CN104949899B - A kind of assay method of Polymer Used For Oil Displacement effective viscosity in porous media - Google Patents
A kind of assay method of Polymer Used For Oil Displacement effective viscosity in porous media Download PDFInfo
- Publication number
- CN104949899B CN104949899B CN201510255465.6A CN201510255465A CN104949899B CN 104949899 B CN104949899 B CN 104949899B CN 201510255465 A CN201510255465 A CN 201510255465A CN 104949899 B CN104949899 B CN 104949899B
- Authority
- CN
- China
- Prior art keywords
- formula
- polymer
- sand
- oil displacement
- effective viscosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 76
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 29
- 238000003556 assay Methods 0.000 title claims 4
- 230000035699 permeability Effects 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 239000004576 sand Substances 0.000 claims abstract description 10
- 239000000243 solution Substances 0.000 claims description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 239000006004 Quartz sand Substances 0.000 claims description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 3
- 239000001110 calcium chloride Substances 0.000 claims description 3
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims 4
- 238000009738 saturating Methods 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 238000006424 Flood reaction Methods 0.000 abstract 1
- 230000014759 maintenance of location Effects 0.000 description 5
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229920006322 acrylamide copolymer Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 229960002337 magnesium chloride Drugs 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种驱油用聚合物在多孔介质中有效粘度的测定方法,其特征在于由以下步骤组成:a制备驱油用聚合物溶液;b通过剪切应力与剪切速率的关系曲线,回归得出聚合物溶液的稠度系数H和流态指数n;c装填填砂管模型,测定填砂管模型的渗透率k及孔隙度d聚合物溶液驱替填砂管;e后续水驱:测定聚驱后的水测渗透率kf及残余阻力系数FRR;f修正Blake‑kozeny方程,最终得到有效粘度的计算公式为式(5)或式(6):或g将稠度系数H、流态指数n、渗透率k、聚驱后水测渗透率kf、孔隙度或残余阻力系数FRR代入上式计算有效粘度。
The invention discloses a method for measuring the effective viscosity of a polymer for oil displacement in a porous medium, which is characterized in that it consists of the following steps: a) prepare a polymer solution for oil displacement; b pass the relationship curve between shear stress and shear rate , get the consistency coefficient H and flow index n of the polymer solution by regression; c fill the sand pipe model, and measure the permeability k and porosity of the sand pipe model d Polymer solution floods the sand-fill pipe; e Subsequent water flooding: measure the hydraulic permeability k f and residual resistance coefficient F RR after polymer flooding; f corrects the Blake-kozeny equation, and finally obtains the effective viscosity calculation formula as formula ( 5) or formula (6): or g. Consistency coefficient H, flow index n, permeability k, hydraulic permeability k f after polymer flooding, porosity Or the residual resistance coefficient F RR is substituted into the above formula to calculate the effective viscosity.
Description
技术领域technical field
本发明属于油田三次采油中驱油用聚合物粘度测定技术领域,具体的说,涉及一种驱油用聚合物在多孔介质中有效粘度的测定计算方法。The invention belongs to the technical field of measuring the viscosity of a polymer used for oil displacement in oilfield tertiary oil recovery, and in particular relates to a method for measuring and calculating the effective viscosity of a polymer used for oil displacement in a porous medium.
背景技术Background technique
目前聚合物驱已经成为东部老油田增产稳产的一种重要手段,聚合物驱所使用的驱替剂绝大多数为丙烯酰胺共聚物,例如部分水解型聚丙烯酰胺、阳离子型聚丙烯酰胺、疏水缔合型聚丙烯酰胺等。一般认为,聚合物驱油的主要机理是降低水相流度,改善水油流度比,进而提高波及系数,达到提高采收率的目的。水相流度的降低通常有两个途径:增加水相粘度和降低水相渗透率(张鹏,王业飞,张健等,疏水缔合聚丙烯酰胺驱油能力的几种影响因素,油田化学,2010年72卷4期462~468页)。因此聚合物溶液的粘度是衡量驱替剂性能的一个重要的指标之一。需要得注意的是,这里所讲的水相粘度并非表观粘度,而是聚合物溶液在孔隙介质中渗流时的有效粘度,这个粘度不但包含了聚合物溶液在多孔介质中的粘性因素,还包括了弹性作用。因此,聚合物的有效粘度更加真实的反映了聚合物在孔隙介质中流动时的粘度,对于矿场方案的设计和实施更有参考价值(程杰成,BP16溶液在多孔介质中的流动特性,大庆石油地质与开发,1989年8卷2期47~52页)。At present, polymer flooding has become an important means to increase and stabilize production in the old oilfields in eastern China. Most of the displacement agents used in polymer flooding are acrylamide copolymers, such as partially hydrolyzed polyacrylamide, cationic polyacrylamide, hydrophobic Associative polyacrylamide, etc. It is generally believed that the main mechanism of polymer flooding is to reduce the mobility of the water phase, improve the water-oil mobility ratio, and then increase the sweep coefficient to achieve the purpose of enhancing the recovery factor. There are usually two ways to reduce the mobility of the water phase: increase the viscosity of the water phase and reduce the permeability of the water phase (Zhang Peng, Wang Yefei, Zhang Jian et al., Several Influencing Factors of Hydrophobic Association Polyacrylamide Displacement Ability, Oilfield Chemistry, 2010, Volume 72, Issue 4, pages 462-468). Therefore, the viscosity of the polymer solution is one of the important indicators to measure the performance of the displacement agent. It should be noted that the viscosity of the water phase mentioned here is not the apparent viscosity, but the effective viscosity of the polymer solution when it percolates in the porous medium. This viscosity not only includes the viscosity factor of the polymer solution in the porous medium, but also Elasticity is included. Therefore, the effective viscosity of the polymer more truly reflects the viscosity of the polymer when it flows in the porous medium, and it is more valuable for the design and implementation of the mine plan (Cheng Jiecheng, Flow characteristics of BP16 solution in porous media, Daqing Petroleum Geology and Development, Volume 8, Issue 2, 1989, pages 47-52).
目前,有效粘度的计算公式主要有两种,式(7)是其中一种,μef为有效 粘度;ΔP为聚合物溶液驱替压差;L为填砂管长度;vD为聚合物溶液的渗流速度;Kf为聚合物溶液通过后水冲洗渗透率。At present, there are two main formulas for calculating the effective viscosity, formula (7) is one of them, μ ef is the effective viscosity; ΔP is the displacement pressure difference of the polymer solution; L is the length of the sand packing pipe; v D is the polymer solution The seepage velocity; K f is the water flushing permeability after the polymer solution passes through.
使用式(7)计算有效粘度考虑到了聚合物在多孔介质中的滞留所对粘度起的作用,但是该式中并没有体现出聚合物溶液的非牛顿流体性质。The calculation of effective viscosity using formula (7) takes into account the effect of polymer retention in porous media on viscosity, but the formula does not reflect the non-Newtonian fluid properties of polymer solutions.
另一个计算有效粘度的计算公式为Blake-kozeny方程,见式(8),在这个公式中,H为稠度系数,n流态指数,k和φ分别为岩石的渗透率和孔隙度。这种计算方法虽然考虑到了聚合物的非牛顿流体性质,但是没有考虑到聚合物在孔隙中的滞留对渗透率及孔隙度的影响。Another calculation formula for calculating the effective viscosity is the Blake-kozeny equation, see formula (8). In this formula, H is the consistency coefficient, n is the flow index, and k and φ are the permeability and porosity of the rock, respectively. Although this calculation method takes into account the non-Newtonian fluid properties of polymers, it does not take into account the impact of polymer retention in pores on permeability and porosity.
在有效粘度的计算中,既要考虑到聚合物溶液的非牛顿流体力学性质,还要体现出聚合物流经孔隙介质后对渗透率及孔隙度的影响,这样计算出来的有效粘度才能更加贴近实际情况。In the calculation of effective viscosity, it is necessary to take into account the non-Newtonian hydrodynamic properties of the polymer solution, and also reflect the influence of the polymer on the permeability and porosity after the polymer flows through the porous medium, so that the calculated effective viscosity can be closer to reality Condition.
发明内容Contents of the invention
为解决上述技术问题,本发明的目的在于提供一种驱油用聚合物在多孔介质中有效粘度的测定计算方法,综合考虑聚合物非牛顿流体力学性质及聚合物在孔隙介质中滞留的影响的建立有效粘度测定计算方法。In order to solve the above-mentioned technical problems, the object of the present invention is to provide a method for measuring and calculating the effective viscosity of polymers for oil displacement in porous media, which comprehensively considers the non-Newtonian hydrodynamic properties of polymers and the impact of polymer retention in porous media. Establish an effective calculation method for viscosity determination.
本发明目的是这样实现的一种驱油用聚合物在多孔介质中有效粘度的测定计算方法,其特征在于由以下步骤组成:The object of the invention is a kind of measuring calculation method of polymer effective viscosity in porous media realized in this way, it is characterized in that being made up of following steps:
a、驱油用聚合物溶液的制备:根据油田现场注入水的总矿化度,使用蒸馏水和氯化盐配制模拟注入水,再使用模拟注入水溶解驱油用聚合物得驱油用聚 合物溶液;a. Preparation of polymer solution for oil displacement: According to the total salinity of injected water in the oil field, use distilled water and chloride salt to prepare simulated injection water, and then use simulated injected water to dissolve polymer for oil displacement to obtain polymer for oil displacement solution;
b、测定稠度系数和流态指数:使用流变仪测定聚合物溶液的流变曲线,得到剪切应力与剪切速率的关系曲线,回归出聚合物溶液的稠度系数H和流态指数n;b. Determination of consistency coefficient and flow index: use a rheometer to measure the rheological curve of the polymer solution, obtain the relationship curve between shear stress and shear rate, and return the consistency coefficient H and flow index n of the polymer solution;
c、装填填砂管模型:使用石英砂装填填砂管,填砂管直径为2.5cm,测定填砂管模型的渗透率k及孔隙度并得出渗透率k与孔隙度的关系式式(1),其中r为孔隙半径,τ为迂曲度:c. Filling the sand-filling pipe model: use quartz sand to fill the sand-filling pipe, the diameter of the sand-filling pipe is 2.5cm, and measure the permeability k and porosity of the sand-filling pipe model And get the permeability k and porosity The relational formula (1), where r is the pore radius, τ is the tortuosity:
d、聚合物溶液驱替填砂管:设定恒流泵的排量为0.23ml/min,注入聚合物溶液直至压力平稳;d. Polymer solution to replace the sand filling pipe: set the displacement of the constant flow pump to 0.23ml/min, inject the polymer solution until the pressure is stable;
e、后续水驱:设定恒流泵的排量为0.23ml/min,注入模拟注入水,测定聚驱后的水测渗透率kf及残余阻力系数FRR,假定聚驱后孔隙半径r与迂曲度τ不发生改变,那么可以得出聚驱后的孔隙度与聚驱后水测渗透率kf的关系为式(2);残余阻力系数FRR与渗透率k及聚驱后水测渗透率kf的关系为式(3):e. Subsequent water flooding: set the displacement of the constant flow pump to 0.23ml/min, inject simulated injection water, measure the hydraulic permeability k f and residual resistance coefficient F RR after polymer flooding, and assume that the pore radius r after polymer flooding and the tortuosity τ do not change, then the porosity after polymer flooding can be obtained The relationship between FRR and hydraulic permeability k f after polymer flooding is expressed in formula (2); the relationship between residual resistance coefficient FRR and permeability k and water measured permeability k f after polymer flooding is expressed in formula (3):
f、计算有效粘度:f. Calculate the effective viscosity:
修正方程式:由于聚合物在孔隙介质中存在滞留性质导致渗透率及孔隙度降低,因此使用聚驱后水测渗透率kf取代孔隙介质的渗透率k,使用聚驱后的孔隙度代替原始孔隙度那么,修正后的Blake-kozeny方程为式(4):Correction equation: due to the retention property of polymer in the porous medium, the permeability and porosity decrease, so the hydraulic permeability k f after polymer flooding is used instead of the permeability k of the porous medium, and the porosity after polymer flooding is used instead of original porosity Then, the revised Blake-kozeny equation is formula (4):
将式(2)、式(3)代入式(4),最终得到有效粘度的计算公式为式(5)或式(6):Substituting formula (2) and formula (3) into formula (4), the calculation formula of effective viscosity is finally obtained as formula (5) or formula (6):
或 or
代入计算:然后将稠度系数H、流态指数n、渗透率k、聚驱后水测渗透率kf、孔隙度或残余阻力系数FRR代入式(5)或式(6)计算结果即为有效粘度。Substitute into the calculation: then the consistency coefficient H, flow index n, permeability k, hydraulic permeability k f after polymer flooding, porosity Or the residual resistance coefficient F RR is substituted into formula (5) or formula (6) and the calculation result is the effective viscosity.
上述步骤a驱油用聚合物溶液的制备中:所述氯化盐由氯化钠、氯化钙、氯化镁组成。In the preparation of the polymer solution for oil flooding in the above step a: the chloride salt is composed of sodium chloride, calcium chloride and magnesium chloride.
上述步骤c装填填砂管模型中:所述石英砂的粒度为80-100目,填砂管长度为30-50cm。In the above step c of filling the sand-filling pipe model: the particle size of the quartz sand is 80-100 mesh, and the length of the sand-filling pipe is 30-50 cm.
有益效果:Beneficial effect:
本发明一种驱油用聚合物在多孔介质中有效粘度的测定计算方法,综合考虑聚合物非牛顿流体力学性质及聚合物在孔隙介质中滞留所导致的渗透率及孔隙度的降低对有效粘度的影响,解决了现有技术无法准确获得驱油用聚合物在孔隙介质中有效粘度及计算方法的问题。The present invention is a method for measuring and calculating the effective viscosity of a polymer used for oil displacement in porous media, comprehensively considering the non-Newtonian hydrodynamic properties of the polymer and the reduction of the permeability and porosity caused by the retention of the polymer in the porous medium. The impact of the existing technology solves the problem that the effective viscosity of the polymer used for oil displacement in the porous medium and the calculation method cannot be accurately obtained.
附图说明Description of drawings
图1为本发明方法的流程图;Fig. 1 is the flowchart of the inventive method;
图2为本发明中质量分数为0.1%的聚合物溶液的剪切应力-速率曲线图;Fig. 2 is the shear stress-rate curve figure that mass fraction is the polymer solution of 0.1% among the present invention;
图3为本发明中质量分数为0.2%的聚合物溶液的剪切应力-速率曲线图。Fig. 3 is a shear stress-rate curve diagram of a polymer solution with a mass fraction of 0.2% in the present invention.
具体实施方式detailed description
下面结合实施例和附图对本发明作进一步说明。The present invention will be further described below in conjunction with the embodiments and accompanying drawings.
实施例Example
一种驱油用聚合物在多孔介质中有效粘度的测定计算方法,如图1所示:A method for determining and calculating the effective viscosity of a polymer for oil displacement in porous media, as shown in Figure 1:
1、使用蒸馏水配制总矿化度为8625mg/L(钙镁离子602mg/L)的模拟注入水。在100mL蒸馏水中依次溶解1097.71g氯化钠、68.13g氯化钙、297.28g六水合氯化镁晶体。使用模拟注入水溶解驱油用丙烯酰胺共聚物,配制质量分数分别为0.1%和0.2%的聚合物溶液。1. Use distilled water to prepare simulated injection water with a total salinity of 8625mg/L (calcium and magnesium ions 602mg/L). Dissolve 1097.71g of sodium chloride, 68.13g of calcium chloride, and 297.28g of magnesium chloride hexahydrate crystals sequentially in 100mL of distilled water. The simulated injection water was used to dissolve the acrylamide copolymer for oil displacement, and the polymer solutions with mass fractions of 0.1% and 0.2% were prepared respectively.
2、使用HAAKE MARS III型流变仪(转子:PZ38)测定聚合物的流变曲线。设置测定温度为80℃,剪切速率为0-800s-1,测定剪切应力与剪切速率变化关系,0.1%和0.2%的聚合物溶液的剪切应力-速率曲线分别见图2、图3。由曲线回归出聚合物溶液的稠度系数H和流态指数n分别见表1。2. Use a HAAKE MARS III rheometer (rotor: PZ38) to measure the rheological curve of the polymer. Set the measurement temperature to 80°C, the shear rate to 0-800s -1 , and measure the relationship between the shear stress and the shear rate. The shear stress-rate curves of 0.1% and 0.2% polymer solutions are shown in Fig. 2 and Fig. 3. The consistency coefficient H and flow index n of the polymer solution obtained from the curve regression are shown in Table 1, respectively.
表1不同质量分数下聚合物溶液的稠度系数H和流态指数nTable 1 Consistency coefficient H and flow index n of polymer solutions at different mass fractions
3、使用80-100目的石英砂装填6根填砂管,填砂管直径为2.5cm,长度为30cm。使用中华人民共和国石油天然气行业标准(SY/T6576-2003)用于提高石油采收率的聚合物评价的推荐做法中的方法测定填砂管模型的渗透率及孔隙度。六根填砂管模型的渗透率及孔隙度见表2。3. Use 80-100 mesh quartz sand to fill 6 sand-filling pipes. The diameter of the sand-filling pipes is 2.5cm and the length is 30cm. The permeability and porosity of the sand-packed pipe model were determined using the method in the Recommended Practice for Polymer Evaluation for Enhanced Oil Recovery in the Petroleum and Natural Gas Industry Standard of the People's Republic of China (SY/T6576-2003). The permeability and porosity of the six sand-packed pipe models are shown in Table 2.
表2填砂管模型的渗透率k及孔隙度 Table 2 Permeability k and porosity of the sand-filled pipe model
4、分别使用质量分数为0.1%和0.2%的聚合物溶液驱替6组填砂管模型。 实验温度为80℃,设定恒流泵的排量为0.23ml/min。当入口压力平稳后,再用相同的排量使用模拟注入水驱替填砂管模型,待入口压力不再降低时记录入口压力,通过达西公式计算聚驱后水测渗透率kf,通过式(3)计算残余阻力系数FRR。4. Use 0.1% and 0.2% polymer solution to flood 6 groups of sand-packing pipe models respectively. The experimental temperature is 80°C, and the displacement of the constant flow pump is set at 0.23ml/min. When the inlet pressure is stable, use the simulated water injection to replace the sand filling pipe model with the same displacement, record the inlet pressure when the inlet pressure no longer decreases, and calculate the hydraulic permeability k f after polymer flooding by Darcy's formula. Equation (3) calculates the residual resistance coefficient F RR .
6、分别将稠度系数H、流态指数n、渗透率k、聚驱后水测渗透率kf、孔隙度或残余阻力系数FRR代入式(5)或式(6)计算有效粘度,得到的结果见表3。6. Consistency coefficient H, flow index n, permeability k, hydraulic permeability k f after polymer flooding, porosity Or the residual resistance coefficient F RR is substituted into formula (5) or formula (6) to calculate the effective viscosity, and the results obtained are shown in Table 3.
或 or
表3试验中测定的各种数据Various data measured in the test in table 3
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510255465.6A CN104949899B (en) | 2015-05-19 | 2015-05-19 | A kind of assay method of Polymer Used For Oil Displacement effective viscosity in porous media |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510255465.6A CN104949899B (en) | 2015-05-19 | 2015-05-19 | A kind of assay method of Polymer Used For Oil Displacement effective viscosity in porous media |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104949899A CN104949899A (en) | 2015-09-30 |
CN104949899B true CN104949899B (en) | 2017-09-08 |
Family
ID=54164724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510255465.6A Active CN104949899B (en) | 2015-05-19 | 2015-05-19 | A kind of assay method of Polymer Used For Oil Displacement effective viscosity in porous media |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104949899B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105571988B (en) * | 2015-12-14 | 2018-09-04 | 中国石油天然气股份有限公司 | Polymer thermal stability detection equipment and detection method |
CN107271328B (en) * | 2017-06-13 | 2019-11-22 | 大港油田集团有限责任公司 | A kind of polymer solution anti-shear performance evaluating apparatus and method |
CN107869338A (en) * | 2017-11-03 | 2018-04-03 | 中国石油化工股份有限公司 | Chemical flooding common heavy oil dynamic viscosity reduction evaluation method |
CN110059438B (en) * | 2019-04-28 | 2022-10-11 | 东北石油大学 | Calculation method for residual oil film deformation of polymer-driven microchannel |
CN110457857B (en) * | 2019-08-21 | 2022-11-15 | 中国海洋石油集团有限公司 | Method for predicting polymer flooding effect under different crude oil viscosity conditions |
CN114324066B (en) * | 2021-12-30 | 2023-09-12 | 中海油田服务股份有限公司 | Evaluation method of modified nanomaterial for core |
CN114420225B (en) * | 2022-01-19 | 2025-04-08 | 中国石油大学(华东) | A method and system for numerical simulation of fluid-solid coupling of carbonate rock acid-rock reaction |
CN115306370B (en) * | 2022-08-10 | 2023-11-24 | 重庆科技学院 | Experimental device and method for online monitoring of residual resistance coefficient of polymer |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101058723A (en) * | 2007-04-26 | 2007-10-24 | 中国石油大学(华东) | Re-use agent for polymer after driving and injecting method thereof |
CN101545368A (en) * | 2009-04-27 | 2009-09-30 | 中国石油大学(华东) | On-line depth profile control method for improving oil displacement effect of polymer of offshore production well |
CN102278090A (en) * | 2011-08-16 | 2011-12-14 | 中国石油化工股份有限公司 | Method and control system for stopping leakage of reservoir fracture in drilling |
CN102455274A (en) * | 2010-10-18 | 2012-05-16 | 袁俊海 | Method for measuring intrinsic viscosity of polymer |
CN102980835A (en) * | 2012-12-13 | 2013-03-20 | 中国石油化工股份有限公司 | Method for measuring viscosity-reducing effect of oil-soluble viscosity reducer suitable for super heavy oil and application of method |
CN103196796A (en) * | 2013-04-15 | 2013-07-10 | 中国石油大学(华东) | Experimental device and method for researching viscosity property of supercritical carbon dioxide in stratum |
CN103267710A (en) * | 2013-05-30 | 2013-08-28 | 中国石油大学(北京) | Determination and Calculation Method of Effective Viscosity of VES Viscosified Acid in Porous Media |
CN103344525A (en) * | 2013-08-02 | 2013-10-09 | 成都理工大学 | Method and device for testing effective viscosity of foams in pore medium |
CN103760065A (en) * | 2013-06-28 | 2014-04-30 | 中国石油化工股份有限公司 | Test method and test system for polymer solution flow effective apparent viscosity |
CN103775078A (en) * | 2014-02-14 | 2014-05-07 | 武汉科技大学 | Method for forecasting effective viscosity of power law fluid in porous medium |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10197436A (en) * | 1996-12-28 | 1998-07-31 | Soubu Namakon Kk | Method for testing fluidity characteristic of highly fluid concrete and apparatus therefor |
-
2015
- 2015-05-19 CN CN201510255465.6A patent/CN104949899B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101058723A (en) * | 2007-04-26 | 2007-10-24 | 中国石油大学(华东) | Re-use agent for polymer after driving and injecting method thereof |
CN101545368A (en) * | 2009-04-27 | 2009-09-30 | 中国石油大学(华东) | On-line depth profile control method for improving oil displacement effect of polymer of offshore production well |
CN102455274A (en) * | 2010-10-18 | 2012-05-16 | 袁俊海 | Method for measuring intrinsic viscosity of polymer |
CN102278090A (en) * | 2011-08-16 | 2011-12-14 | 中国石油化工股份有限公司 | Method and control system for stopping leakage of reservoir fracture in drilling |
CN102980835A (en) * | 2012-12-13 | 2013-03-20 | 中国石油化工股份有限公司 | Method for measuring viscosity-reducing effect of oil-soluble viscosity reducer suitable for super heavy oil and application of method |
CN103196796A (en) * | 2013-04-15 | 2013-07-10 | 中国石油大学(华东) | Experimental device and method for researching viscosity property of supercritical carbon dioxide in stratum |
CN103267710A (en) * | 2013-05-30 | 2013-08-28 | 中国石油大学(北京) | Determination and Calculation Method of Effective Viscosity of VES Viscosified Acid in Porous Media |
CN103760065A (en) * | 2013-06-28 | 2014-04-30 | 中国石油化工股份有限公司 | Test method and test system for polymer solution flow effective apparent viscosity |
CN103344525A (en) * | 2013-08-02 | 2013-10-09 | 成都理工大学 | Method and device for testing effective viscosity of foams in pore medium |
CN103775078A (en) * | 2014-02-14 | 2014-05-07 | 武汉科技大学 | Method for forecasting effective viscosity of power law fluid in porous medium |
Non-Patent Citations (3)
Title |
---|
疏水缔合聚丙烯酰胺驱油能力的几种影响因素;张鹏 等;《油田化学》;20101225;第27卷(第4期);第462-468页 * |
聚合物稀溶液流经孔隙介质时的粘弹效应及其表征;佟曼丽 等;《油田化学》;19920701;第9卷(第2期);第145-150页 * |
聚合物驱相对渗透率曲线计算方法研究;杨清彦 等;《石油化学》;20100331;第31卷(第2期);第294-297、301页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104949899A (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104949899B (en) | A kind of assay method of Polymer Used For Oil Displacement effective viscosity in porous media | |
Maerker | Shear degradation of partially hydrolyzed polyacrylamide solutions | |
Patton et al. | Prediction of polymer flood performance | |
CN104834807B (en) | A kind of stress sensitive reservoir relative permeability computational methods based on fractal theory | |
US10689978B2 (en) | Method for determining gelation time in a core plug | |
CN105973786A (en) | Shale base block dynamic damage evaluation device and method based on liquid pressure pulse | |
Lei et al. | New gel aggregates to improve sweep efficiency during waterflooding | |
Yerramilli et al. | Novel insight into polymer injectivity for polymer flooding | |
Suleimanov et al. | Nanogels for deep reservoir conformance control | |
Goudarzi et al. | Water management in mature oil fields using preformed particle gels | |
CN105335600B (en) | The method and system of the thinning characteristic of polymer solution shear in a kind of acquisition stratum | |
CN105651665A (en) | Method for evaluating influence of drilling and completion fluid on oil and water permeability of rock core | |
US20150233073A1 (en) | Use of Thermo-Thickening Polymers in the Gas- and Oilfield Industry | |
CN110826245A (en) | An indoor simulation evaluation method for lost circulation and plugging | |
CN105670584A (en) | Temporary plugging kill fluid suitable for repairing low-permeability low-pressure gas well and preparation method thereof | |
CN104564049B (en) | Polymer flooding gathers the detection method of altering passage | |
Schuman et al. | Evaluation of ultrahigh-temperature-resistant preformed particle gels for conformance control in north sea reservoirs | |
Yao et al. | Preparation and characterization of polyacrylamide nanomicrospheres and its profile control and flooding performance | |
CN104327435A (en) | Polycationic granulated gel and its preparation method | |
CN104357033B (en) | Blocking agent synergist, the gel containing the blocking agent synergist and preparation method and application | |
CN103267710B (en) | Measurement and calculation method for effective viscosity of VES (viscoelastic surfactant) variable-viscosity acid in porous medium | |
CN107402290A (en) | Study CO2Experimental method of the drive process Crude Oil studies on asphaltene precipitation to reservoir properties and development effect influence | |
Abdelgawad | Polymer induced permeability reduction: The influence of polymer retention and porous medium properties | |
US11614391B1 (en) | Evaluating gel stability by injection in alternating flow directions | |
CN108828190A (en) | A kind of results of fracture simulation method of Fractured tight sand oil-gas reservoir |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220321 Address after: 400050 502-8, 5th floor, Julong steel market complex building, hub Park, international logistics park, Shapingba District, Chongqing Patentee after: Chongqing yukeyuan Environmental Protection Technology Co.,Ltd. Address before: No. 20, East Road, University City, Chongqing, Shapingba District, Chongqing Patentee before: Chongqing University of Science & Technology |
|
TR01 | Transfer of patent right |