CN104932672A - Portable electronic device and physiological measurement method - Google Patents
Portable electronic device and physiological measurement method Download PDFInfo
- Publication number
- CN104932672A CN104932672A CN201410767014.6A CN201410767014A CN104932672A CN 104932672 A CN104932672 A CN 104932672A CN 201410767014 A CN201410767014 A CN 201410767014A CN 104932672 A CN104932672 A CN 104932672A
- Authority
- CN
- China
- Prior art keywords
- signal
- button
- light
- electronic device
- portable electronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000008280 blood Substances 0.000 claims description 9
- 210000004369 blood Anatomy 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 15
- 230000006870 function Effects 0.000 description 30
- 238000005259 measurement Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 235000019577 caloric intake Nutrition 0.000 description 5
- 230000008569 process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明涉及一种生理测量方法与执行上述方法的携带式电子装置。携带式电子装置包括按键和显示器。上述生理测量方法包括以下步骤:在按键受压时发出至少一触发信号,根据触发信号而通过按键向按键的外侧发出第一光信号,通过按键接收第二光信号,以及根据第二光信号获得生理信息。其中第二光信号为第一光信号遇到物体所反射回的光信号。
The present invention relates to a physiological measurement method and a portable electronic device for executing the method. The portable electronic device includes a key and a display. The physiological measurement method includes the following steps: sending at least one trigger signal when the key is pressed, sending a first light signal to the outside of the key through the key according to the trigger signal, receiving a second light signal through the key, and obtaining physiological information according to the second light signal. The second light signal is a light signal reflected by the first light signal when it encounters an object.
Description
技术领域technical field
本发明涉及一种具有测量功能的电子装置,且特别是涉及一种携带式电子装置与生理测量方法。The invention relates to an electronic device with measurement function, and in particular to a portable electronic device and a physiological measurement method.
背景技术Background technique
现代的携带式电子装置已经具有遥控功能,可以像一般的家电遥控器,发射红外线信号来遥控家电设备,例如控制电视转台,或调整电视音量。也有些携带式电子装置可以发射红外线信号至用户手指,并借助接收用户手指上的反射信号来测量用户的心跳速率(HBR:heart beat rate)。Modern portable electronic devices already have remote control functions, which can emit infrared signals to control home appliances like ordinary home appliance remote controls, such as controlling TV turntables or adjusting TV volume. There are also some portable electronic devices that can emit infrared signals to the user's finger, and measure the user's heart rate (HBR: heart beat rate) by receiving the reflected signal from the user's finger.
虽然都是红外线信号,在目前的携带式电子装置中,遥控功能和心跳测量功能是通过两个不同的硬件模块来实现,而不是共用一个硬件模块。为了发射与接收信号,携带式电子装置的外壳需要设置两个开孔,使外壳设计复杂化。另外,测量心跳需要繁复的操作。用户必须唤醒手机,解除触控屏幕的锁定,启动对应的应用软件,还要将手指放在外壳的测量用开孔。这些问题都需要技术上的改进。Although both are infrared signals, in current portable electronic devices, the remote control function and the heartbeat measurement function are realized by two different hardware modules instead of sharing one hardware module. In order to transmit and receive signals, the housing of the portable electronic device needs to be provided with two openings, which complicates the design of the housing. In addition, measuring the heartbeat requires complicated operations. The user must wake up the phone, unlock the touch screen, launch the corresponding application software, and place a finger on the measurement opening in the case. These problems require technical improvements.
发明内容Contents of the invention
本发明提供一种携带式电子装置以及生理测量方法,以解决传统携带式电子装置的上述问题。The present invention provides a portable electronic device and a physiological measurement method to solve the above-mentioned problems of the traditional portable electronic device.
本发明的携带式电子装置包括感测模块以及收发电路。感测模块包括按键、发射单元及接收单元。感测模块在按键受压时发出至少一触发信号。发射单元配置于按键的内侧,用以通过按键向按键的外侧发出第一光信号。接收单元配置于按键的内侧,通过按键接收第二光信号。其中第二光信号为第一光信号遇到物体所反射回的光信号。收发电路耦接感测模块,用以根据触发信号而控制发射单元通过按键向按键的外侧发出第一光信号,并用以根据第二光信号以获得生理信息。按键具有透光材质,以让第一光信号与第二光信号通过。The portable electronic device of the present invention includes a sensing module and a transceiver circuit. The sensing module includes a button, a transmitting unit and a receiving unit. The sensing module sends out at least one trigger signal when the button is pressed. The transmitting unit is arranged inside the key, and is used for emitting the first light signal to the outside of the key through the key. The receiving unit is arranged inside the key, and receives the second light signal through the key. The second optical signal is an optical signal reflected back when the first optical signal encounters an object. The transceiver circuit is coupled to the sensing module, and is used for controlling the transmitting unit to emit a first light signal to the outside of the key through the key according to the trigger signal, and to obtain physiological information according to the second light signal. The button has a light-transmitting material to allow the first light signal and the second light signal to pass through.
本发明的生理测量方法由携带式电子装置执行。携带式电子装置包括按键和显示器。此生理测量方法包括以下步骤:在按键受压时发出至少一触发信号,根据触发信号而通过按键向按键的外侧发出第一光信号,通过按键接收第二光信号,以及根据第二光信号获得生理信息。其中第二光信号为第一光信号遇到物体所反射回的光信号。The physiological measurement method of the present invention is executed by a portable electronic device. The portable electronic device includes keys and a display. This physiological measurement method includes the following steps: sending out at least one trigger signal when the button is pressed, sending a first light signal to the outside of the button through the button according to the trigger signal, receiving a second light signal through the button, and obtaining a signal according to the second light signal. physiological information. The second optical signal is an optical signal reflected back when the first optical signal encounters an object.
上述的携带式电子装置与生理测量方法可用单一感测模块来测量用户的生理信息,能减少携带式电子装置的外壳开孔,也能大幅简化测量生理信息的操作过程。The above-mentioned portable electronic device and physiological measurement method can use a single sensing module to measure the user's physiological information, which can reduce the opening of the casing of the portable electronic device and greatly simplify the operation process of measuring physiological information.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图做详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明Description of drawings
图1是依照本发明的一实施例的一种携带式电子装置的示意图。FIG. 1 is a schematic diagram of a portable electronic device according to an embodiment of the invention.
图2A至图2E是依照本发明的多个实施例的携带式电子装置的感测模块的示意图。2A to 2E are schematic diagrams of a sensing module of a portable electronic device according to various embodiments of the present invention.
图3A至图3D是依照本发明的多个实施例的携带式电子装置的收发电路的示意图。3A to 3D are schematic diagrams of transceiver circuits of portable electronic devices according to various embodiments of the present invention.
图4和图5是依照本发明的一实施例的一种生理测量方法的流程图。4 and 5 are flowcharts of a physiological measurement method according to an embodiment of the present invention.
图6是依照本发明的一实施例的一种携带式电子装置的显示画面示意图。FIG. 6 is a schematic diagram of a display screen of a portable electronic device according to an embodiment of the present invention.
图7是依照本发明的另一实施例的一种携带式电子装置的显示画面示意图。FIG. 7 is a schematic diagram of a display screen of a portable electronic device according to another embodiment of the present invention.
附图符号说明Description of reference symbols
100:携带式电子装置100: Portable Electronic Devices
110:感测模块110: Sensing module
120:收发电路120: transceiver circuit
130:处理器130: Processor
140:显示器140: display
150:储存装置150: storage device
210:按键210: button
220:发射单元220: launch unit
221~225:光发射器221~225: Optical transmitter
230:感应器230: sensor
240:接收单元240: receiving unit
241~244:光接收器241~244: Optical receiver
310:控制器310: controller
312、314:切换开关312, 314: toggle switch
322、334、344、354:放大器322, 334, 344, 354: Amplifiers
332、352:滤波器332, 352: filter
336:模拟数字转换器336: Analog to Digital Converter
338:储存单元338: storage unit
342:调制器342: Modulator
356:解调器356: Demodulator
405~455、510~560:方法步骤405~455, 510~560: method steps
610:手指610: finger
620:时间620: time
630:心跳速率630: Heart rate
640:心跳波形640: Heartbeat waveform
650:热量消耗信息650: Calorie Expenditure Information
700:用户700: User
具体实施方式Detailed ways
图1是依照本发明的一实施例的一种携带式电子装置100的示意图。携带式电子装置100可以是智能手机、个人数字助理(PDA:personal digitalassistant)、平板电脑、或制作成手表等外型的穿戴式电子装置。携带式电子装置100包括感测模块110、收发电路120、处理器130、显示器140、储存装置150以及相机模块160。收发电路120耦接感测模块110,处理器130耦接感测模块110和收发电路120,显示器140、储存装置150和相机模块160都耦接处理器130。FIG. 1 is a schematic diagram of a portable electronic device 100 according to an embodiment of the invention. The portable electronic device 100 may be a smart phone, a personal digital assistant (PDA: personal digital assistant), a tablet computer, or a wearable electronic device made into a watch or the like. The portable electronic device 100 includes a sensing module 110 , a transceiver circuit 120 , a processor 130 , a display 140 , a storage device 150 and a camera module 160 . The transceiver circuit 120 is coupled to the sensing module 110 , the processor 130 is coupled to the sensing module 110 and the transceiver circuit 120 , and the display 140 , the storage device 150 and the camera module 160 are all coupled to the processor 130 .
感测模块110可发射光信号遥控其它电子装置。感测模块110也可以发射光信号至用户手指或其它皮肤部位,并接收由用户手指或其它皮肤部位反射的光信号,并将光信号转换为电子信号,以测量用户的生理信息。上述生理信息可以是用户的心跳速率、心跳波形、血氧浓度、或以上信息的组合。收发电路120可提供感测模块110发射的信号,并分析感测模块110的转换所得的电子信号,以取得用户的生理信息。处理器130可执行携带式电子装置100的操作系统与应用软件。显示器140是触控显示器,可显示携带式电子装置100的用户界面与接收用户的触碰输入。储存装置150可以是存储器或硬盘。储存装置150可储存用户的生理信息,也可储存携带式电子装置100的操作系统、应用软件、以及携带式电子装置100的操作所需的数据。相机模块160可拍照摄取影像并将影像通过处理器130处理过后储存至储存装置150中。The sensing module 110 can emit light signals to remotely control other electronic devices. The sensing module 110 can also transmit light signals to the user's fingers or other skin parts, receive light signals reflected by the user's fingers or other skin parts, and convert the light signals into electronic signals to measure the user's physiological information. The above physiological information may be the user's heartbeat rate, heartbeat waveform, blood oxygen concentration, or a combination of the above information. The transceiver circuit 120 can provide the signal emitted by the sensing module 110 and analyze the converted electronic signal of the sensing module 110 to obtain physiological information of the user. The processor 130 can execute the operating system and application software of the portable electronic device 100 . The display 140 is a touch display capable of displaying the user interface of the portable electronic device 100 and receiving touch input from the user. The storage device 150 may be a memory or a hard disk. The storage device 150 can store the physiological information of the user, and can also store the operating system, application software, and data required for the operation of the portable electronic device 100 . The camera module 160 can take pictures and capture images and store the images in the storage device 150 after being processed by the processor 130 .
图2A是依照本发明的一实施例的携带式电子装置100的感测模块110的侧视示意图。感测模块110包括按键210、发射单元220、感应器230、以及接收单元240。按键210配置于携带式电子装置100的外壳,发射单元220、感应器230、以及接收单元240都配置于按键210的内侧。图2A的上方是按键210的外侧,也就是携带式电子装置100的外部方向;图2A的下方则是按键210的内侧,也就是携带式电子装置100的内部方向。感应器230耦接收发电路120和处理器130。发射单元220与接收单元240耦接收发电路120。FIG. 2A is a schematic side view of the sensing module 110 of the portable electronic device 100 according to an embodiment of the present invention. The sensing module 110 includes a button 210 , a transmitting unit 220 , a sensor 230 , and a receiving unit 240 . The key 210 is disposed on the casing of the portable electronic device 100 , and the transmitting unit 220 , the sensor 230 , and the receiving unit 240 are all disposed inside the key 210 . The top of FIG. 2A is the outside of the button 210 , that is, the external direction of the portable electronic device 100 ; the bottom of FIG. 2A is the inside of the button 210 , that is, the internal direction of the portable electronic device 100 . The sensor 230 is coupled to the transceiver circuit 120 and the processor 130 . The transmitting unit 220 and the receiving unit 240 are coupled to the transmitting and receiving circuit 120 .
当感应器230感应按键210受压时,会发出触发信号至收发电路120与处理器130。收发电路120在收到触发信号时控制发射单元220发出光信号,以执行上述的测量功能。此光信号可以是红外线信号、红光信号、或两者兼具。接收单元240可为上述的测量功能接收光信号。按键210具有一透光材质,以让红外线和红光通过。发射单元220是通过按键210发出光信号,亦即发射单元220所发出的光信号是通过按键210而发射至携带式电子装置100的外部。另外,接收单元240是通过按键210接收光信号,亦即携带式电子装置100外部的光信号也是通过按键210而进入携带式电子装置100的内部而被接收单元240所接收。发射单元220包括至少一个光发射器以发出光信号,接收单元240包括至少一个光接收器以接收光信号。光发射器可用红外线或红光的发光二极管(LED:light emitting diode)来实现,光接收器可用光电二极管(photodiode)来实现。When the sensor 230 senses that the button 210 is pressed, it will send a trigger signal to the transceiver circuit 120 and the processor 130 . When receiving the trigger signal, the transceiver circuit 120 controls the transmitting unit 220 to emit an optical signal, so as to perform the above-mentioned measurement function. The light signal can be an infrared signal, a red light signal, or both. The receiving unit 240 can receive optical signals for the above-mentioned measurement function. The button 210 has a light-transmitting material to allow infrared rays and red light to pass through. The emitting unit 220 emits a light signal through the button 210 , that is, the light signal emitted by the emitting unit 220 is emitted to the outside of the portable electronic device 100 through the button 210 . In addition, the receiving unit 240 receives the light signal through the button 210 , that is, the light signal outside the portable electronic device 100 also enters the inside of the portable electronic device 100 through the button 210 and is received by the receiving unit 240 . The transmitting unit 220 includes at least one optical transmitter to send out optical signals, and the receiving unit 240 includes at least one optical receiver to receive optical signals. The light transmitter can be realized by an infrared or red light emitting diode (LED: light emitting diode), and the light receiver can be realized by a photodiode.
图2B是图2A的感测模块110的俯视示意图。在此视角,发射单元220、感应器230、以及接收单元240都配置于按键210下方,而且按键210的面积足以覆盖发射单元220、感应器230、以及接收单元240。在本实施例中,按键210是携带式电子装置100的开机键。当用户按压按键210以启动或唤醒携带式电子装置100时,如果用户的手指停留在按键210之上,则携带式电子装置100可在此时可顺便测量用户的生理信息。FIG. 2B is a schematic top view of the sensing module 110 in FIG. 2A . From this perspective, the transmitting unit 220 , the sensor 230 , and the receiving unit 240 are all disposed under the key 210 , and the area of the key 210 is sufficient to cover the transmitting unit 220 , the sensor 230 , and the receiving unit 240 . In this embodiment, the key 210 is a power-on key of the portable electronic device 100 . When the user presses the button 210 to start or wake up the portable electronic device 100 , if the user's finger rests on the button 210 , the portable electronic device 100 can measure the user's physiological information by the way.
图2C是依照本发明的一实施例的感测模块110的侧视示意图。在此实施例中,发射单元220包括一个光发射器221,接收单元240包括一个光接收器241。光发射器221和光接收器241都配置于按键210的内侧并耦接收发电路120。此实施例的感测模块110可用于遥控其它电子装置。光发射器221可受收发电路120控制而通过按键210向按键210的外侧发出红外线信号,以遥控另一个电子装置,例如电视。光接收器241可通过按键210接收来自某一个电子装置的红外线信号,例如遥控器所发出的红外线信号,收发电路120可根据此红外线信号学习一遥控器的遥控信号。FIG. 2C is a schematic side view of the sensing module 110 according to an embodiment of the invention. In this embodiment, the transmitting unit 220 includes an optical transmitter 221 , and the receiving unit 240 includes an optical receiver 241 . Both the light transmitter 221 and the light receiver 241 are disposed inside the key 210 and coupled to the transceiver circuit 120 . The sensing module 110 of this embodiment can be used to remotely control other electronic devices. The light emitter 221 can be controlled by the transceiver circuit 120 to send an infrared signal to the outside of the button 210 through the button 210 to remotely control another electronic device, such as a TV. The optical receiver 241 can receive an infrared signal from an electronic device through the key 210 , such as an infrared signal sent by a remote controller, and the transceiver circuit 120 can learn a remote control signal of a remote controller according to the infrared signal.
在另一实施例中,图2C的感测模块110可用于测量用户的心跳速率或心跳波形。这些心跳测量可使用红外线或红光。所以光发射器221可受收发电路120控制而通过按键210发出红外线信号或红光信号,而光接收器241可通过按键210相应地接收由用户的手指反射的红外线信号或红光信号。In another embodiment, the sensing module 110 of FIG. 2C can be used to measure the user's heartbeat rate or heartbeat waveform. These heartbeat measurements can use infrared or red light. Therefore, the light emitter 221 can be controlled by the transceiver circuit 120 to send an infrared signal or a red light signal through the button 210 , and the light receiver 241 can correspondingly receive the infrared signal or red light signal reflected by the user's finger through the button 210 .
图2D是依照本发明的另一实施例的感测模块110的侧视示意图。在此实施例中,发射单元220包括两个光发射器222和223,接收单元240包括一个光接收器242。光发射器222、223和光接收器242都配置于按键210的内侧并耦接收发电路120。光发射器222可受收发电路120控制而通过按键210发出红外线信号,光发射器223可受收发电路120控制而通过按键210发出红光信号。光接收器242可通过按键210接收反射的红外线信号和红光信号。光接收器242也可通过按键210接收来自其它电子装置的红外线信号,例如来自遥控器的红外线信号。此实施例的感测模块110可用于遥控其它电子装置、测量用户的心跳速率与心跳波形、以及测量用户的血氧浓度。测量心跳速率与心跳波形可使用红外线或红光。如果要测量血氧浓度,则红外线和红光两者都需要使用。FIG. 2D is a schematic side view of the sensing module 110 according to another embodiment of the present invention. In this embodiment, the transmitting unit 220 includes two optical transmitters 222 and 223 , and the receiving unit 240 includes an optical receiver 242 . Both the light transmitters 222 , 223 and the light receiver 242 are disposed inside the key 210 and coupled to the transceiver circuit 120 . The light emitter 222 can be controlled by the transceiver circuit 120 to send an infrared signal through the button 210 , and the light emitter 223 can be controlled by the transceiver circuit 120 to send a red light signal through the button 210 . The light receiver 242 can receive reflected infrared signals and red light signals through the key 210 . The light receiver 242 can also receive infrared signals from other electronic devices, such as infrared signals from a remote control, through the key 210 . The sensing module 110 of this embodiment can be used to remotely control other electronic devices, measure the user's heartbeat rate and heartbeat waveform, and measure the user's blood oxygen concentration. Infrared or red light can be used to measure heart rate and heartbeat waveform. If blood oxygen concentration is to be measured, both infrared and red light need to be used.
图2E是依照本发明的另一实施例的感测模块110的侧视示意图。在此实施例中,发射单元220包括两个光发射器224和225,接收单元240包括两个光接收器243和244。光发射器224、225和光接收器243、244都配置于按键210的内侧并耦接收发电路120。光发射器224可受收发电路120控制而通过按键210发出红外线信号,光发射器225可受收发电路120控制而通过按键210发出红光信号。光接收器243可通过按键210接收反射的红外线信号。光接收器243也可通过按键210接收来自遥控器的红外线信号。光接收器244可通过按键210接收反射的红光信号。此实施例的感测模块110可用于遥控其它电子装置、测量用户的心跳速率与心跳波形、以及测量用户的血氧浓度。FIG. 2E is a schematic side view of the sensing module 110 according to another embodiment of the present invention. In this embodiment, the transmitting unit 220 includes two light transmitters 224 and 225 , and the receiving unit 240 includes two light receivers 243 and 244 . The light emitters 224 , 225 and the light receivers 243 , 244 are disposed inside the key 210 and coupled to the transceiver circuit 120 . The light emitter 224 can be controlled by the transceiver circuit 120 to send an infrared signal through the button 210 , and the light emitter 225 can be controlled by the transceiver circuit 120 to send a red light signal through the button 210 . The light receiver 243 can receive the reflected infrared signal through the button 210 . The light receiver 243 can also receive an infrared signal from the remote control through the button 210 . The light receiver 244 can receive the reflected red light signal through the button 210 . The sensing module 110 of this embodiment can be used to remotely control other electronic devices, measure the user's heartbeat rate and heartbeat waveform, and measure the user's blood oxygen concentration.
图3A是依照本发明的一实施例的携带式电子装置100的收发电路120的示意图。此实施例的收发电路120耦接至图2C的感测模块110,并包括控制器310、放大器322、滤波器332、放大器334、模拟数字转换器(ADC:analog-to-digital converter)336、以及储存单元338。放大器322耦接于光发射器221和控制器310之间。滤波器332、放大器334、模拟数字转换器336、以及储存单元338依序串联耦接于光接收器241和控制器310之间。控制器310也耦接感应器230和处理器130。FIG. 3A is a schematic diagram of the transceiver circuit 120 of the portable electronic device 100 according to an embodiment of the invention. The transceiver circuit 120 of this embodiment is coupled to the sensing module 110 of FIG. 2C, and includes a controller 310, an amplifier 322, a filter 332, an amplifier 334, an analog-to-digital converter (ADC:analog-to-digital converter) 336, and a storage unit 338 . The amplifier 322 is coupled between the light transmitter 221 and the controller 310 . The filter 332 , the amplifier 334 , the analog-to-digital converter 336 , and the storage unit 338 are sequentially coupled in series between the optical receiver 241 and the controller 310 . The controller 310 is also coupled to the sensor 230 and the processor 130 .
当用户按下按键210,控制器310会收到来自感应器230的触发信号,然后控制器310响应此触发信号而发出电子信号S1。放大器322放大电子信号S1并将其输出至光发射器221。光发射器221将放大后的电子信号S1转换为光信号,并通过按键210发出光信号。当光发射器221所发出的光信号遇到一物体,例如用户的手指或其它皮肤部位后,此光信号会反射回并通过按键210而被光接收器241接收。接着,光接收器241会将反射的光信号转换为另一个电子信号S2,并传送电子信号S2至滤波器332。滤波器332滤除电子信号S2中的噪声。放大器334放大电子信号S2。模拟数字转换器336将放大后的电子信号S2自一模拟信号转换为一数字信号。储存单元338将模拟数字转换器336输出的数字信号转换为二进位数值,并储存此对应于该数字信号的二进位数值,以供控制器310读取。控制器310收集并分析此二进位数值后,可根据此二进位数值获得用户的生理信息。When the user presses the button 210, the controller 310 will receive a trigger signal from the sensor 230, and then the controller 310 will send out an electronic signal S 1 in response to the trigger signal. The amplifier 322 amplifies the electronic signal S 1 and outputs it to the light transmitter 221 . The light transmitter 221 converts the amplified electronic signal S1 into a light signal, and sends out the light signal through the button 210 . When the light signal emitted by the light transmitter 221 encounters an object, such as a user's finger or other skin parts, the light signal will be reflected back and received by the light receiver 241 through the button 210 . Then, the light receiver 241 converts the reflected light signal into another electronic signal S 2 , and transmits the electronic signal S 2 to the filter 332 . The filter 332 filters out noise in the electronic signal S2. Amplifier 334 amplifies electronic signal S 2 . The analog-to - digital converter 336 converts the amplified electronic signal S2 from an analog signal to a digital signal. The storage unit 338 converts the digital signal output by the analog-to-digital converter 336 into a binary value, and stores the binary value corresponding to the digital signal for reading by the controller 310 . After the controller 310 collects and analyzes the binary value, the physiological information of the user can be obtained according to the binary value.
在此实施例中,控制器310可用电子信号S1控制光发射器221发射红外线信号或红光信号,并分析储存单元338其中的数值以获得用户的心跳速率和/或心跳波形。至于如何分析信号以获得心跳速率和心跳波形已经是公开的现有技术,不须在此赘述。In this embodiment, the controller 310 can use the electronic signal S1 to control the light transmitter 221 to emit an infrared signal or a red light signal, and analyze the value in the storage unit 338 to obtain the user's heartbeat rate and/or heartbeat waveform. As for how to analyze the signal to obtain the heartbeat rate and the heartbeat waveform, it is already an open prior art, so it is not necessary to go into details here.
图3B是依照本发明的另一实施例的收发电路120的示意图,此实施例的收发电路120耦接至图2E的感测模块110。图3B的收发电路120和图3A的收发电路120的差别在于多出两个切换开关312和314。当需要发射与接收红外线信号时,控制器310控制切换开关312连接放大器322与光发射器224,并控制切换开关314连接光接收器243与滤波器332。当需要发射与接收红光信号时,控制器310控制切换开关312连接放大器322与光发射器225,并控制切换开关314连接光接收器244与滤波器332。FIG. 3B is a schematic diagram of a transceiver circuit 120 according to another embodiment of the present invention. The transceiver circuit 120 of this embodiment is coupled to the sensing module 110 of FIG. 2E . The difference between the transceiver circuit 120 in FIG. 3B and the transceiver circuit 120 in FIG. 3A is that there are two more switches 312 and 314 . When transmitting and receiving infrared signals, the controller 310 controls the switch 312 to connect the amplifier 322 and the light transmitter 224 , and controls the switch 314 to connect the light receiver 243 and the filter 332 . When it is necessary to transmit and receive red light signals, the controller 310 controls the switch 312 to connect the amplifier 322 and the light transmitter 225 , and controls the switch 314 to connect the light receiver 244 to the filter 332 .
图3B的收发电路120就像图3A的收发电路120可用于测量用户的心跳速率和/或心跳波形。另外,图3B的收发电路120可用于测量用户的血氧浓度。控制器310可发出电子信号S1以控制光发射器224发射红外线信号,分析储存单元338其中的数值,再发出一次电子信号S1以控制光发射器225发射红光信号,再分析储存单元338其中的数值,以取得用户的血氧浓度。至于如何分析信号以取得血氧浓度已经是公开的现有技术,不须在此赘述。The transceiver circuit 120 of FIG. 3B can be used to measure the user's heartbeat rate and/or heartbeat waveform just like the transceiver circuit 120 of FIG. 3A . In addition, the transceiver circuit 120 in FIG. 3B can be used to measure the blood oxygen concentration of the user. The controller 310 can send an electronic signal S1 to control the light emitter 224 to emit an infrared signal, analyze the value in the storage unit 338, send an electronic signal S1 again to control the light emitter 225 to emit a red light signal, and then analyze the storage unit 338 The value in it is used to obtain the blood oxygen concentration of the user. As for how to analyze the signal to obtain the blood oxygen concentration, it is already a public prior art, so it is not necessary to repeat it here.
在另一实施例中,可简化图3B的收发电路120以耦接至图2D的感测模块110。在此实施例中,切换开关312可耦接放大器322和光发射器222与223。切换开关314可以省略。滤波器332可耦接光接收器242。In another embodiment, the transceiver circuit 120 in FIG. 3B can be simplified to be coupled to the sensing module 110 in FIG. 2D . In this embodiment, the switch 312 is coupled to the amplifier 322 and the light transmitters 222 and 223 . The toggle switch 314 can be omitted. The filter 332 can be coupled to the light receiver 242 .
图3C是依照本发明的另一实施例的收发电路120的示意图,此实施例的收发电路120耦接至图2C的感测模块110。图3C的收发电路120和图3A的收发电路120的差别在于多出两个切换开关312和314、调制器(modulator)342、放大器344、滤波器352、放大器354、以及解调器(demodulator)356。调制器342和放大器344依序串联耦接于控制器310与切换开关312之间。滤波器352、放大器354、以及解调器356依序串联耦接于切换开关314与控制器310之间。除了切换开关312和314以外,以上增加的元件是用于携带式电子装置100的遥控功能。FIG. 3C is a schematic diagram of a transceiver circuit 120 according to another embodiment of the present invention. The transceiver circuit 120 of this embodiment is coupled to the sensing module 110 of FIG. 2C . The difference between the transceiver circuit 120 of FIG. 3C and the transceiver circuit 120 of FIG. 3A is that there are two more switches 312 and 314, a modulator (modulator) 342, an amplifier 344, a filter 352, an amplifier 354, and a demodulator (demodulator) 356. The modulator 342 and the amplifier 344 are sequentially coupled in series between the controller 310 and the switch 312 . The filter 352 , the amplifier 354 , and the demodulator 356 are sequentially coupled in series between the switch 314 and the controller 310 . Except for the switches 312 and 314 , the above added elements are for the remote control function of the portable electronic device 100 .
图3C的收发电路120可用于遥控其它电子装置或测量用户的心跳速率和/或心跳波形。当需要遥控其它电子装置时,控制器310控制切换开关312连接放大器344与光发射器221,并控制切换开关314连接光接收器241与滤波器352。当需要测量用户的心跳速率和/或心跳波形时,控制器310控制切换开关312连接放大器322与光发射器221,并控制切换开关314连接光接收器241与滤波器332。The transceiver circuit 120 in FIG. 3C can be used to remotely control other electronic devices or measure the user's heartbeat rate and/or heartbeat waveform. When other electronic devices need to be controlled remotely, the controller 310 controls the switch 312 to connect the amplifier 344 to the light transmitter 221 , and controls the switch 314 to connect the light receiver 241 to the filter 352 . When the user's heartbeat rate and/or heartbeat waveform need to be measured, the controller 310 controls the switch 312 to connect the amplifier 322 and the optical transmitter 221 , and controls the switch 314 to connect the optical receiver 241 to the filter 332 .
在遥控其它电子装置时,控制器310发出遥控指令。调制器342根据遥控指令进行调制而产生电子信号S3。放大器344放大电子信号S3。光发射器221将放大后的电子信号S3转换为红外线信号,并通过按键210向按键210的外侧发出此红外线信号,以遥控另一个电子装置。When remote controlling other electronic devices, the controller 310 sends a remote control command. The modulator 342 performs modulation according to the remote control command to generate the electronic signal S 3 . Amplifier 344 amplifies electronic signal S 3 . The light emitter 221 converts the amplified electronic signal S3 into an infrared signal, and sends the infrared signal to the outside of the key 210 through the key 210 to remotely control another electronic device.
图3C的收发电路120可学习其它遥控器的遥控指令。光接收器241可通过按键210接收来自其它遥控器的红外线信号,并将此红外线信号转换为另一个电子信号S4。滤波器352滤除电子信号S4中的噪声。放大器354放大电子信号S4。解调器356解调放大后的电子信号S4以取得电子信号S4其中的遥控指令。控制器310可学习此遥控指令。The transceiver circuit 120 in FIG. 3C can learn remote control commands from other remote controls. The light receiver 241 can receive infrared signals from other remote controllers through the button 210, and convert the infrared signals into another electronic signal S 4 . The filter 352 filters out noise in the electronic signal S4. Amplifier 354 amplifies electronic signal S 4 . The demodulator 356 demodulates the amplified electronic signal S4 to obtain the remote control command contained in the electronic signal S4 . The controller 310 can learn the remote control command.
图3D是依照本发明的另一实施例的收发电路120的示意图,此实施例的收发电路120耦接至图2E的感测模块110。图3D的收发电路120和图3C的收发电路120的差别在于切换开关312和314耦接图2E的感测模块110。控制器310可控制切换开关312连接放大器344和光发射器224以为遥控功能发出红外线信号,或连接放大器322和光发射器224以为生理测量功能发出红外线信号,或连接放大器322和光发射器225以为生理测量功能发出红光信号。另外,控制器310可控制切换开关314连接光接收器243和滤波器352以为遥控功能接收红外线信号,或连接光接收器243和滤波器332以为生理测量功能接收红外线信号,或连接光接收器244和滤波器332以为生理测量功能接收红光信号。FIG. 3D is a schematic diagram of a transceiver circuit 120 according to another embodiment of the present invention. The transceiver circuit 120 of this embodiment is coupled to the sensing module 110 of FIG. 2E . The difference between the transceiver circuit 120 in FIG. 3D and the transceiver circuit 120 in FIG. 3C is that the switches 312 and 314 are coupled to the sensing module 110 in FIG. 2E . The controller 310 can control the switch 312 to connect the amplifier 344 and the light emitter 224 to send an infrared signal for the remote control function, or connect the amplifier 322 and the light emitter 224 to send an infrared signal for the physiological measurement function, or connect the amplifier 322 and the light emitter 225 for the physiological measurement function A red light signal is emitted. In addition, the controller 310 can control the switch 314 to connect the light receiver 243 and the filter 352 to receive the infrared signal for the remote control function, or connect the light receiver 243 and the filter 332 to receive the infrared signal for the physiological measurement function, or connect the light receiver 244 The sum filter 332 receives the red light signal for the physiological measurement function.
图3D的收发电路120能发出红外线信号和红光信号,并且能接收红外线信号和红光信号,所以能用于遥控另一个电子装置和测量用户的心跳速率、心跳波形与血氧浓度。The transceiver circuit 120 in FIG. 3D can send out infrared signals and red light signals, and can receive infrared signals and red light signals, so it can be used to remotely control another electronic device and measure the user's heartbeat rate, heartbeat waveform and blood oxygen concentration.
在另一实施例中,可简化图3D的收发电路120以耦接至图2D的感测模块110。在此实施例中,切换开关312可耦接放大器344、322和光发射器222与223。切换开关314可耦接光接收器242和滤波器352、332。In another embodiment, the transceiver circuit 120 in FIG. 3D can be simplified to be coupled to the sensing module 110 in FIG. 2D . In this embodiment, the switch 312 is coupled to the amplifiers 344 , 322 and the light emitters 222 and 223 . The switch 314 can couple the optical receiver 242 and the filters 352 , 332 .
图4是依照本发明的一实施例的一种生理测量方法的流程图,携带式电子装置100可执行此方法来测量用户的生理信息。当用户按下按键210,感应器230在步骤405感应到按键210受压,然后在步骤410发出触发信号以唤醒处理器130,并发出另一个触发信号以唤醒控制器310。在另一实施例中,感应器230可发出同一个触发信号至处理器130和控制器310。当处理器130收到触发信号,处理器130可根据该触发信号控制携带式电子装置100从一睡眠状态进入一操作状态。在此实施例中,携带式电子装置100的睡眠状态和操作状态的定义是显示器140是否有显示画面。当携带式电子装置100在睡眠状态时,显示器140被关闭。而在操作状态时,显示器140被启动,以显示一操作画面。FIG. 4 is a flow chart of a physiological measurement method according to an embodiment of the present invention. The portable electronic device 100 can execute the method to measure the user's physiological information. When the user presses the key 210 , the sensor 230 senses that the key 210 is pressed at step 405 , and then sends a trigger signal to wake up the processor 130 at step 410 , and sends another trigger signal to wake up the controller 310 . In another embodiment, the sensor 230 can send the same trigger signal to the processor 130 and the controller 310 . When the processor 130 receives the trigger signal, the processor 130 can control the portable electronic device 100 to enter an operating state from a sleep state according to the trigger signal. In this embodiment, the definition of the sleep state and the operation state of the portable electronic device 100 is whether the display 140 has a display image. When the portable electronic device 100 is in the sleep state, the display 140 is turned off. While in the operating state, the display 140 is activated to display an operation screen.
控制器310接收来自感应器230的触发信号,并在步骤415根据此触发信号而控制感测模块110的光发射器通过按键210向按键210的外侧发出一第一光信号,然后感测模块110的光接收器在步骤420通过按键210接收所发出的第一光信号遇到物体所反射回的一第二光信号。控制器310在步骤425检查光接收器是否收到反射的第二光信号。如果没收到,表示用户的手指在按压按键210之后立即放开,无法测量生理信息,所以控制器310在步骤440进入睡眠状态。The controller 310 receives the trigger signal from the sensor 230, and in step 415, according to the trigger signal, controls the light emitter of the sensing module 110 to send a first light signal to the outside of the key 210 through the key 210, and then the sensing module 110 In step 420, the light receiver receives a second light signal reflected by an object when the first light signal is sent through the key 210 . The controller 310 checks in step 425 whether the light receiver receives the reflected second light signal. If not received, it means that the user's finger is released immediately after pressing the key 210 , and the physiological information cannot be measured, so the controller 310 enters a sleep state in step 440 .
如果光接收器收到反射的光信号,则控制器310在步骤430检查储存单元338提供的数值是否已足够获得用户的生理信息。如果不够,则控制器310在步骤435检查目前进行的生理测量是否已经超时(timeout)。例如这个超时的时限可设定为0.5秒、1秒、2秒或3秒。如果尚未超时,则流程返回步骤415以收集更多数值供控制器310分析。如果已经超时,则控制器310在步骤440进入睡眠状态。If the light receiver receives the reflected light signal, the controller 310 checks in step 430 whether the value provided by the storage unit 338 is enough to obtain the physiological information of the user. If not, the controller 310 checks at step 435 whether the currently performed physiological measurement has timed out. For example, the time limit for this timeout can be set to 0.5 seconds, 1 second, 2 seconds or 3 seconds. If it has not timed out, flow returns to step 415 to collect more values for analysis by the controller 310 . If it has timed out, the controller 310 enters a sleep state at step 440 .
回到步骤430,如果检查结果是储存单元338提供的数值已足够获得用户的生理信息,则控制器310在步骤445分析上述数值以获得用户的生理信息。然后控制器310在步骤450检查是否需要通知处理器130来读取生理信息,因为可能在生理信息累积到预设数量后才需要通知处理器130来读取生理信息。如果不需要通知处理器130,则控制器310在步骤440进入睡眠状态。如果需要通知处理器130,则控制器310在步骤455向处理器130发出通知信号。处理器130根据此通知信号自控制器310取得用户的生理信息。处理器130可将生理信息储存于储存装置150,或控制显示器140以显示生理信息,或对生理信息做进一步处理。Returning to step 430, if the check result is that the value provided by the storage unit 338 is sufficient to obtain the physiological information of the user, then the controller 310 analyzes the above value in step 445 to obtain the physiological information of the user. Then the controller 310 checks at step 450 whether the processor 130 needs to be notified to read the physiological information, because the processor 130 may not be notified to read the physiological information until the physiological information has accumulated to a preset amount. If the processor 130 does not need to be notified, the controller 310 enters a sleep state at step 440 . If the processor 130 needs to be notified, the controller 310 sends a notification signal to the processor 130 at step 455 . The processor 130 obtains the physiological information of the user from the controller 310 according to the notification signal. The processor 130 can store the physiological information in the storage device 150, or control the display 140 to display the physiological information, or further process the physiological information.
图5是依照本发明的另一实施例的一种生理测量方法的流程图,携带式电子装置100可执行此方法以利用生理信息来验证用户的身份。例如心跳波形就像指纹可用来辨识身份。携带式电子装置100可在步骤510执行图4所示的方法,以取得某一个用户的生理信息。处理器130可在步骤520将此生理信息存入储存装置150。此生理信息可作为该用户的身份凭证。之后,当按键210被用户按压,携带式电子装置100可在步骤530再度执行图4所示的方法,以取得该用户的生理信息。在此实施例中,按键210是携带式电子装置100的开机键。FIG. 5 is a flow chart of a physiological measurement method according to another embodiment of the present invention. The portable electronic device 100 can implement the method to verify the user's identity by using physiological information. For example, heartbeat waveforms can be used to identify people like fingerprints. The portable electronic device 100 may execute the method shown in FIG. 4 at step 510 to obtain physiological information of a user. The processor 130 can store the physiological information in the storage device 150 at step 520 . This physiological information can be used as the identity certificate of the user. Afterwards, when the button 210 is pressed by the user, the portable electronic device 100 may execute the method shown in FIG. 4 again in step 530 to obtain the physiological information of the user. In this embodiment, the key 210 is a power-on key of the portable electronic device 100 .
接下来,处理器130可在步骤540比对步骤530的测量所得的生理信息与步骤520存入在储存装置150的生理信息,并在步骤550检查这两次测量所得的生理信息是否吻合。如果不吻合,表示步骤530的用户并非正确用户,流程至此结束。如果两次测量所得的生理信息吻合,表示步骤530的用户是正确用户,则处理器130可在步骤560执行对应的预设功能。Next, the processor 130 may compare the physiological information measured in step 530 with the physiological information stored in the storage device 150 in step 520 in step 540 , and check in step 550 whether the physiological information obtained in the two measurements are consistent. If not, it means that the user in step 530 is not the correct user, and the process ends here. If the physiological information obtained from the two measurements are consistent, it means that the user in step 530 is a correct user, and the processor 130 may execute a corresponding preset function in step 560 .
上述的预设功能可以是解除显示器140的锁定状态。如前所述,显示器140是触控显示器。在此实施例中,锁定状态是指显示器140会显示一锁定画面(Lock Screen),其需借助已知的各种滑动解锁或密码解锁方式才能解除此锁定状态而进入一可操作状态,由此显示各种应用程序图标与功能按键供用户触控操作。然而,通过上述图5的方法,携带式电子装置100可利用生理信息来验证用户的身份,由此直接解除显示器140的锁定状态,而省略了已知的滑动解锁或密码解锁等方式。或者,上述的预设功能可以进一步包括控制显示器140显示用户的生理信息。或者,上述的预设功能可以进一步包括控制显示器140显示生理信息的相关信息。例如处理器130可根据用户的心跳速率而控制显示器140显示应用软件的建议信息。例如当用户的心跳速率超过预设临界值时,处理器130可建议用户执行音乐播放软件或游戏软件以平复心情。上述的预设功能也可以是以上全部功能或部分功能的组合。The above preset function may be to release the lock state of the display 140 . As mentioned above, the display 140 is a touch display. In this embodiment, the locked state means that the display 140 will display a locked screen (Lock Screen), and it needs various known sliding unlocking or password unlocking methods to release the locked state and enter an operable state, thus Various application program icons and function keys are displayed for user touch operation. However, through the above-mentioned method of FIG. 5 , the portable electronic device 100 can use biological information to verify the user's identity, thereby directly releasing the lock state of the display 140 , and omitting the known sliding unlocking or password unlocking methods. Alternatively, the above preset function may further include controlling the display 140 to display the physiological information of the user. Alternatively, the above preset function may further include controlling the display 140 to display relevant information of physiological information. For example, the processor 130 can control the display 140 to display the suggestion information of the application software according to the heart rate of the user. For example, when the user's heart rate exceeds a preset threshold, the processor 130 may suggest the user to execute music player software or game software to calm down. The above preset functions may also be a combination of all or part of the above functions.
图6是依照本发明的一实施例的携带式电子装置100的显示器140的显示画面示意图。在此实施例中,按键210是携带式电子装置100的开机键。当用户用手指610按下按键210,而且通过图5的的步骤530、540、550完成身份验证后,处理器130执行的预设功能是控制显示器140显示图6所示的画面。在此实施例中,显示器140的显示画面包括时间620、用户的心跳速率630、用户的心跳波形640、以及用户的热量(卡路里)消耗信息650。时间620可以是目前时间或秒表计时的时间。处理器130可根据用户的心跳速率630来计算热量消耗以显示热量消耗信息650。热量消耗信息650可显示单位时间的热量消耗,或秒表计时期间的累计热量消耗。FIG. 6 is a schematic diagram of a display screen of the display 140 of the portable electronic device 100 according to an embodiment of the present invention. In this embodiment, the key 210 is a power-on key of the portable electronic device 100 . When the user presses the button 210 with the finger 610 and completes identity verification through steps 530 , 540 , and 550 in FIG. 5 , the preset function performed by the processor 130 is to control the display 140 to display the screen shown in FIG. 6 . In this embodiment, the display screen of the display 140 includes the time 620 , the user's heartbeat rate 630 , the user's heartbeat waveform 640 , and the user's calorie (calorie) consumption information 650 . Time 620 may be the current time or the time elapsed by a stopwatch. The processor 130 may calculate calorie consumption according to the user's heart rate 630 to display calorie consumption information 650 . The calorie consumption information 650 can display the calorie consumption per unit time, or the cumulative calorie consumption during the stopwatch timing.
在其它实施例中,图5的的步骤510、520、530、540、550亦可省略,用户可拿起携带式电子装置100并按下按键210后即可开始测量生理信息并看到图6的显示画面,非常迅速方便,不需要传统的为显示器解锁、以及执行应用软件等繁复操作。而且按键210可以是启动或唤醒携带式电子装置100的电源键,在携带式电子装置100的睡眠状态时,只要按一次按键210就能唤醒携带式电子装置100、使显示器140解锁、并顺便测量生理信息,无论观看生理信息或进行后续操作都很简便。In other embodiments, steps 510, 520, 530, 540, and 550 in FIG. 5 can also be omitted, and the user can pick up the portable electronic device 100 and press the button 210 to start measuring physiological information and see FIG. 6 The display screen is very fast and convenient, and does not require traditional complicated operations such as unlocking the display and executing application software. Moreover, the key 210 can be a power key for starting or waking up the portable electronic device 100. When the portable electronic device 100 is in a sleep state, pressing the key 210 once can wake up the portable electronic device 100, unlock the display 140, and measure Physiological information, whether viewing physiological information or performing follow-up operations is very simple.
图7是依照本发明的另一实施例的携带式电子装置100的显示器140的显示画面示意图。请同时参考图1与图7,在此实施例中,按键210是携带式电子装置100中相机模块160的快门键,用以摄取相片。当用户700在携带式电子装置100上启动一相机自拍功能且用手指610按下按键210以通过相机模块160来摄取一相片时,携带式电子装置100可执行图4所示的方法,以测量用户700的生理信息,例如心跳速率630与心跳波形640。接着,处理器130所测量到的生理信息可通过影像处理方式将其编辑并加入于所摄取的相片上,并将编辑完后的相片储存至储存装置150。FIG. 7 is a schematic diagram of a display screen of the display 140 of the portable electronic device 100 according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 7 at the same time. In this embodiment, the button 210 is a shutter button of the camera module 160 in the portable electronic device 100 for taking pictures. When the user 700 activates a camera Selfie function on the portable electronic device 100 and presses the button 210 with the finger 610 to capture a photo through the camera module 160, the portable electronic device 100 can execute the method shown in FIG. 4 to measure Physiological information of the user 700 , such as the heartbeat rate 630 and the heartbeat waveform 640 . Next, the physiological information measured by the processor 130 can be edited by image processing and added to the captured photo, and the edited photo can be stored in the storage device 150 .
综上所述,本发明可在用户按下携带式电子装置的功能按键(例如开机键或相机快门键)时顺便测量用户的生理信息,可省去传统的繁复操作,如此简便的方式可增加用户使用此测量功能的意愿。测量所得的生理信息可用来验证用户身份,并执行显示器解锁或显示生理信息等预设功能。这样的显示器解锁只需要用户按一次按键,不需要输入密码或进行特殊操作。本发明使用单一感测模块来执行遥控功能与测量功能,可降低硬件成本,占用更少空间。另外,本发明的遥控功能与测量功能是通过现有的开机键或相机快门键来发射与接收光信号,所以本发明不需要为遥控功能与测量功能在携带式电子装置的外壳配置开孔,可以简化外壳设计,使外壳更美观。To sum up, the present invention can measure the physiological information of the user by the way when the user presses the function button (such as the power button or the camera shutter button) of the portable electronic device, which can save the traditional complicated operation, and such a simple method can increase User willingness to use this measurement feature. The measured physiological information can be used to authenticate the user and perform preset functions such as unlocking the display or displaying physiological information. Unlocking such a display only requires the user to press a key once, without entering a password or performing special operations. The invention uses a single sensing module to perform remote control function and measurement function, which can reduce hardware cost and occupy less space. In addition, the remote control function and measurement function of the present invention transmit and receive light signals through the existing power button or camera shutter key, so the present invention does not need to configure openings in the shell of the portable electronic device for the remote control function and measurement function. The shell design can be simplified to make the shell more beautiful.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,本领域技术人员在不脱离本发明的精神和范围下,当可做些许的改动与润饰,故本发明的保护范围当以本发明的权利要求为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be The claims of the present invention shall prevail.
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461953942P | 2014-03-17 | 2014-03-17 | |
US61/953,942 | 2014-03-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104932672A true CN104932672A (en) | 2015-09-23 |
CN104932672B CN104932672B (en) | 2018-08-31 |
Family
ID=
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017148185A1 (en) * | 2016-03-02 | 2017-09-08 | 京东方科技集团股份有限公司 | Electronic device, electronic device system, information processing method, and information prompting method |
CN107970073A (en) * | 2016-10-25 | 2018-05-01 | 通用电气公司 | Passive wireless foot pedal for medical applications |
CN109427244A (en) * | 2017-08-30 | 2019-03-05 | 上海耕岩智能科技有限公司 | A kind of operating method and device of physiological health detection |
CN109745001A (en) * | 2017-11-02 | 2019-05-14 | 罗曦明 | Contactless sleep monitor method, apparatus, electronic equipment and storage medium |
WO2020035038A1 (en) * | 2018-08-16 | 2020-02-20 | 康泰医学系统(秦皇岛)股份有限公司 | Oximeter |
CN113934308A (en) * | 2020-07-14 | 2022-01-14 | 致伸科技股份有限公司 | Keyboard device with physiological parameter detection function |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101828908A (en) * | 2010-05-10 | 2010-09-15 | 上海理工大学 | Cuff-free portable device for monitoring human physiological parameters and method |
US20100274144A1 (en) * | 2009-04-28 | 2010-10-28 | Chung Yuan Christian University | Measurement circuit for heart rate variability |
CN102802509A (en) * | 2009-05-27 | 2012-11-28 | 美国亚德诺半导体公司 | Multiuse optical sensor |
WO2013001265A2 (en) * | 2011-06-30 | 2013-01-03 | Leman Micro Devices (Uk) Ltd | Personal health data collection |
CN103136919A (en) * | 2011-12-02 | 2013-06-05 | 原相科技股份有限公司 | Remote control and display system |
TW201338752A (en) * | 2012-02-22 | 2013-10-01 | Avolonte Health LLC | Obtaining physiological measurements using a portable device |
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100274144A1 (en) * | 2009-04-28 | 2010-10-28 | Chung Yuan Christian University | Measurement circuit for heart rate variability |
CN102802509A (en) * | 2009-05-27 | 2012-11-28 | 美国亚德诺半导体公司 | Multiuse optical sensor |
CN101828908A (en) * | 2010-05-10 | 2010-09-15 | 上海理工大学 | Cuff-free portable device for monitoring human physiological parameters and method |
WO2013001265A2 (en) * | 2011-06-30 | 2013-01-03 | Leman Micro Devices (Uk) Ltd | Personal health data collection |
CN103136919A (en) * | 2011-12-02 | 2013-06-05 | 原相科技股份有限公司 | Remote control and display system |
TW201338752A (en) * | 2012-02-22 | 2013-10-01 | Avolonte Health LLC | Obtaining physiological measurements using a portable device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017148185A1 (en) * | 2016-03-02 | 2017-09-08 | 京东方科技集团股份有限公司 | Electronic device, electronic device system, information processing method, and information prompting method |
CN107970073A (en) * | 2016-10-25 | 2018-05-01 | 通用电气公司 | Passive wireless foot pedal for medical applications |
CN109427244A (en) * | 2017-08-30 | 2019-03-05 | 上海耕岩智能科技有限公司 | A kind of operating method and device of physiological health detection |
CN109745001A (en) * | 2017-11-02 | 2019-05-14 | 罗曦明 | Contactless sleep monitor method, apparatus, electronic equipment and storage medium |
WO2020035038A1 (en) * | 2018-08-16 | 2020-02-20 | 康泰医学系统(秦皇岛)股份有限公司 | Oximeter |
CN110833422A (en) * | 2018-08-16 | 2020-02-25 | 康泰医学系统(秦皇岛)股份有限公司 | Blood oxygen instrument |
US11766199B2 (en) | 2018-08-16 | 2023-09-26 | Contec Medical Systems Co., Ltd. | Oximeter |
CN113934308A (en) * | 2020-07-14 | 2022-01-14 | 致伸科技股份有限公司 | Keyboard device with physiological parameter detection function |
Also Published As
Publication number | Publication date |
---|---|
TW201536250A (en) | 2015-10-01 |
TWI594726B (en) | 2017-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10441241B2 (en) | Remote exposure control device, digital radiography system and exposing method for the system | |
KR101836340B1 (en) | Method and device for realizing touch button and fingerprint identification, and terminal device | |
CN104618580B (en) | One kind is taken pictures implementation method and terminal | |
JP6196398B2 (en) | Apparatus, method, terminal device, program, and recording medium for realizing touch button and fingerprint authentication | |
RU2617325C2 (en) | Method and apparatus for the state of health data display | |
US20170039410A1 (en) | Fingerprint sensors | |
US20150257706A1 (en) | Portable electronic device and method for physiological measurement | |
CN104207760A (en) | Portable electronic device | |
JP6369816B2 (en) | Biometric authentication system using proximity sensor | |
KR20150100092A (en) | Apparatus and Method for sensing body imformation thereof | |
EP2999129B1 (en) | Method for gestures operating smart wearable device and smart wearable device | |
KR20180102331A (en) | Electronic device including camera module and method for controlling thereof | |
CN106095340B (en) | Measuring instrument data storage method and device | |
EP4377770A1 (en) | Multi-device gesture control | |
WO2017166066A1 (en) | Infrared remote control method, terminal and apparatus | |
US20170010669A1 (en) | Method for operating electronic apparatus and electronic apparatus supporting the method | |
WO2021013136A1 (en) | Apparatus control method, and electronic apparatus | |
TW201042577A (en) | Motion image data generator, system using motion image data, and methods thereof | |
WO2017148185A1 (en) | Electronic device, electronic device system, information processing method, and information prompting method | |
US11726589B2 (en) | Electronic device and feedback providing method | |
TW201510772A (en) | Gesture determination method and electronic device | |
WO2020073166A1 (en) | Fingerprint recognition method and apparatus, and terminal device | |
TWI594726B (en) | Portable electronic device and method for physiological measurement | |
CN104932672B (en) | Portable electronic device and physiological measurement method | |
CN210154176U (en) | Refrigerator with health detection function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180831 Termination date: 20191212 |