CN104922702A - Superparamagnetic nano-particle and preparation method and application thereof - Google Patents
Superparamagnetic nano-particle and preparation method and application thereof Download PDFInfo
- Publication number
- CN104922702A CN104922702A CN201510257346.4A CN201510257346A CN104922702A CN 104922702 A CN104922702 A CN 104922702A CN 201510257346 A CN201510257346 A CN 201510257346A CN 104922702 A CN104922702 A CN 104922702A
- Authority
- CN
- China
- Prior art keywords
- superparamagnetic
- solution
- citric acid
- water
- ferric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 70
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 239000000243 solution Substances 0.000 claims abstract description 101
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000002872 contrast media Substances 0.000 claims abstract description 47
- -1 citric acid compound Chemical class 0.000 claims abstract description 41
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000007864 aqueous solution Substances 0.000 claims abstract description 25
- 239000006185 dispersion Substances 0.000 claims abstract description 22
- 239000003513 alkali Substances 0.000 claims abstract description 16
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 14
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 239000003607 modifier Substances 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 238000005406 washing Methods 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 238000003756 stirring Methods 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 239000001509 sodium citrate Substances 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 150000001860 citric acid derivatives Chemical class 0.000 claims description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 4
- 239000002526 disodium citrate Substances 0.000 claims description 3
- 235000019262 disodium citrate Nutrition 0.000 claims description 3
- CEYULKASIQJZGP-UHFFFAOYSA-L disodium;2-(carboxymethyl)-2-hydroxybutanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O CEYULKASIQJZGP-UHFFFAOYSA-L 0.000 claims description 3
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 claims description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 3
- 235000011083 sodium citrates Nutrition 0.000 claims description 3
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 claims description 3
- 229940038773 trisodium citrate Drugs 0.000 claims description 3
- 235000019263 trisodium citrate Nutrition 0.000 claims description 3
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical class O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 229960002089 ferrous chloride Drugs 0.000 claims description 2
- 239000011790 ferrous sulphate Substances 0.000 claims description 2
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 2
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 claims description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 25
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 22
- 208000010125 myocardial infarction Diseases 0.000 abstract description 16
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 abstract description 12
- 238000000975 co-precipitation Methods 0.000 abstract description 9
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 abstract description 9
- 238000010899 nucleation Methods 0.000 abstract description 5
- 230000006911 nucleation Effects 0.000 abstract description 5
- 230000004048 modification Effects 0.000 abstract description 4
- 238000012986 modification Methods 0.000 abstract description 4
- 230000003902 lesion Effects 0.000 abstract description 3
- 238000001727 in vivo Methods 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 48
- 229910052757 nitrogen Inorganic materials 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000003384 imaging method Methods 0.000 description 9
- 238000002595 magnetic resonance imaging Methods 0.000 description 9
- 239000012153 distilled water Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 7
- 230000005291 magnetic effect Effects 0.000 description 7
- 238000010907 mechanical stirring Methods 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 6
- 238000001493 electron microscopy Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000002504 physiological saline solution Substances 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229940031182 nanoparticles iron oxide Drugs 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 239000002616 MRI contrast agent Substances 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 150000002506 iron compounds Chemical class 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 206010011086 Coronary artery occlusion Diseases 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical group [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明提供了一种超顺磁性纳米颗粒及其制备方法和应用,本发明将二价铁和三价铁化合物与碱溶液反应,而后以水溶性柠檬酸化合物为修饰剂,以共沉淀方法得到表面包覆有水溶性柠檬酸化合物的四氧化三铁超顺磁性纳米颗粒。本发明方法使得四氧化三铁粒子的成核和生长阶段有效分开,得到了颗粒尺寸小且均一,分散性良好的超顺磁性纳米颗粒;并且利用水溶性柠檬酸化合物对四氧化三铁纳米粒子进行表面修饰,提高了超顺磁性纳米颗粒在体内的稳定性和生物相容性。本发明通过将所述的超顺磁性纳米颗粒分散于水溶液中形成稳定的分散体系,得到一种超顺磁性造影剂,所述造影剂可在心肌梗死的病变组织进行核磁共振成像。The invention provides a superparamagnetic nanoparticle and its preparation method and application. In the invention, ferrous and ferric iron compounds are reacted with an alkali solution, and then water-soluble citric acid compound is used as a modifier to obtain the superparamagnetic nanoparticle by coprecipitation Iron ferric oxide superparamagnetic nanoparticles coated with water-soluble citric acid compound on the surface. The method of the present invention makes the nucleation and growth stages of ferric oxide particles effectively separated, and obtains superparamagnetic nanoparticles with small and uniform particle size and good dispersion; and utilizes water-soluble citric acid compound to treat ferric oxide nanoparticles Surface modification improves the stability and biocompatibility of superparamagnetic nanoparticles in vivo. The present invention forms a stable dispersion system by dispersing the superparamagnetic nanoparticles in an aqueous solution to obtain a superparamagnetic contrast agent, and the contrast agent can perform nuclear magnetic resonance imaging on lesion tissues of myocardial infarction.
Description
技术领域technical field
本发明属于纳米医学领域,涉及一种超顺磁性纳米颗粒及其制备方法和应用,还涉及由所述超顺磁性纳米颗粒制备得到的超顺磁性造影剂及其制备方法和应用。The invention belongs to the field of nanomedicine, and relates to a superparamagnetic nanoparticle, a preparation method and application thereof, and a superparamagnetic contrast agent prepared from the superparamagnetic nanoparticle, and a preparation method and application thereof.
背景技术Background technique
磁共振成像(Magnetic Resonance Imaging,MRI)是一种通过磁场与射频脉冲使人体组织内进动的氢核发生进动产生射频信号,经计算机处理而绘制成物体内部的结构图像的一种技术。相对于其他成像手段,MRI具有以下三点优势:一、对软组织有极好的分辨力;二、各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息;三、对人体没有电离辐射损伤。在逐步的研究过程中人们发现某些不同组织的弛豫时间相互重叠严重限制了MRI的成像能力,因此人们开始认识到使用磁共振成像造影剂来提高MRI诊断的敏感性和特异性。MRI造影剂通过改变局部组织中水质子的弛豫速率,提高正常与患病部位的成像对比度从而显示体内器官的功能与状态。Magnetic resonance imaging (Magnetic Resonance Imaging, MRI) is a technology that uses a magnetic field and radio frequency pulses to precess the precessing hydrogen nuclei in human tissue to generate radio frequency signals, which are processed by a computer to draw a structural image inside the object. Compared with other imaging methods, MRI has the following three advantages: 1. It has excellent resolution for soft tissues; 2. Various parameters can be used for imaging, and multiple imaging parameters can provide rich diagnostic information; 3. For the human body No ionizing radiation damage. In the gradual research process, it was found that the overlapping relaxation times of some different tissues severely limited the imaging capability of MRI, so people began to realize that the use of MRI contrast agents can improve the sensitivity and specificity of MRI diagnosis. MRI contrast agents change the relaxation rate of water protons in local tissues and improve the imaging contrast between normal and diseased parts to display the function and status of internal organs.
MRI造影剂主要有顺磁性造影剂和超顺磁性造影剂两大类。目前常用的顺磁性造影剂是二乙二胺醋酸钆(Gd-DTPA),但这种造影剂体内分布无特异性,入血后迅速进入细胞间隙,要在成像时间内保持足够的浓度,需注射较大剂量,而且只能改变组织的T1信号,用途较为有限。超顺磁性造影剂主要由四氧化三铁(Fe3O4)纳米颗粒构成,超顺磁性氧化铁的磁矩远远大于顺磁性物质,弛豫性能高,可通过尺寸选择或特异性表面分子修饰实现对特定组织的靶向,并有独特的跨膜机理,可实现细胞内分子靶向。超顺磁性氧化铁的血液半衰期、体内分布状态与其粒子的大小和表面状态有直接的关系。粒径较小的造影剂具有较长的血液循环时间,能够经血液循环至病变部位,产生病变部位成像信号差异。MRI contrast agents mainly include paramagnetic contrast agents and superparamagnetic contrast agents. At present, the commonly used paramagnetic contrast agent is gadolinium diethylenediamine acetate (Gd-DTPA), but the distribution of this contrast agent in the body is non-specific, and it quickly enters the intercellular space after entering the blood. To maintain a sufficient concentration during the imaging time, it is necessary to Injecting larger doses can only change the T1 signal of the tissue, so its use is relatively limited. The superparamagnetic contrast agent is mainly composed of iron ferric oxide (Fe 3 O 4 ) nanoparticles. The magnetic moment of superparamagnetic iron oxide is much larger than that of paramagnetic substances, and the relaxation performance is high. It can be selected by size selection or specific surface molecules. The modification achieves targeting to specific tissues, and has a unique transmembrane mechanism that enables intracellular molecular targeting. The blood half-life and in vivo distribution of superparamagnetic iron oxide are directly related to the size and surface state of its particles. The contrast agent with a smaller particle size has a longer blood circulation time, and can go through the blood circulation to the lesion, resulting in a difference in the imaging signal of the lesion.
超顺磁性氧化铁的合成按照反应条件可分为水相和非水相合成两大类。水相合成方法主要包括共沉淀和水热合成两种方法。其中共沉淀法简便易行,商品化产品大都是由共沉淀所获得。共沉淀合成纳米粒子尺寸均一性好,在溶液中的分散性优良。水热反应利用高温高压反应使得氧化铁晶体通过熟化而保持良好的磁响应能力。非水相合成大都使用了非极性的高沸点溶剂,利用前驱体分解反应获得了氧化铁纳米粒子,在高温反应中金属离子的溶解重结晶过程保证纳米晶的结晶性,相比于低温反应大大提高氧化铁的磁性能。同时由于高温热分解反应合成的纳米粒子在尺寸控制和均一性均非常出色。然而非水相体系中合成的氧化铁表面修饰物为长链脂肪族化合物,使得纳米粒子的必须经过化学修饰油溶性氧化铁转入水相方可用于生物学应用。According to the reaction conditions, the synthesis of superparamagnetic iron oxide can be divided into two categories: aqueous phase and non-aqueous phase synthesis. The aqueous phase synthesis methods mainly include co-precipitation and hydrothermal synthesis. Among them, the co-precipitation method is simple and easy to implement, and most of the commercial products are obtained by co-precipitation. Co-precipitation synthesized nanoparticles have good size uniformity and excellent dispersion in solution. Hydrothermal reaction uses high temperature and high pressure reaction to make iron oxide crystals maintain good magnetic response ability through aging. Non-aqueous phase synthesis mostly uses non-polar high-boiling point solvents, and iron oxide nanoparticles are obtained by precursor decomposition reaction. The dissolution and recrystallization process of metal ions in high-temperature reactions ensures the crystallinity of nanocrystals. Compared with low-temperature reactions Greatly improve the magnetic properties of iron oxide. At the same time, the nanoparticles synthesized due to the high-temperature pyrolysis reaction are excellent in size control and uniformity. However, the iron oxide surface modifiers synthesized in the non-aqueous phase system are long-chain aliphatic compounds, so that the nanoparticles must be chemically modified and the oil-soluble iron oxide can be transferred to the water phase before they can be used in biological applications.
目前应用柠檬酸来修饰磁性氧化铁来制备超顺磁性氧化铁能够改善超顺磁性氧化铁的水溶性,便于生物学应用,目前普遍应用共沉淀法来制备,所述共沉淀法是采用将二价铁和三价铁化合物水溶液与柠檬酸水溶液混合,加热反应,而后加入强碱溶液进行反应得到四氧化三铁超顺磁性纳米颗粒,该方法无法将粒子的成核阶段和生长阶段分开,导致产物粒子单分散性较差。At present, using citric acid to modify magnetic iron oxide to prepare superparamagnetic iron oxide can improve the water solubility of superparamagnetic iron oxide, which is convenient for biological application. At present, it is generally prepared by co-precipitation method. The co-precipitation method is to use two The aqueous solution of valent iron and ferric compound is mixed with the aqueous solution of citric acid, heated for reaction, and then added with a strong alkali solution for reaction to obtain superparamagnetic nanoparticles of iron ferric oxide. This method cannot separate the nucleation stage and the growth stage of the particles, resulting in The product particles have poor monodispersity.
因此,在本领域需要开发一种在水相体系中合成的可直接用于生物学应用并且具有较小的粒径以及良好的分散性的超顺磁性纳米颗粒。Therefore, there is a need in the art to develop a superparamagnetic nanoparticle synthesized in an aqueous system that can be directly used in biological applications and has a smaller particle size and good dispersibility.
发明内容Contents of the invention
针对现有技术的不足,本发明的目的之一在于提供一种超顺磁性纳米颗粒及其制备方法和应用。本发明的目的之二,在于提供一种超顺磁性造影剂及其制备方法和应用。In view of the deficiencies in the prior art, one of the purposes of the present invention is to provide a superparamagnetic nanoparticle and its preparation method and application. The second object of the present invention is to provide a superparamagnetic contrast agent and its preparation method and application.
为达到此发明目的,本发明采用以下技术方案:To achieve this purpose of the invention, the present invention adopts the following technical solutions:
一方面,本发明提供一种超顺磁性纳米颗粒的制备方法,所述制备方法为:将二价铁和三价铁化合物与碱溶液反应,而后以水溶性柠檬酸化合物为修饰剂,以共沉淀方法得到表面包覆有水溶性柠檬酸化合物的四氧化三铁超顺磁性纳米颗粒。On the one hand, the present invention provides a preparation method of superparamagnetic nanoparticles, the preparation method is: react ferrous iron and ferric iron compound with alkali solution, then use water-soluble citric acid compound as modifier, and co- The precipitation method obtains the ferric iron tetroxide superparamagnetic nanoparticles whose surface is coated with the water-soluble citric acid compound.
现有技术中采用共沉淀法制备四氧化三铁超顺磁性纳米颗粒,是采用将二价铁和三价铁化合物水溶液与柠檬酸水溶液混合,加热反应,而后加入强碱溶液进行反应得到四氧化三铁超顺磁性纳米颗粒,在此过程中反应很快发生,无法将粒子的成核阶段和生长阶段分开,导致产物粒子单分散性较差。本发明采用先将二价铁和三价铁化合物与碱溶液反应成核,而后与水溶性柠檬酸化合物作用,并使粒子晶核生长,有效地将成核阶段和生长阶段分开,从而使得粒子具有较小的粒径,以及良好的分散性。并且本发明所述的超顺磁性纳米颗粒的制备方法,是在水相中完成的,具有良好的水溶性,可直接用于生物学应用。In the prior art, the co-precipitation method is used to prepare superparamagnetic nanoparticles of iron ferric oxide, which is to mix the aqueous solution of ferrous iron and ferric compound with the aqueous solution of citric acid, heat the reaction, and then add a strong alkali solution to react to obtain For triferroic superparamagnetic nanoparticles, the reaction occurs very quickly in this process, and the nucleation stage and the growth stage of the particles cannot be separated, resulting in poor monodispersity of the product particles. The present invention adopts the reaction of divalent iron and ferric iron compound with alkali solution to nucleate first, and then reacts with water-soluble citric acid compound to make the particle crystal nucleus grow, effectively separating the nucleation stage and the growth stage, so that the particle has Small particle size, and good dispersion. Moreover, the preparation method of the superparamagnetic nanoparticles described in the present invention is completed in the water phase, has good water solubility, and can be directly used in biological applications.
作为优选技术方案,本发明所述的超顺磁性纳米颗粒的制备方法包括如下步骤:As a preferred technical solution, the preparation method of superparamagnetic nanoparticles of the present invention comprises the following steps:
(1)将二价铁和三价铁化合物溶解于水中,形成溶液a;(1) Dissolving ferrous iron and ferric iron compounds in water to form a solution a;
(2)向溶液a中加入碱溶液,搅拌下于55~65℃进行反应,得到溶液b;(2) Add alkali solution to solution a, and react at 55-65°C under stirring to obtain solution b;
(3)向溶液b中加入柠檬酸化合物的水溶液,搅拌下于80~95℃进行反应,得到溶液c;(3) adding an aqueous solution of a citric acid compound to solution b, and reacting at 80-95° C. under stirring to obtain solution c;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,得到所述超顺磁性纳米颗粒。(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet to obtain the superparamagnetic nanoparticles.
在本发明提供的技术方案的基础上,所述二价铁化合物为氯化亚铁、硝酸亚铁或硫酸亚铁中的任意一种或至少两种的混合物。On the basis of the technical solution provided by the present invention, the ferrous compound is any one or a mixture of at least two of ferrous chloride, ferrous nitrate or ferrous sulfate.
优选地,在本发明提供的技术方案的基础上,所述三价铁化合物为氯化铁、硝酸铁、草酸铁或醋酸铁中的任意一种或至少两种的混合物。Preferably, on the basis of the technical solution provided by the present invention, the ferric compound is any one or a mixture of at least two of ferric chloride, ferric nitrate, ferric oxalate or ferric acetate.
在本发明提供的技术方案的基础上,所述碱溶液为氨水、氢氧化钠或氢氧化钾中的任意一种或至少两种的混合溶液。On the basis of the technical solution provided by the present invention, the alkaline solution is any one or a mixed solution of at least two of ammonia water, sodium hydroxide or potassium hydroxide.
在本发明提供的技术方案的基础上,所述水溶性柠檬酸化合物为柠檬酸或水溶性柠檬酸盐。On the basis of the technical solution provided by the present invention, the water-soluble citric acid compound is citric acid or water-soluble citrate.
优选地,在本发明提供的技术方案的基础上,所述水溶性柠檬酸化合物还包括水溶性柠檬酸衍生物和/或柠檬酸衍生物的水溶性盐。Preferably, on the basis of the technical solution provided by the present invention, the water-soluble citric acid compound also includes water-soluble citric acid derivatives and/or water-soluble salts of citric acid derivatives.
优选地,在本发明提供的技术方案的基础上,所述水溶性柠檬酸盐为柠檬酸钠、柠檬酸二钠、柠檬酸三钠中的任意一种或至少两种的混合物。Preferably, on the basis of the technical solution provided by the present invention, the water-soluble citrate is any one of sodium citrate, disodium citrate, and trisodium citrate or a mixture of at least two of them.
在本发明提供的技术方案的基础上,步骤(1)所述溶液a中二价铁和三价铁化合物的浓度均为10~50mg/mL,例如12mg/mL、15mg/mL、18mg/mL、24mg/mL、28mg/mL、32mg/mL、36mg/mL、40mg/mL、44mg/mL或48mg/mL。On the basis of the technical solution provided by the present invention, the concentrations of ferrous iron and ferric iron compounds in solution a in step (1) are all 10-50 mg/mL, such as 12 mg/mL, 15 mg/mL, 18 mg/mL , 24mg/mL, 28mg/mL, 32mg/mL, 36mg/mL, 40mg/mL, 44mg/mL or 48mg/mL.
优选地,在本发明提供的技术方案的基础上,步骤(1)所述二价铁化合物与三价铁化合物中铁元素的摩尔比为(1~1.2):2,例如1:2、1.1:2或1.2:2。Preferably, on the basis of the technical scheme provided by the present invention, the molar ratio of the iron element in the ferrous compound to the ferric compound in step (1) is (1-1.2):2, such as 1:2, 1.1: 2 or 1.2:2.
优选地,在本发明提供的技术方案的基础上,步骤(2)所述碱溶液中氢氧根与步骤(1)中所述二价铁化合物中铁元素的摩尔比≥8:1,例如可以为8:1、8.2:1、8.5:1、9:1或10:1等。Preferably, on the basis of the technical scheme provided by the present invention, the molar ratio of hydroxide in the alkali solution described in step (2) to the iron element in the ferrous iron compound described in step (1) is ≥ 8:1, for example, 8:1, 8.2:1, 8.5:1, 9:1 or 10:1 etc.
优选地,在本发明提供的技术方案的基础上,步骤(2)所述碱溶液pH为13~14。Preferably, on the basis of the technical solution provided by the present invention, the pH of the alkaline solution in step (2) is 13-14.
在本发明提供的技术方案的基础上,步骤(2)所述反应温度为55~65℃,例如55℃、56℃、57℃、58℃、59℃、60℃、61℃、62℃、63℃、64℃或65℃。On the basis of the technical solution provided by the present invention, the reaction temperature in step (2) is 55-65°C, such as 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C or 65°C.
优选地,在本发明提供的技术方案的基础上,步骤(2)所述碱溶液的加入方式为滴加,滴加速度为20~50滴/分钟,例如20滴/分钟、30滴/分钟、40滴/分钟或50滴/分钟。Preferably, on the basis of the technical solution provided by the present invention, the adding method of the alkali solution in step (2) is dropwise, and the dropping rate is 20 to 50 drops/minute, such as 20 drops/minute, 30 drops/minute, 40 drops/min or 50 drops/min.
在本发明步骤(2)中,二价铁化合物和三价铁化合物与碱溶液在55~65℃温度下反应成核,即二价铁和三价铁化合物与碱反应生成四氧化三铁,完成粒子晶核的形成。In the step (2) of the present invention, the divalent iron compound and the ferric compound react with the alkaline solution to nucleate at a temperature of 55 to 65° C., that is, the divalent iron and the ferric compound react with the alkali to generate ferric oxide, Complete the formation of particle nuclei.
在本发明提供的技术方案的基础上,步骤(3)所述柠檬酸化合物水溶液的浓度为50~90mg/mL,例如52mg/mL、56mg/mL、60mg/mL、63mg/mL、66mg/mL、69mg/mL、72mg/mL、76mg/mL、80mg/mL、84mg/m或88mg/mL。On the basis of the technical solution provided by the present invention, the concentration of the citric acid compound aqueous solution in step (3) is 50-90 mg/mL, such as 52 mg/mL, 56 mg/mL, 60 mg/mL, 63 mg/mL, 66 mg/mL , 69mg/mL, 72mg/mL, 76mg/mL, 80mg/mL, 84mg/m or 88mg/mL.
优选地,相对于1g二价铁化合物,柠檬酸化合物的用量为100~200mg,例如100mg、110mg、120mg、130mg、140mg、150mg、160mg、170mg、180mg、190mg或200mg。Preferably, relative to 1 g of the ferrous compound, the dosage of the citric acid compound is 100-200 mg, such as 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg or 200 mg.
优选地,在本发明提供的技术方案的基础上,步骤(3)所述柠檬酸化合物的水溶液的加入方式为滴加,滴加速度为50~80滴/分钟,例如50滴/分钟、60滴/分钟、70滴/分钟或80滴/分钟。Preferably, on the basis of the technical solution provided by the present invention, the aqueous solution of the citric acid compound in step (3) is added dropwise, and the dropping rate is 50-80 drops/minute, such as 50 drops/minute, 60 drops /min, 70 drops/min or 80 drops/min.
在本发明提供的技术方案的基础上,步骤(3)所述反应温度为80~95℃,例如80℃、85℃、88℃、90℃或95℃。On the basis of the technical solution provided by the present invention, the reaction temperature in step (3) is 80-95°C, such as 80°C, 85°C, 88°C, 90°C or 95°C.
在本发明的步骤(3)中,使步骤(2)中形成的四氧化三铁粒子与水溶性柠檬酸化合物作用,来对四氧化三铁的表面进行修饰,从而提高其稳定性,在80~95℃下反应,有助于晶核生长以及形貌的形成,有利于得到小尺寸,均一、分散的体系。In the step (3) of the present invention, the iron ferric oxide particles formed in the step (2) are reacted with a water-soluble citric acid compound to modify the surface of the ferric oxide, thereby improving its stability. The reaction at ~95°C is conducive to the growth of crystal nuclei and the formation of morphology, and is conducive to obtaining a small-sized, uniform and dispersed system.
优选地,步骤(2)和步骤(3)所述搅拌速率为800转/分~1500转/分,例如800转/分~1500转/分,例如850转/分、900转/分、950转/分、1000转/分、1100转/分、1200转/分、1300转/分、1400转/分或1500转/分。Preferably, the stirring rate in step (2) and step (3) is 800 rpm to 1500 rpm, such as 800 rpm to 1500 rpm, such as 850 rpm, 900 rpm, 950 rpm RPM, 1000 RPM, 1100 RPM, 1200 RPM, 1300 RPM, 1400 RPM or 1500 RPM.
优选地,步骤(2)和步骤(3)所述反应时间为30min~1h,例如30min、35min、40min、45min、50min、55min或1h。Preferably, the reaction time in step (2) and step (3) is 30 min to 1 h, such as 30 min, 35 min, 40 min, 45 min, 50 min, 55 min or 1 h.
优选地,步骤(1)、步骤(2)和步骤(3)均在保护性气体下进行,例如可以在氮气保护下进行。Preferably, step (1), step (2) and step (3) are all carried out under protective gas, for example, can be carried out under nitrogen protection.
优选地,步骤(4)所述操作重复进行2~5次,例如2次、3次、4次或5次。Preferably, the operation in step (4) is repeated 2 to 5 times, such as 2 times, 3 times, 4 times or 5 times.
作为本发明的优选技术方案,所述的超顺磁性纳米颗粒的制备方法具体包括如下步骤:As a preferred technical solution of the present invention, the preparation method of the superparamagnetic nanoparticles specifically includes the following steps:
(1)保护性气体保护下,将二价铁和三价铁化合物溶解于水中,形成二价铁化合物和三价铁化合物浓度均为10~50mg/mL的溶液a;(1) Under the protection of a protective gas, dissolve the ferrous and ferric compounds in water to form a solution a in which the concentrations of the ferrous and ferric compounds are both 10-50 mg/mL;
(2)保护性气体保护下,向溶液a中加入pH为13~14的碱溶液,800转/分~1500转/分转速搅拌下于55~65℃反应30min~1h,得到溶液b;(2) Under the protection of protective gas, add an alkali solution with a pH of 13 to 14 into solution a, and react at 55 to 65° C. for 30 minutes to 1 hour under stirring at 800 rpm to 1500 rpm to obtain solution b;
(3)保护性气体保护下,向溶液b中加入浓度为50~90mg/mL的柠檬酸化合物的水溶液,800转/分~1500转/分转速搅拌搅拌下于80~95℃反应,得到溶液c;(3) Under the protection of protective gas, add an aqueous solution of a citric acid compound with a concentration of 50-90 mg/mL to solution b, and react at 80-95° C. under stirring at 800 rpm to 1500 rpm to obtain a solution c;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,得到所述超顺磁性纳米颗粒。(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet to obtain the superparamagnetic nanoparticles.
另一方面,本发明提供了如本发明第一方面所述的制备方法制备得到的超顺磁性纳米颗粒。In another aspect, the present invention provides superparamagnetic nanoparticles prepared by the preparation method described in the first aspect of the present invention.
另一方面,本发明提供了一种超顺磁性造影剂,所述超顺磁性造影剂包含本发明第一方面所述的制备方法制备得到的超顺磁性纳米颗粒。In another aspect, the present invention provides a superparamagnetic contrast agent, which comprises superparamagnetic nanoparticles prepared by the preparation method described in the first aspect of the present invention.
本发明还提供了所述超顺磁性造影剂的制备方法,所述方法为:将所述超顺磁性纳米颗粒分散于水溶液中形成稳定的分散体系,得到所述超顺磁性造影剂。The present invention also provides a preparation method of the superparamagnetic contrast agent. The method comprises: dispersing the superparamagnetic nanoparticles in an aqueous solution to form a stable dispersion system to obtain the superparamagnetic contrast agent.
本发明所述超顺磁性造影剂可用于核磁共振成像。本发明所述造影剂能够通过血液循环将超顺磁性氧化铁纳米颗粒运送至心肌梗死的病变组织,从而在心肌梗死部位进行核磁共振成像。The superparamagnetic contrast agent of the present invention can be used for nuclear magnetic resonance imaging. The contrast agent of the present invention can transport the superparamagnetic iron oxide nanoparticles to the pathological tissue of myocardial infarction through blood circulation, so as to perform nuclear magnetic resonance imaging at the myocardial infarction site.
心肌梗死的特征是冠状动脉闭塞,且心脏处血液流速快,流量大,大尺寸的氧化铁纳米颗粒易被肝、脾等器官的巨噬细胞吞噬,难以到达心脏部位;小尺寸表面包覆高分子的氧化铁纳米颗粒难以在血液流速较快的心肌富集,而小尺寸单分散的小分子柠檬酸修饰的超顺磁性氧化铁纳米颗粒造影剂较易在心脏部位成像。Myocardial infarction is characterized by coronary artery occlusion, and the blood flow in the heart is fast and the flow rate is large. Large-sized iron oxide nanoparticles are easily phagocytized by macrophages in liver, spleen and other organs, and it is difficult to reach the heart; small-sized surface coatings are high Molecular iron oxide nanoparticles are difficult to accumulate in the myocardium with fast blood flow, while small-sized monodisperse small molecule citrate-modified superparamagnetic iron oxide nanoparticle contrast agents are easier to image in the heart.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明采用先将二价铁和三价铁化合物与碱溶液反应成核(四氧化三铁),而后用水溶性柠檬酸化合物进行表面修饰,在加热条件下,促进晶核生长得到表面包覆有水溶性柠檬酸化合物的四氧化三铁超顺磁性纳米颗粒。本发明方法使得四氧化三铁粒子的成核和生长阶段有效分开,得到了颗粒尺寸小且均一,分散性良好的超顺磁性纳米颗粒;并且利用水溶性柠檬酸化合物对四氧化三铁纳米粒子进行表面修饰,提高了超顺磁性纳米颗粒在体内的稳定性和生物相容性,可在生理环境中长时间稳定存在,有利于在体内保持长循环。本发明通过将所述的超顺磁性纳米颗粒分散于水溶液中形成稳定的分散体系,得到的超顺磁性造影剂,能够通过血液循环将超顺磁性氧化铁纳米颗粒运送至心肌梗死的病变组织,从而在心肌梗死部位核磁共振成像。The present invention adopts first reacting divalent iron and ferric compound with alkali solution to nucleate (ferric oxide), and then carries out surface modification with water-soluble citric acid compound, and under heating condition, promotes the growth of crystal nuclei to obtain surface-coated Ferric iron tetroxide superparamagnetic nanoparticles of water-soluble citric acid compound. The method of the present invention makes the nucleation and growth stages of ferric oxide particles effectively separated, and obtains superparamagnetic nanoparticles with small and uniform particle size and good dispersion; and utilizes water-soluble citric acid compound to treat ferric oxide nanoparticles Surface modification improves the stability and biocompatibility of superparamagnetic nanoparticles in the body, and can exist stably for a long time in the physiological environment, which is conducive to maintaining long circulation in the body. In the present invention, the superparamagnetic contrast agent obtained by dispersing the superparamagnetic nanoparticles in the aqueous solution to form a stable dispersion system can transport the superparamagnetic iron oxide nanoparticles to the pathological tissue of myocardial infarction through blood circulation, Magnetic resonance imaging at the site of myocardial infarction.
附图说明Description of drawings
图1为实施例1制备的超顺磁性纳米颗粒(A)和对比例1制备的超顺磁性纳米颗粒(B)的透射电镜图;Fig. 1 is the transmission electron micrograph of the superparamagnetic nanoparticle (A) that embodiment 1 prepares and the superparamagnetic nanoparticle (B) that comparative example 1 prepares;
图2为实施例1制备的超顺磁性造影剂的弛豫率图;Fig. 2 is the relaxation rate diagram of the superparamagnetic contrast agent prepared in Example 1;
图3为实施例1制备的超顺磁性造影剂在心肌梗死部位的核磁共振成像效果图,其中A为注射造影剂前,B为注射造影剂24h后。Fig. 3 is an MRI effect diagram of the superparamagnetic contrast agent prepared in Example 1 at the myocardial infarction site, where A is before injection of the contrast agent, and B is 24 hours after the injection of the contrast agent.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention will be further described below through specific embodiments. It should be clear to those skilled in the art that the embodiments are only for helping to understand the present invention, and should not be regarded as specific limitations on the present invention.
实施例1Example 1
在本实施例中,通过以下方法来制备本发明的超顺磁性造影剂,所述方法包括以下步骤:In this embodiment, the superparamagnetic contrast agent of the present invention is prepared by the following method, which includes the following steps:
(1)氮气保护下,将1g FeSO4·7H2O和2g FeCl3·6H2O溶于装有40mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为25mg/mL、三价铁化合物浓度为50mg/mL的溶液a;(1) Under the protection of nitrogen, dissolve 1g FeSO 4 7H 2 O and 2g FeCl 3 6H 2 O in a three-necked flask filled with 40mL distilled water to form a ferrous compound with a concentration of 25mg/mL and a ferric compound with a concentration of 50mg/mL solution a;
(2)向溶液a中以30滴/分的速度滴加30mL pH=14的氢氧化钠溶液,氮气保护下,1000转/分机械搅拌下于55℃反应30min,得到溶液b;(2) Add dropwise 30 mL of sodium hydroxide solution of pH=14 to solution a at a rate of 30 drops/min, under nitrogen protection, react at 55° C. for 30 min under mechanical stirring at 1000 rpm to obtain solution b;
(3)氮气保护下,向溶液b中以50滴/分的速度滴加4mL浓度为50mg/mL的柠檬酸的水溶液,1000转/分转速搅拌下于90℃反应30min,得到溶液c;(3) Under nitrogen protection, dropwise add 4 mL of an aqueous solution of citric acid with a concentration of 50 mg/mL to solution b at a rate of 50 drops/min, and react at 90° C. for 30 min under stirring at 1000 rpm to obtain solution c;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,如此重复3次,得到所述超顺磁性纳米颗粒;(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet, repeating this 3 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂,将其浓度调整为15mg/mL,4℃保存待用。(5) disperse the superparamagnetic nanoparticles of step (4) in normal saline to form a stable dispersion system, filter and sterilize through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent, adjust its concentration to 15mg/mL, Store at 4°C until use.
对比例1Comparative example 1
在本对比例中,通过现有技术中的共沉淀法来制备超顺磁性造影剂,所述方法包括以下步骤:In this comparative example, a superparamagnetic contrast agent was prepared by the co-precipitation method in the prior art, and the method included the following steps:
(1)氮气保护下,将1g FeSO4·7H2O和2g FeCl3·6H2O溶于装有40mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为25mg/mL、三价铁化合物浓度为50mg/mL的溶液a;(1) Under the protection of nitrogen, dissolve 1g FeSO 4 7H 2 O and 2g FeCl 3 6H 2 O in a three-necked flask filled with 40mL distilled water to form a ferrous compound with a concentration of 25mg/mL and a ferric compound with a concentration of 50mg/mL solution a;
(2)将200mg柠檬酸溶于40mL水中制成浓度为50mg/mL的柠檬酸水溶液,将该溶液加入溶液a中,搅拌10分钟后,置于85℃水浴中加热;(2) Dissolve 200mg of citric acid in 40mL of water to make an aqueous solution of citric acid with a concentration of 50mg/mL, add the solution to solution a, stir for 10 minutes, and heat in a water bath at 85°C;
(3)向步骤(2)的溶液中以30滴/分的速度滴加30mL pH=14的氢氧化钠溶液,滴毕,在氮气保护下,1000转/分机械搅拌30分钟,而后冷却至室温;(3) Add dropwise the sodium hydroxide solution of 30mL pH=14 with the speed of 30 drops/min in the solution of step (2), drop complete, under nitrogen protection, 1000 rpm mechanically stirred for 30 minutes, then cooled to room temperature;
(4)将步骤(3)的产物醇洗,磁铁分离,水洗,磁铁分离,如此重复3次,得到所述超顺磁性纳米颗粒;(4) the product of step (3) is washed with alcohol, separated by magnet, washed with water, separated by magnet, and so repeated 3 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂,将其浓度调整为15mg/mL,4℃保存待用。(5) disperse the superparamagnetic nanoparticles of step (4) in normal saline to form a stable dispersion system, filter and sterilize through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent, adjust its concentration to 15mg/mL, Store at 4°C until use.
利用透射电镜(H-7650B,日本日立公司)对本实施例制备的超顺磁性纳米颗粒和对比例1制备的超顺磁性纳米颗粒进行表征,结果如图1所示,由图1可以看出,制备得到的超顺磁性纳米颗粒尺寸在5-30nm左右,粒径小,尺寸均一,分散性良好,而采用现有技术中普遍采用的将二价铁和三价铁化合物水溶液与柠檬酸水溶液混合,加热反应,而后加入强碱溶液进行反应得到的四氧化三铁超顺磁性纳米颗粒的分散性很差,多颗粒聚集在一起,从而造成其颗粒不稳定。Utilize transmission electron microscope (H-7650B, Hitachi, Japan) to characterize the superparamagnetic nanoparticles prepared by the present embodiment and the superparamagnetic nanoparticles prepared by comparative example 1, the results are as shown in Figure 1, as can be seen from Figure 1, The size of the prepared superparamagnetic nanoparticles is about 5-30nm, the particle size is small, the size is uniform, and the dispersibility is good, and the aqueous solution of divalent iron and ferric iron compound is mixed with the aqueous solution of citric acid commonly used in the prior art. , heating and reacting, and then adding a strong alkali solution to carry out the reaction, the dispersibility of the ferric iron tetroxide superparamagnetic nanoparticles obtained is very poor, and many particles gather together, thereby causing the particles to be unstable.
利用磁共振测试仪(MQ60,德国布鲁克公司)对超顺磁性造影剂的弛豫率进行考察,图2示出了超顺磁性造影剂的弛豫率与总铁离子浓度的线性关系图,由图可知,所得超顺磁性造影剂的弛豫率呈现很好的线性关系,弛豫率r2为173.6321mM-1s-1。Utilize the magnetic resonance tester (MQ60, Bruker, Germany) to investigate the relaxation rate of the superparamagnetic contrast agent, and Fig. 2 shows the linear relationship diagram between the relaxation rate and the total iron ion concentration of the superparamagnetic contrast agent, by It can be seen from the figure that the relaxation rate of the obtained superparamagnetic contrast agent shows a good linear relationship, and the relaxation rate r 2 is 173.6321mM -1 s -1 .
将500μL制备得到的超顺磁性造影剂经尾静脉注射到模型鼠体内,24h后使用7-T磁共振成像器(ClinScan,德国布鲁克公司)在合适的序列条件下成像。图3为超顺磁性造影剂在心肌梗死部位的核磁共振成像效果图,由图可见,制备得到的超顺磁性造影剂可以使心肌梗死处灰度值降低,实现在心肌梗死部位的成像。500 μL of the prepared superparamagnetic contrast agent was injected into the model mice through the tail vein, and 24 hours later, the 7-T magnetic resonance imager (ClinScan, Bruker, Germany) was used for imaging under appropriate sequence conditions. Fig. 3 is an MRI effect diagram of the superparamagnetic contrast agent at the myocardial infarction site. It can be seen from the figure that the prepared superparamagnetic contrast agent can reduce the gray value of the myocardial infarction site and realize imaging at the myocardial infarction site.
实施例2Example 2
在本实施例中,通过以下方法来制备本发明的超顺磁性造影剂,所述方法包括以下步骤:In this embodiment, the superparamagnetic contrast agent of the present invention is prepared by the following method, which includes the following steps:
(1)氮气保护下,将1.2g FeCl2和4.6g硝酸铁Fe(NO3)3溶于装有100mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为12mg/mL、三价铁化合物浓度为46mg/mL的溶液a;(1) Under the protection of nitrogen, dissolve 1.2g FeCl 2 and 4.6g iron nitrate Fe(NO 3 ) 3 in a three-necked flask filled with 100mL distilled water to form a ferrous compound with a concentration of 12mg/mL and a ferric compound with a concentration of 12mg/mL. Solution a of 46mg/mL;
(2)向溶液a中以20滴/分的速度滴加80mL pH=14的氢氧化钠溶液,氮气保护下,800转/分机械搅拌下于60℃反应50min,得到溶液b;(2) Add 80 mL of sodium hydroxide solution with pH=14 dropwise at a rate of 20 drops/min, under nitrogen protection, react at 60° C. for 50 min under mechanical stirring at 800 rpm to obtain solution b;
(3)氮气保护下,向溶液b中以80滴/分的速度滴加加入2mL浓度为90mg/mL的柠檬酸钠的水溶液,1000转/分转速搅拌下于80℃反应1h,得到溶液c;(3) Under nitrogen protection, add 2 mL of an aqueous solution of sodium citrate with a concentration of 90 mg/mL dropwise to solution b at a rate of 80 drops/min, and react at 80° C. for 1 h under stirring at 1000 rpm to obtain solution c ;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,如此重复5次,得到所述超顺磁性纳米颗粒;(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet, repeating this 5 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂。(5) Dispersing the superparamagnetic nanoparticles in step (4) in physiological saline to form a stable dispersion system, and filtering and sterilizing through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent.
经电镜表征粒径为5-40nm,分散性良好,而且具有良好的弛豫性能,可以在心肌梗死小鼠体内核磁共振成像。Characterized by electron microscopy, the particle size is 5-40nm, the dispersion is good, and it has good relaxation properties, and can be used for nuclear magnetic resonance imaging in mice with myocardial infarction.
实施例3Example 3
在本实施例中,通过以下方法来制备本发明的超顺磁性造影剂,所述方法包括以下步骤:In this embodiment, the superparamagnetic contrast agent of the present invention is prepared by the following method, which includes the following steps:
(1)氮气保护下,将0.4g FeCl2以及1.2g草酸铁和0.5g FeCl3的混合物溶于装有40mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为10mg/mL、三价铁化合物浓度为42.5mg/mL的溶液a;(1) Under the protection of nitrogen, dissolve the mixture of 0.4g FeCl 2 and 1.2g ferric oxalate and 0.5g FeCl 3 in a three-necked flask filled with 40mL distilled water to form a ferrous compound with a concentration of 10mg/mL and a ferric compound Solution a with a concentration of 42.5 mg/mL;
(2)向溶液a中以50滴/分的速度滴加260mL pH=13的氨水,氮气保护下,1500转/分机械搅拌下于55℃反应1h,得到溶液b;(2) Add 260mL of ammonia water with pH=13 dropwise at a rate of 50 drops/min to solution a, under nitrogen protection, react at 55°C for 1h under mechanical stirring at 1500 rpm, to obtain solution b;
(3)氮气保护下,向溶液b中以50滴/分的速度滴加1mL浓度为50mg/mL的柠檬酸二钠的水溶液,1500转/分转速搅拌下于95℃反应40min,得到溶液c;(3) Under the protection of nitrogen, add 1 mL of an aqueous solution of disodium citrate with a concentration of 50 mg/mL dropwise to solution b at a rate of 50 drops/min, and react at 95°C for 40 min under stirring at 1500 rpm to obtain solution c ;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,如此重复2次,得到所述超顺磁性纳米颗粒;(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet, repeating this 2 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂。(5) Dispersing the superparamagnetic nanoparticles in step (4) in physiological saline to form a stable dispersion system, and filtering and sterilizing through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent.
经电镜表征粒径为5-30nm,分散性良好,而且具有良好的弛豫性能,可以在心肌梗死小鼠体内核磁共振成像。Characterized by electron microscopy, the particle size is 5-30nm, the dispersion is good, and it has good relaxation properties, and can be used for nuclear magnetic resonance imaging in mice with myocardial infarction.
实施例4Example 4
在本实施例中,通过以下方法来制备本发明的超顺磁性造影剂,所述方法包括以下步骤:In this embodiment, the superparamagnetic contrast agent of the present invention is prepared by the following method, which includes the following steps:
(1)氮气保护下,将2.0g Fe(NO3)2和3.6g FeCl3溶于装有80mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为25mg/mL、三价铁化合物浓度为45mg/mL的溶液a;(1) Under the protection of nitrogen, dissolve 2.0g Fe(NO 3 ) 2 and 3.6g FeCl 3 in a three-necked flask filled with 80mL distilled water to form a ferrous compound with a concentration of 25mg/mL and a ferric compound with a concentration of 45mg /mL of solution a;
(2)向溶液a中以50滴/分的速度滴加90mL pH=14的氢氧化钾溶液,氮气保护下,1000转/分机械搅拌下于65℃反应30min,得到溶液b;(2) Add dropwise 90 mL of potassium hydroxide solution of pH=14 to solution a at a rate of 50 drops/min, under nitrogen protection, react at 65° C. for 30 min under mechanical stirring at 1000 rpm to obtain solution b;
(3)氮气保护下,向溶液b中以50滴/分的速度滴加4mL浓度为50mg/mL的柠檬酸三钠的水溶液,1500转/分转速搅拌下于95℃反应40min,得到溶液c;(3) Under the protection of nitrogen, add 4 mL of an aqueous solution of trisodium citrate with a concentration of 50 mg/mL dropwise to solution b at a rate of 50 drops/min, and react at 95° C. for 40 min under stirring at 1500 rpm to obtain solution c ;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,如此重复5次,得到所述超顺磁性纳米颗粒;(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet, repeating this 5 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂。(5) Dispersing the superparamagnetic nanoparticles in step (4) in physiological saline to form a stable dispersion system, and filtering and sterilizing through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent.
经电镜表征粒径为10-40nm,分散性良好,而且具有良好的弛豫性能,可以在心肌梗死小鼠体内核磁共振成像。Characterized by electron microscopy, the particle size is 10-40nm, the dispersion is good, and it has good relaxation properties, and can be used for nuclear magnetic resonance imaging in mice with myocardial infarction.
实施例5Example 5
在本实施例中,通过以下方法来制备本发明的超顺磁性造影剂,所述方法包括以下步骤:In this embodiment, the superparamagnetic contrast agent of the present invention is prepared by the following method, which includes the following steps:
(1)氮气保护下,1.0g Fe(NO3)2和1.0FeCl2的混合物以及1.2g FeCl3溶于装有40mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为25mg/mL、三价铁化合物浓度为30mg/mL的溶液a;(1) Under the protection of nitrogen, the mixture of 1.0g Fe(NO 3 ) 2 and 1.0FeCl 2 and 1.2g FeCl 3 were dissolved in a three-necked flask filled with 40mL distilled water to form a ferrous compound with a concentration of 25mg/mL and trivalent Solution a with an iron compound concentration of 30 mg/mL;
(2)向溶液a中以50滴/分的速度滴加120mL pH=14的氢氧化钾溶液,氮气保护下,1500转/分机械搅拌下于65℃反应30min,得到溶液b;(2) Add dropwise 120 mL of potassium hydroxide solution of pH=14 to solution a at a rate of 50 drops/min, under nitrogen protection, react at 65° C. for 30 min under mechanical stirring at 1500 rpm, to obtain solution b;
(3)氮气保护下,向溶液b中以60滴/分的速度滴加4mL浓度为80mg/mL的柠檬酸的水溶液,1500转/分转速搅拌下于95℃反应30min,得到溶液c;(3) Under the protection of nitrogen, dropwise add 4 mL of an aqueous solution of citric acid with a concentration of 80 mg/mL to solution b at a rate of 60 drops/min, and react at 95° C. for 30 min under stirring at 1500 rpm to obtain solution c;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,如此重复5次,得到所述超顺磁性纳米颗粒;(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet, repeating this 5 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂。(5) Dispersing the superparamagnetic nanoparticles in step (4) in physiological saline to form a stable dispersion system, and filtering and sterilizing through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent.
经电镜表征粒径为5-40nm,分散性良好,而且具有良好的弛豫性能,可以在心肌梗死小鼠体内核磁共振成像。Characterized by electron microscopy, the particle size is 5-40nm, the dispersion is good, and it has good relaxation properties, and can be used for nuclear magnetic resonance imaging in mice with myocardial infarction.
实施例6Example 6
在本实施例中,通过以下方法来制备本发明的超顺磁性造影剂,所述方法包括以下步骤:In this embodiment, the superparamagnetic contrast agent of the present invention is prepared by the following method, which includes the following steps:
(1)氮气保护下,0.51g Fe(NO3)2·6H2O和0.48g FeCl3溶于装有40mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为12.75mg/mL、三价铁化合物浓度为12mg/mL的溶液a;(1) Under the protection of nitrogen, 0.51g Fe(NO 3 ) 2 ·6H 2 O and 0.48g FeCl 3 were dissolved in a three-necked flask filled with 40mL distilled water to form a ferrous compound with a concentration of 12.75mg/mL, ferric iron Solution a with a compound concentration of 12 mg/mL;
(2)向溶液a中以70滴/分的速度滴加145mL pH=13的氨水溶液,氮气保护下,1500转/分机械搅拌下于65℃反应30min,得到溶液b;(2) Add dropwise 145mL of ammonia solution with pH=13 to solution a at a rate of 70 drops/min, under nitrogen protection, react at 65°C for 30min under mechanical stirring at 1500 rpm, to obtain solution b;
(3)氮气保护下,向溶液b中以50滴/分的速度滴加2mL浓度为50mg/mL的柠檬酸的水溶液,1500转/分转速搅拌下于95℃反应30min,得到溶液c;(3) Under nitrogen protection, add 2 mL of an aqueous solution of citric acid with a concentration of 50 mg/mL dropwise to solution b at a rate of 50 drops/min, and react at 95° C. for 30 min under stirring at 1500 rpm to obtain solution c;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,如此重复5次,得到所述超顺磁性纳米颗粒;(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet, repeating this 5 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂。(5) Dispersing the superparamagnetic nanoparticles in step (4) in physiological saline to form a stable dispersion system, and filtering and sterilizing through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent.
经电镜表征粒径为5-30nm,分散性良好,而且具有良好的弛豫性能,可以在心肌梗死小鼠体内核磁共振成像。Characterized by electron microscopy, the particle size is 5-30nm, the dispersion is good, and it has good relaxation properties, and can be used for nuclear magnetic resonance imaging in mice with myocardial infarction.
实施例7Example 7
在本实施例中,通过以下方法来制备本发明的超顺磁性造影剂,所述方法包括以下步骤:In this embodiment, the superparamagnetic contrast agent of the present invention is prepared by the following method, which includes the following steps:
(1)氮气保护下,1.9g Fe(NO3)2·6H2O和1.95g FeCl3溶于装有40mL蒸馏水的三口烧瓶中,形成二价铁化合物浓度为47.5mg/mL、三价铁化合物浓度为48.75mg/mL的溶液a;(1) Under the protection of nitrogen, 1.9g Fe(NO 3 ) 2 ·6H 2 O and 1.95g FeCl 3 were dissolved in a three-necked flask filled with 40mL distilled water to form a ferrous compound with a concentration of 47.5mg/mL, ferric iron Solution a with a compound concentration of 48.75 mg/mL;
(2)向溶液a中以20滴/分的速度滴加55mL pH=14的氢氧化钾溶液,氮气保护下,800转/分机械搅拌下于65℃反应30min,得到溶液b;(2) Add dropwise 55 mL of potassium hydroxide solution of pH=14 to solution a at a rate of 20 drops/min, under nitrogen protection, react at 65° C. for 30 min under mechanical stirring at 800 rpm to obtain solution b;
(3)氮气保护下,向溶液b中以60滴/分的速度滴加6mL浓度为50mg/mL的柠檬酸的水溶液,1000转/分转速搅拌下于90℃反应30min,得到溶液c;(3) Under nitrogen protection, add 6 mL of an aqueous solution of citric acid with a concentration of 50 mg/mL dropwise at a rate of 60 drops/min to solution b, and react at 90° C. for 30 min under stirring at 1000 rpm to obtain solution c;
(4)将溶液c醇洗,磁铁分离,水洗,磁铁分离,如此重复3次,得到所述超顺磁性纳米颗粒;(4) washing the solution c with alcohol, separating with a magnet, washing with water, and separating with a magnet, repeating this 3 times to obtain the superparamagnetic nanoparticles;
(5)将步骤(4)的超顺磁性纳米颗粒分散于生理盐水中形成稳定的分散体系,经0.22微米滤膜过滤除菌,得到超顺磁性造影剂。(5) Dispersing the superparamagnetic nanoparticles in step (4) in physiological saline to form a stable dispersion system, and filtering and sterilizing through a 0.22 micron filter membrane to obtain a superparamagnetic contrast agent.
经电镜表征粒径为10-30nm,分散性良好,而且具有良好的弛豫性能,可以在心肌梗死小鼠体内核磁共振成像。Characterized by electron microscopy, the particle size is 10-30nm, the dispersion is good, and it has good relaxation properties, and can be used for nuclear magnetic resonance imaging in mice with myocardial infarction.
申请人声明,本发明通过上述实施例来说明本发明的超顺磁性纳米颗粒及其制备方法和用途,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the superparamagnetic nanoparticles of the present invention and its preparation method and use through the above-mentioned examples, but the present invention is not limited to the above-mentioned examples, that is, it does not mean that the present invention must rely on the above-mentioned examples to achieve implement. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of selected raw materials in the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510257346.4A CN104922702A (en) | 2015-05-19 | 2015-05-19 | Superparamagnetic nano-particle and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510257346.4A CN104922702A (en) | 2015-05-19 | 2015-05-19 | Superparamagnetic nano-particle and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104922702A true CN104922702A (en) | 2015-09-23 |
Family
ID=54110342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510257346.4A Pending CN104922702A (en) | 2015-05-19 | 2015-05-19 | Superparamagnetic nano-particle and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104922702A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105498732A (en) * | 2016-01-30 | 2016-04-20 | 阿拉山口出入境检验检疫局综合技术服务中心 | Magnetic nano-imprinted compound adsorbent as well as preparation method and application thereof |
CN109675062A (en) * | 2018-12-06 | 2019-04-26 | 中山大学 | A kind of High-efficient Water phase inversion of organic phase nano iron oxide |
CN110255627A (en) * | 2019-07-12 | 2019-09-20 | 中国恩菲工程技术有限公司 | Nano ferriferrous oxide and preparation method thereof and system |
CN112110493A (en) * | 2020-06-03 | 2020-12-22 | 太古宙基因科技(深圳)有限公司 | One-step method for preparing surface functionalized super-cis Fe3O4Method for magnetic nanoparticles |
CN112516334A (en) * | 2020-11-16 | 2021-03-19 | 中国科学院长春应用化学研究所 | EDTMP modified ferroferric oxide nano-particles and preparation method and application thereof |
CN114806595A (en) * | 2022-04-28 | 2022-07-29 | 南京中壤生态环境科技有限公司 | Nano iron oxide composite material capable of treating soil arsenic pollution, preparation method and application thereof |
CN116259459A (en) * | 2023-02-22 | 2023-06-13 | 上海蓝载信息科技有限公司 | A nanoparticle of supermagnetic citric acid-coated iron oxide, its synthesis method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1364730A (en) * | 2002-02-08 | 2002-08-21 | 无锡威孚吉大新材料应用开发有限公司 | Method for preparing super-fine nanometer ferric oxide powder |
CN1508192A (en) * | 2002-12-13 | 2004-06-30 | 中国科学院过程工程研究所 | A kind of preparation method of nano iron oxide red |
CN1537635A (en) * | 2003-10-22 | 2004-10-20 | 复旦大学附属中山医院 | A kind of magnetic polymer nano microsphere drug loading system and its preparation method |
US20110165086A1 (en) * | 2010-01-07 | 2011-07-07 | Chulhyun Lee | Iron oxide nanoparticles as mri contrast agents and their preparing method |
-
2015
- 2015-05-19 CN CN201510257346.4A patent/CN104922702A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1364730A (en) * | 2002-02-08 | 2002-08-21 | 无锡威孚吉大新材料应用开发有限公司 | Method for preparing super-fine nanometer ferric oxide powder |
CN1508192A (en) * | 2002-12-13 | 2004-06-30 | 中国科学院过程工程研究所 | A kind of preparation method of nano iron oxide red |
CN1537635A (en) * | 2003-10-22 | 2004-10-20 | 复旦大学附属中山医院 | A kind of magnetic polymer nano microsphere drug loading system and its preparation method |
US20110165086A1 (en) * | 2010-01-07 | 2011-07-07 | Chulhyun Lee | Iron oxide nanoparticles as mri contrast agents and their preparing method |
Non-Patent Citations (1)
Title |
---|
胡英花 等: ""纳米Fe304粒子的制备及表面包覆"", 《青岛科技大学学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105498732A (en) * | 2016-01-30 | 2016-04-20 | 阿拉山口出入境检验检疫局综合技术服务中心 | Magnetic nano-imprinted compound adsorbent as well as preparation method and application thereof |
CN109675062A (en) * | 2018-12-06 | 2019-04-26 | 中山大学 | A kind of High-efficient Water phase inversion of organic phase nano iron oxide |
CN109675062B (en) * | 2018-12-06 | 2021-10-29 | 中山大学 | A high-efficiency aqueous phase conversion method of organic phase nano-iron oxide |
CN110255627A (en) * | 2019-07-12 | 2019-09-20 | 中国恩菲工程技术有限公司 | Nano ferriferrous oxide and preparation method thereof and system |
CN112110493A (en) * | 2020-06-03 | 2020-12-22 | 太古宙基因科技(深圳)有限公司 | One-step method for preparing surface functionalized super-cis Fe3O4Method for magnetic nanoparticles |
CN112516334A (en) * | 2020-11-16 | 2021-03-19 | 中国科学院长春应用化学研究所 | EDTMP modified ferroferric oxide nano-particles and preparation method and application thereof |
CN112516334B (en) * | 2020-11-16 | 2022-02-18 | 中国科学院长春应用化学研究所 | EDTMP modified ferroferric oxide nano-particles and preparation method and application thereof |
CN114806595A (en) * | 2022-04-28 | 2022-07-29 | 南京中壤生态环境科技有限公司 | Nano iron oxide composite material capable of treating soil arsenic pollution, preparation method and application thereof |
CN116259459A (en) * | 2023-02-22 | 2023-06-13 | 上海蓝载信息科技有限公司 | A nanoparticle of supermagnetic citric acid-coated iron oxide, its synthesis method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104922702A (en) | Superparamagnetic nano-particle and preparation method and application thereof | |
Dong et al. | Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography | |
Bai et al. | Synthesis of ultrasmall Fe3O4 nanoparticles as T 1–T 2 dual-modal magnetic resonance imaging contrast agents in rabbit hepatic tumors | |
Hu et al. | Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrastT1-andT2-weighted magnetic resonance imaging | |
Xiao et al. | T1–T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles | |
Shokrollahi et al. | Magnetic resonance imaging by using nano-magnetic particles | |
AU2011286527B2 (en) | Preparation of extremely small and uniform sized, iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles and MRI T1 contrast agents using the same | |
CN105288666B (en) | A kind of magnetic nanoparticle and preparation method thereof of water-solubility protein cladding | |
CN102657881B (en) | Preparation method of Fe3O4 nano-magnetic resonance contrast medium material | |
Chen et al. | In situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy | |
Liu et al. | Stable gadolinium based nanoscale lyophilized injection for enhanced MR angiography with efficient renal clearance | |
US9457104B2 (en) | Hydrophilic nanoparticles surface-modified with monosaccharide phosphate or monosaccharide phosphate derivatives, its colloidal solution and use thereof | |
CN104906600B (en) | A kind of superparamagnetic nano particle and its preparation method and application | |
Rui et al. | Ultra-large-scale production of ultrasmall superparamagnetic iron oxide nanoparticles for T 1-weighted MRI | |
Wang et al. | Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T 1–T 2 contrast agent for magnetic resonance imaging | |
Zhang et al. | Green synthesis of sub‐10 nm gadolinium‐based nanoparticles for sparkling kidneys, tumor, and angiogenesis of tumor‐bearing mice in magnetic resonance imaging | |
Liang et al. | Ultrasmall gadolinium hydrated carbonate nanoparticle: an advanced T 1 MRI contrast agent with large longitudinal relaxivity | |
Liu et al. | Sequential growth of CaF 2: Yb, Er@ CaF 2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis | |
CN106913885B (en) | Magnetic nano particle and preparation method and application thereof | |
EP2833916A1 (en) | Magnetic nanoparticles dispersion, its preparation and diagnostic and therapeutic use | |
Liu et al. | Colloidally stabilized magnetic carbon nanotubes providing MRI contrast in mouse liver tumors | |
CN101811192A (en) | Water-soluble monodisperse iron-nickel magnetic nanoparticles and application thereof | |
Perera et al. | Biocompatible Nanoparticles of KGd (H2O) 2 [Fe (CN) 6]· H2O with Extremely High T 1-Weighted Relaxivity Owing to Two Water Molecules Directly Bound to the Gd (III) Center | |
Zanganeh et al. | Magnetic particle imaging (MPI) | |
CN118121729B (en) | PH-GSH sequential response T2-T1-T2 switching contrast agent and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150923 |
|
RJ01 | Rejection of invention patent application after publication |