[go: up one dir, main page]

CN104923268A - Self-support transition metal selenide catalyst as well as preparation method and application thereof - Google Patents

Self-support transition metal selenide catalyst as well as preparation method and application thereof Download PDF

Info

Publication number
CN104923268A
CN104923268A CN201510309768.1A CN201510309768A CN104923268A CN 104923268 A CN104923268 A CN 104923268A CN 201510309768 A CN201510309768 A CN 201510309768A CN 104923268 A CN104923268 A CN 104923268A
Authority
CN
China
Prior art keywords
transition metal
self
foil
selenide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510309768.1A
Other languages
Chinese (zh)
Inventor
孙旭平
邢志财
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201510309768.1A priority Critical patent/CN104923268A/en
Publication of CN104923268A publication Critical patent/CN104923268A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)

Abstract

本发明提供一种自支撑过渡金属硒化物催化剂及其制备方法和应用,属于碱性全电解池水分解领域。解决现有催化剂催化活性低或受pH值局限的技术问题。该催化剂是将硒粉溶于硼氢化钠水溶液中,或加入过渡金属元素的金属盐,得到混合溶液;然后将过渡金属导电基底加入到得到的混合溶液中反应,得到自支撑过渡金属硒化物催化剂;或者是将过渡金属元素的金属盐、二氧化硒和氯化锂配制成过渡金属硒化物电解液;然后以过渡金属导电基底为工作电极,在得到的过渡金属硒化物电解液中进行电沉积,得到自支撑过渡金属硒化物催化剂。本发明的制备方法不受pH影响,所制备得到的硒化物催化剂应用在电池中,具有优异的电催化析氢析氧性能。

The invention provides a self-supporting transition metal selenide catalyst and a preparation method and application thereof, which belong to the field of water decomposition in an alkaline full electrolytic cell. It solves the technical problem that the catalytic activity of the existing catalyst is low or limited by the pH value. In the catalyst, selenium powder is dissolved in sodium borohydride aqueous solution, or a metal salt of a transition metal element is added to obtain a mixed solution; then a transition metal conductive substrate is added to the obtained mixed solution to react to obtain a self-supporting transition metal selenide catalyst ; or the metal salt of the transition metal element, selenium dioxide and lithium chloride are formulated into a transition metal selenide electrolyte; then the transition metal conductive substrate is used as a working electrode, and electrodeposition is carried out in the obtained transition metal selenide electrolyte , to obtain a self-supporting transition metal selenide catalyst. The preparation method of the invention is not affected by pH, and the prepared selenide catalyst is applied in a battery, and has excellent electrocatalytic hydrogen evolution and oxygen evolution performance.

Description

一种自支撑过渡金属硒化物催化剂及其制备方法和应用A kind of self-supporting transition metal selenide catalyst and its preparation method and application

技术领域technical field

本发明涉及碱性全电解池水分解领域,具体涉及一种自支撑过渡金属硒化物催化剂及其制备方法和应用。The invention relates to the field of water decomposition in an alkaline full electrolytic cell, in particular to a self-supporting transition metal selenide catalyst and its preparation method and application.

背景技术Background technique

进入21世纪,能源危机和环境污染成为全球面临的两个非常严峻的问题。因此,为了实现人类的可持续发展,开发清洁的可再生能源已迫在眉睫。氢是一种具有高燃烧值、高效率和清洁的能源。但是,目前氢能的生产还主要是依靠煤、天然气的重整来获得,这必然会加剧非可再生能源的消耗并且带来环境污染问题。电解水制氢是实现工业化、廉价制备氢气的重要手段。利用太阳能进行光解水或光助电解水,将是一种“阳光经济”的理想方案。要实现电能电解或光助电解水,制备具备析氢能力的高性能催化剂显得至关重要。但是由于析氢过电位(商业化电解器的主要电池电压为1.8-2.0伏,高于理论最小值1.23伏)的存在,使得电解过程中槽压大、能耗高。阴极析氢和阳极析氧反应均需要高效电催化剂来克服高水解电压进而使电解过程更加高效。目前,基于铱和钌的化合物展示了最高的析氧活性,而铂族金属则是最有效的析氢催化剂,但稀有性和高成本限制了其广泛应用。研究开发地壳丰富的高性能析氢、析氧催化剂材料具有十分重要意义,在过去几年内在基于非贵金属析氧(钴-磷酸盐(Science2008,321,1072),氧化物(Science 2013,340,60;Angew.Chem.Int.Ed.2015,54,3897;J.Am.Chem.Soc.2014,136,16481),氢氧化物(Angew.Chem.Int.Ed.2014,53,7584;J.Am.Chem.Soc.2014,136,2843)等)和析氢(硫族化合物(Angew.Chem.Int.Ed.2013,52,8546;Acc.Chem.Res.2014,47,2671),碳化物(EnergyEnviron.Sci.2014,7,387),磷化物(J.Am.Chem.Soc.2014,136,7587;Angew.Chem.Int.Ed.2014,53,6710)等)高效催化剂方面取得了很大的进展。In the 21st century, energy crisis and environmental pollution have become two very serious problems facing the world. Therefore, in order to realize the sustainable development of human beings, it is extremely urgent to develop clean and renewable energy. Hydrogen is a high combustion value, high efficiency and clean energy. However, the current production of hydrogen energy is mainly obtained by reforming coal and natural gas, which will inevitably increase the consumption of non-renewable energy and bring about environmental pollution problems. Hydrogen production by electrolysis of water is an important means to achieve industrialization and low-cost production of hydrogen. The use of solar energy for photolysis of water or light-assisted electrolysis of water will be an ideal solution for a "sunshine economy". To realize electrolysis of water by electric energy or light-assisted electrolysis of water, it is very important to prepare high-performance catalysts with hydrogen evolution ability. However, due to the existence of hydrogen evolution overpotential (the main battery voltage of a commercial electrolyzer is 1.8-2.0 volts, which is higher than the theoretical minimum value of 1.23 volts), the cell pressure and energy consumption are high during the electrolysis process. Both cathodic hydrogen evolution and anodic oxygen evolution reactions require efficient electrocatalysts to overcome the high hydrolysis voltage and make the electrolysis process more efficient. Currently, compounds based on iridium and ruthenium exhibit the highest oxygen evolution activity, while platinum group metals are the most effective hydrogen evolution catalysts, but their rarity and high cost limit their wide application. It is of great significance to research and develop high-performance catalyst materials for hydrogen evolution and oxygen evolution that are abundant in the earth's crust. ; Angew.Chem.Int.Ed.2015,54,3897; J.Am.Chem.Soc.2014,136,16481), hydroxide (Angew.Chem.Int.Ed.2014,53,7584; J.Am.Chem.Soc.2014,136,16481); Am.Chem.Soc.2014,136,2843) etc.) and hydrogen evolution (chalcogenides (Angew.Chem.Int.Ed.2013,52,8546; Acc.Chem.Res.2014,47,2671), carbide (EnergyEnviron.Sci.2014,7,387), phosphides (J.Am.Chem.Soc.2014,136,7587; Angew.Chem.Int.Ed.2014,53,6710), etc.) have made great achievements in high-efficiency catalysts Progress.

崔课题组首次采用硒化方法在碳纸上合成了硒化钼及硒化钨并将其作为廉价、高效和稳定的析氢催化剂(Nano Lett.2013,13,3426)。该课题组再次证明了自支撑硒化钴纳米颗粒在酸性条件下具备很好的析氢性能(J.Am.Chem.Soc.2014,136,4897)。目前为止,这些催化剂均受到合成步骤繁琐,失活或受pH值局限的制约。水分解需要在强酸或强碱下实现最小化的过电位(EnergyEnviron.Sci.2012,5,7582),但仍面临着酸性稳定的高效催化剂在碱性条件下可能没有活性或不稳定的挑战。因此开发设计在同一电解液中兼备高析氢析氧双功能特性的非贵金属催化剂电极备受关注。等最近报道了在商业化镍网上制备镍铁层状双氢氧化物,并将其作为析氢析氧双功能催化剂用于碱性水电解,其电流密度在1.7伏电压下可达10毫安/厘米2,而相应的氢氧化镍催化剂则需要1.82伏才能达到相同电流密度(Science 2014,345,1593)。但其催化性能仍有待进一步提升,开发高性能析氢析氧催化剂具有巨大的挑战。Cui's research group first synthesized molybdenum selenide and tungsten selenide on carbon paper by selenization method and used them as cheap, efficient and stable hydrogen evolution catalysts (Nano Lett. 2013, 13, 3426). The research group once again proved that self-supporting cobalt selenide nanoparticles have good hydrogen evolution performance under acidic conditions (J.Am.Chem.Soc.2014, 136, 4897). So far, these catalysts are limited by cumbersome synthesis steps, deactivation or limited pH value. Water splitting requires minimal overpotential under strong acid or base (Energy Environ. Sci. 2012, 5, 7582), but still faces the challenge that acid-stable and efficient catalysts may be inactive or unstable under alkaline conditions. Therefore, the development and design of non-noble metal catalyst electrodes with high hydrogen and oxygen evolution in the same electrolyte has attracted much attention. recently reported the preparation of nickel-iron layered double hydroxides on commercial nickel grids and used them as bifunctional hydrogen and oxygen evolution catalysts for alkaline water electrolysis, with current densities up to 10 mA/m at 1.7 volts. cm2 , while the corresponding nickel hydroxide catalyst requires 1.82 volts to achieve the same current density (Science 2014, 345, 1593). However, its catalytic performance still needs to be further improved, and the development of high-performance hydrogen evolution and oxygen evolution catalysts is a huge challenge.

发明内容Contents of the invention

本发明为解决现有催化剂催化活性低或受pH值局限的技术问题,而提供一种自支撑过渡金属硒化物催化剂及其制备方法和应用。The invention provides a self-supporting transition metal selenide catalyst and its preparation method and application in order to solve the technical problem that the catalytic activity of the existing catalyst is low or limited by the pH value.

本发明提供一种自支撑过渡金属硒化物催化剂的制备方法,该方法包括:The invention provides a preparation method of a self-supporting transition metal selenide catalyst, the method comprising:

步骤一:将硒粉溶于硼氢化钠水溶液中,或加入过渡金属元素的金属盐,得到混合溶液;Step 1: dissolving selenium powder in aqueous solution of sodium borohydride, or adding metal salts of transition metal elements to obtain a mixed solution;

步骤二:将过渡金属导电基底加入到步骤一得到的混合溶液中反应,得到自支撑过渡金属硒化物催化剂。Step 2: adding the transition metal conductive substrate to the mixed solution obtained in Step 1 for reaction to obtain a self-supporting transition metal selenide catalyst.

优选的是,所述的过渡金属元素的金属盐为铁、钴、镍、铜、钼或钨的硝酸盐、氯化物、醋酸盐、硫酸、草酸、柠檬酸、酒石酸、碳酸盐中的一种或多种。Preferably, the metal salt of the transition metal element is nitrate, chloride, acetate, sulfuric acid, oxalic acid, citric acid, tartaric acid, carbonate of iron, cobalt, nickel, copper, molybdenum or tungsten one or more.

优选的是,所述的过渡金属导电基底为镍网、镍箔、铜网、铜箔、不锈钢网、不锈钢箔、镍铁网、钴箔、钛片、钛网、钼箔或钨箔。Preferably, the transition metal conductive substrate is nickel mesh, nickel foil, copper mesh, copper foil, stainless steel mesh, stainless steel foil, nickel-iron mesh, cobalt foil, titanium sheet, titanium mesh, molybdenum foil or tungsten foil.

优选的是,所述的步骤二的反应温度为100~250℃,反应时间为0.5~48小时。Preferably, the reaction temperature in the second step is 100-250° C., and the reaction time is 0.5-48 hours.

本发明还提供一种自支撑过渡金属硒化物催化剂的制备方法,该方法包括:The present invention also provides a preparation method of a self-supporting transition metal selenide catalyst, the method comprising:

步骤一:将过渡金属元素的金属盐、二氧化硒和氯化锂配制成过渡金属硒化物电解液;Step 1: preparing a transition metal selenide electrolyte with metal salts of transition metal elements, selenium dioxide and lithium chloride;

步骤二:以过渡金属导电基底为工作电极,在步骤一得到的过渡金属硒化物电解液中进行电沉积,得到自支撑过渡金属硒化物催化剂。Step 2: using the transition metal conductive substrate as a working electrode, performing electrodeposition in the transition metal selenide electrolyte obtained in step 1 to obtain a self-supporting transition metal selenide catalyst.

优选的是,所述的过渡金属元素的金属盐为铁、钴、镍、铜、钼或钨的硝酸盐、氯化物、醋酸盐、硫酸、草酸、柠檬酸、酒石酸、碳酸盐中的一种或多种。Preferably, the metal salt of the transition metal element is nitrate, chloride, acetate, sulfuric acid, oxalic acid, citric acid, tartaric acid, carbonate of iron, cobalt, nickel, copper, molybdenum or tungsten one or more.

优选的是,所述的过渡金属导电基底为镍网、镍箔、铜网、铜箔、不锈钢网、不锈钢箔、镍铁网、钴箔、钛片、钛网、钼箔或钨箔。Preferably, the transition metal conductive substrate is nickel mesh, nickel foil, copper mesh, copper foil, stainless steel mesh, stainless steel foil, nickel-iron mesh, cobalt foil, titanium sheet, titanium mesh, molybdenum foil or tungsten foil.

优选的是,所述的沉积时间为0.1~4小时。Preferably, the deposition time is 0.1-4 hours.

本发明还提供上述两种制备方法得到的自支撑过渡金属硒化物催化剂。The present invention also provides the self-supporting transition metal selenide catalyst obtained by the above two preparation methods.

本发明还提供上述自支撑过渡金属硒化物催化剂在电解池方面的应用。The present invention also provides the application of the self-supporting transition metal selenide catalyst in an electrolytic cell.

本发明的有益效果Beneficial effects of the present invention

本发明提供一种自支撑过渡金属硒化物催化剂及其制备方法,该催化剂是将硒粉溶于硼氢化钠水溶液中,或加入过渡金属元素的金属盐,得到混合溶液;然后将过渡金属导电基底加入到步骤一得到的混合溶液中反应,得到自支撑过渡金属硒化物催化剂。或者是将过渡金属元素的金属盐、二氧化硒和氯化锂配制成过渡金属硒化物电解液;然后以过渡金属导电基底为工作电极,在步骤一得到的过渡金属硒化物电解液中进行电沉积,得到自支撑过渡金属硒化物催化剂。上述两种制备方法简单、生产成本低廉、不受pH影响,所制备得到的硒化物催化剂应用在电池中,具有优异的电催化析氢析氧性能。The invention provides a self-supporting transition metal selenide catalyst and a preparation method thereof. The catalyst comprises dissolving selenium powder in an aqueous solution of sodium borohydride, or adding a metal salt of a transition metal element to obtain a mixed solution; Adding to the mixed solution obtained in step 1 for reaction to obtain a self-supporting transition metal selenide catalyst. Or the metal salt of the transition metal element, selenium dioxide and lithium chloride are formulated into a transition metal selenide electrolyte; deposition to obtain a self-supporting transition metal selenide catalyst. The above two preparation methods are simple, low in production cost, and not affected by pH. The prepared selenide catalyst is applied in batteries and has excellent electrocatalytic hydrogen evolution and oxygen evolution performance.

附图说明Description of drawings

图1为实施例1得到的长有硒化镍纳米线阵列的镍网的X射线衍射图;Fig. 1 is the X-ray diffractogram of the nickel net that long has nickel selenide nanowire array that embodiment 1 obtains;

图2为实施例1得到的长有硒化镍纳米线阵列的镍网的扫描电镜照片图;Fig. 2 is the scanning electron micrograph figure of the nickel net that the long nickel selenide nanowire array that Fig. 2 obtains;

图3为实施例1得到的长有硒化镍纳米线阵列的镍网的透射电镜照片图;Fig. 3 is the transmission electron microscope photograph figure of the nickel net that the long nickel selenide nanowire array that Fig. 3 obtains;

图4为实施例1得到的长有硒化镍纳米线阵列的镍网在碱性条件下的极化曲线图;Fig. 4 is the polarization curve figure of the nickel mesh with the nickel selenide nanowire array obtained in embodiment 1 under alkaline conditions;

图5为实施例2得到的长有硒化镍纳米线阵列的镍钴箔的扫描电镜照片;Fig. 5 is the scanning electron micrograph of the nickel-cobalt foil that grows nickel selenide nanowire array that embodiment 2 obtains;

图6为实施例6制备得到的自支撑的过渡金属硒化物催化剂的扫描电镜照片图;Fig. 6 is the scanning electron micrograph figure of the self-supporting transition metal selenide catalyst that embodiment 6 prepares;

图7为实施例6制备得到的自支撑的过渡金属硒化物催化剂的极化曲线图。FIG. 7 is a polarization curve diagram of the self-supporting transition metal selenide catalyst prepared in Example 6. FIG.

具体实施方式Detailed ways

本发明提供一种自支撑过渡金属硒化物催化剂的制备方法,该方法包括:The invention provides a preparation method of a self-supporting transition metal selenide catalyst, the method comprising:

步骤一:将硒粉溶于硼氢化钠水溶液中,或加入过渡金属元素的金属盐,得到混合溶液;Step 1: dissolving selenium powder in aqueous solution of sodium borohydride, or adding metal salts of transition metal elements to obtain a mixed solution;

步骤二:将过渡金属导电基底加入到步骤一得到的混合溶液中反应,得到自支撑过渡金属硒化物催化剂。Step 2: adding the transition metal conductive substrate to the mixed solution obtained in Step 1 for reaction to obtain a self-supporting transition metal selenide catalyst.

按照本发明,先将硒粉溶解于硼氢化钠水溶液中,得到硒氢化钠溶液,优选是在磁力搅拌的条件下加入,所述的硒粉和硼氢化钠的质量比优选为(0.01~0.1):(0.02~0.1);或者加入过渡金属元素的金属盐,得到混合溶液;所述的硒粉与过渡金属元素的金属盐的摩尔比优选为1:0~1:2。所述的过渡金属元素的金属盐优选为铁、钴、镍、铜、钼或钨的硝酸盐、氯化物、醋酸盐、硫酸、草酸、柠檬酸、酒石酸、碳酸盐中的一种或多种,更优选为硝酸锌、硝酸钴、硝酸镍、氯化铜、氯化钴、硫酸钴或氯化镍。According to the present invention, the selenium powder is first dissolved in the sodium borohydride aqueous solution to obtain the sodium selenium hydride solution, preferably added under the condition of magnetic stirring, and the mass ratio of the described selenium powder and sodium borohydride is preferably (0.01~0.1 ): (0.02~0.1); or adding a metal salt of a transition metal element to obtain a mixed solution; the molar ratio of the selenium powder to the metal salt of a transition metal element is preferably 1:0˜1:2. The metal salt of the transition metal element is preferably one of nitrate, chloride, acetate, sulfuric acid, oxalic acid, citric acid, tartaric acid, carbonate of iron, cobalt, nickel, copper, molybdenum or tungsten Various, more preferably zinc nitrate, cobalt nitrate, nickel nitrate, copper chloride, cobalt chloride, cobalt sulfate or nickel chloride.

按照本发明,将过渡金属导电基底加入到上述混合溶液中反应,所述的过渡金属导电基底在加入前优选用稀盐酸、乙醇、去离子水清洗,所述的反应温度优选为100~250℃,反应时间优选为0.5~48小时,反应结束后将反应产物经洗涤、烘干得到自支撑过渡金属硒化物催化剂。所述的过渡金属导电基底优选为镍网、镍箔、铜网、铜箔、不锈钢网、不锈钢箔、镍铁网、钴箔、钛片、钛网、钼箔或钨箔。According to the present invention, the transition metal conductive substrate is added to the above mixed solution for reaction, the transition metal conductive substrate is preferably washed with dilute hydrochloric acid, ethanol, and deionized water before adding, and the reaction temperature is preferably 100-250°C , the reaction time is preferably 0.5-48 hours, after the reaction is completed, the reaction product is washed and dried to obtain a self-supporting transition metal selenide catalyst. The transition metal conductive substrate is preferably nickel mesh, nickel foil, copper mesh, copper foil, stainless steel mesh, stainless steel foil, nickel-iron mesh, cobalt foil, titanium sheet, titanium mesh, molybdenum foil or tungsten foil.

本发明还提供一种自支撑过渡金属硒化物催化剂的制备方法,该方法包括:The present invention also provides a preparation method of a self-supporting transition metal selenide catalyst, the method comprising:

步骤一:将过渡金属元素的金属盐、二氧化硒和氯化锂配制成过渡金属硒化物电解液;Step 1: preparing a transition metal selenide electrolyte with metal salts of transition metal elements, selenium dioxide and lithium chloride;

步骤二:以过渡金属导电基底为工作电极,在步骤一得到的过渡金属硒化物电解液中进行电沉积,得到自支撑过渡金属硒化物催化剂。Step 2: using the transition metal conductive substrate as a working electrode, performing electrodeposition in the transition metal selenide electrolyte obtained in step 1 to obtain a self-supporting transition metal selenide catalyst.

按照本发明,将过渡金属元素的金属盐、二氧化硒和氯化锂配制成过渡金属硒化物电解液,所述的过渡金属元素的金属盐和二氧化硒的摩尔比优选为(0.02~0.5):(0.04~1);氯化锂的浓度优选为0.05~0.5M。所述的过渡金属元素的金属盐优选为铁、钴、镍、铜、钼或钨的硝酸盐、氯化物、醋酸盐、硫酸、草酸、柠檬酸、酒石酸、碳酸盐中的一种或多种,更优选为硝酸锌、硝酸钴、硝酸镍、氯化铜、氯化钴、硫酸钴或氯化镍。According to the present invention, the metal salt of the transition metal element, selenium dioxide and lithium chloride are formulated into a transition metal selenide electrolyte, and the mol ratio of the metal salt of the transition metal element and selenium dioxide is preferably (0.02~0.5 ): (0.04~1); the concentration of lithium chloride is preferably 0.05~0.5M. The metal salt of the transition metal element is preferably one of nitrate, chloride, acetate, sulfuric acid, oxalic acid, citric acid, tartaric acid, carbonate of iron, cobalt, nickel, copper, molybdenum or tungsten Various, more preferably zinc nitrate, cobalt nitrate, nickel nitrate, copper chloride, cobalt chloride, cobalt sulfate or nickel chloride.

按照本发明,以过渡金属导电基底作为工作电极、石墨片为对极、饱和甘汞为参比电极利用电化学工作站(CHI660D)电沉积过渡金属硒化物,沉积时间优选为0.1~4小时,将沉积后的样品优选通过用蒸馏水和乙醇洗涤后即可得到自支撑的过渡金属硒化物催化剂。所述的过渡金属导电基底优选为镍网、镍箔、铜网、铜箔、不锈钢网、不锈钢箔、镍铁网、钴箔、钛片、钛网、钼箔或钨箔。According to the present invention, the transition metal selenide is electrodeposited using an electrochemical workstation (CHI660D) with the transition metal conductive substrate as the working electrode, the graphite sheet as the counter electrode, and saturated calomel as the reference electrode. The deposition time is preferably 0.1 to 4 hours. The deposited sample is preferably washed with distilled water and ethanol to obtain a self-supporting transition metal selenide catalyst. The transition metal conductive substrate is preferably nickel mesh, nickel foil, copper mesh, copper foil, stainless steel mesh, stainless steel foil, nickel-iron mesh, cobalt foil, titanium sheet, titanium mesh, molybdenum foil or tungsten foil.

本发明还提供上述任意两种方法制备得到的自支撑过渡金属硒化物催化剂。The present invention also provides a self-supporting transition metal selenide catalyst prepared by any two methods above.

本发明还提供上述自支撑过渡金属硒化物催化剂在电解池方面的应用,将上述自支撑过渡金属硒化物催化剂作为阴极、阳极或阴阳级组装成全电池,利用CHI660D型电化学工作站测试该电极在碱性电解液中的电催化析氢析氧性能。The present invention also provides the application of the above-mentioned self-supporting transition metal selenide catalyst in an electrolytic cell. The above-mentioned self-supporting transition metal selenide catalyst is used as a cathode, an anode or an anode-yang stage to assemble a full battery, and the electrode is tested by a CHI660D electrochemical workstation. Electrocatalytic hydrogen evolution and oxygen evolution performance in alkaline electrolyte.

下面结合实施例对本发明做进一步详细的说明。Below in conjunction with embodiment the present invention is described in further detail.

实施例1Example 1

称取0.059克硒粉用磁力搅拌溶解于1.5毫升含有0.065克硼氢化钠的蒸馏水中,制备得到硒氢化钠溶液,将该溶液移入到50毫升的反应斧内,并加入1×3厘米的清洗过的镍网,将该反应斧放入140℃烘箱反应12小时,将产物用蒸馏水和乙醇洗涤后放入60℃烘箱干燥后得到长有硒化镍纳米线阵列的镍网。Weigh 0.059 grams of selenium powder and dissolve it in 1.5 milliliters of distilled water containing 0.065 grams of sodium borohydride with magnetic stirring to prepare a sodium selenium hydride solution, transfer the solution to a 50 milliliter reaction axe, and add 1 × 3 cm of washing Put the reaction ax into a 140°C oven to react for 12 hours, wash the product with distilled water and ethanol and put it in a 60°C oven to dry to obtain a nickel mesh with nickel selenide nanowire arrays.

图1为实施例1得到的长有硒化镍纳米线阵列的镍网的X射线衍射图,该图表明最终产物为硒化镍。图2为实施例1得到的长有硒化镍纳米线阵列的镍网的扫描电镜照片,其中图a为50μm标尺下的扫描电镜照片,图b是500nm标尺下的扫描电镜照片,图2显示了实施例1得到的长有硒化镍纳米线阵列的镍网直径为20~60纳米,长度为2~5微米。图3为实施例1得到的长有硒化镍纳米线阵列的镍网的透射电镜照片,图3表明长有硒化镍纳米线阵列的镍网为表面光滑结构。图4为实施例1制得的长有硒化镍纳米线阵列的镍网在碱性条件(1摩尔氢氧化钾,pH=14)下的极化曲线图;该图说明实施例1得到的硒化镍纳米线阵列催化剂与Pt/C和单纯碳布电极相比具有更好的析氢性能,当j=10mA cm-2时硒化镍阵列电极相对于标准氢电极时的电位是1.63伏。Fig. 1 is the X-ray diffraction diagram of the nickel mesh with nickel selenide nanowire arrays obtained in Example 1, which shows that the final product is nickel selenide. Fig. 2 is the scanning electron micrograph of the nickel net that the long nickel selenide nanowire array that embodiment 1 obtains, wherein figure a is the scanning electron micrograph under the 50 μ m scale, and figure b is the scanning electron micrograph under the 500nm scale, and Fig. 2 shows The nickel mesh with nickel selenide nanowire arrays obtained in Example 1 has a diameter of 20-60 nanometers and a length of 2-5 microns. Fig. 3 is the transmission electron micrograph of the nickel mesh with the nickel selenide nanowire array obtained in Example 1, and Fig. 3 shows that the nickel mesh with the nickel selenide nanowire array has a smooth surface structure. Fig. 4 is the polarization curve figure that the long nickel selenide nanowire array that embodiment 1 makes is under alkaline conditions (1 mole of potassium hydroxide, pH=14); This figure illustrates that embodiment 1 obtains Compared with Pt/C and pure carbon cloth electrode, nickel selenide nanowire array catalyst has better hydrogen evolution performance. When j=10mA cm -2 , the potential of nickel selenide array electrode relative to standard hydrogen electrode is 1.63 volts.

实施例2Example 2

称取0.059克硒粉用磁力搅拌溶解于1.5毫升含有0.065克硼氢化钠的蒸馏水中,制备得到硒氢化钠溶液,将该溶液移入到50毫升的反应斧内,并加入1×3厘米的清洗过的镍箔,将该反应斧放入140℃烘箱反应12小时,将产物用蒸馏水和乙醇洗涤后放入60℃烘箱干燥后得到长有硒化镍纳米线阵列的镍箔。Weigh 0.059 grams of selenium powder and dissolve it in 1.5 milliliters of distilled water containing 0.065 grams of sodium borohydride with magnetic stirring to prepare a sodium selenium hydride solution, transfer the solution to a 50 milliliter reaction axe, and add 1 × 3 cm of washing Put the reaction ax into a 140°C oven to react for 12 hours, wash the product with distilled water and ethanol and put it into a 60°C oven to dry to obtain a nickel foil with nickel selenide nanowire arrays.

图5为实施例2得到的长有硒化镍纳米线阵列的镍箔的扫描电镜照片,其中图a为5μm标尺下的扫描电镜照片,图b是500nm标尺下的扫描电镜照片,图5显示了实施例2得到的长有硒化镍纳米线阵列的镍箔直径为20~80纳米,长度为1~6微米。将实施例2得到的硒化镍纳米线阵列催化剂进行析氢性能测试,当j=10mA cm-2时硒化镍阵列电极相对于标准氢电极时的电位是1.65伏。Fig. 5 is the scanning electron micrograph of the nickel foil that is long to have nickel selenide nanowire array that embodiment 2 obtains, and wherein figure a is the scanning electron micrograph under the 5 μ m scale, and figure b is the scanning electron micrograph under the 500nm scale, and Fig. 5 shows The nickel foil with nickel selenide nanowire arrays obtained in Example 2 has a diameter of 20-80 nanometers and a length of 1-6 microns. The nickel selenide nanowire array catalyst obtained in Example 2 was tested for hydrogen evolution performance. When j=10mA cm −2 , the potential of the nickel selenide array electrode relative to the standard hydrogen electrode was 1.65 volts.

实施例3Example 3

称取0.059克硒粉用磁力搅拌溶解于1.5毫升含有0.065克硼氢化钠的蒸馏水中,制备得到硒氢化钠溶液,将该溶液移入到50毫升的反应斧内,并加入1×3厘米的清洗过的钴箔,将该反应斧放入100℃烘箱反应48小时,将产物用蒸馏水和乙醇洗涤后放入60℃烘箱干燥后得到长有硒化钴纳米线阵列的钴箔。Weigh 0.059 grams of selenium powder and dissolve it in 1.5 milliliters of distilled water containing 0.065 grams of sodium borohydride with magnetic stirring to prepare a sodium selenium hydride solution, transfer the solution to a 50 milliliter reaction axe, and add 1 × 3 cm of washing The processed cobalt foil was placed in a 100°C oven for 48 hours to react, the product was washed with distilled water and ethanol, and then dried in a 60°C oven to obtain a cobalt foil with cobalt selenide nanowire arrays.

将实施例3得到的长有硒化钴纳米线阵列的钴箔催化剂进行析氢性能测试,当j=10mA cm-2时硒化钴阵列电极相对于标准氢电极时的电位是1.64伏。The cobalt foil catalyst with cobalt selenide nanowire array obtained in Example 3 was tested for hydrogen evolution performance. When j=10mA cm −2 , the potential of the cobalt selenide array electrode relative to the standard hydrogen electrode was 1.64 volts.

实施例4Example 4

称取0.059克硒粉用磁力搅拌溶解于1.5毫升含有0.065克硼氢化钠的蒸馏水中,制备得到硒氢化钠溶液,将该溶液移入到50毫升的反应斧内,并加入1×3厘米的清洗过的铜网,将该反应斧放入140℃烘箱反应12小时,将产物用蒸馏水和乙醇洗涤后放入60℃烘箱干燥后得到长有硒化铜纳米线阵列的铜网。Weigh 0.059 grams of selenium powder and dissolve it in 1.5 milliliters of distilled water containing 0.065 grams of sodium borohydride with magnetic stirring to prepare a sodium selenium hydride solution, transfer the solution to a 50 milliliter reaction axe, and add 1 × 3 cm of washing Put the reaction ax into a 140°C oven to react for 12 hours, wash the product with distilled water and ethanol and put it in a 60°C oven to dry to obtain a copper mesh with copper selenide nanowire arrays.

将实施例4得到的长有硒化铜纳米线阵列的铜网催化剂进行析氢性能测试,当j=10mA cm-2时硒化铜阵列电极相对于标准氢电极时的电位是1.67伏。The copper mesh catalyst with copper selenide nanowire arrays obtained in Example 4 was tested for hydrogen evolution performance. When j=10mA cm −2 , the potential of the copper selenide array electrode relative to the standard hydrogen electrode was 1.67 volts.

实施例5Example 5

称取0.059克硒粉用磁力搅拌溶解于1.5毫升含有0.065克硼氢化钠的蒸馏水中,制备得到硒氢化钠溶液,将该溶液移入到50毫升的反应斧内,并加入1×3厘米的清洗过的钼箔,将该反应斧放入250℃烘箱反应0.5小时,将产物用蒸馏水和乙醇洗涤后放入60℃烘箱干燥后得到长有硒化钼纳米线阵列的钼箔。Weigh 0.059 grams of selenium powder and dissolve it in 1.5 milliliters of distilled water containing 0.065 grams of sodium borohydride with magnetic stirring to prepare a sodium selenium hydride solution, transfer the solution to a 50 milliliter reaction axe, and add 1 × 3 cm of washing The processed molybdenum foil was placed in an oven at 250°C for 0.5 hours, and the product was washed with distilled water and ethanol and dried in an oven at 60°C to obtain a molybdenum foil with molybdenum selenide nanowire arrays.

将实施例5得到的长有硒化钼纳米线阵列的钼箔催化剂进行析氢性能测试,当j=10mA cm-2时硒化钼阵列电极相对于标准氢电极时的电位是1.68伏。The molybdenum foil catalyst with the molybdenum selenide nanowire array obtained in Example 5 was tested for hydrogen evolution performance. When j=10mA cm −2 , the potential of the molybdenum selenide array electrode relative to the standard hydrogen electrode was 1.68 volts.

实施例6Example 6

称取0.065摩氯化镍、0.035摩二氧化硒和0.2摩0.05M氯化锂配制电解液,然后将钛片作为工作电极、石墨片为对极、饱和甘汞为参比电极利用电化学工作站(CHI660D)在恒电位下电沉积过渡金属硒化物,沉积时间为2小时,将沉积后的样品通过用蒸馏水和乙醇洗涤后即可得到自支撑的过渡金属硒化物催化剂。Weigh 0.065 moles of nickel chloride, 0.035 moles of selenium dioxide and 0.2 moles of 0.05M lithium chloride to prepare an electrolyte, then use the titanium sheet as the working electrode, the graphite sheet as the counter electrode, and the saturated calomel as the reference electrode using an electrochemical workstation (CHI660D) The transition metal selenide was electrodeposited at a constant potential, and the deposition time was 2 hours. The deposited sample was washed with distilled water and ethanol to obtain a self-supporting transition metal selenide catalyst.

图6为实施例6制备得到的自支撑的过渡金属硒化物催化剂的扫描电镜照片图,其中图a为2μm标尺下的扫描电镜照片,图b是500nm标尺下的扫描电镜照片,该图显示了钛片被硒化镍纳米颗粒完全覆盖。图7为实施例6制备得到的自支撑的过渡金属硒化物催化剂在碱性条件下的(1摩尔氢氧化钾,pH=14)极化曲线图,该图说明实施例6得到的硒化镍纳米颗粒催化剂与Pt/C相比具有更好的析氢性能,当j=10mA cm-2时硒化镍阵列电极相对于标准氢电极时的电位是1.61伏。Fig. 6 is the scanning electron microscope picture of the self-supporting transition metal selenide catalyst that embodiment 6 prepares, and wherein figure a is the scanning electron microscope picture under the 2 μ m scale, and figure b is the scanning electron microscope picture under the 500nm scale, and this figure shows The titanium flakes are completely covered by nickel selenide nanoparticles. Fig. 7 is the (1 mole potassium hydroxide, pH=14) polarization curve figure of the self-supporting transition metal selenide catalyst that embodiment 6 prepares under alkaline conditions, and this figure illustrates the nickel selenide that embodiment 6 obtains Compared with Pt/C, nanoparticle catalyst has better hydrogen evolution performance. When j=10mA cm -2 , the potential of nickel selenide array electrode relative to standard hydrogen electrode is 1.61 volts.

实施例7Example 7

称取0.02摩硫酸钴、0.04摩二氧化硒和0.2摩0.05M氯化锂配制电解液,然后将钴箔作为工作电极、石墨片为对极、饱和甘汞为参比电极利用电化学工作站(CHI660D)在恒电位下电沉积过渡金属硒化物,沉积时间为4小时,将沉积后的样品通过用蒸馏水和乙醇洗涤后即可得到自支撑的过渡金属硒化物催化剂。Take by weighing 0.02 mol of cobalt sulfate, 0.04 mol of selenium dioxide and 0.2 mol of 0.05M lithium chloride to prepare electrolyte, then use cobalt foil as working electrode, graphite sheet as counter electrode, and saturated calomel as reference electrode using electrochemical workstation ( CHI660D) Electrodeposit transition metal selenide under constant potential, and the deposition time is 4 hours. After the deposited sample is washed with distilled water and ethanol, a self-supporting transition metal selenide catalyst can be obtained.

将实施例7得到的长有硒化钴纳米颗粒的铜网催化剂进行析氢性能测试,当j=10mA cm-2时硒化钴纳米颗粒相对于标准氢电极时的电位是1.64伏。The copper mesh catalyst with cobalt selenide nanoparticles obtained in Example 7 was tested for hydrogen evolution performance. When j=10mA cm −2 , the potential of the cobalt selenide nanoparticles relative to the standard hydrogen electrode was 1.64 volts.

实施例8Example 8

称取0.5摩醋酸铁、1摩二氧化硒和0.2摩0.5M氯化锂配制电解液,然后将钼箔作为工作电极、石墨片为对极、饱和甘汞为参比电极利用电化学工作站(CHI660D)在恒电位下电沉积过渡金属硒化物,沉积时间为0.5小时,将沉积后的样品通过用蒸馏水和乙醇洗涤后即可得到自支撑的过渡金属硒化物催化剂。Take by weighing 0.5 mol of iron acetate, 1 mol of selenium dioxide and 0.2 mol of 0.5M lithium chloride to prepare an electrolyte, then use molybdenum foil as a working electrode, graphite sheet as a counter electrode, and saturated calomel as a reference electrode using an electrochemical workstation ( CHI660D) Electrodeposit transition metal selenide under constant potential, the deposition time is 0.5 hours, and the deposited sample can be obtained by washing with distilled water and ethanol to obtain a self-supporting transition metal selenide catalyst.

将实施例8得到的长有硒化铁纳米线阵列的铜网催化剂进行析氢性能测试,当j=10mA cm-2时硒化铁阵列电极相对于标准氢电极时的电位是1.65伏。The copper mesh catalyst with iron selenide nanowire array obtained in Example 8 was tested for hydrogen evolution performance. When j=10mA cm −2 , the potential of the iron selenide array electrode relative to the standard hydrogen electrode was 1.65 volts.

Claims (9)

1.一种自支撑过渡金属硒化物催化剂的制备方法,其特征在于,该方法包括: 1. a preparation method of self-supporting transition metal selenide catalyst, is characterized in that, the method comprises: 步骤一:将硒粉溶于硼氢化钠水溶液中,或加入过渡金属元素的金属盐,得到混合溶液; Step 1: dissolving selenium powder in aqueous solution of sodium borohydride, or adding metal salts of transition metal elements to obtain a mixed solution; 步骤二:将过渡金属导电基底加入到步骤一得到的混合溶液中反应,得到自支撑过渡金属硒化物催化剂。 Step 2: adding the transition metal conductive substrate to the mixed solution obtained in Step 1 for reaction to obtain a self-supporting transition metal selenide catalyst. 2.根据权利要求1所述的一种自支撑过渡金属硒化物催化剂的制备方法,其特征在于,所述的过渡金属元素的金属盐为铁、钴、镍、铜、钼或钨的硝酸盐、氯化物、醋酸盐、硫酸、草酸、柠檬酸、酒石酸、碳酸盐中的一种或多种。 2. the preparation method of a kind of self-supporting transition metal selenide catalyst according to claim 1 is characterized in that, the metal salt of described transition metal element is the nitrate of iron, cobalt, nickel, copper, molybdenum or tungsten , chloride, acetate, sulfuric acid, oxalic acid, citric acid, tartaric acid, carbonate in one or more. 3.根据权利要求1所述的一种自支撑过渡金属硒化物催化剂的制备方法,其特征在于,所述的过渡金属导电基底为镍网、镍箔、铜网、铜箔、不锈钢网、不锈钢箔、镍铁网、钴箔、钛片、钛网、钼箔或钨箔。 3. the preparation method of a kind of self-supporting transition metal selenide catalyst according to claim 1 is characterized in that, described transition metal conductive substrate is nickel mesh, nickel foil, copper mesh, copper foil, stainless steel mesh, stainless steel foil, nickel iron mesh, cobalt foil, titanium sheet, titanium mesh, molybdenum foil or tungsten foil. 4.根据权利要求1所述的一种自支撑过渡金属硒化物催化剂的制备方法,其特征在于,所述的步骤二的反应温度为100~250℃,反应时间为0.5~48小时。 4 . The preparation method of a self-supporting transition metal selenide catalyst according to claim 1 , characterized in that, the reaction temperature in the second step is 100-250° C., and the reaction time is 0.5-48 hours. 5.一种自支撑过渡金属硒化物催化剂的制备方法,其特征在于,该方法包括: 5. a preparation method of self-supporting transition metal selenide catalyst, it is characterized in that, the method comprises: 步骤一:将过渡金属元素的金属盐、二氧化硒和氯化锂配制成过渡金属硒化物电解液; Step 1: preparing a transition metal selenide electrolyte with metal salts of transition metal elements, selenium dioxide and lithium chloride; 步骤二:以过渡金属导电基底为工作电极,在步骤一得到的过渡金属硒化物电解液中进行电沉积,得到自支撑过渡金属硒化物催化剂。 Step 2: using the transition metal conductive substrate as a working electrode, performing electrodeposition in the transition metal selenide electrolyte obtained in step 1 to obtain a self-supporting transition metal selenide catalyst. 6.根据权利要求5所述的一种自支撑过渡金属硒化物催化剂的制备方法,其特征在于,所述的过渡金属导电基底为镍网、镍箔、铜网、铜箔、不锈钢网、不锈钢箔、镍铁网、钴箔、钛片、钛网、钼箔或钨箔。 6. the preparation method of a kind of self-supporting transition metal selenide catalyst according to claim 5 is characterized in that, described transition metal conductive substrate is nickel mesh, nickel foil, copper mesh, copper foil, stainless steel mesh, stainless steel foil, nickel iron mesh, cobalt foil, titanium sheet, titanium mesh, molybdenum foil or tungsten foil. 7.根据权利要求5所述的一种自支撑过渡金属硒化物催化剂的制备方法,其特征在于,所述的沉积时间为0.1~4小时。 7. The preparation method of a self-supporting transition metal selenide catalyst according to claim 5, characterized in that, the deposition time is 0.1-4 hours. 8.权利要求1或5所述的制备方法得到的自支撑过渡金属硒化物催化剂。 8. The self-supporting transition metal selenide catalyst obtained by the preparation method described in claim 1 or 5. 9.权利要求8所述的自支撑过渡金属硒化物催化剂在电解池方面的应用。 9. the application of self-supporting transition metal selenide catalyst described in claim 8 aspect electrolytic cell.
CN201510309768.1A 2015-06-08 2015-06-08 Self-support transition metal selenide catalyst as well as preparation method and application thereof Pending CN104923268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510309768.1A CN104923268A (en) 2015-06-08 2015-06-08 Self-support transition metal selenide catalyst as well as preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510309768.1A CN104923268A (en) 2015-06-08 2015-06-08 Self-support transition metal selenide catalyst as well as preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN104923268A true CN104923268A (en) 2015-09-23

Family

ID=54110881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510309768.1A Pending CN104923268A (en) 2015-06-08 2015-06-08 Self-support transition metal selenide catalyst as well as preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN104923268A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177621A (en) * 2015-10-23 2015-12-23 吉林大学 Molybdenum-oxygen cluster modified hollow microspherical nickel disulfide catalyst and application thereof
CN105280387A (en) * 2015-11-21 2016-01-27 河南师范大学 A sulfur and selenium compound composite array preparation method
CN105428647A (en) * 2015-11-14 2016-03-23 华中科技大学 Cobalt diselenide/carbon nanomaterial, preparation method therefor and application thereof
CN106268876A (en) * 2016-11-07 2017-01-04 济南大学 The preparation of selenizing stainless steel foam electrolysis water catalysis material and application
CN106498430A (en) * 2016-11-03 2017-03-15 成都玖奇新材料科技有限公司 Low energy consumption electrochemistry hydrogen generating system based on dual-functional nanometer array electrode
CN106868563A (en) * 2015-12-11 2017-06-20 中国海洋大学 A kind of preparation method and application of selenide thin film modified nickel foam electrode
CN106917105A (en) * 2017-01-13 2017-07-04 太原理工大学 A kind of water decomposition preparation method of self-supporting transient metal sulfide foam electrode
CN107199040A (en) * 2017-07-06 2017-09-26 中国科学院福建物质结构研究所 Molybdate nano-array and its preparation method and application
CN108043428A (en) * 2017-12-19 2018-05-18 华中科技大学 A kind of ferro-cobalt selenides, its preparation method and application
CN108630438A (en) * 2017-03-24 2018-10-09 丰田自动车株式会社 Cobaltous selenide/titanium net decomposes water oxygen electrode and preparation method thereof
CN108636428A (en) * 2018-03-13 2018-10-12 北京化工大学 A kind of preparation method of metal telluride as two-functional electrolytic catalyst
CN108796553A (en) * 2018-06-29 2018-11-13 台州学院 A kind of tetragonal phase CoSe and preparation method for catalytic hydrogen evolution
CN109811365A (en) * 2019-01-25 2019-05-28 同济大学 A NiFe-based nanosheet array grown on carbon cloth and its preparation and application
CN110079846A (en) * 2019-05-17 2019-08-02 陕西科技大学 Nickelous selenide with different-shape/nickel base electrode material electro-deposition preparation method
EP3458191A4 (en) * 2016-05-17 2020-01-15 The University Of Houston System Three-dimensional porous nise2 foam-based hybrid catalysts for ultra-efficient hydrogen evolution reaction in water splitting
CN111790406A (en) * 2020-07-20 2020-10-20 济南大学 Preparation method of gold-copper selenide-cobalt-nickel layered double hydroxide composite paper
CN112121827A (en) * 2020-09-21 2020-12-25 哈尔滨理工大学 A kind of high-efficiency electrocatalytic ammonia synthesis FeSe2/MoSe2 nanosheet and its preparation method and application
CN112725826A (en) * 2020-12-18 2021-04-30 安徽师范大学 One-dimensional Ni-doped copper selenium/molybdenum selenium compound nano array @ foam copper material, and preparation method and application thereof
CN112877680A (en) * 2021-01-11 2021-06-01 延安大学 Composite electrode material and preparation method and application thereof
CN113151854A (en) * 2021-03-19 2021-07-23 西安建筑科技大学 Multi-metal non-oxide electrocatalyst and preparation method and application thereof
CN113215613A (en) * 2021-03-18 2021-08-06 武汉工程大学 Selenium mixture array and preparation method and application thereof
CN113279010A (en) * 2021-05-20 2021-08-20 江苏科技大学 Fe-Se hydrogen evolution electrode with high catalytic activity and preparation method thereof
CN113363429A (en) * 2020-03-04 2021-09-07 松山湖材料实验室 Flexible hybrid zinc battery with ultra-long cycle life and preparation method thereof
CN113363079A (en) * 2020-03-04 2021-09-07 华东理工大学 Hollow Cu7Se4-CuxCo1-xSe2Nanosphere composite material and preparation method and application thereof
CN113758562A (en) * 2021-09-08 2021-12-07 哈尔滨工业大学 A wide spectrum detector based on copper selenide nanotube or copper selenide/bismuth sulfide nanotube composite material and preparation method thereof
CN113846349A (en) * 2021-09-28 2021-12-28 安徽师范大学 Co-doped molybdenum selenide nanosheet/Mo foil composite material, preparation method and application thereof
CN114351181A (en) * 2021-12-23 2022-04-15 台州学院 A kind of fibrous bundle-shaped nickel-iron-sulfur-selenium compound and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIWEI MI ET AL.,: ""One-pot synthesis and the electrochemical properties of nano-structured nickel selenide materials with hierarchical structure"", 《CRYSTENGCOMM》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177621A (en) * 2015-10-23 2015-12-23 吉林大学 Molybdenum-oxygen cluster modified hollow microspherical nickel disulfide catalyst and application thereof
CN105428647B (en) * 2015-11-14 2017-08-11 华中科技大学 A kind of two cobaltous selenides/carbon nanomaterial and preparation method and application
CN105428647A (en) * 2015-11-14 2016-03-23 华中科技大学 Cobalt diselenide/carbon nanomaterial, preparation method therefor and application thereof
CN105280387A (en) * 2015-11-21 2016-01-27 河南师范大学 A sulfur and selenium compound composite array preparation method
CN105280387B (en) * 2015-11-21 2018-05-08 河南师范大学 A kind of preparation method of sulphur selenium compound composite array
CN106868563B (en) * 2015-12-11 2019-01-25 中国海洋大学 Preparation method and application of selenide film modified foam nickel electrode
CN106868563A (en) * 2015-12-11 2017-06-20 中国海洋大学 A kind of preparation method and application of selenide thin film modified nickel foam electrode
EP3458191A4 (en) * 2016-05-17 2020-01-15 The University Of Houston System Three-dimensional porous nise2 foam-based hybrid catalysts for ultra-efficient hydrogen evolution reaction in water splitting
US11162179B2 (en) 2016-05-17 2021-11-02 University Of Houston System Three-dimensional porous NiSe2 foam-based hybrid catalysts for ultra-efficient hydrogen evolution reaction in water splitting
CN106498430A (en) * 2016-11-03 2017-03-15 成都玖奇新材料科技有限公司 Low energy consumption electrochemistry hydrogen generating system based on dual-functional nanometer array electrode
CN106268876A (en) * 2016-11-07 2017-01-04 济南大学 The preparation of selenizing stainless steel foam electrolysis water catalysis material and application
CN106917105A (en) * 2017-01-13 2017-07-04 太原理工大学 A kind of water decomposition preparation method of self-supporting transient metal sulfide foam electrode
CN106917105B (en) * 2017-01-13 2019-05-31 太原理工大学 A kind of preparation method of water decomposition self-supporting transient metal sulfide foam electrode
CN108630438A (en) * 2017-03-24 2018-10-09 丰田自动车株式会社 Cobaltous selenide/titanium net decomposes water oxygen electrode and preparation method thereof
CN107199040B (en) * 2017-07-06 2020-07-31 中国科学院福建物质结构研究所 Molybdate nanoarray, preparation method and application thereof
CN107199040A (en) * 2017-07-06 2017-09-26 中国科学院福建物质结构研究所 Molybdate nano-array and its preparation method and application
CN108043428A (en) * 2017-12-19 2018-05-18 华中科技大学 A kind of ferro-cobalt selenides, its preparation method and application
CN108636428A (en) * 2018-03-13 2018-10-12 北京化工大学 A kind of preparation method of metal telluride as two-functional electrolytic catalyst
CN108796553A (en) * 2018-06-29 2018-11-13 台州学院 A kind of tetragonal phase CoSe and preparation method for catalytic hydrogen evolution
CN109811365A (en) * 2019-01-25 2019-05-28 同济大学 A NiFe-based nanosheet array grown on carbon cloth and its preparation and application
CN110079846A (en) * 2019-05-17 2019-08-02 陕西科技大学 Nickelous selenide with different-shape/nickel base electrode material electro-deposition preparation method
CN113363429A (en) * 2020-03-04 2021-09-07 松山湖材料实验室 Flexible hybrid zinc battery with ultra-long cycle life and preparation method thereof
CN113363079A (en) * 2020-03-04 2021-09-07 华东理工大学 Hollow Cu7Se4-CuxCo1-xSe2Nanosphere composite material and preparation method and application thereof
CN111790406A (en) * 2020-07-20 2020-10-20 济南大学 Preparation method of gold-copper selenide-cobalt-nickel layered double hydroxide composite paper
CN112121827A (en) * 2020-09-21 2020-12-25 哈尔滨理工大学 A kind of high-efficiency electrocatalytic ammonia synthesis FeSe2/MoSe2 nanosheet and its preparation method and application
CN112121827B (en) * 2020-09-21 2023-09-19 哈尔滨理工大学 An efficient electrocatalytic synthesis of ammonia FeSe2/MoSe2 nanosheets and its preparation method and application
CN112725826A (en) * 2020-12-18 2021-04-30 安徽师范大学 One-dimensional Ni-doped copper selenium/molybdenum selenium compound nano array @ foam copper material, and preparation method and application thereof
CN112877680A (en) * 2021-01-11 2021-06-01 延安大学 Composite electrode material and preparation method and application thereof
CN113215613A (en) * 2021-03-18 2021-08-06 武汉工程大学 Selenium mixture array and preparation method and application thereof
CN113151854A (en) * 2021-03-19 2021-07-23 西安建筑科技大学 Multi-metal non-oxide electrocatalyst and preparation method and application thereof
CN113151854B (en) * 2021-03-19 2024-01-30 西安建筑科技大学 Multi-metal non-oxide electrocatalyst and preparation method and application thereof
CN113279010B (en) * 2021-05-20 2022-07-08 江苏科技大学 Fe-Se hydrogen evolution electrode with high catalytic activity and preparation method thereof
CN113279010A (en) * 2021-05-20 2021-08-20 江苏科技大学 Fe-Se hydrogen evolution electrode with high catalytic activity and preparation method thereof
CN113758562A (en) * 2021-09-08 2021-12-07 哈尔滨工业大学 A wide spectrum detector based on copper selenide nanotube or copper selenide/bismuth sulfide nanotube composite material and preparation method thereof
CN113758562B (en) * 2021-09-08 2023-08-08 哈尔滨工业大学 A wide-spectrum detector based on copper selenide nanotube or copper selenide/bismuth sulfide nanotube composite material and its preparation method
CN113846349A (en) * 2021-09-28 2021-12-28 安徽师范大学 Co-doped molybdenum selenide nanosheet/Mo foil composite material, preparation method and application thereof
CN113846349B (en) * 2021-09-28 2023-02-21 安徽师范大学 Co-doped molybdenum selenide nanosheet/Mo foil composite material, preparation method and application thereof
CN114351181A (en) * 2021-12-23 2022-04-15 台州学院 A kind of fibrous bundle-shaped nickel-iron-sulfur-selenium compound and preparation method thereof

Similar Documents

Publication Publication Date Title
CN104923268A (en) Self-support transition metal selenide catalyst as well as preparation method and application thereof
CN107587158B (en) A nanoporous high-entropy alloy electrode and its preparation method and application
CN105013512A (en) Self-supporting transitional metal sulfide catalyst and preparation methods and applications thereof
CN105107535A (en) Self-supporting transition metal-phosphorus alloy catalyst, and preparation method and application thereof
Yang et al. Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting
CN110205636B (en) Preparation method of self-supporting three-dimensional porous structure bifunctional catalytic electrode
CN109954503B (en) Nickel selenide and ternary nickel-iron selenide composite electrocatalyst, preparation method and application
CN110106517A (en) Cobalt sulfide/layered double hydroxide composite electrocatalyst and preparation method thereof
CN111871421A (en) Nickel-iron-molybdenum hydrotalcite nanowire bifunctional electrocatalyst and preparation method thereof
Feng et al. Controllable synthesis of flower-like Mn-Co-P nanosheets as bifunctional electrocatalysts for overall water splitting
CN106967997B (en) A kind of high-efficiency self-supporting catalytic electrode and its preparation method and application
CN105148920A (en) Self-supporting transition metal-metal alloy catalyst as well as preparation method and application of self-supporting transition metal-metal alloy catalyst
CN108554426B (en) Difunctional cobalt diselenide material and preparation and application thereof
Du et al. Surface modification of a Co9S8 nanorods with Ni (OH) 2 on nickel foam for high water splitting performance
CN106544694A (en) Metallic composite, its preparation method and application, hydrogen manufacturing electrolytic cell
Han et al. Synergistic effect of Cu doping and NiPx/NiSey heterostructure construction for boosted water electrolysis
CN110433810A (en) Preparation method of copper oxide doped nickel-iron hydrotalcite nanosheet/graphene bifunctional water decomposition catalyst
Yang et al. A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting
CN110721749B (en) NiCo coated with metal organic framework structure derived carbon composite2S4Nanowire array-shaped electrocatalyst and preparation method thereof
CN108977849A (en) A kind of MXene/Ni3S2Electrode and preparation method thereof and the application in hydrogen is prepared in electro-catalysis
CN110354870B (en) Preparation method and application of high-performance silver-doped cobalt sulfide oxygen evolution catalyst
CN108823602A (en) A kind of vulcanization ruthenium particulate composite, preparation method and the usage
CN109321959B (en) Electrochemical Preparation Method of Nano-Ag Embedded Electrode Material
CN118028890A (en) Metal-doped self-supporting cobalt oxide nano-array catalyst and preparation method and application thereof
CN116219484A (en) A high-efficiency bimetallic nitride/hydroxide heterostructure electrocatalyst, preparation method and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150923