any one of claims 1 to 6, further comprising performing color difference weakening processing on the stitched texture images.
CN201510334502.2A 2015-06-16 2015-06-16 Laser scanning three-dimensional model-oriented multi-image automatic texture mapping method Pending CN104952075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510334502.2A CN104952075A (en) 2015-06-16 2015-06-16 Laser scanning three-dimensional model-oriented multi-image automatic texture mapping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510334502.2A CN104952075A (en) 2015-06-16 2015-06-16 Laser scanning three-dimensional model-oriented multi-image automatic texture mapping method

Publications (1)

Publication Number Publication Date
CN104952075A true CN104952075A (en) 2015-09-30

Family

ID=54166703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510334502.2A Pending CN104952075A (en) 2015-06-16 2015-06-16 Laser scanning three-dimensional model-oriented multi-image automatic texture mapping method

Country Status (1)

Country Link
CN (1) CN104952075A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106097433A (en) * 2016-05-30 2016-11-09 广州汉阈数据处理技术有限公司 Object industry and the stacking method of Image model and system
CN107123163A (en) * 2017-04-25 2017-09-01 无锡中科智能农业发展有限责任公司 A kind of plant three-dimensional reconstruction system based on various visual angles stereoscopic vision
CN107464285A (en) * 2017-06-26 2017-12-12 北京长城华冠汽车科技股份有限公司 The Meshing Method and device of a kind of threedimensional model
CN107507274A (en) * 2017-08-30 2017-12-22 北京图航科技有限公司 A kind of quick restoring method of public security criminal-scene three-dimensional live based on cloud computing
CN107552965A (en) * 2017-09-28 2018-01-09 惠州市洛玛科技有限公司 Accurate marking device and its marking method
CN107918926A (en) * 2017-11-22 2018-04-17 徐李添 A kind of digital image magnification method based on quadrangle and triangle surface
CN108010123A (en) * 2017-11-23 2018-05-08 东南大学 A kind of three-dimensional point cloud acquisition methods for retaining topology information
CN108280870A (en) * 2018-01-24 2018-07-13 郑州云海信息技术有限公司 A kind of point cloud model texture mapping method and system
CN108537879A (en) * 2018-03-29 2018-09-14 东华智业(北京)科技发展有限公司 Reconstructing three-dimensional model system and method
WO2018176440A1 (en) * 2017-04-01 2018-10-04 深圳市速腾聚创科技有限公司 Method for fusing point cloud and planar image, intelligent device and non-volatile computer-readable storage medium
CN109389665A (en) * 2018-08-24 2019-02-26 先临三维科技股份有限公司 Texture acquirement method, apparatus, equipment and the storage medium of threedimensional model
CN109410302A (en) * 2018-09-30 2019-03-01 先临三维科技股份有限公司 Texture mapping method, device, computer equipment and storage medium
CN109934905A (en) * 2019-01-16 2019-06-25 中德(珠海)人工智能研究院有限公司 It is a kind of for generating the system and its generation method of threedimensional model
CN111242990A (en) * 2020-01-06 2020-06-05 西南电子技术研究所(中国电子科技集团公司第十研究所) 360-degree three-dimensional reconstruction optimization method based on continuous phase dense matching
CN111612920A (en) * 2020-06-28 2020-09-01 广州欧科信息技术股份有限公司 Method and equipment for generating point cloud three-dimensional space image
CN112053425A (en) * 2020-09-29 2020-12-08 广州极飞科技有限公司 Multispectral image processing method and device and electronic equipment
CN112348939A (en) * 2020-11-18 2021-02-09 北京沃东天骏信息技术有限公司 Texture optimization method and device for three-dimensional reconstruction
CN113432548A (en) * 2021-06-04 2021-09-24 中兵勘察设计研究院有限公司 Three-dimensional scanning and photogrammetry integrated control device and control method
CN114147969A (en) * 2021-11-16 2022-03-08 深圳市创必得科技有限公司 Model preprocessing annular texture blanking method, device, equipment and storage medium
CN114332173A (en) * 2021-12-10 2022-04-12 南京航空航天大学 A three-dimensional reconstruction method of propeller blade surface based on point cloud data
CN115546379A (en) * 2022-11-29 2022-12-30 思看科技(杭州)股份有限公司 Data processing method and device and computer equipment
CN117274527A (en) * 2023-08-24 2023-12-22 东方电气集团科学技术研究院有限公司 Method for constructing three-dimensional visualization model data set of generator equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816629B2 (en) * 2001-09-07 2004-11-09 Realty Mapping Llc Method and system for 3-D content creation
CN101551918A (en) * 2009-04-28 2009-10-07 浙江大学 Acquisition method of large scene based on line laser
US8040355B2 (en) * 2007-07-23 2011-10-18 Disney Enterprises, Inc. Three-dimensional location-based texture transfers
CN103021017A (en) * 2012-12-04 2013-04-03 上海交通大学 Three-dimensional scene rebuilding method based on GPU acceleration
CN103430218A (en) * 2011-03-21 2013-12-04 英特尔公司 Method of augmented makeover with 3d face modeling and landmark alignment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816629B2 (en) * 2001-09-07 2004-11-09 Realty Mapping Llc Method and system for 3-D content creation
US8040355B2 (en) * 2007-07-23 2011-10-18 Disney Enterprises, Inc. Three-dimensional location-based texture transfers
CN101551918A (en) * 2009-04-28 2009-10-07 浙江大学 Acquisition method of large scene based on line laser
CN103430218A (en) * 2011-03-21 2013-12-04 英特尔公司 Method of augmented makeover with 3d face modeling and landmark alignment
CN103021017A (en) * 2012-12-04 2013-04-03 上海交通大学 Three-dimensional scene rebuilding method based on GPU acceleration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴嘉境: "基于多幅图像的三维重建理论及算法研究", 《中国优秀硕士学位论文全文数据库.信息科技辑》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106097433A (en) * 2016-05-30 2016-11-09 广州汉阈数据处理技术有限公司 Object industry and the stacking method of Image model and system
WO2018176440A1 (en) * 2017-04-01 2018-10-04 深圳市速腾聚创科技有限公司 Method for fusing point cloud and planar image, intelligent device and non-volatile computer-readable storage medium
CN107123163A (en) * 2017-04-25 2017-09-01 无锡中科智能农业发展有限责任公司 A kind of plant three-dimensional reconstruction system based on various visual angles stereoscopic vision
CN107464285A (en) * 2017-06-26 2017-12-12 北京长城华冠汽车科技股份有限公司 The Meshing Method and device of a kind of threedimensional model
CN107507274A (en) * 2017-08-30 2017-12-22 北京图航科技有限公司 A kind of quick restoring method of public security criminal-scene three-dimensional live based on cloud computing
CN107552965A (en) * 2017-09-28 2018-01-09 惠州市洛玛科技有限公司 Accurate marking device and its marking method
CN107918926A (en) * 2017-11-22 2018-04-17 徐李添 A kind of digital image magnification method based on quadrangle and triangle surface
CN107918926B (en) * 2017-11-22 2018-11-13 徐李添 A kind of digital image magnification method based on quadrangle and triangle surface
CN108010123A (en) * 2017-11-23 2018-05-08 东南大学 A kind of three-dimensional point cloud acquisition methods for retaining topology information
CN108010123B (en) * 2017-11-23 2021-02-09 东南大学 Three-dimensional point cloud obtaining method capable of retaining topology information
CN108280870A (en) * 2018-01-24 2018-07-13 郑州云海信息技术有限公司 A kind of point cloud model texture mapping method and system
CN108537879A (en) * 2018-03-29 2018-09-14 东华智业(北京)科技发展有限公司 Reconstructing three-dimensional model system and method
CN109389665A (en) * 2018-08-24 2019-02-26 先临三维科技股份有限公司 Texture acquirement method, apparatus, equipment and the storage medium of threedimensional model
CN109410302A (en) * 2018-09-30 2019-03-01 先临三维科技股份有限公司 Texture mapping method, device, computer equipment and storage medium
CN109934905A (en) * 2019-01-16 2019-06-25 中德(珠海)人工智能研究院有限公司 It is a kind of for generating the system and its generation method of threedimensional model
CN111242990A (en) * 2020-01-06 2020-06-05 西南电子技术研究所(中国电子科技集团公司第十研究所) 360-degree three-dimensional reconstruction optimization method based on continuous phase dense matching
CN111242990B (en) * 2020-01-06 2024-01-30 西南电子技术研究所(中国电子科技集团公司第十研究所) 360-degree three-dimensional reconstruction optimization method based on continuous phase dense matching
CN111612920A (en) * 2020-06-28 2020-09-01 广州欧科信息技术股份有限公司 Method and equipment for generating point cloud three-dimensional space image
CN111612920B (en) * 2020-06-28 2023-05-05 广州欧科信息技术股份有限公司 Method and equipment for generating point cloud three-dimensional space image
CN112053425B (en) * 2020-09-29 2022-05-10 广州极飞科技股份有限公司 Multispectral image processing method and device and electronic equipment
CN112053425A (en) * 2020-09-29 2020-12-08 广州极飞科技有限公司 Multispectral image processing method and device and electronic equipment
CN112348939A (en) * 2020-11-18 2021-02-09 北京沃东天骏信息技术有限公司 Texture optimization method and device for three-dimensional reconstruction
CN113432548A (en) * 2021-06-04 2021-09-24 中兵勘察设计研究院有限公司 Three-dimensional scanning and photogrammetry integrated control device and control method
CN114147969A (en) * 2021-11-16 2022-03-08 深圳市创必得科技有限公司 Model preprocessing annular texture blanking method, device, equipment and storage medium
CN114147969B (en) * 2021-11-16 2024-04-16 深圳市创必得科技有限公司 Model preprocessing annular texture blanking method, device, equipment and storage medium
CN114332173A (en) * 2021-12-10 2022-04-12 南京航空航天大学 A three-dimensional reconstruction method of propeller blade surface based on point cloud data
CN115546379A (en) * 2022-11-29 2022-12-30 思看科技(杭州)股份有限公司 Data processing method and device and computer equipment
CN117274527A (en) * 2023-08-24 2023-12-22 东方电气集团科学技术研究院有限公司 Method for constructing three-dimensional visualization model data set of generator equipment
CN117274527B (en) * 2023-08-24 2024-06-11 东方电气集团科学技术研究院有限公司 Method for constructing three-dimensional visualization model data set of generator equipment

Similar Documents

Publication Publication Date Title
CN104952075A (en) Laser scanning three-dimensional model-oriented multi-image automatic texture mapping method
US11410320B2 (en) Image processing method, apparatus, and storage medium
CN107292965B (en) Virtual and real shielding processing method based on depth image data stream
CN103337094B (en) A kind of method of applying binocular camera and realizing motion three-dimensional reconstruction
WO2021120405A1 (en) Large angle of visual field image real-time splicing method based on calibration
CN109685913B (en) Augmented Reality Realization Method Based on Computer Vision Positioning
JP6921686B2 (en) Generator, generation method, and program
CN111047709B (en) Binocular vision naked eye 3D image generation method
CN106060493A (en) Multi-source projection seamless edge stitching method and system
CN104599317B (en) A kind of mobile terminal and method for realizing 3D scanning modeling functions
CN103810685A (en) Super resolution processing method for depth image
CN107578376A (en) Image Mosaic Method Based on Feature Point Clustering Quaternary Partition and Local Transformation Matrix
CN106023307B (en) Quick reconstruction model method based on site environment and system
CN108648264A (en) Underwater scene method for reconstructing based on exercise recovery and storage medium
CN115330594A (en) A rapid target recognition and calibration method based on UAV oblique photography 3D model
CN106548494A (en) A kind of video image depth extraction method based on scene Sample Storehouse
WO2023116430A1 (en) Video and city information model three-dimensional scene fusion method and system, and storage medium
CN108257089A (en) A kind of method of the big visual field video panorama splicing based on iteration closest approach
JP2021149972A (en) Method for identifying landmark in panoramic image, device, and storage medium
CN102982524A (en) Splicing method for corn ear order images
KR101853269B1 (en) Apparatus of stitching depth maps for stereo images
CN108090877A (en) A kind of RGB-D camera depth image repair methods based on image sequence
KR101454780B1 (en) Apparatus and method for generating texture for three dimensional model
KR20190044439A (en) Method of stitching depth maps for stereo images
CN118247429A (en) A method and system for rapid three-dimensional modeling in air-ground collaboration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150930

RJ01 Rejection of invention patent application after publication