CN104948916A - Circularly-surrounding underwater fish-shaped robot underwater pipeline detecting device and method - Google Patents
Circularly-surrounding underwater fish-shaped robot underwater pipeline detecting device and method Download PDFInfo
- Publication number
- CN104948916A CN104948916A CN201510249428.4A CN201510249428A CN104948916A CN 104948916 A CN104948916 A CN 104948916A CN 201510249428 A CN201510249428 A CN 201510249428A CN 104948916 A CN104948916 A CN 104948916A
- Authority
- CN
- China
- Prior art keywords
- underwater
- embedded controller
- fish
- robot
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 238000012634 optical imaging Methods 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000012544 monitoring process Methods 0.000 claims description 18
- 241000251468 Actinopterygii Species 0.000 claims description 6
- 238000013501 data transformation Methods 0.000 claims 2
- 230000002463 transducing effect Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 11
- 230000007797 corrosion Effects 0.000 abstract description 8
- 238000005260 corrosion Methods 0.000 abstract description 8
- 230000037237 body shape Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000000386 athletic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 210000000006 pectoral fin Anatomy 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
圆形环绕水下鱼形机器人水下管道检测装置及检测方法,涉及水下机器人。所述圆形环绕水下鱼形机器人水下管道检测装置设有预警模块、图像处理模块、嵌入式控制器、光视觉模块及传感器模块。鱼形水下机器人圆形环绕管道;光学成像传感器实时采集水下管道周围图像信息;嵌入式控制器接收并处理光视觉模块实时水下管道的周围图像信息、传感器模块的传感信号,再传输到图像处理模块;图像处理模块接收嵌入式控制器处理后的图像信息,判断管道是否有裂痕或者是否腐蚀严重到不可忽略的地步,若达到这个地步,则发出警告要求输出到预警模块;若预警模块工作,则此时水下机器人所检测的管道有安全隐患;鱼形水下机器人向下移动一定距离,继续圆形环绕移动。
The invention discloses an underwater pipe detection device and a detection method for a circular fish-shaped robot surrounding an underwater, and relates to an underwater robot. The underwater pipeline detection device of the circular underwater fish-shaped robot is equipped with an early warning module, an image processing module, an embedded controller, an optical vision module and a sensor module. The fish-shaped underwater robot circles around the pipeline; the optical imaging sensor collects image information around the underwater pipeline in real time; the embedded controller receives and processes the real-time surrounding image information of the optical vision module and the sensing signal of the sensor module, and then transmits to the image processing module; the image processing module receives the image information processed by the embedded controller, and judges whether there is a crack in the pipeline or whether the corrosion is so severe that it cannot be ignored. When the module is working, the pipeline detected by the underwater robot has potential safety hazards; the fish-shaped underwater robot moves down a certain distance and continues to move around in a circle.
Description
技术领域technical field
本发明涉及水下机器人,具体是涉及一种圆形环绕水下鱼形机器人水下管道检测装置及检测方法。The invention relates to an underwater robot, in particular to a detection device and a detection method for an underwater pipeline of a circular underwater fish-shaped robot.
背景技术Background technique
随着经济的迅猛发展,石油的需求越来越急迫,对于海洋油田的开采受到了更多的关注。水下管道是实现海底油田与陆面连接的常用方式,但是不管什么器件,都会因为外部环境的侵蚀有着一定的使用寿命,水管壁沉积物腐蚀、应力腐蚀等等因素导致管道出现裂痕,这些腐蚀是随机的,所以检测水管是个必要的任务。With the rapid development of the economy, the demand for oil is becoming more and more urgent, and more attention has been paid to the exploitation of offshore oil fields. Underwater pipelines are a common way to connect subsea oilfields to the land surface, but no matter what the device is, it will have a certain service life due to the erosion of the external environment. Factors such as sediment corrosion on the water pipe wall, stress corrosion and other factors cause cracks in the pipeline. These Corrosion is random, so detecting water pipes is a necessary task.
传统的水下机器人主要分为两大类:一种是细长体外形,另一种是开架式。细长体主要是考虑到流体力学特性设计而成的,鱼形是海洋中很好的细长体外形,可以让水下机器人具有像鱼一样的推进速率、高的游动速度以及极好的运动灵活性能。Traditional underwater robots are mainly divided into two categories: one is a slender body shape, and the other is an open frame. The slender body is mainly designed in consideration of the hydrodynamic characteristics. The fish shape is a good slender body shape in the ocean, which allows the underwater robot to have a fish-like propulsion rate, high swimming speed and excellent Athletic flexibility performance.
发明内容Contents of the invention
本发明的目的是为了解决传统推力方向单一和机动性差等问题,提供一种高效推进、灵活机动的圆形环绕水下鱼形机器人水下管道检测装置及检测方法。The purpose of the present invention is to solve the traditional problem of single thrust direction and poor maneuverability, etc., and provide an underwater pipeline detection device and detection method for a circular underwater fish-shaped robot with efficient propulsion and flexible maneuverability.
所述圆形环绕水下鱼形机器人水下管道检测装置,设有预警模块、图像处理模块、嵌入式控制器、光视觉模块及传感器模块;所述光视觉模块设有光学成像传感器、云台及辅助照明灯;所述传感器模块设有深度传感器、速度传感器、姿态传感器、声纳传感器、电池监控传感器及推进器监控传感器;The underwater pipeline detection device of the circular underwater fish-shaped robot is provided with an early warning module, an image processing module, an embedded controller, a light vision module and a sensor module; the light vision module is provided with an optical imaging sensor, a cloud platform and an auxiliary lighting lamp; the sensor module is provided with a depth sensor, a speed sensor, an attitude sensor, a sonar sensor, a battery monitoring sensor and a thruster monitoring sensor;
所述图像处理模块的输出端与预警模块输入端相连接,所述嵌入式控制器的输出端与图像处理模块输入端相连接;The output end of the image processing module is connected with the input end of the early warning module, and the output end of the embedded controller is connected with the input end of the image processing module;
所述光学成像传感器、辅助照明灯分别设置在所述云台上;所述光学成像传感器的信号输出端与嵌入式控制器的信号输入端相连接;The optical imaging sensor and the auxiliary light are respectively arranged on the platform; the signal output end of the optical imaging sensor is connected with the signal input end of the embedded controller;
所述深度传感器的信号输出端、速度传感器的信号输出端、姿态传感器的信号输出端、声纳传感器的信号输出端、电池监控传感器的信号输出端及推进器监控传感器的信号输出端分别与嵌入式控制器的信号输入端相连接。The signal output end of the depth sensor, the signal output end of the speed sensor, the signal output end of the attitude sensor, the signal output end of the sonar sensor, the signal output end of the battery monitoring sensor and the signal output end of the thruster monitoring sensor are respectively connected with the embedded Connected to the signal input terminal of the type controller.
圆形环绕水下鱼形机器人水下管道检测方法,采用所述圆形环绕水下鱼形机器人水下管道检测装置,所述检测方法包括以下步骤:The circular surrounding underwater fish-shaped robot underwater pipeline detection method adopts the circular surrounding underwater fish-shaped robot underwater pipeline detection device, and the detection method includes the following steps:
步骤1,鱼形水下机器人从水面的一个起点开始圆形环绕管道;Step 1, the fish-shaped underwater robot circles around the pipeline from a starting point on the water surface;
步骤2,光视觉模块的光学成像传感器,进行实时采集水下管道的周围图像信息;通过所述传感器模块进行实时采集水下机器人的深度信息、速度信息、姿态信息、前方图像信息、电池状态信息以及推进器状态信息;Step 2, the optical imaging sensor of the optical vision module collects the surrounding image information of the underwater pipeline in real time; the depth information, speed information, attitude information, front image information, and battery status information of the underwater robot are collected in real time through the sensor module and thruster status information;
在步骤2中,所述通过所述传感器模块进行实时采集水下机器人的深度信息、速度信息、姿态信息、前方图像信息、电池状态信息以及推进器状态信息的具体方法可为:In step 2, the specific method for collecting the depth information, speed information, attitude information, front image information, battery status information and thruster status information of the underwater robot in real time through the sensor module may be:
采用深度传感器测量水下机器人在水中的深度,将测得深度数据转化为深度电压信号传到所述嵌入式控制器;Using a depth sensor to measure the depth of the underwater robot in the water, converting the measured depth data into a depth voltage signal and transmitting it to the embedded controller;
采用速度传感器测量水下机器人在水中的航行速度,将测得航行速度数据转化为速度电压信号传到所述嵌入式控制器;Using a speed sensor to measure the navigation speed of the underwater robot in the water, converting the measured navigation speed data into a speed voltage signal and transmitting it to the embedded controller;
采用姿态传感器测量水下机器人在水下姿态,将测得方向数据转化为电压信号传到所述嵌入式控制器;Using an attitude sensor to measure the attitude of the underwater robot underwater, converting the measured direction data into a voltage signal and transmitting it to the embedded controller;
采用声纳传感器测量水下机器人前视环境,将测得图像数据转化为电压信号传到所述嵌入式控制器;The sonar sensor is used to measure the forward-looking environment of the underwater robot, and the measured image data is converted into a voltage signal and transmitted to the embedded controller;
采用电池器监控传感器测量水下机器人推进器转速,将测得电池组状态数据转化为电压信号传到所述嵌入式控制器;Using a battery monitoring sensor to measure the speed of the propeller of the underwater robot, converting the measured battery pack state data into a voltage signal and transmitting it to the embedded controller;
采用推进器监控传感器测量水下机器人推进器转速,将测得推进器转速信号转化为电压信号传到所述嵌入式控制器。The thruster monitoring sensor is used to measure the speed of the propeller of the underwater robot, and the measured speed signal of the propeller is converted into a voltage signal and transmitted to the embedded controller.
步骤3,嵌入式控制器分别接收并处理所述光视觉模块实时水下管道的周围图像信息、传感器模块的传感信号,经过处理传输到图像处理模块;Step 3, the embedded controller respectively receives and processes the surrounding image information of the real-time underwater pipeline of the optical vision module and the sensing signal of the sensor module, and transmits them to the image processing module after processing;
步骤4,图像处理模块接收来自所述嵌入式控制器处理后的图像信息,判断管道是否有裂痕或者是否腐蚀严重到不可忽略的地步,若达到这个地步,则发出警告要求输出到预警模块;Step 4, the image processing module receives the processed image information from the embedded controller, and judges whether the pipeline has cracks or whether the corrosion is so serious that it cannot be ignored, and if this is reached, a warning is issued to request output to the early warning module;
在步骤4中,所述图像处理模块中需要存有管道出现裂缝、破损、腐蚀严重的图像特征;图像处理模块要实时对比从嵌入式控制器接收到的图像,若与存有的管道磨损特征一致,则立刻通过相关工作人员。In step 4, image features of cracks, damage, and serious corrosion in the pipeline need to be stored in the image processing module; the image processing module will compare the image received from the embedded controller in real time, if it is consistent with the existing pipeline wear feature If they agree, pass the relevant staff immediately.
步骤5,预警模块是通过某种方式通知相关工作人员,若预警模块工作,则说明此时水下机器人所检测的管道有安全隐患。In step 5, the early warning module notifies the relevant staff in a certain way. If the early warning module works, it means that the pipeline detected by the underwater robot has potential safety hazards.
步骤6,鱼形水下机器人向下移动一定的距离,然后继续开始圆形环绕移动。Step 6, the fish-shaped underwater robot moves down for a certain distance, and then continues to move around in a circle.
在步骤6中,所述向下移动一定的距离是取决于鱼形水下机器人在圆形环绕时图像采集的高度。In step 6, the downward movement by a certain distance depends on the height of image acquisition when the fish-shaped underwater robot circles around.
本发明提供一种水下机器人水下管道检测,从而使鱼形机器人实现完成实时图像传输,通过预警模块确保复杂的水下作业情况的安全性,完成水下管道的检测跟踪任务。鱼形机器人能够灵活的绕圆形移动,当从一个起点出发,环绕一圈回到这个起点后开始向上或向下移动一定的距离,这个距离根据环绕管道检测范围进行调节,移动完垂直距离后,在与起点相同的垂线上再次开始圆形路径环绕进行管道检测。The invention provides an underwater robot for detecting underwater pipelines, so that the fish-shaped robot can realize real-time image transmission, ensure the safety of complex underwater operations through an early warning module, and complete the detection and tracking task of underwater pipelines. The fish-shaped robot can flexibly move around a circle. When starting from a starting point, it circles around and returns to this starting point, and then begins to move up or down for a certain distance. This distance is adjusted according to the detection range around the pipeline. After moving the vertical distance , start the circular path wrap around again for pipe inspection on the same vertical line as the starting point.
本发明的有益效果是:仿鱼形的机器人能够提高机器人移动的灵活性,常见的是依照左右两边推进器的不同时候、不同方向的转速进行左右前后移动,而本发明是仿照大自然生活在海洋中的鱼类,在机器人尾部,上下左右四侧都要分布鳍肢连接有动鳍。另外,通过实时采集图像到操作台,一旦发现问题立即报警,提高水下管道的安全性。The beneficial effects of the present invention are: the fish-like robot can improve the flexibility of the robot's movement. It is common to move left and right according to the speed of the propellers on the left and right sides at different times and in different directions. For fish in the ocean, at the tail of the robot, flippers are distributed on the upper, lower, left, and right sides and are connected with movable fins. In addition, by collecting images in real time to the operation console, once a problem is found, it will immediately call the police to improve the safety of underwater pipelines.
附图说明Description of drawings
图1为本发明的一种圆形环绕水下鱼形机器人水下管道检测方法的结构框图。Fig. 1 is a structural block diagram of an underwater pipeline detection method of a circular fish-shaped robot surrounding the water according to the present invention.
图2为本发明的一种圆形环绕水下鱼形机器人水下管道检测方法的流程示意图。Fig. 2 is a schematic flowchart of an underwater pipeline detection method of a circular fish-shaped robot surrounding the water according to the present invention.
具体实施方式Detailed ways
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。The present invention will be further elaborated below by describing a preferred specific embodiment in detail in conjunction with the accompanying drawings.
如图1所示,所述圆形环绕水下鱼形机器人水下管道检测装置实施例,设有预警模块10、图像处理模块11、嵌入式控制器12、光视觉模块13及传感器模块14;所述光视觉模块13设有光学成像传感器131、云台132及辅助照明灯133;所述传感器模块14设有深度传感器141、速度传感器142、姿态传感器143、声纳传感器144、电池监控传感器145及推进器监控传感器146。As shown in Figure 1, the embodiment of the underwater pipeline detection device of the circular underwater fish-shaped robot is provided with an early warning module 10, an image processing module 11, an embedded controller 12, an optical vision module 13 and a sensor module 14; The optical vision module 13 is provided with an optical imaging sensor 131, a pan/tilt 132 and an auxiliary light 133; the sensor module 14 is provided with a depth sensor 141, a speed sensor 142, an attitude sensor 143, a sonar sensor 144, and a battery monitoring sensor 145 and thruster monitoring sensor 146 .
所述图像处理模块11的输出端与预警模块10输入端相连接,所述嵌入式控制器12的输出端与图像处理模块11输入端相连接。The output end of the image processing module 11 is connected to the input end of the early warning module 10 , and the output end of the embedded controller 12 is connected to the input end of the image processing module 11 .
所述光学成像传感器131、辅助照明灯133分别设置在所述云台132上;所述光学成像传感器131的信号输出端与嵌入式控制器12的信号输入端相连接。The optical imaging sensor 131 and the auxiliary lighting lamp 133 are respectively arranged on the platform 132 ; the signal output end of the optical imaging sensor 131 is connected with the signal input end of the embedded controller 12 .
所述深度传感器141的信号输出端、速度传感器142的信号输出端、姿态传感器143的信号输出端、声纳传感器144的信号输出端、电池监控传感器145的信号输出端及推进器监控传感器146的信号输出端分别与嵌入式控制器12的信号输入端相连接。The signal output end of the depth sensor 141, the signal output end of the speed sensor 142, the signal output end of the attitude sensor 143, the signal output end of the sonar sensor 144, the signal output end of the battery monitoring sensor 145 and the thruster monitoring sensor 146 The signal output terminals are respectively connected to the signal input terminals of the embedded controller 12 .
鱼形机器人按设定的半径进行移动,这个半径可以手动调节,环绕一圈后,也就是图像采集完毕后,向下移动的距离为采集图像的高度继续下一次的检测。The fish-shaped robot moves according to the set radius, which can be manually adjusted. After a circle, that is, after the image acquisition is completed, the downward moving distance is the height of the collected image to continue the next detection.
如图2所示,一种圆形环绕水下鱼形机器人水下管道检测方法,包括如下步骤:As shown in Figure 2, a circular underwater fish-shaped robot underwater pipeline detection method includes the following steps:
步骤1,所述鱼形水下机器人从水面的一个起点开始圆形环绕管道。Step 1, the fish-shaped underwater robot circles around the pipeline from a starting point on the water surface.
步骤2,所述光视觉模块13的光学成像传感器131,进行实时采集水下管道的周围图像信息;通过所述传感器模块14进行实时采集水下机器人的深度信息、速度信息、姿态信息、前方图像信息、电池状态信息以及推进器状态信息。Step 2, the optical imaging sensor 131 of the optical vision module 13 collects the surrounding image information of the underwater pipeline in real time; the depth information, speed information, attitude information, and front image of the underwater robot are collected in real time through the sensor module 14 information, battery status information, and thruster status information.
步骤2.1,所述深度传感器141测量水下机器人在水中的深度,将测得深度数据转化为深度电压信号传到所述嵌入式控制器12;Step 2.1, the depth sensor 141 measures the depth of the underwater robot in the water, and converts the measured depth data into a depth voltage signal and sends it to the embedded controller 12;
步骤2.2,所述速度传感器142测量水下机器人在水中的航行速度,将测得航行速度数据转化为速度电压信号传到所述嵌入式控制器12;Step 2.2, the speed sensor 142 measures the navigation speed of the underwater robot in the water, and converts the measured navigation speed data into a speed voltage signal and transmits it to the embedded controller 12;
步骤2.3,所述姿态传感器143测量水下机器人在水下姿态,将测得方向数据转化为电压信号传到所述嵌入式控制器12;Step 2.3, the attitude sensor 143 measures the attitude of the underwater robot, and converts the measured direction data into a voltage signal and transmits it to the embedded controller 12;
步骤2.4,所述声纳传感器144测量水下机器人前视环境,将测得图像数据转化为电压信号传到所述嵌入式控制器12;Step 2.4, the sonar sensor 144 measures the forward-looking environment of the underwater robot, and converts the measured image data into a voltage signal and transmits it to the embedded controller 12;
步骤2.5,所述电池器监控传感器145测量水下机器人推进器转速,将测得电池组状态数据转化为电压信号传到所述嵌入式控制器12;Step 2.5, the battery monitoring sensor 145 measures the speed of the propeller of the underwater robot, and converts the measured battery pack state data into a voltage signal and transmits it to the embedded controller 12;
步骤2.6,所述推进器监控传感器146测量水下机器人推进器转速,将测得推进器转速信号转化为电压信号传到所述嵌入式控制器12。Step 2.6, the propeller monitoring sensor 146 measures the rotational speed of the propeller of the underwater robot, converts the measured propeller rotational speed signal into a voltage signal and transmits it to the embedded controller 12 .
步骤3,所述嵌入式控制器12分别接收并处理所述光视觉模块13实时水下管道的周围图像信息、所述传感器模块14的传感信号,经过处理传输到图像处理模块11;Step 3, the embedded controller 12 respectively receives and processes the surrounding image information of the real-time underwater pipeline of the optical vision module 13 and the sensing signal of the sensor module 14, and transmits them to the image processing module 11 after processing;
步骤4,所述图像处理模块11接收来自所述嵌入式控制器12处理后的图像信息,判断管道是否有裂痕或者是否腐蚀严重到不可忽略的地步,若达到这个地步,则发出警告要求输出到预警模块10;Step 4, the image processing module 11 receives the processed image information from the embedded controller 12, and judges whether there are cracks in the pipeline or whether the corrosion is so serious that it cannot be ignored. Early warning module 10;
步骤4.1,在图像处理模块11中需要存有管道出现裂缝、破损、腐蚀严重的图像特征;Step 4.1, in the image processing module 11, image features such as cracks, damage, and serious corrosion in the pipeline need to be stored;
步骤4.2,图像处理模块11要实时对比从嵌入式控制器接收到的图像,若与存有的管道磨损特征一致,立刻通过相关工作人员。In step 4.2, the image processing module 11 will compare the image received from the embedded controller in real time, and if it is consistent with the existing pipeline wear characteristics, immediately pass through the relevant staff.
步骤5,所述预警模块10是通过某种方式通知相关工作人员,若预警模块10工作,则说明此时水下机器人所检测的管道有安全隐患。In step 5, the early warning module 10 notifies the relevant staff in some way. If the early warning module 10 works, it means that the pipeline detected by the underwater robot has potential safety hazards.
步骤6,所述鱼形水下机器人向下移动一定距离,然后继续开始圆形环绕移动。Step 6, the fish-shaped underwater robot moves downward for a certain distance, and then continues to move around in a circle.
步骤6.1,向下移动的距离取决于鱼形水下机器人在圆形环绕时图像采集的高度。In step 6.1, the distance to move downward depends on the height of image acquisition when the fish-shaped underwater robot circles around.
鱼形机器人的路径是圆环形的,圆形的半径可以进行调节。本发明可以对管道的外部及管道在海底所处状况进行检测,主要检测管道周围的冲蚀情况、管道支撑状况和管道外壁及其损伤情况的检测。鱼形机器人包含预警模块、图像处理模块、传感器模块、光视觉模块及嵌入式控制器。传感器模块、光视觉模块分别与嵌入式控制器的信号输入端相连接,嵌入式控制器的信号输出端与水下光端机信号输入端相连接。本发明的鱼形机器人实行的是圆形环绕路径,通过在操作台的操作控制水下机器人进而能够对水下管道进行检测和预警。The path of the fish robot is circular, and the radius of the circle can be adjusted. The invention can detect the outside of the pipeline and the condition of the pipeline on the seabed, mainly detecting the erosion around the pipeline, the supporting condition of the pipeline, the outer wall of the pipeline and its damage. The fish-shaped robot includes an early warning module, an image processing module, a sensor module, an optical vision module and an embedded controller. The sensor module and the optical vision module are respectively connected to the signal input end of the embedded controller, and the signal output end of the embedded controller is connected to the signal input end of the underwater optical transceiver. The fish-shaped robot of the present invention implements a circular circumnavigation path, and can detect and warn the underwater pipeline by controlling the underwater robot through the operation on the console.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510249428.4A CN104948916A (en) | 2015-05-15 | 2015-05-15 | Circularly-surrounding underwater fish-shaped robot underwater pipeline detecting device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510249428.4A CN104948916A (en) | 2015-05-15 | 2015-05-15 | Circularly-surrounding underwater fish-shaped robot underwater pipeline detecting device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104948916A true CN104948916A (en) | 2015-09-30 |
Family
ID=54163816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510249428.4A Pending CN104948916A (en) | 2015-05-15 | 2015-05-15 | Circularly-surrounding underwater fish-shaped robot underwater pipeline detecting device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104948916A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954292A (en) * | 2016-04-29 | 2016-09-21 | 河海大学常州校区 | Underwater structure surface crack detection device and method based on compound-eye bionic vision |
CN108332058A (en) * | 2017-01-19 | 2018-07-27 | 常熟海量声学设备科技有限公司 | A kind of autonomy remote-controlled vehicle submarine pipeline detecting and tracking device |
CN108679459A (en) * | 2018-04-11 | 2018-10-19 | 燕山大学 | Offshore oilfield pipeline leak point positioning method based on sound ray compensation |
CN110186454A (en) * | 2019-06-12 | 2019-08-30 | 海南大学 | A kind of filtering method of underwater inspection device and its attitude transducer |
CN112361123A (en) * | 2020-10-23 | 2021-02-12 | 武汉中仪物联技术股份有限公司 | Control system for pipeline detection robot |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080300742A1 (en) * | 2007-05-30 | 2008-12-04 | Oceaneering International, Inc. | Hybrid remotely/autonomously operated underwater vehicle |
CN101825903A (en) * | 2010-04-29 | 2010-09-08 | 哈尔滨工程大学 | Water surface control method for remotely controlling underwater robot |
CN202350833U (en) * | 2011-12-14 | 2012-07-25 | 上海海事大学 | Signal acquisition and displaying device of underwater robot sensor |
US8265809B2 (en) * | 2009-01-22 | 2012-09-11 | Teledyne Instruments, Inc. | Autonomous underwater vehicle with current monitoring |
CN103389736A (en) * | 2013-07-18 | 2013-11-13 | 东北大学 | Submarine pipeline inspection robot based on infrared thermal imaging and control method thereof |
CN103488175A (en) * | 2013-09-26 | 2014-01-01 | 上海海事大学 | Underwater pipeline detection tracking system and detection method of automatic remote control underwater robot |
-
2015
- 2015-05-15 CN CN201510249428.4A patent/CN104948916A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080300742A1 (en) * | 2007-05-30 | 2008-12-04 | Oceaneering International, Inc. | Hybrid remotely/autonomously operated underwater vehicle |
US8265809B2 (en) * | 2009-01-22 | 2012-09-11 | Teledyne Instruments, Inc. | Autonomous underwater vehicle with current monitoring |
CN101825903A (en) * | 2010-04-29 | 2010-09-08 | 哈尔滨工程大学 | Water surface control method for remotely controlling underwater robot |
CN202350833U (en) * | 2011-12-14 | 2012-07-25 | 上海海事大学 | Signal acquisition and displaying device of underwater robot sensor |
CN103389736A (en) * | 2013-07-18 | 2013-11-13 | 东北大学 | Submarine pipeline inspection robot based on infrared thermal imaging and control method thereof |
CN103488175A (en) * | 2013-09-26 | 2014-01-01 | 上海海事大学 | Underwater pipeline detection tracking system and detection method of automatic remote control underwater robot |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954292A (en) * | 2016-04-29 | 2016-09-21 | 河海大学常州校区 | Underwater structure surface crack detection device and method based on compound-eye bionic vision |
CN108332058A (en) * | 2017-01-19 | 2018-07-27 | 常熟海量声学设备科技有限公司 | A kind of autonomy remote-controlled vehicle submarine pipeline detecting and tracking device |
CN108679459A (en) * | 2018-04-11 | 2018-10-19 | 燕山大学 | Offshore oilfield pipeline leak point positioning method based on sound ray compensation |
CN110186454A (en) * | 2019-06-12 | 2019-08-30 | 海南大学 | A kind of filtering method of underwater inspection device and its attitude transducer |
CN112361123A (en) * | 2020-10-23 | 2021-02-12 | 武汉中仪物联技术股份有限公司 | Control system for pipeline detection robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104948916A (en) | Circularly-surrounding underwater fish-shaped robot underwater pipeline detecting device and method | |
CN204785586U (en) | Drainage pipe detection device that forms images under water | |
CN103244830B (en) | A kind of for detection system in submarine pipeline and detecting method thereof | |
CN103488175A (en) | Underwater pipeline detection tracking system and detection method of automatic remote control underwater robot | |
KR101343068B1 (en) | A ship docking guide system using laser measurement device and a method thereof | |
CN202256671U (en) | Underwater target monitoring system | |
CN206066414U (en) | Intelligent pipeline detects robot | |
CN204536279U (en) | Subsea pipeline girth joint ultrasound wave electric chain pick-up unit | |
CN109131742B (en) | A rotatable side-mounted detection system and method | |
CN105629307B (en) | A kind of submerged pipeline detection and measurement sound system and method | |
CN111284633A (en) | Towing device for autonomously recovering AUV (autonomous Underwater vehicle) of USV (Universal Serial bus) and recovery method thereof | |
US10378689B2 (en) | Pig tracking by unmanned submarine | |
CN114991298A (en) | Intelligent robot for detecting and dredging urban drainage pipeline and working method | |
CN112478108A (en) | Method for removing submarine cable obstacles by submarine cable robot | |
GB2600895A (en) | Inspection robot | |
CN209717731U (en) | Underwater inspection and cleaning robot | |
CN205793058U (en) | A kind of boat form drainpipe detecting equipment | |
CN205971769U (en) | A bathyscaph for detecting dark submarine pipeline way | |
KR20140112243A (en) | Apparatus for contamination inspecting of the underground buried pipelines | |
CN207060362U (en) | A kind of underwater crawler type hull detection means | |
Jorge et al. | VITA1: An unmanned underwater vehicle prototype for operation in underwater tunnels | |
CN203641895U (en) | Underwater sound leak-checking location device for underwater pipeline | |
CN112326917B (en) | Water environment pollution traceability system | |
JP2013163491A (en) | Minesweeping support device | |
CN204753675U (en) | Trailing suction hopper dredger drag arm gesture measuring equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150930 |