CN104917417B - ISOP inverter system interconnection-free voltage-sharing control method - Google Patents
ISOP inverter system interconnection-free voltage-sharing control method Download PDFInfo
- Publication number
- CN104917417B CN104917417B CN201510347580.6A CN201510347580A CN104917417B CN 104917417 B CN104917417 B CN 104917417B CN 201510347580 A CN201510347580 A CN 201510347580A CN 104917417 B CN104917417 B CN 104917417B
- Authority
- CN
- China
- Prior art keywords
- inverter
- reference voltage
- output reference
- output
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 235000010650 Hyssopus officinalis Nutrition 0.000 title claims abstract 8
- 240000001812 Hyssopus officinalis Species 0.000 title claims abstract 8
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000007665 sagging Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Landscapes
- Inverter Devices (AREA)
Abstract
本发明公开了一种ISOP逆变器系统无互联均压控制方法,包括如下的步骤:步骤1)是根据每个逆变器模块的输出参考电压幅值Vi与无功功率Qi的下垂特性曲线计算输出参考电压幅值Vi,步骤2)是根据每个逆变器模块的频率fi与输入电压Vini的上翘特性曲线计算输出参考电压频率fi,步骤3)是得到输出参考电压Vrefi,步骤4)是得到输出参考电流Irefi,步骤5)是将输出参考电流Irefi与滤波电感电流ILfi相减,通过PI调节器和输出电压调节器产生PWM波,来驱动逆变器模块的开关器件。本发明实现了模块之间无互联、模块化程度高、可扩展性强等有益效果。
The invention discloses an ISOP inverter system non-interconnected voltage equalization control method, comprising the following steps: Step 1) is based on the droop of the output reference voltage amplitude V i and the reactive power Q i of each inverter module The characteristic curve calculates the output reference voltage amplitude V i , step 2) is to calculate the output reference voltage frequency f i according to the upturned characteristic curve between the frequency f i of each inverter module and the input voltage V ini , and step 3) is to obtain the output Reference voltage V refi , step 4) is to obtain the output reference current I refi , step 5) is to subtract the output reference current I refi from the filter inductor current I Lfi , and generate a PWM wave through the PI regulator and the output voltage regulator to drive Switching device of the inverter module. The invention realizes beneficial effects such as no interconnection among modules, high modularization degree, strong expandability and the like.
Description
技术领域technical field
本发明涉及ISOP逆变器系统无互联均压控制方法,特别是涉及一种ISOP逆变器系统无互联均压控制方法。The invention relates to an ISOP inverter system non-interconnection voltage equalization control method, in particular to an ISOP inverter system non-interconnection voltage equalization control method.
背景技术Background technique
随着电力电子技术的迅速发展,电力电子装置向着高频化、模块化和集成化的方向发展,将多个标准化变换器模块通过串并联组合方式构成满足不同需求的各种电力电子装置是电力电子系统集成技术的一个研究热点。输入串联输出并联(Input-SeriesOutput-parallel,ISOP)组合变换器作为多模块串并联组合变换器的一种,十分适用于高电压输入、低电压大电流输出应用场合。With the rapid development of power electronic technology, power electronic devices are developing in the direction of high frequency, modularization and integration. Multiple standardized converter modules are combined in series and parallel to form various power electronic devices that meet different needs. A research hotspot of electronic system integration technology. Input-Series Output-parallel (ISOP) combined converter, as a type of multi-module series-parallel combined converter, is very suitable for high-voltage input, low-voltage and high-current output applications.
工业应用中的逆变器电源往往输入电压很高、输出功率很大,因此开关器件的选择就受到了限制。因此,可将多个逆变器模块的输入端串联、输出端并联构成ISOP组合形式,这样每个逆变器模块的输入电压、输出电流就会降低到原来的1/N(N为串联模块数),从而降低了每个模块所需开关器件的电压和电流应力,且提高整个系统的性能。Inverter power supplies in industrial applications often have high input voltages and high output power, so the choice of switching devices is limited. Therefore, the input terminals of multiple inverter modules can be connected in series and the output terminals in parallel to form an ISOP combination form, so that the input voltage and output current of each inverter module will be reduced to 1/N of the original (N is the series module number), thereby reducing the voltage and current stress of the switching devices required for each module and improving the performance of the overall system.
对于ISOP逆变器组合系统来说,其关键问题是保证各个模块在输入侧均压和输出侧均流。目前,许多学者已针对IPOP变换器并联组合系统的无互联控制技术的进行了大量的研究,研究表明可以通过改变逆变器输出电压的频率来控制输出有功功率,通过改变逆变器输出电压的幅值来控制输出无功功率,这也是逆变器并联系统无互联控制采用频率电压幅值下垂法的理论依据。然而,目前对ISOP逆变器组合系统无互联均压控制的研究却比较少。申请号为CN201010567190.7专利提出了一种“输入串联输出并联型高频连逆变器模块的稳定电流控制方法”,该方法对于N个模块的输入串联输出并联型逆变器系统,在控制策略上采用输出电流交叉反馈的方式实现了各个模块间的输入电压均压和功率均分,但是该控制方法中模块之间有交叉互联,系统模块化程度不高,可扩展性受到了限制。For the ISOP inverter combination system, the key issue is to ensure that each module is equalized in voltage on the input side and current on the output side. At present, many scholars have conducted a lot of research on the non-interconnection control technology of the IPOP converter parallel combination system. The research shows that the output active power can be controlled by changing the frequency of the inverter output voltage, and by changing the frequency of the inverter output voltage. The amplitude is used to control the output reactive power, which is also the theoretical basis for the frequency voltage amplitude droop method to be used for the non-interconnection control of the inverter parallel system. However, there are relatively few studies on the non-interconnected voltage equalization control of the ISOP inverter combination system at present. The patent application number is CN201010567190.7, which proposes a "stable current control method for input series output parallel type high frequency inverter module". This method controls the input series output parallel inverter system of N modules. Strategically, the output current cross-feedback method is used to realize the input voltage equalization and power sharing among the modules. However, in this control method, there are cross-connections between the modules, the system modularity is not high, and the scalability is limited.
发明内容Contents of the invention
发明目的:本发明的目的是提供一种模块之间无互联、模块化程度高、可扩展性强的基于频率上翘特性电压幅值下垂特性的ISOP逆变器系统无互联均压控制方法。Purpose of the invention: The purpose of the invention is to provide a non-interconnected voltage equalization control method for ISOP inverter systems based on the frequency upturn characteristic and the voltage amplitude droop characteristic without interconnection between modules, high degree of modularization, and strong scalability.
技术方案:为达到此目的,本发明采用以下技术方案:Technical scheme: in order to achieve this goal, the present invention adopts following technical scheme:
本发明所述的一种ISOP逆变器系统无互联均压控制方法,包括如下的步骤:An ISOP inverter system non-interconnected voltage equalization control method according to the present invention comprises the following steps:
步骤1):对每个逆变器模块的滤波电感电流ILfi和输出电压Voi进行采样,通过功率计算单元计算每个逆变器模块输出的无功功率Qi,然后根据每个逆变器模块的输出参考电压幅值Vi与无功功率Qi的下垂特性曲线计算输出参考电压幅值Vi;Step 1): Sampling the filter inductor current I Lfi and output voltage V oi of each inverter module, calculating the reactive power Q i output by each inverter module through the power calculation unit, and then according to each inverter Calculate the output reference voltage amplitude V i from the droop characteristic curve of the output reference voltage amplitude V i and the reactive power Q i of the converter module;
步骤2):对每个逆变器模块的输入电压Vini进行采样,然后根据每个逆变器模块的频率fi与输入电压Vini的上翘特性曲线计算输出参考电压频率fi;Step 2): Sampling the input voltage V ini of each inverter module, and then calculating the output reference voltage frequency f i according to the upturned characteristic curve between the frequency f i of each inverter module and the input voltage V ini ;
步骤3):将步骤1)得到的输出参考电压幅值Vi和步骤2)得到的输出参考电压频率fi进行合成,得到输出参考电压Vrefi;Step 3): Synthesizing the output reference voltage amplitude V i obtained in step 1) and the output reference voltage frequency f i obtained in step 2), to obtain the output reference voltage V refi ;
步骤4):将步骤3)得到的输出参考电压Vrefi与步骤1)得到的输出电压Voi相减,经过PI调节器得到输出参考电流Irefi;Step 4): Subtract the output reference voltage V refi obtained in step 3) from the output voltage V oi obtained in step 1), and obtain the output reference current I refi through the PI regulator;
步骤5):将步骤4)得到的输出参考电流Irefi与步骤1)得到的滤波电感电流ILfi相减,通过PI调节器和输出电压调节器产生PWM波,来驱动逆变器模块的开关器件;Step 5): Subtract the output reference current I refi obtained in step 4) from the filter inductor current I Lfi obtained in step 1), and generate a PWM wave through the PI regulator and the output voltage regulator to drive the switch of the inverter module device;
以上各步骤中的i=1,2,...,N,N≥1。i=1, 2, . . . , N in the above steps, where N≥1.
进一步,所述步骤1)中的每个逆变器模块的输出参考电压幅值Vi与无功功率Qi的下垂特性曲线的表达式为:Further, the expression of the droop characteristic curve of the output reference voltage amplitude V i and the reactive power Q i of each inverter module in the step 1) is:
Vi=V'0i-KiQi (1)V i =V' 0i -K i Q i (1)
其中,Ki为电压幅值下垂系数,V'0i为空载电压幅值,i=1,2,...,N,N≥1。Wherein, K i is the voltage amplitude droop coefficient, V' 0i is the no-load voltage amplitude, i=1,2,...,N, N≥1.
进一步,所述步骤2)中的每个逆变器模块的频率fi与输入电压Vini的上翘特性曲线的表达式为:Further, the expression of the upturned characteristic curve between the frequency fi and the input voltage V ini of each inverter module in the step 2) is:
fi=f'0i+MiVini (2)f i =f' 0i +M i V ini (2)
其中,Mi为频率上翘系数,f'0i为空载频率,i=1,2,...,N,N≥1。Wherein, M i is the frequency upwarping coefficient, f' 0i is the no-load frequency, i=1,2,...,N, N≥1.
进一步,所述步骤3)按照如下的公式进行输出参考电压幅值Vi与输出参考电压频率fi的合成,得到输出参考电压Vrefi:Further, the step 3) synthesizes the output reference voltage amplitude V i and the output reference voltage frequency f i according to the following formula to obtain the output reference voltage V refi :
Vrefi=Vi sin(2πfi·t+αi) (3)V refi =V i sin(2πf i ·t+α i ) (3)
其中,αi为初相角,t为时间变量,i=1,2,...,N,N≥1。Wherein, α i is the initial phase angle, t is the time variable, i=1,2,...,N, N≥1.
进一步,所述逆变器模块包括两级结构,其中,前级为直流变换器,后级为逆变器。Further, the inverter module includes a two-stage structure, wherein the front stage is a DC converter, and the latter stage is an inverter.
进一步,所述逆变器模块为单级式高频连逆变器。Further, the inverter module is a single-stage high-frequency inverter.
有益效果:本发明中每个逆变器模块只检测自身的输入、输出信息,避免了控制上的互联通信,各个模块在仅根据自身输入、输出信息,而不存在任何相互间信息交换的条件下,实现完全独立对等的控制,真正实现了ISOP逆变器组合系统的模块化设计,具有很高的系统可靠性;此外,本发明的模块化程度高,可扩展性强。Beneficial effects: In the present invention, each inverter module only detects its own input and output information, which avoids interconnection and communication in control, and each module only inputs and outputs information according to itself, without any mutual information exchange conditions In this way, completely independent and equivalent control is realized, and the modular design of the ISOP inverter combination system is truly realized, which has high system reliability; in addition, the present invention has a high degree of modularization and strong scalability.
附图说明Description of drawings
图1为本发明方法针对的系统的框图;Fig. 1 is the block diagram of the system that the inventive method is aimed at;
图2为两个模块的ISOP逆变器系统示意图;Figure 2 is a schematic diagram of an ISOP inverter system with two modules;
图3为两个模块的频率上翘特性曲线图;Figure 3 is the frequency upturning characteristic curve of the two modules;
图4为两个模块的电压幅值下垂特性曲线图;Fig. 4 is the voltage amplitude droop characteristic curve of two modules;
图5为由两个模块组成的ISOP逆变器系统的系统输入电压波形;Figure 5 is the system input voltage waveform of the ISOP inverter system composed of two modules;
图6为系统输入电压发生跃变时ISOP逆变器系统的两个模块各自的输入电压波形;Figure 6 shows the respective input voltage waveforms of the two modules of the ISOP inverter system when the system input voltage jumps;
图7为系统输入电压发生跃变时ISOP逆变器系统的两个模块各自的输出有功功率波形;Figure 7 shows the respective output active power waveforms of the two modules of the ISOP inverter system when the system input voltage jumps;
图8为系统输入电压发生跃变时ISOP逆变器系统的两个模块各自的输出无功功率波形。Fig. 8 shows the respective output reactive power waveforms of the two modules of the ISOP inverter system when the system input voltage jumps.
具体实施方式detailed description
下面结合具体实施方式对本发明的技术方案作进一步的介绍。The technical solution of the present invention will be further introduced below in combination with specific embodiments.
本发明方法针对的系统如图1所示,包括至少2个逆变器模块组成的输入串联输出并联的电路,各个逆变器模块均有各自独立相同的控制电路,并且各个控制电路之间无任何信息的交换,也即无互联。The system aimed at by the method of the present invention is shown in Figure 1, which includes an input series output parallel circuit composed of at least two inverter modules, each inverter module has its own independent and identical control circuit, and there is no connection between each control circuit. Any exchange of information, i.e. no interconnection.
本发明方法包括如下的步骤:The inventive method comprises the steps:
步骤1):对每个逆变器模块的滤波电感电流ILfi和输出电压Voi进行采样,通过功率计算单元计算每个逆变器模块输出的无功功率Qi,然后根据每个逆变器模块的输出参考电压幅值Vi与无功功率Qi的下垂特性曲线计算输出参考电压幅值Vi;Step 1): Sampling the filter inductor current I Lfi and output voltage V oi of each inverter module, calculating the reactive power Q i output by each inverter module through the power calculation unit, and then according to each inverter Calculate the output reference voltage amplitude V i from the droop characteristic curve of the output reference voltage amplitude V i and the reactive power Q i of the converter module;
步骤2):对每个逆变器模块的输入电压Vini进行采样,然后根据每个逆变器模块的频率fi与输入电压Vini的上翘特性曲线计算输出参考电压频率fi;Step 2): Sampling the input voltage V ini of each inverter module, and then calculating the output reference voltage frequency f i according to the upturned characteristic curve between the frequency f i of each inverter module and the input voltage V ini ;
步骤3):将步骤1)得到的输出参考电压幅值Vi和步骤2)得到的输出参考电压频率fi进行合成,得到输出参考电压Vrefi;Step 3): Synthesizing the output reference voltage amplitude V i obtained in step 1) and the output reference voltage frequency f i obtained in step 2), to obtain the output reference voltage V refi ;
步骤4):将步骤3)得到的输出参考电压Vrefi与步骤1)得到的输出电压Voi相减,经过PI调节器得到输出参考电流Irefi;Step 4): Subtract the output reference voltage V refi obtained in step 3) from the output voltage V oi obtained in step 1), and obtain the output reference current I refi through the PI regulator;
步骤5):将步骤4)得到的输出参考电流Irefi与步骤1)得到的滤波电感电流ILfi相减,通过PI调节器和输出电压调节器产生PWM波,来驱动逆变器模块的开关器件;Step 5): Subtract the output reference current I refi obtained in step 4) from the filter inductor current I Lfi obtained in step 1), and generate a PWM wave through the PI regulator and the output voltage regulator to drive the switch of the inverter module device;
以上各步骤中的i=1,2,...,N,N≥1。i=1, 2, . . . , N in the above steps, where N≥1.
其中,步骤1)中的每个逆变器模块的输出参考电压幅值Vi与无功功率Qi的下垂特性曲线的表达式为:Wherein, the expression of the droop characteristic curve of the output reference voltage amplitude V i and the reactive power Q i of each inverter module in step 1) is:
Vi=V'0i-KiQi (1)V i =V' 0i -K i Q i (1)
其中,Ki为电压幅值下垂系数,V'0i为空载电压幅值,i=1,2,...,N,N≥1。Wherein, K i is the voltage amplitude droop coefficient, V' 0i is the no-load voltage amplitude, i=1,2,...,N, N≥1.
步骤2)中的每个逆变器模块的频率fi与输入电压Vini的上翘特性曲线的表达式为:The expression of the upturned characteristic curve between frequency f i and input voltage V ini of each inverter module in step 2) is:
fi=f'0i+MiVini (2)f i =f' 0i +M i V ini (2)
其中,Mi为频率上翘系数,f'0i为空载频率,i=1,2,...,N,N≥1。Wherein, M i is the frequency upwarping coefficient, f' 0i is the no-load frequency, i=1,2,...,N, N≥1.
步骤3)按照如下的公式进行输出参考电压幅值Vi与输出参考电压频率fi的合成,得到输出参考电压Vrefi:Step 3) Combining the output reference voltage amplitude V i and the output reference voltage frequency f i according to the following formula to obtain the output reference voltage V refi :
Vrefi=Vi sin(2πfi·t+αi) (3)V refi =V i sin(2πf i ·t+α i ) (3)
其中,αi为初相角,t为时间变量,i=1,2,...,N,N≥1。Wherein, α i is the initial phase angle, t is the time variable, i=1,2,...,N, N≥1.
此外,逆变器模块可以包括两级结构,即前级为直流变换器,后级为逆变器。逆变器模块也可以为单级式高频连逆变器。In addition, the inverter module may include a two-stage structure, that is, the former stage is a DC converter, and the latter stage is an inverter. The inverter module can also be a single-stage high-frequency inverter.
下面以一个具体实施例来阐述本发明的技术方案。The technical solution of the present invention is described below with a specific embodiment.
为了简化对ISOP逆变器系统的分析,这里介绍由两个逆变器模块组成的ISOP逆变器系统,如图2所示。两个逆变器模块具有相同的频率上翘特性和电压幅值下垂特性,如图3、图4所示。假设ISOP逆变器系统稳定工作并且输出电压保持不变,两个逆变器模块的输入电压受到扰动,比如Vin1上升,Vin2下降,即Vin1>Vin/2>Vin2。对于1#逆变器模块而言,当Vin1上升时,由于频率上翘特性,其给定参考电压的频率foA将高于稳态运行时检测到的电压频率foO,经过PI调节器和PWM驱动器后,1#逆变器模块的输出频率将升高(即相位超前),即1#逆变器模块将输出更多的有功功率,由功率守恒,将使1#逆变器模块的Iin1增加,Icd1减小,从而其输入电压Vin1降低;同理,对于2#逆变器模块而言,当Vin2下降时,由于频率上翘特性,其给定参考电压的频率foB将低于稳态运行时检测到的电压频率foO,经过PI调节器和PWM驱动器后,2#逆变器模块的输出频率将降低(即相位超前),即2#逆变器模块将输出更少的有功功率,由功率守恒,2#逆变器模块的Iin2减小,Icd2增加,从而其输入电压Vin2升高,最终系统重新回到稳态。In order to simplify the analysis of the ISOP inverter system, the ISOP inverter system composed of two inverter modules is introduced here, as shown in Figure 2. The two inverter modules have the same frequency upturn characteristic and voltage amplitude droop characteristic, as shown in Fig. 3 and Fig. 4 . Assuming that the ISOP inverter system works stably and the output voltage remains constant, the input voltage of the two inverter modules is disturbed, for example, V in1 rises and V in2 drops, that is, V in1 >V in /2>V in2 . For the 1# inverter module, when V in1 rises, due to the frequency upturn characteristic, the frequency f oA of its given reference voltage will be higher than the voltage frequency f oO detected during steady-state operation, and through the PI regulator After connecting with the PWM driver, the output frequency of the 1# inverter module will increase (that is, the phase is advanced), that is, the 1# inverter module will output more active power, and the power conservation will make the 1# inverter module I in1 increases, I cd1 decreases, and its input voltage V in1 decreases; similarly, for the 2# inverter module, when V in2 decreases, due to the frequency upturn characteristic, the frequency of its given reference voltage f oB will be lower than the voltage frequency f oO detected during steady-state operation, after passing through the PI regulator and PWM driver, the output frequency of the 2# inverter module will decrease (that is, the phase is advanced), that is, the 2# inverter module It will output less active power. According to power conservation, the I in2 of the 2# inverter module decreases, and the I cd2 increases, so that its input voltage V in2 increases, and finally the system returns to the steady state.
其实,从功率守恒定理可知,由于各逆变器模块输入串联,控制逆变器模块的输入电压,也即控制了个逆变器模块的输出有功功率平衡。由于各逆变器模块的输入均压只能使其输出有功功率平衡,而对输出无功功率无约束作用,因此输出无功功率平衡仍采用传统的电压幅值下垂特性。In fact, it can be seen from the principle of power conservation that since the input of each inverter module is connected in series, the input voltage of the inverter module is controlled, that is, the output active power balance of each inverter module is controlled. Since the input voltage equalization of each inverter module can only make the output active power balance, but has no constraint on the output reactive power, the output reactive power balance still adopts the traditional voltage amplitude droop characteristic.
实施例中搭建由两个逆变器模块组成的ISOP逆变器仿真系统,每个逆变器模块主电路均为两级结构,即前级为直流变换器,用来实现电气隔离和电压变换功能,其输出稳定电压为后级逆变器的输入。图5描述了由两个模块组成的ISOP逆变器系统的系统输入电压波形,在t=1s时,系统输入电压从1000V跃变到1200V。图6描述了系统输入电压发生跃变时两个模块的各自的输入电压波形,其中Vin1为1#模块的输入电压、Vin2为2#模块的输入电压,从图中可以看出在系统输入电压发生跃变前后,系统均能保持稳定,并且两个模块都能很好地均分系统的输入电压。图7描述了系统输入电压发生跃变时两个模块的各自的输出有功功率波形,从图中可以看出系统输入电压发生跃变前后,两个模块输出有功功率相同。图8描述了系统输入电压发生跃变时两个模块的各自的输出无功功率波形,从图中可以看出系统输入电压发生跃变前后,两个模块输出无功功率相同。总之,从图5到图8可以看出,在系统输入电压跃变前后,ISOP逆变器系统都能较好地实现各模块的输入均压和输出功率的均分。由此可见,本发明提出的控制策略能使系统稳定且具有很高的可靠性。In the embodiment, an ISOP inverter simulation system composed of two inverter modules is built. The main circuit of each inverter module has a two-stage structure, that is, the front stage is a DC converter, which is used to realize electrical isolation and voltage conversion. function, its output stable voltage is the input of the subsequent inverter. Figure 5 describes the system input voltage waveform of the ISOP inverter system composed of two modules. When t = 1s, the system input voltage jumps from 1000V to 1200V. Figure 6 describes the respective input voltage waveforms of the two modules when the system input voltage jumps, where V in1 is the input voltage of the 1# module, and V in2 is the input voltage of the 2# module. It can be seen from the figure that in the system The system remains stable before and after a jump in the input voltage, and both modules share the input voltage of the system well. Figure 7 describes the respective output active power waveforms of the two modules when the system input voltage jumps. It can be seen from the figure that the output active power of the two modules is the same before and after the system input voltage jumps. Figure 8 describes the respective output reactive power waveforms of the two modules when the system input voltage jumps. It can be seen from the figure that the output reactive power of the two modules is the same before and after the system input voltage jumps. In a word, it can be seen from Fig. 5 to Fig. 8 that before and after the system input voltage jumps, the ISOP inverter system can better realize the equalization of the input voltage and output power of each module. It can be seen that the control strategy proposed by the present invention can make the system stable and have high reliability.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510347580.6A CN104917417B (en) | 2015-06-19 | 2015-06-19 | ISOP inverter system interconnection-free voltage-sharing control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510347580.6A CN104917417B (en) | 2015-06-19 | 2015-06-19 | ISOP inverter system interconnection-free voltage-sharing control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104917417A CN104917417A (en) | 2015-09-16 |
CN104917417B true CN104917417B (en) | 2017-04-26 |
Family
ID=54086195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510347580.6A Active CN104917417B (en) | 2015-06-19 | 2015-06-19 | ISOP inverter system interconnection-free voltage-sharing control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104917417B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106452149B (en) * | 2016-10-26 | 2019-03-19 | 东南大学 | A kind of ISOP inverter system with output voltage bending upwards is without interconnection Pressure and Control strategy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101345490A (en) * | 2008-08-26 | 2009-01-14 | 南京航空航天大学 | Control method of full-load input voltage equalization of input series output parallel combined converter |
CN102013826A (en) * | 2010-12-01 | 2011-04-13 | 北京理工大学 | Stable current control method for input-series output-parallel high-frequency link inverter module |
CN103312150A (en) * | 2013-05-21 | 2013-09-18 | 东南大学 | Voltage balancing control method of input-series and output-parallel combined converter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8536735B2 (en) * | 2009-02-27 | 2013-09-17 | Delta Electronics (Shanghai) Co., Ltd. | Converter with input voltage balance circuit |
-
2015
- 2015-06-19 CN CN201510347580.6A patent/CN104917417B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101345490A (en) * | 2008-08-26 | 2009-01-14 | 南京航空航天大学 | Control method of full-load input voltage equalization of input series output parallel combined converter |
CN102013826A (en) * | 2010-12-01 | 2011-04-13 | 北京理工大学 | Stable current control method for input-series output-parallel high-frequency link inverter module |
CN103312150A (en) * | 2013-05-21 | 2013-09-18 | 东南大学 | Voltage balancing control method of input-series and output-parallel combined converter |
Non-Patent Citations (3)
Title |
---|
WIRELESS INPUT-VOLTAGE-SHARING CONTROL STRATEGY FOR INPUT-SERIES OUTPUT-PARALLEL(ISOP) SYSTEM BASED ON POSITIVE OUTPUT-VOLTAGE GRADIENT METHOD;陈武等;《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》;20141130;第61卷(第11期);第6022-6030页 * |
基于功率下垂特性的逆变器无线并联控制技术;周玉柱等;《电力电子技术》;20070430;第41卷(第4期);第9-11页 * |
基于输出电压上翘特性的串-并型组合变换器无互联均压控制策略;陈武等;《电工技术学报》;20131031;第28卷(第10期);第188-194页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104917417A (en) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bi et al. | A capacitor clamped H-type boost DC-DC converter with wide voltage-gain range for fuel cell vehicles | |
Saeedian et al. | Step‐up switched‐capacitor module for cascaded MLI topologies | |
CN107612405B (en) | Photovoltaic solid-state transformer | |
EP2770624B1 (en) | Method and apparatus for producing three-phase current | |
Das et al. | Analysis of dual-inductor hybrid converters for extreme conversion ratios | |
CN103312150B (en) | A kind of pressure equalizing control method of input series and output parallel combined converter | |
Qureshi et al. | Double integral sliding mode control of continuous gain four quadrant quasi-Z-source converter | |
CN103812369B (en) | Modulation Method and Modulation Controller for Modular Multilevel Converter | |
CN102820672B (en) | Flexible direct current transmission system connected with alternating current power grids of different voltage classes | |
CN105071678A (en) | Limited switch state model prediction control method and device | |
CN107592017A (en) | A kind of DC DC converters and control method | |
Nguyen et al. | Cascaded TZ‐source inverters | |
Thiyagarajan et al. | Modeling and analysis of novel multilevel inverter topology with minimum number of switching components | |
CN104702115A (en) | Method of equally dividing power of input-parallel output-parallel modularized DC (Direct Current) converter | |
Lyu et al. | Comparison of GaN based switched-tank converter and cascaded voltage divider | |
Alnuman et al. | A single-source switched-capacitor 13-level high gain inverter with lower switch stress | |
CN111490695A (en) | Single-stage low-voltage stress switch capacitance type multi-level inverter topological structure and level modulation method | |
CN106452149A (en) | Non-interconnected voltage control strategy for ISOP inverter system having characteristic of output voltage rise | |
CN104917417B (en) | ISOP inverter system interconnection-free voltage-sharing control method | |
Zou et al. | Switched capacitor cell based Dc-dc and Dc-ac converters | |
US12224665B2 (en) | Power conversion system and control method | |
Bharatiraja et al. | A hybrid cascaded multilevel inverter with diode assisted boosting network | |
Chen et al. | An interleaved five-level boost converter with voltage-balance control | |
Liu et al. | Modular multilevel converter (MMC) based resonant high voltage multiplier | |
Georgious et al. | Series-parallel connection of low-voltage sources for integration of galvanically isolated energy storage systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |