CN104911201B - A kind of genetic modification method improving baculoviral insecticidal efficiency - Google Patents
A kind of genetic modification method improving baculoviral insecticidal efficiency Download PDFInfo
- Publication number
- CN104911201B CN104911201B CN201510352107.7A CN201510352107A CN104911201B CN 104911201 B CN104911201 B CN 104911201B CN 201510352107 A CN201510352107 A CN 201510352107A CN 104911201 B CN104911201 B CN 104911201B
- Authority
- CN
- China
- Prior art keywords
- clbi138
- egfp
- asn
- gene
- thr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明涉及一种提高杆状病毒杀虫效率的遗传改造方法,属于基因工程领域;本发明以pEGFP‑N1载体为模板扩增EGFP基因,双酶切后连入质粒pFastBacDUAL,得重组质粒pDUAL‑EGFP;根据Clbi138基因序列及其开放阅读框设计合成引物;以豆天蛾核型多角体病毒基因组DNA作为模板,进行PCR扩增,回收目的片段,双酶切后连入经同样双酶切的重组质粒pDUAL‑EGFP,得重组质粒pDUAL‑EGFP‑Clbi138;转化含有家蚕核型多角体病毒的大肠杆菌菌株,培养纯化后接种于LB液体培养基,振荡培养,提取重组BmNPV DNA;并通过实验首次证实重组BmNPV的杀虫效率显著增强,半致死浓度比对照组减少11倍,半数致死时间比对照组缩短42.9%,且病虫体内液化更严重,从而达到提高虫害的防治效果,具有明显的经济和生态效益,具有广阔的应用前景。
The invention relates to a genetic transformation method for improving the insecticidal efficiency of baculovirus, belonging to the field of genetic engineering; the invention uses pEGFP-N1 carrier as a template to amplify the EGFP gene, and after double enzyme digestion, it is connected into the plasmid pFastBacDUAL to obtain the recombinant plasmid pDUAL-N1 EGFP; according to the sequence of Clbi138 gene and its open reading frame, design and synthesize primers; use the Genomic DNA of Hornmotha nucleopolyhedrosis virus as a template, carry out PCR amplification, recover the target fragment, and connect it into the same double-digested DNA after double-enzyme digestion. The recombinant plasmid pDUAL‑EGFP was obtained as the recombinant plasmid pDUAL‑EGFP‑Clbi138; transformed into an Escherichia coli strain containing the silkworm nuclear polyhedrosis virus, cultured and purified, inoculated in LB liquid medium, shaken and cultured, and the recombinant BmNPV DNA was extracted; and passed the experiment for the first time It is confirmed that the insecticidal efficiency of recombinant BmNPV is significantly enhanced, the half-lethal concentration is 11 times lower than that of the control group, the half-lethal time is 42.9% shorter than that of the control group, and the liquefaction of the pests is more serious, so as to improve the control effect of insect pests and have obvious economic benefits. And ecological benefits, has broad application prospects.
Description
技术领域technical field
本发明涉及一种提高杆状病毒杀虫效率的遗传改造方法,属于基因工程领域。The invention relates to a genetic modification method for improving the insecticidal efficiency of baculovirus, which belongs to the field of genetic engineering.
背景技术Background technique
利用病毒防治害虫,不仅防治效果好, 而且对人畜安全、对天敌安全、不污染环境、不使害虫产生抗药性。此外,病毒能在环境中积累,在害虫种群中形成流行病而长期控制害虫虫口密度,具有明显的经济和生态效益,是目前比较理想和有发展前途的生物杀虫剂。The use of viruses to control pests not only has a good control effect, but also is safe for humans and animals, safe for natural enemies, does not pollute the environment, and does not make pests resistant to pesticides. In addition, the virus can accumulate in the environment, form an epidemic in the pest population and control the pest population density for a long time, which has obvious economic and ecological benefits, and is currently an ideal and promising biopesticide.
杆状病毒杀虫剂以其不污染环境、不破坏生态平衡、对天敌及人畜安全、害虫不易产生抗性、能在田间长期控制害虫种群等优点,成为生物防治研究中的热点,在生产上有着广阔的应用前景。但杀虫速度慢等缺点制约着其进一步推广和应用。基因工程技术为增强杆状病毒杀虫效果提供了潜在的可能性。目前,提高重组杆状病毒杀虫毒性的研究主要集中于利尿激素(DH)基因、保幼激素酯(JHE)基因、蜕皮激素(MH)基因、几丁质酶(Chitinase)基因、增效蛋白(enhancin)基因、Bt基因、神经毒素基因、植物蛋白酶抑制剂基因等(吕鸿声,昆虫病毒分子生物学,中国农业科技出版社,1998年,北京),但多数基因提高杆状病毒杀虫效果尚不理想。Baculovirus insecticides have become a hotspot in biological control research due to their advantages of not polluting the environment, not destroying ecological balance, being safe to natural enemies and humans and animals, not easy to produce resistance to pests, and being able to control pest populations in the field for a long time. It has broad application prospects. However, the disadvantages such as slow insecticidal speed restrict its further popularization and application. Genetic engineering technology provides a potential possibility to enhance the insecticidal effect of baculovirus. At present, research on improving the insecticidal toxicity of recombinant baculoviruses mainly focuses on the diuretic hormone (DH) gene, juvenile hormone ester (JHE) gene, ecdysone (MH) gene, chitinase (Chitinase) gene, synergistic protein (enhancin) gene, Bt gene, neurotoxin gene, plant protease inhibitor gene etc. not ideal.
核型多角体病毒(NPV)对鳞翅目幼虫具有很高的致病力,是昆虫病毒种类中最具潜力者,也是研究应用最广泛的一类。目前,国内外商品化生产的昆虫病毒制剂,绝大部分是NPV(核型多角体病毒杀虫剂的开发. 左拴彦等.山西农业大学学报. 1998,,1(4):302-305)。家蚕核型多角体病毒(BmNPV)属于甲型杆状病毒属,是杆状病毒的一种,也是宿主域较宽的杆状病毒之一,可感染多种农林害虫。为使杆状病毒成为理想的生物杀虫剂,利用生物技术对野生型病毒进行改造是目前提高杆状病毒杀虫效果的最有效最优前景的途径。Nuclear polyhedrosis virus (NPV) has high pathogenicity to Lepidoptera larvae, is the most potential among insect virus types, and is also the most widely used type of research. At present, most of the commercially produced insect virus preparations at home and abroad are NPV (Nuclear polyhedrosis virus insecticide development. Zuo Shuanyan et al. Journal of Shanxi Agricultural University. 1998, 1(4): 302-305 ). Bombyx mori nuclear polyhedrosis virus (BmNPV) belongs to the genus Baculovirus A, is a type of baculovirus, and is also one of the baculoviruses with a wide host domain. It can infect a variety of agricultural and forestry pests. In order to make baculovirus an ideal biological insecticide, the most effective and promising way to improve the insecticidal effect of baculovirus is to modify the wild-type virus by using biotechnology.
豆天蛾核型多角体病毒(Clanis bilineata nucleopolyhedrovirus;Shan-YingZhu, Jian-Ping Yi, Wei-De Shen, Li-Qun Wang, Hua-Gang He, Yong Wang, Bing Liand Wen-Bing Wang. Genomic sequence, organization and characteristics of anew nucleopolyhedrovirus isolated from Clanis bilineata larva,BMC Genomics,2009,10:91)的Clbi138基因(在GenBank中的登录号为DQ504428)全长3111个碱基,其推导的蛋白质序列全长1036个氨基酸,在N端和C端分别具有一个信号肽(SP)和跨膜结构域(TM),并在内部存在一个金属蛋白酶特征序列,即与锌离子结合相关的HEXXH模序。对已完成全基因组测序的杆状病毒进行检索,发现Clbi138同源物在所有II类α-杆状病毒中保守存在,此外还见于桑灯蛾昆虫痘病毒(AmEPV)等。但是,Clbi138及其同源物的功能尚不明确。 Clanis bilineata nucleopolyhedrovirus; Shan-YingZhu, Jian-Ping Yi, Wei-De Shen, Li-Qun Wang, Hua-Gang He, Yong Wang, Bing Liand Wen-Bing Wang. Genomic sequence, organization and characteristics of a new nucleopolyhedrovirus isolated from Clanis bilineata larva, BMC Genomics, 2009, 10:91) the Clbi138 gene (the accession number in GenBank is DQ504428) has a full length of 3111 bases, and its deduced protein sequence has a full length of 1036 Amino acids have a signal peptide (SP) and a transmembrane domain (TM) at the N-terminus and C-terminus respectively, and there is a metalloprotease characteristic sequence inside, that is, the HEXXH module related to zinc ion binding. A search of baculoviruses whose whole genomes have been sequenced revealed that Clbi138 homologues are conserved in all class II α-baculoviruses, and also found in Ameppox virus (AmEPV) and others. However, the functions of Clbi138 and its homologues are still unclear.
本发明提供一种利用豆天蛾核型多角体病毒Clbi138基因提高杆状病毒家蚕核型多角体病毒(BmNPV)杀虫效率的方法,家蚕核型多角体病毒(BmNPV)基因组中没有Clbi138同源物,因此将Clbi138基因导入BmNPV,以研究Clbi138的功能,并通过实验首次证实Clbi138基因提高杆状病毒杀虫效率,并通过定点突变研究证实HEXXH模序对Clbi138蛋白生物学功能的重要性,从而证实Clbi138基因编码了一种金属蛋白酶。The invention provides a method for improving insecticidal efficiency of the baculovirus Bombyx mori nuclear polyhedrosis virus (BmNPV) by using the Clbi138 gene of the bean moth nucleopolyhedrosis virus (BmNPV). There is no Clbi138 homology in the silkworm nuclear polyhedrosis virus (BmNPV) genome Therefore, the Clbi138 gene was introduced into BmNPV to study the function of Clbi138, and it was first confirmed by experiments that the Clbi138 gene improved the insecticidal efficiency of baculovirus, and the importance of the HEXXH motif to the biological function of the Clbi138 protein was confirmed by site-directed mutagenesis studies, thus It was confirmed that the Clbi138 gene encodes a metalloprotease.
发明内容Contents of the invention
本发明的目的在于公开一种利用豆天蛾核型多角体病毒Clbi138基因提高杆状病毒杀虫效率的遗传改造方法。The object of the invention is to disclose a genetic modification method for improving the insecticidal efficiency of baculovirus by utilizing the Clbi138 gene of the bean hornworm nuclear polyhedrosis virus.
本发明所述的来自豆天蛾核型多角体病毒(ClbiNPV)的Clbi138基因(GenBank登录号为DQ504428,SEQ ID NO.1所示,其氨基酸序列如SEQ ID NO.2所示),来自豆天蛾核型多角体病毒,该基因的开放阅读框(ORF)全长为3111个碱基,编码1036个氨基酸,含HEXXH模序,针对HEXXH模序的基因定点突变研究证实,Clbi138基因具有金属蛋白酶活性。The Clbi138 gene (GenBank accession number is DQ504428, shown in SEQ ID NO.1, and its amino acid sequence is shown in SEQ ID NO.2) from bean hornworm nuclear polyhedrosis virus (ClbiNPV) according to the present invention comes from soybean The hawkmoth nuclear polyhedrosis virus, the open reading frame (ORF) of the gene is 3111 bases long, encodes 1036 amino acids, and contains the HEXXH motif. The site-directed mutation study of the HEXXH motif has confirmed that the Clbi138 gene has metal protease activity.
Clbi138及其同源物在II类α杆状病毒中广泛存在,但其功能尚不明确,由于Clbi138及其同源物都具有与金属蛋白酶相关的保守的HEXXH模序,易推测它们也具有相似的功能;Clbi138及其同源物中其他序列也易被取代,从而产生仍具有生物学活性的突变体。Clbi138 and its homologues are widely found in class II α-baculoviruses, but their functions are still unclear. Since Clbi138 and its homologues all have the conserved HEXXH motif associated with metalloproteases, it is easy to speculate that they also have similar function; other sequences in Clbi138 and its homologues are also easily substituted, resulting in mutants that still have biological activity.
本发明采用以下技术方案以达到上述目的:The present invention adopts the following technical solutions to achieve the above object:
本发明提供一种利用豆天蛾核型多角体病毒Clbi138基因提高杆状病毒杀虫效率的方法,该方法主要包括以下步骤:The present invention provides a method for improving the insecticidal efficiency of baculovirus by using the gene of the bean hornworm nucleopolyhedrosis virus Clbi138 . The method mainly includes the following steps:
(1)以pEGFP-N1载体为模板,利用PCR技术扩增EGFP基因,经KpnI和XhoI双酶切后连入供体质粒pFastBacDUAL,形成重组质粒pDUAL-EGFP;(1) Using the pEGFP-N1 vector as a template, the EGFP gene was amplified by PCR technology, digested with KpnI and XhoI, and then ligated into the donor plasmid pFastBacDUAL to form the recombinant plasmid pDUAL-EGFP;
(2)根据Clbi138基因的开放阅读框设计并合成一对引物P3(SEQ ID NO.5)、P4(SEQ ID NO.6),下划线部分为BamHI和KpnI酶切位点;根据Clbi138基因再设计1条引物P5(SEQ ID NO.7),下划线部分为HindIII的酶切位点。(2) Design and synthesize a pair of primers P3 (SEQ ID NO.5) and P4 (SEQ ID NO.6) according to the open reading frame of the Clbi138 gene, the underlined parts are BamHI and KpnI restriction sites; redesign according to the Clbi138 gene One primer P5 (SEQ ID NO.7), the underlined part is the restriction site of HindIII.
(3)以豆天蛾核型多角体病毒(ClbiNPV)基因组DNA作为模板,以P3/P5为引物进行PCR扩增后,琼脂糖凝胶电泳切胶回收目的片段,经BamHI和HindIII双酶切后,连入经同样双酶切重组质粒pDUAL-EGFP,形成重组供体质粒pDUAL-EGFP-Clbi138。(3) Using the genomic DNA of the bean hornworm nuclear polyhedrosis virus (ClbiNPV) as a template and using P3/P5 as primers for PCR amplification, the target fragment was recovered by agarose gel electrophoresis and double-digested by BamHI and HindIII Afterwards, the recombinant plasmid pDUAL-EGFP was connected with the same double digestion to form the recombinant donor plasmid pDUAL-EGFP-Clbi138.
(4)分别取pDUAL-EGFP 、pDUAL-EGFP-Clbi138转化含有BmNPV的大肠杆菌DH10B菌株,涂布于LB平板培养基,静止培养使蓝斑显色充分,挑取白色菌落,进一步在LB平板培养基上划线纯化;将纯化的白色菌落接种于含卡那霉素、四环素、庆大霉素的LB液体培养基,37℃振荡培养18~20h,提取重组BmNPV DNA(vBmEGFP、vBmEGFP/Clbi138)。(4) Take pDUAL-EGFP and pDUAL-EGFP-Clbi138 to transform Escherichia coli DH10B strain containing BmNPV respectively, spread on LB plate medium, culture statically to make the blue spots fully develop color, pick white colonies, and further culture on LB plates Purify by streaking on the substrate; inoculate the purified white colonies in LB liquid medium containing kanamycin, tetracycline, and gentamicin, culture with shaking at 37°C for 18-20 hours, and extract recombinant BmNPV DNA (vBm EGFP , vBm EGFP/ Clbi138 ).
本发明的有益效果:Beneficial effects of the present invention:
该方法将来自豆天蛾核型多角体病毒(ClbiNPV)的Clbi138基因(SEQ ID NO.1)导入家蚕核型多角体病毒(BmNPV)后,重组BmNPV的杀虫效率显著增强,半致死浓度(LC50)为12.51 pfu,比对照组减少11倍,半数致死时间(LT50)为84.12 h,比对照组缩短42.9%,且病虫体内液化更严重。因此,Clbi138基因及其编码的蛋白质在害虫的防治领域具有重要应用价值。In this method, after the Clbi138 gene (SEQ ID NO.1) from the bean hornworm nucleopolyhedrosis virus (ClbiNPV) was introduced into the silkworm nucleopolyhedrosis virus (BmNPV), the insecticidal efficiency of the recombinant BmNPV was significantly enhanced, and the half-lethal concentration ( LC 50 ) was 12.51 pfu, which was 11 times lower than that of the control group, and the median lethal time (LT 50 ) was 84.12 h, which was 42.9% shorter than that of the control group, and the liquefaction in the pest body was more serious. Therefore, the Clbi138 gene and its encoded protein have important application value in the field of pest control.
本发明中所述Clbi138是一种金属蛋白酶,能参与病虫体内组织的降解。将Clbi138基因导入家蚕核型多角体病毒(BmNPV)能显著降低重组病毒的半致死浓度,缩短害虫的半致死时间,并加速病虫体内组织降解,从而达到提高虫害的防治效果,具有明显的经济和生态效益,具有广阔的应用前景。The Clbi138 described in the present invention is a metalloprotease that can participate in the degradation of tissues in the body of diseased insects. Introducing the Clbi138 gene into the silkworm nuclear polyhedrosis virus (BmNPV) can significantly reduce the half-lethal concentration of the recombinant virus, shorten the half-lethal time of the pest, and accelerate the degradation of the internal tissue of the pest, so as to improve the control effect of the pest, and has obvious economic benefits. And ecological benefits, has broad application prospects.
附图说明Description of drawings
图1:Clbi138基因的RT-PCR结果。M:DL2000 DNA marker;1~8为Clbi138基因的RT-PCR产物,ClbiNPV感染幼虫的时间依次为0h,4h,8h,12h,24h,48h,72h,96h;9~16为Clbipoh基因的RT-PCR产物,感染时间依次为0h,4h,8h,12h,24h,48h,72h,96h。Figure 1: RT-PCR results of Clbi138 gene. M: DL2000 DNA marker; 1~8 are RT-PCR products of Clbi138 gene, and the time of ClbiNPV infection larvae is 0h, 4h, 8h, 12h, 24h, 48h, 72h, 96h; 9~16 are RT-PCR products of Clbipoh gene PCR products, the infection time is 0h, 4h, 8h, 12h, 24h, 48h, 72h, 96h.
图2:Clbi138 HEXXH模序的定点突变。图为通过基因定点突变技术创造的突变位点的测序鉴定。Figure 2: Site-directed mutagenesis of the Clbi138 HEXXH motif. The picture shows the sequencing identification of mutation sites created by gene site-directed mutagenesis technology.
图3:杆状病毒病毒感染死亡的家蚕。A:vBmEGFP/Clbi138感染家蚕(死亡后24h);Figure 3: Bombyx mori killed by baculovirus infection. A: vBm EGFP/Clbi138 infected silkworm (24h after death);
B:vBmEGFP感染家蚕(死亡后24h,对照组)。B: Bombyx mori infected with vBm EGFP (24 hours after death, control group).
图4:Clbi138 HEXXH模序突变的病毒学效应。1-4:依次为vBmEGFP、vBm EGFP/Clbi138M1、vBm EGFP/Clbi138M2和vBm EGFP/Clbi138M3感染3天的家蚕(无死亡个体),5:vBm EGFP/Clbi138感染3天刚死亡的家蚕。Figure 4: Virological effects of Clbi138 HEXXH motif mutations. 1-4: Bombyx mori infected with vBm EGFP , vBm EGFP/Clbi138M1 , vBm EGFP/Clbi138M2 and vBm EGFP/Clbi138M3 for 3 days (no dead individuals), 5: Bombyx mori that had just died after 3 days of infection with vBm EGFP/Clbi138 .
图5:Clbi138及其同源物多序列比对(局部)。阴影所示为保守序列,双下划线所示为高度保守的HEXXH模序,是金属蛋白酶的活性中心。Figure 5: Multiple sequence alignment of Clbi138 and its homologues (partial). The shaded shows the conserved sequence, and the double underline shows the highly conserved HEXXH motif, which is the active center of the metalloprotease.
具体实施方式Detailed ways
Clbi138基因的表达模式分析Analysis of the expression pattern of Clbi138 gene
根据ClbiNPV基因组Clbi138基因(在GenBank中的登录号为DQ504428)序列设计并合成一对引物P1(SEQ ID NO.3)、P2(SEQ ID NO.4)。A pair of primers P1 (SEQ ID NO.3) and P2 (SEQ ID NO.4) were designed and synthesized according to the sequence of the Clbi138 gene of the ClbiNPV genome (the accession number in GenBank is DQ504428).
采用Trizol试剂提取ClbiNPV感染的雀纹天蛾(野外收集虫卵后人工饲养)中肠的RNA,进行RT-PCR分析,所采用的PCR反应条件为: 94℃ 4min; 94℃ 20s,56℃ 30s,72 ℃1min, 30个循环;72℃ 5min。Clbi138基因在病毒感染宿主12h时即有少量转录,转录时间比ClbiNPV基因组中多角体(Clbipoh)基因早12h,随着感染时间的延长,Clbi138基因的转录逐渐增强(见图1)。Trizol reagent was used to extract the RNA of the midgut of Mangnathus moth infected by ClbiNPV (the eggs were collected in the field and reared artificially), and then analyzed by RT-PCR. The PCR reaction conditions used were: 94°C for 4min; 94°C for 20s, 56°C for 30s , 72°C for 1min, 30 cycles; 72°C for 5min. The Clbi138 gene was slightly transcribed 12 hours after the virus infected the host, and the transcription time was 12 hours earlier than the polyhedron (Clbipoh) gene in the ClbiNPV genome. As the infection time prolongs, the transcription of the Clbi138 gene gradually increased (see Figure 1).
2.Clbi138蛋白的亚细胞定位分析2. Subcellular localization analysis of Clbi138 protein
以pEGFP-N1载体(购自TAKARA公司)为模板,利用PCR技术扩增EGFP(增强型绿色荧光蛋白)基因,经KpnI和HindIII双酶切后连入供体质粒pFastBac1(购自Invitrogen公司),形成重组质粒pFB-EGFP。Using the pEGFP-N1 vector (purchased from TAKARA Company) as a template, the EGFP (Enhanced Green Fluorescent Protein) gene was amplified by PCR technology, digested with KpnI and HindIII, and then ligated into the donor plasmid pFastBac1 (purchased from Invitrogen Company), The recombinant plasmid pFB-EGFP was formed.
根据Clbi138基因的开放阅读框(ORF)设计并合成一对引物P3(SEQ ID NO.5)、P4(SEQ ID NO.6)。下划线部分为BamHI和KpnI酶切位点。According to the open reading frame (ORF) of Clbi138 gene, a pair of primers P3 (SEQ ID NO.5) and P4 (SEQ ID NO.6) were designed and synthesized. The underlined part is the restriction site of BamHI and KpnI.
以ClbiNPV基因组DNA作为模板进行PCR扩增,PCR反应条件为: 94℃ 4min; 94℃20s,50℃ 30s,72 ℃ 3min, 32个循环;72℃ 5min。1.0%琼脂糖凝胶电泳后,切胶回收目的片段,经BamHI和KpnI双酶切后,连入经同样双酶切的上述重组质粒pFB-EGFP,形成重组供体质粒pFB-Clbi138-EGFP,转染BmN细胞48h后,激光共聚焦显微镜下观察,绿色荧光信号位于细胞核周边,根据DAPI染色的核区可判断,Clbi138蛋白可定位于BmN细胞的细胞核膜。PCR amplification was performed using ClbiNPV genomic DNA as a template. The PCR reaction conditions were: 94°C for 4min; 94°C for 20s, 50°C for 30s, 72°C for 3min, 32 cycles; 72°C for 5min. After 1.0% agarose gel electrophoresis, the target fragment was recovered by cutting the gel, and after double digestion with BamHI and KpnI, it was connected into the above-mentioned recombinant plasmid pFB-EGFP that had been cut with the same double digestion to form the recombinant donor plasmid pFB-Clbi138-EGFP, 48 hours after the transfection of BmN cells, the green fluorescent signal was located around the nucleus when observed under a laser confocal microscope. According to the nuclear area stained with DAPI, the Clbi138 protein could be localized in the nuclear membrane of BmN cells.
含Clbi138基因的重组杆状病毒的构建Construction of Recombinant Baculovirus Containing Clbi138 Gene
以pEGFP-N1载体(购自TAKARA公司)为模板,利用PCR技术扩增EGFP基因,经KpnI和XhoI双酶切后连入供体质粒pFastBacDUAL(购自Invitrogen公司),形成重组质粒pDUAL-EGFP。Using the pEGFP-N1 vector (purchased from TAKARA) as a template, the EGFP gene was amplified by PCR technology, digested with KpnI and XhoI, and then ligated into the donor plasmid pFastBacDUAL (purchased from Invitrogen) to form the recombinant plasmid pDUAL-EGFP.
家蚕核型多角体病毒(BmNPV)基因组中没有Clbi138同源物,因此可将Clbi138基因导入BmNPV,以研究Clbi138的功能。There is no Clbi138 homologue in the silkworm nuclear polyhedrosis virus (BmNPV) genome, so the Clbi138 gene can be introduced into BmNPV to study the function of Clbi138.
根据Clbi138基因再设计1条引物P5(SEQ ID NO.7),下划线部分为HindIII的酶切位点。A primer P5 (SEQ ID NO.7) was designed based on the Clbi138 gene, and the underlined part is the restriction site of HindIII.
以ClbiNPV基因组DNA作为模板,以P3/P5为引物进行PCR扩增,PCR反应条件为: 94℃ 4min; 94℃ 20s,50℃ 30s,72 ℃ 3min, 32个循环; 72℃ 5min。1.0%琼脂糖凝胶电泳后,切胶回收目的片段,经BamHI和HindIII双酶切后,连入经同样双酶切的上述重组质粒pDUAL-EGFP,形成重组供体质粒pDUAL-EGFP-Clbi138,其中EGFP基因位于p10启动子下游,Clbi138基因位于多角体基因(PH)启动子下游。Using ClbiNPV genomic DNA as a template and P3/P5 as primers for PCR amplification, the PCR reaction conditions were: 94°C for 4min; 94°C for 20s, 50°C for 30s, 72°C for 3min, 32 cycles; 72°C for 5min. After 1.0% agarose gel electrophoresis, the target fragment was recovered by cutting the gel, and after double digestion with BamHI and HindIII, it was connected into the above-mentioned recombinant plasmid pDUAL-EGFP that had been cut with the same double enzymes to form the recombinant donor plasmid pDUAL-EGFP-Clbi138, The EGFP gene is located downstream of the p10 promoter, and the Clbi138 gene is located downstream of the polyhedron gene (PH) promoter.
分别取5μL pDUAL-EGFP 、pDUAL-EGFP-Clbi138转化含有BmNPV的大肠杆菌DH10B菌株,涂布于LBac平板,37℃静止培养24~48 h,使蓝斑显色充分,挑取白色菌落,进一步在LBac平板上划线纯化。将纯化的白色菌落接种于LB液体培养基(含卡那霉素50µg/mL、四环素50µg/mL、庆大霉素70µg/mL),37℃振荡培养18~20h,提取重组BmNPV DNA(vBmEGFP、vBmEGFP /Clbi138)。使用脂质体转染法,将重组BmNPV(vBmEGFP、vBmEGFP/Clbi138)转染BmN细胞,继续培养3~5天,低速离心收集细胞上清液,经多次复感扩增后,收集上清液中的BV粒子。借助绿色荧光信号,采用末端终止法测定两种重组病毒的滴度,分别为1.2×107PFU/mL,1.6×107PFU/mL。Take 5 μL of pDUAL-EGFP and pDUAL-EGFP-Clbi138 to transform the Escherichia coli DH10B strain containing BmNPV, spread it on the LBac plate, and culture it statically at 37°C for 24-48 h, so that the color of the blue spot is fully developed, and the white colony is picked, and further in the Streak purification on LBac plates. The purified white colony was inoculated in LB liquid medium (containing kanamycin 50 µg/mL, tetracycline 50 µg/mL, gentamicin 70 µg/mL), cultured with shaking at 37°C for 18-20 h, and extracted recombinant BmNPV DNA (vBm EGFP , vBmEGFP /Clbi138 ). Using liposome transfection method, transfect BmN cells with recombinant BmNPV ( vBmEGFP , vBmEGFP/Clbi138 ), continue to culture for 3~5 days, collect cell supernatant by low-speed centrifugation, and collect BV particles in the supernatant. With the aid of the green fluorescent signal, the titers of the two recombinant viruses were determined by the terminal termination method, and they were 1.2×10 7 PFU/mL and 1.6×10 7 PFU/mL, respectively.
Clbi138基因HEXXH模序的定点突变Site-directed Mutation of HEXXH Motif in Clbi138 Gene
根据Clbi138基因序列设计合成3组引物P6(SEQ ID NO.8)和P7(SEQ ID NO.9),P8(SEQ ID NO.10)和P9(SEQ ID NO.11),P10(SEQ ID NO.12)和P11(SEQ ID NO.13)。采用重叠PCR法进行基因定点突变。According to the Clbi138 gene sequence, three sets of primers P6 (SEQ ID NO.8) and P7 (SEQ ID NO.9), P8 (SEQ ID NO.10) and P9 (SEQ ID NO.11), P10 (SEQ ID NO. .12) and P11 (SEQ ID NO.13). Gene site-directed mutagenesis was performed by overlapping PCR.
以野生型Clbi138基因为模板,以引物P6和P5进行扩增,从琼脂糖凝胶中回收目的片段138M1-1;以引物P3和P7进行扩增,从琼脂糖凝胶中回收目的片段138M1-2;等比例混合胶回收产物138M1-1和138M1-2,以P6和P7进行扩增,获得突变的Clbi138M1基因。Use the wild-type Clbi138 gene as a template, amplify with primers P6 and P5, and recover the target fragment 138M1-1 from the agarose gel; amplify with primers P3 and P7, and recover the target fragment 138M1-1 from the agarose gel 2. The products 138M1-1 and 138M1-2 were recovered by mixing gels in equal proportions, and amplified with P6 and P7 to obtain the mutated Clbi138M1 gene.
用同样方法,利用引物P8和P9创造突变的Clbi138M2基因,利用引物P10和P11创造突变的Clbi138M3基因。In the same way, primers P8 and P9 were used to create a mutated Clbi138M2 gene, and primers P10 and P11 were used to create a mutated Clbi138M3 gene.
将三个突变基因Clbi138M1、Clbi138M2、Clbi138M3进行测序鉴定,均含预期的点突变位点(见图2)。在三个突变基因的编码产物中,HEXXH模序分别突变为AEXXH、HAXXH、HEXXA。The three mutant genes Clbi138M1 , Clbi138M2, and Clbi138M3 were sequenced and identified, all of which contained expected point mutation sites (see Figure 2). In the coding products of the three mutant genes, the HEXXH motifs were mutated into AEXXH, HAXXH, and HEXXA, respectively.
按步骤3中的方法,分别将3个突变的Clbi138基因导入含EGFP基因的BmNPV,形成重组病毒vBmEGFP/Clbi138M1、vBmEGFP/Clbi138M2、vBmEGFP/Clbi138M3。According to the method in step 3, respectively introduce the three mutated Clbi138 genes into the BmNPV containing the EGFP gene to form recombinant viruses vBm EGFP/Clbi138M1 , vBm EGFP/Clbi138M2 , and vBm EGFP/Clbi138M3 .
Clbi138基因可增强重组杆状病毒的杀虫效率的验证Verification that Clbi138 gene can enhance the insecticidal efficiency of recombinant baculovirus
分别以相同滴度的重组病毒BV(vBmEGFP、vBmEGFP/Clbi138、vBmEGFP/Clbi138M1、vBmEGFP /Clbi138M2、vBmEGFP/Clbi138M3)注射五龄家蚕,每头家蚕注射1×104PFU,每组注射50头,添桑叶正常饲养,观察并统计死亡数量。Five instar silkworms were injected with the same titer of recombinant virus BV (vBm EGFP , vBm EGFP/Clbi138 , vBm EGFP/Clbi138M1 , vBm EGFP /Clbi138M2 , vBm EGFP/Clbi138M3 ), and each silkworm was injected with 1×10 4 PFU, each group Inject 50 heads, add mulberry leaves to raise normally, observe and count the number of deaths.
研究结果表明,vBmEGFP/Clbi138感染的家蚕的半数死亡时间(LT50)为84.12h,全部死亡时间为88h,而vBmEGFP、感染的对照组的LT50为147.16h,全部死亡时间为154h,Clbi138基因的表达,可使LT50缩短63h,即家蚕死亡时间缩短42.9%(见表1)。 The results showed that the half time of death (LT 50 ) of the silkworm infected with vBm EGFP/Clbi138 was 84.12 hours, and the total death time was 88 hours. The expression of Clbi138 gene can shorten LT 50 by 63h, that is, the death time of silkworm can be shortened by 42.9% (see Table 1).
针对死亡24h的家蚕进行观察还发现,vBmEGFP/Clbi138感染家蚕的组织液化更为严重(见图3)。Observation of silkworms that died for 24 hours also found that the tissue liquefaction of silkworms infected with vBm EGFP/Clbi138 was more serious (see Figure 3).
因此,Clbi138蛋白缩短死亡时间的机理可能是Clbi138蛋白发挥金属蛋白酶活性,严重破坏了宿主组织,从而导致宿主快速死亡。Therefore, the mechanism by which Clbi138 protein shortens the death time may be that Clbi138 protein exerts metalloprotease activity and severely damages the host tissue, thereby leading to the rapid death of the host.
此外,以不同病毒粒子数(10,20,50,100,200,500 pfu)注射五龄家蚕,vBmEGFP /Clbi138的半致死浓度(LC50)为12.51 pfu,而vBmEGFP对照组的LC50为141.21 pfu(见表1)。In addition, when five-instar silkworms were injected with different numbers of virus particles (10, 20, 50, 100, 200, 500 pfu), the half-lethal concentration (LC 50 ) of vBm EGFP /Clbi138 was 12.51 pfu, while the LC 50 of the vBm EGFP control group was 12.51 pfu. It is 141.21 pfu (see Table 1).
由此可见,Clbi138能极大地增强杆状病毒的毒性,在害虫防治中具有潜在的应用价值。It can be seen that Clbi138 can greatly enhance the toxicity of baculovirus, and has potential application value in pest control.
综上研究发现,含突变的Clbi138基因三种重组病毒vBmEGFP/Clbi138M1、vBmEGFP /Clbi138M2、vBmEGFP/Clbi138M3的杀虫效率,与vBmEGFP对照组无显著差异(见图4),表明HEXXH模序中三个保守位点的变异均会导致Clbi138基因功能的丧失。HEXXH模序是金属蛋白酶的活性中心,野生型Clbi138的表达能加速病虫体内组织的降解,而HEXXH模序的变异使该功能丧失,因此,Clbi138基因的编码产物是一种依赖于保守的HEXXH模序的金属蛋白酶。In summary, it was found that the insecticidal efficiency of the three recombinant viruses vBm EGFP/Clbi138M1 , vBm EGFP /Clbi138M2 , and vBm EGFP/Clbi138M3 containing the mutated Clbi138 gene was not significantly different from that of the vBm EGFP control group (see Figure 4), indicating that the HEXXH model The mutations of the three conserved sites in the sequence will lead to the loss of the function of the Clbi138 gene. The HEXXH motif is the active center of metalloproteases. The expression of wild-type Clbi138 can accelerate the degradation of tissues in the pest, while the variation of the HEXXH motif can cause the loss of this function. Therefore, the coding product of the Clbi138 gene is a kind of protein that depends on the conserved HEXXH Modular metalloproteases.
表1 重组杆状病毒的杀虫效率Table 1 Insecticidal efficiency of recombinant baculovirus
6.Clbi138的生物信息学分析6. Bioinformatics analysis of Clbi138
Clbi138及同源物为II类α杆状病毒的特有序列,且存在于所有II类α杆状病毒中。大多数Clbi138同源物在N端具有一个信号肽(SP),在C端具有一个跨膜结构域(TM)。多序列比对发现,Clbi138同源物具有多处保守的氨基酸序列,特别是都含有HEXXH模序(见图5),该模序参与锌离子的结合,是金属蛋白酶的特征序列。Clbi138使病虫组织液化更为严重的原因,可能是Clbi138发挥了金属蛋白酶活性。鉴于Clbi138同源物与Clbi138蛋白质序列的相似性,以及所具有的保守的HEXXH模序,极易推测Clbi138同源物也具有提高杆状病毒杀虫效率的功能。Clbi138 and homologues are sequences unique to class II alpha baculoviruses and are present in all class II alpha baculoviruses. Most Clbi138 homologues have a signal peptide (SP) at the N-terminus and a transmembrane domain (TM) at the C-terminus. Multiple sequence alignments revealed that Clbi138 homologues have multiple conserved amino acid sequences, especially all containing the HEXXH motif (see Figure 5), which is involved in the binding of zinc ions and is a characteristic sequence of metalloproteases. The reason why Clbi138 made the tissue liquefaction more serious may be that Clbi138 exerted metalloprotease activity. In view of the similarity between the Clbi138 homolog and the Clbi138 protein sequence, as well as the conserved HEXXH motif, it is easy to speculate that the Clbi138 homologue also has the function of improving the insecticidal efficiency of baculovirus.
SEQUENCE LISTING SEQUENCE LISTING
<110> 江苏大学<110> Jiangsu University
<120> 一种提高杆状病毒杀虫效率的遗传改造方法<120> A Genetic Modification Method for Improving the Insecticidal Efficiency of Baculovirus
<130> 一种提高杆状病毒杀虫效率的遗传改造方法<130> A Genetic Modification Method for Improving the Insecticidal Efficiency of Baculovirus
<160> 13<160> 13
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 3111<211> 3111
<212> DNA<212>DNA
<213> 豆天蛾核型多角体病毒(Clanis bilineata nucleopolyhedrovirus)<213> Clanis bilineata nucleopolyhedrovirus
<400> 1<400> 1
atgttttttg tgaatacaat tatcataaat tactcgaacc gtgacaacat catgacgcca 60atgttttttg tgaatacaat tatcataaat tactcgaacc gtgacaacat catgacgcca 60
tcacggttgt tatttttagc gatgtcgtgg tcgatcatgt ggtcggtgtc gtggtcgtta 120tcacggttgt tatttttagc gatgtcgtgg tcgatcatgt ggtcggtgtc gtggtcgtta 120
aacgttagca gtatcaacga cttgatcgat agtgtgtgtg ttcccgtgaa atttgcagat 180aacgttagca gtatcaacga cttgatcgat agtgtgtgtg ttcccgtgaa atttgcagat 180
gcaagatgcg acggaaacat gttaatgaaa caaattgacc agcaaatctt taattttcgt 240gcaagatgcg acggaaacat gttaatgaaa caaattgacc agcaaatctt taattttcgt 240
tcaactgaag accttgcctt gtacgcgtcg tggttgcgac ttatgaacaa tttggaatac 300tcaactgaag accttgcctt gtacgcgtcg tggttgcgac ttatgaacaa tttggaatac 300
tataaacttc atgatcctga acaactgata gatattatag cttacaacaa tgaccgtttt 360tataaacttc atgatcctga acaactgata gatattatag cttacaacaa tgaccgtttt 360
gctttaataa actacaacat caccagattg atgaaaaaag aagcaagtga agtgttcaga 420gctttaataa actacaacat caccagattg atgaaaaaag aagcaagtga agtgttcaga 420
tgggtggcgg acacgtggac tcgttatcac acaacgcaca attattatgt cttcaaacaa 480tgggtggcgg acacgtggac tcgttatcac acaacgcaca attattatgt cttcaaacaa 480
accctaccat cgtttagaaa ttttttcaat acgtttgtgc tatggtgtga tgaagatcct 540accctaccat cgtttagaaa ttttttcaat acgtttgtgc tatggtgtga tgaagatcct 540
gcttacttcc taactacagc tttgtacgct ttccgaagaa cccgtgaatc gtatcaattt 600gcttacttcc taactacagc tttgtacgct ttccgaagaa cccgtgaatc gtatcaattt 600
accactcact ttagaagcat cgacgatgcc gctgttgaac ttgttgttct tgctaatgaa 660accactcact ttagaagcat cgacgatgcc gctgttgaac ttgttgttct tgctaatgaa 660
tatccactgt tgggcctgga aaaagagtac atacaacaat tgttttacat aaattatgta 720tatccactgt tgggcctgga aaaagagtac atacaacaat tgttttacat aaattatgta 720
gtgcatatta aagatattgt tcaacgtcgg cgatttgggt ctctgtatat tgctatgtca 780gtgcatatta aagatattgt tcaacgtcgg cgatttgggt ctctgtatat tgctatgtca 780
ccagacaaca ttctgcctaa gacagttacg tttaaagagc aaatgctcgc gtttcatgtc 840ccagacaaca ttctgcctaa gacagttacg tttaaagagc aaatgctcgc gtttcatgtc 840
caccataatg ttgaaaacga tacagtcgtg gatgccatgc gcaacgaaac cgaatatgtc 900caccataatg ttgaaaacga tacagtcgtg gatgccatgc gcaacgaaac cgaatatgtc 900
ttcaaaagtt ttgtagaatc gtttgagcga gtctcagtgc attacaacta tacgccgacc 960ttcaaaagtt ttgtagaatc gtttgagcga gtctcagtgc attacaacta tacgccgacc 960
gatattaatg tgtacgtgca cgaatccaaa aagctgtaca caatttacgg accgttgtgg 1020gatattaatg tgtacgtgca cgaatccaaa aagctgtaca caatttacgg accgttgtgg 1020
aacattgcta cggacaacgg cggctacaca cacatcaacc ccagaactcg gaatattgaa 1080aacattgcta cggacaacgg cggctacaca cacatcaacc ccagaactcg gaatattgaa 1080
agccatgtgt attttgaaaa cgacatccta cctagaaact atggccacga attgcaccac 1140agccatgtgt attttgaaaa cgacatccta cctagaaact atggccacga attgcaccac 1140
gccattctgt actctgttac gtctgtgcat ttgatgcccg cttggtacgt agaaggagca 1200gccattctgt actctgttac gtctgtgcat ttgatgcccg cttggtacgt agaaggagca 1200
gccaacaggt acggcaacag agattgttac gaatttgacc acaaaacgtt gaagatgcat 1260gccaacaggt acggcaacag agattgttac gaatttgacc acaaaacgtt gaagatgcat 1260
caacatacac gtattgaaaa gatagtccag gcgtcgtaca cctcgtctgc ccttgtttac 1320caacatacac gtattgaaaa gatagtccag gcgtcgtaca cctcgtctgc ccttgtttac 1320
ggtatgggta gcgcgctagt agcattcctt aacgaacaac aaccggccat attccagact 1380ggtatgggta gcgcgctagt agcattcctt aacgaacaac aaccggccat attccagact 1380
atggctaaca ctaacaatta tactctaaca attacaccaa tgcttgaaaa agaatttaac 1440atggctaaca ctaacaatta tactctaaca attacaccaa tgcttgaaaa agaatttaac 1440
atatataaac aaaacaagat tttagaatgc gagatgtatt tgagaaatag gacagcatct 1500atatataaac aaaacaagat tttagaatgc gagatgtatt tgagaaatag gacagcatct 1500
atgtcgtcgc agcttcagtc tacttcgcgt atcaacgcat accttcaagt gcaactagac 1560atgtcgtcgc agcttcagtc tacttcgcgt atcaacgcat accttcaagt gcaactagac 1560
tataaaacag ccattaataa caccaatgtg tttgccgaat gcactaatta cattcaaata 1620tataaaacag ccattaataa caccaatgtg tttgccgaat gcactaatta cattcaaata 1620
aatttcgaag atgttacatt tattatgacg cctcacaaaa tcataatggc aaatgtgtat 1680aatttcgaag atgttacatt tattatgacg cctcacaaaa tcataatggc aaatgtgtat 1680
actaatgatt caagatctgt gtcatttgct caacacgaga tacgtttcaa caggcacaaa 1740actaatgatt caagatctgt gtcatttgct caacacgaga tacgtttcaa caggcacaaa 1740
ttgagtagat tcgattacga ctggtttctc aacggcttga tcaaacaaac cctcatttat 1800ttgagtagat tcgattacga ctggtttctc aacggcttga tcaaacaaac cctcatttat 1800
ttgggtgatg tgtacaatta tattggaatt gataatactg cctacaatta tcgaccggaa 1860ttgggtgatg tgtacaatta tattggaatt gataatactg cctacaatta tcgaccggaa 1860
acaatatttt gccaaaagca aacgcaaaac cctgaactag gaatcataga gtttgtatcg 1920acaatatttt gccaaaagca aacgcaaaac cctgaactag gaatcataga gtttgtatcg 1920
aaaacgaacg tttggagtaa ttttttcaac aacatgacag ttgctgaagc gcgacagcac 1980aaaacgaacg tttggagtaa ttttttcaac aacatgacag ttgctgaagc gcgacagcac 1980
atcagaaatt ttgtcaaaag taaagaagat tgcgctacat ttttgaatcc ggttgtggtg 2040atcagaaatt ttgtcaaaag taaagaagat tgcgctacat ttttgaatcc ggttgtggtg 2040
aatgatgata ttgcggcaaa cgtgcctcaa tacctgaaaa attatgcata tagaatcaat 2100aatgatgata ttgcggcaaa cgtgcctcaa tacctgaaaa attatgcata tagaatcaat 2100
aatgtggtta ctattaatat actaaataaa cgcgatgtgt atataaaact tgatttcaga 2160aatgtggtta ctattaatat actaaataaa cgcgatgtgt atataaaact tgatttcaga 2160
aacaacacca ttttacatct agccgcatta cacaatccca acacatatgt acaactttca 2220aacaacacca ttttacatct agccgcatta cacaatccca acacatatgt acaactttca 2220
aaccaatttt ctaaagaatg taatagtctt ttgaattacg acaattacac tagcaatcag 2280aaccaatttt ctaaagaatg taatagtctt ttgaattacg acaattacac tagcaatcag 2280
ttgtaccaat tttacaataa ctacaaattg tcaacaggtg tggttaaagt taaatattgt 2340ttgtaccaat tttacaataa ctacaaattg tcaacaggtg tggttaaagt taaatattgt 2340
tttaaatata tcaaaacgca acccaagcaa aatagcttag tgccgaatat tataaccaca 2400tttaaatata tcaaaacgca acccaagcaa aatagcttag tgccgaatat tataaccaca 2400
ttattgccgg ctaaaacaac atttaatttg accacaatta tccctaagta tattaatgat 2460ttattgccgg ctaaaacaac atttaatttg accacaatta tccctaagta tattaatgat 2460
gataacaaaa atgtaacaag tagtacagat aatgataacg aaaatgtaac aagtagtagt 2520gataacaaaa atgtaacaag tagtacagat aatgataacg aaaatgtaac aagtagtagt 2520
acagatcaac ctgtaacaat tcgacctatt gctaaaccaa taatttcgtc tgttcatttg 2580acagatcaac ctgtaacaat tcgacctatt gctaaaccaa taatttcgtc tgttcatttg 2580
ttgtctacgt ttactttggc cattttaacc acatacaatt atgtcagtga gaatgaaaac 2640ttgtctacgt ttactttggc cattttaacc acatacaatt atgtcagtga gaatgaaaac 2640
aataaaagca acaataataa taatcaaaac tataaaactc gctttgtgcc agtaaagtta 2700aataaaagca acaataataa taatcaaaac tataaaactc gctttgtgcc agtaaagtta 2700
gaatccgatc gtctagtgcc agtgaagctg gaatctgacc aaaaagtttt tggtaatgac 2760gaatccgatc gtctagtgcc agtgaagctg gaatctgacc aaaaagtttt tggtaatgac 2760
gaaaatgaag aagaaacatt atatttgaat gataatacaa cagcgccttg gacaaaagaa 2820gaaaatgaag aagaaacatt atatttgaat gataatacaa cagcgccttg gacaaaagaa 2820
gcaatagctg ctgctgcggc tgctgcagtc gcaccgtcaa atatctcgta tattaatata 2880gcaatagctg ctgctgcggc tgctgcagtc gcaccgtcaa atatctcgta tattaatata 2880
aacaaaaacg acatgtattt tgtgttagca agttttttta ttgtattaat actggtcaac 2940aacaaaaacg acatgtattt tgtgttagca agttttttta ttgtattaat actggtcaac 2940
attacatata taacgattac aattgtaata tacgcaaaat gttgtgctat aaaaaaaact 3000attacatata taacgattac aattgtaata tacgcaaaat gttgtgctat aaaaaaaact 3000
acacatatta acaaaaatac aaaacacaag tttaacaaaa caaaatttta ttctaacaat 3060acacatatta acaaaaatac aaaacacaag tttaacaaaa caaaatttta ttctaacaat 3060
agtatagaag agaaaagtga tacagaagca aaattacata tgtttgaata a 3111agtatagaag agaaaagtga tacagaagca aaattacata tgtttgaata a 3111
<210> 2<210> 2
<211> 1036<211> 1036
<212> PRT<212> PRT
<213> 豆天蛾核型多角体病毒(Clanis bilineata nucleopolyhedrovirus)<213> Clanis bilineata nucleopolyhedrovirus
<400> 2<400> 2
Met Phe Phe Val Asn Thr Ile Ile Ile Asn Tyr Ser Asn Arg Asp AsnMet Phe Phe Val Asn Thr Ile Ile Ile Asn Tyr Ser Asn Arg Asp Asn
1 5 10 151 5 10 15
Ile Met Thr Pro Ser Arg Leu Leu Phe Leu Ala Met Ser Trp Ser IleIle Met Thr Pro Ser Arg Leu Leu Phe Leu Ala Met Ser Trp Ser Ile
20 25 30 20 25 30
Met Trp Ser Val Ser Trp Ser Leu Asn Val Ser Ser Ile Asn Asp LeuMet Trp Ser Val Ser Trp Ser Leu Asn Val Ser Ser Ile Asn Asp Leu
35 40 45 35 40 45
Ile Asp Ser Val Cys Val Pro Val Lys Phe Ala Asp Ala Arg Cys AspIle Asp Ser Val Cys Val Pro Val Lys Phe Ala Asp Ala Arg Cys Asp
50 55 60 50 55 60
Gly Asn Met Leu Met Lys Gln Ile Asp Gln Gln Ile Phe Asn Phe ArgGly Asn Met Leu Met Lys Gln Ile Asp Gln Gln Ile Phe Asn Phe Arg
65 70 75 8065 70 75 80
Ser Thr Glu Asp Leu Ala Leu Tyr Ala Ser Trp Leu Arg Leu Met AsnSer Thr Glu Asp Leu Ala Leu Tyr Ala Ser Trp Leu Arg Leu Met Asn
85 90 95 85 90 95
Asn Leu Glu Tyr Tyr Lys Leu His Asp Pro Glu Gln Leu Ile Asp IleAsn Leu Glu Tyr Tyr Lys Leu His Asp Pro Glu Gln Leu Ile Asp Ile
100 105 110 100 105 110
Ile Ala Tyr Asn Asn Asp Arg Phe Ala Leu Ile Asn Tyr Asn Ile ThrIle Ala Tyr Asn Asn Asp Arg Phe Ala Leu Ile Asn Tyr Asn Ile Thr
115 120 125 115 120 125
Arg Leu Met Lys Lys Glu Ala Ser Glu Val Phe Arg Trp Val Ala AspArg Leu Met Lys Lys Glu Ala Ser Glu Val Phe Arg Trp Val Ala Asp
130 135 140 130 135 140
Thr Trp Thr Arg Tyr His Thr Thr His Asn Tyr Tyr Val Phe Lys GlnThr Trp Thr Arg Tyr His Thr Thr His Asn Tyr Tyr Val Phe Lys Gln
145 150 155 160145 150 155 160
Thr Leu Pro Ser Phe Arg Asn Phe Phe Asn Thr Phe Val Leu Trp CysThr Leu Pro Ser Phe Arg Asn Phe Phe Asn Thr Phe Val Leu Trp Cys
165 170 175 165 170 175
Asp Glu Asp Pro Ala Tyr Phe Leu Thr Thr Ala Leu Tyr Ala Phe ArgAsp Glu Asp Pro Ala Tyr Phe Leu Thr Thr Ala Leu Tyr Ala Phe Arg
180 185 190 180 185 190
Arg Thr Arg Glu Ser Tyr Gln Phe Thr Thr His Phe Arg Ser Ile AspArg Thr Arg Glu Ser Tyr Gln Phe Thr Thr His Phe Arg Ser Ile Asp
195 200 205 195 200 205
Asp Ala Ala Val Glu Leu Val Val Leu Ala Asn Glu Tyr Pro Leu LeuAsp Ala Ala Val Glu Leu Val Val Leu Ala Asn Glu Tyr Pro Leu Leu
210 215 220 210 215 220
Gly Leu Glu Lys Glu Tyr Ile Gln Gln Leu Phe Tyr Ile Asn Tyr ValGly Leu Glu Lys Glu Tyr Ile Gln Gln Leu Phe Tyr Ile Asn Tyr Val
225 230 235 240225 230 235 240
Val His Ile Lys Asp Ile Val Gln Arg Arg Arg Phe Gly Ser Leu TyrVal His Ile Lys Asp Ile Val Gln Arg Arg Arg Phe Gly Ser Leu Tyr
245 250 255 245 250 255
Ile Ala Met Ser Pro Asp Asn Ile Leu Pro Lys Thr Val Thr Phe LysIle Ala Met Ser Pro Asp Asn Ile Leu Pro Lys Thr Val Thr Phe Lys
260 265 270 260 265 270
Glu Gln Met Leu Ala Phe His Val His His Asn Val Glu Asn Asp ThrGlu Gln Met Leu Ala Phe His Val His His Asn Val Glu Asn Asp Thr
275 280 285 275 280 285
Val Val Asp Ala Met Arg Asn Glu Thr Glu Tyr Val Phe Lys Ser PheVal Val Asp Ala Met Arg Asn Glu Thr Glu Tyr Val Phe Lys Ser Phe
290 295 300 290 295 300
Val Glu Ser Phe Glu Arg Val Ser Val His Tyr Asn Tyr Thr Pro ThrVal Glu Ser Phe Glu Arg Val Ser Val His Tyr Asn Tyr Thr Pro Thr
305 310 315 320305 310 315 320
Asp Ile Asn Val Tyr Val His Glu Ser Lys Lys Leu Tyr Thr Ile TyrAsp Ile Asn Val Tyr Val His Glu Ser Lys Lys Lys Leu Tyr Thr Ile Tyr
325 330 335 325 330 335
Gly Pro Leu Trp Asn Ile Ala Thr Asp Asn Gly Gly Tyr Thr His IleGly Pro Leu Trp Asn Ile Ala Thr Asp Asn Gly Gly Tyr Thr His Ile
340 345 350 340 345 350
Asn Pro Arg Thr Arg Asn Ile Glu Ser His Val Tyr Phe Glu Asn AspAsn Pro Arg Thr Arg Asn Ile Glu Ser His Val Tyr Phe Glu Asn Asp
355 360 365 355 360 365
Ile Leu Pro Arg Asn Tyr Gly His Glu Leu His His Ala Ile Leu TyrIle Leu Pro Arg Asn Tyr Gly His Glu Leu His His Ala Ile Leu Tyr
370 375 380 370 375 380
Ser Val Thr Ser Val His Leu Met Pro Ala Trp Tyr Val Glu Gly AlaSer Val Thr Ser Val His Leu Met Pro Ala Trp Tyr Val Glu Gly Ala
385 390 395 400385 390 395 400
Ala Asn Arg Tyr Gly Asn Arg Asp Cys Tyr Glu Phe Asp His Lys ThrAla Asn Arg Tyr Gly Asn Arg Asp Cys Tyr Glu Phe Asp His Lys Thr
405 410 415 405 410 415
Leu Lys Met His Gln His Thr Arg Ile Glu Lys Ile Val Gln Ala SerLeu Lys Met His Gln His Thr Arg Ile Glu Lys Ile Val Gln Ala Ser
420 425 430 420 425 430
Tyr Thr Ser Ser Ala Leu Val Tyr Gly Met Gly Ser Ala Leu Val AlaTyr Thr Ser Ser Ala Leu Val Tyr Gly Met Gly Ser Ala Leu Val Ala
435 440 445 435 440 445
Phe Leu Asn Glu Gln Gln Pro Ala Ile Phe Gln Thr Met Ala Asn ThrPhe Leu Asn Glu Gln Gln Pro Ala Ile Phe Gln Thr Met Ala Asn Thr
450 455 460 450 455 460
Asn Asn Tyr Thr Leu Thr Ile Thr Pro Met Leu Glu Lys Glu Phe AsnAsn Asn Tyr Thr Leu Thr Ile Thr Pro Met Leu Glu Lys Glu Phe Asn
465 470 475 480465 470 475 480
Ile Tyr Lys Gln Asn Lys Ile Leu Glu Cys Glu Met Tyr Leu Arg AsnIle Tyr Lys Gln Asn Lys Ile Leu Glu Cys Glu Met Tyr Leu Arg Asn
485 490 495 485 490 495
Arg Thr Ala Ser Met Ser Ser Gln Leu Gln Ser Thr Ser Arg Ile AsnArg Thr Ala Ser Met Ser Ser Ser Gln Leu Gln Ser Thr Ser Arg Ile Asn
500 505 510 500 505 510
Ala Tyr Leu Gln Val Gln Leu Asp Tyr Lys Thr Ala Ile Asn Asn ThrAla Tyr Leu Gln Val Gln Leu Asp Tyr Lys Thr Ala Ile Asn Asn Thr
515 520 525 515 520 525
Asn Val Phe Ala Glu Cys Thr Asn Tyr Ile Gln Ile Asn Phe Glu AspAsn Val Phe Ala Glu Cys Thr Asn Tyr Ile Gln Ile Asn Phe Glu Asp
530 535 540 530 535 540
Val Thr Phe Ile Met Thr Pro His Lys Ile Ile Met Ala Asn Val TyrVal Thr Phe Ile Met Thr Pro His Lys Ile Ile Met Ala Asn Val Tyr
545 550 555 560545 550 555 560
Thr Asn Asp Ser Arg Ser Val Ser Phe Ala Gln His Glu Ile Arg PheThr Asn Asp Ser Arg Ser Val Ser Phe Ala Gln His Glu Ile Arg Phe
565 570 575 565 570 575
Asn Arg His Lys Leu Ser Arg Phe Asp Tyr Asp Trp Phe Leu Asn GlyAsn Arg His Lys Leu Ser Arg Phe Asp Tyr Asp Trp Phe Leu Asn Gly
580 585 590 580 585 590
Leu Ile Lys Gln Thr Leu Ile Tyr Leu Gly Asp Val Tyr Asn Tyr IleLeu Ile Lys Gln Thr Leu Ile Tyr Leu Gly Asp Val Tyr Asn Tyr Ile
595 600 605 595 600 605
Gly Ile Asp Asn Thr Ala Tyr Asn Tyr Arg Pro Glu Thr Ile Phe CysGly Ile Asp Asn Thr Ala Tyr Asn Tyr Arg Pro Glu Thr Ile Phe Cys
610 615 620 610 615 620
Gln Lys Gln Thr Gln Asn Pro Glu Leu Gly Ile Ile Glu Phe Val SerGln Lys Gln Thr Gln Asn Pro Glu Leu Gly Ile Ile Glu Phe Val Ser
625 630 635 640625 630 635 640
Lys Thr Asn Val Trp Ser Asn Phe Phe Asn Asn Met Thr Val Ala GluLys Thr Asn Val Trp Ser Asn Phe Phe Asn Asn Met Thr Val Ala Glu
645 650 655 645 650 655
Ala Arg Gln His Ile Arg Asn Phe Val Lys Ser Lys Glu Asp Cys AlaAla Arg Gln His Ile Arg Asn Phe Val Lys Ser Lys Glu Asp Cys Ala
660 665 670 660 665 670
Thr Phe Leu Asn Pro Val Val Val Asn Asp Asp Ile Ala Ala Asn ValThr Phe Leu Asn Pro Val Val Val Asn Asp Asp Ile Ala Ala Asn Val
675 680 685 675 680 685
Pro Gln Tyr Leu Lys Asn Tyr Ala Tyr Arg Ile Asn Asn Val Val ThrPro Gln Tyr Leu Lys Asn Tyr Ala Tyr Arg Ile Asn Asn Val Val Thr
690 695 700 690 695 700
Ile Asn Ile Leu Asn Lys Arg Asp Val Tyr Ile Lys Leu Asp Phe ArgIle Asn Ile Leu Asn Lys Arg Asp Val Tyr Ile Lys Leu Asp Phe Arg
705 710 715 720705 710 715 720
Asn Asn Thr Ile Leu His Leu Ala Ala Leu His Asn Pro Asn Thr TyrAsn Asn Thr Ile Leu His Leu Ala Ala Leu His Asn Pro Asn Thr Tyr
725 730 735 725 730 735
Val Gln Leu Ser Asn Gln Phe Ser Lys Glu Cys Asn Ser Leu Leu AsnVal Gln Leu Ser Asn Gln Phe Ser Lys Glu Cys Asn Ser Leu Leu Asn
740 745 750 740 745 750
Tyr Asp Asn Tyr Thr Ser Asn Gln Leu Tyr Gln Phe Tyr Asn Asn TyrTyr Asp Asn Tyr Thr Ser Asn Gln Leu Tyr Gln Phe Tyr Asn Asn Tyr
755 760 765 755 760 765
Lys Leu Ser Thr Gly Val Val Lys Val Lys Tyr Cys Phe Lys Tyr IleLys Leu Ser Thr Gly Val Val Lys Val Lys Tyr Cys Phe Lys Tyr Ile
770 775 780 770 775 780
Lys Thr Gln Pro Lys Gln Asn Ser Leu Val Pro Asn Ile Ile Thr ThrLys Thr Gln Pro Lys Gln Asn Ser Leu Val Pro Asn Ile Ile Thr Thr
785 790 795 800785 790 795 800
Leu Leu Pro Ala Lys Thr Thr Phe Asn Leu Thr Thr Ile Ile Pro LysLeu Leu Pro Ala Lys Thr Thr Phe Asn Leu Thr Thr Ile Ile Pro Lys
805 810 815 805 810 815
Tyr Ile Asn Asp Asp Asn Lys Asn Val Thr Ser Ser Thr Asp Asn AspTyr Ile Asn Asp Asp Asn Lys Asn Val Thr Ser Ser Thr Asp Asn Asp
820 825 830 820 825 830
Asn Glu Asn Val Thr Ser Ser Ser Thr Asp Gln Pro Val Thr Ile ArgAsn Glu Asn Val Thr Ser Ser Ser Thr Asp Gln Pro Val Thr Ile Arg
835 840 845 835 840 845
Pro Ile Ala Lys Pro Ile Ile Ser Ser Val His Leu Leu Ser Thr PhePro Ile Ala Lys Pro Ile Ile Ser Ser Ser Val His Leu Leu Ser Thr Phe
850 855 860 850 855 860
Thr Leu Ala Ile Leu Thr Thr Tyr Asn Tyr Val Ser Glu Asn Glu AsnThr Leu Ala Ile Leu Thr Thr Tyr Asn Tyr Val Ser Glu Asn Glu Asn
865 870 875 880865 870 875 880
Asn Lys Ser Asn Asn Asn Asn Asn Gln Asn Tyr Lys Thr Arg Phe ValAsn Lys Ser Asn Asn Asn Asn Asn Asn Gln Asn Tyr Lys Thr Arg Phe Val
885 890 895 885 890 895
Pro Val Lys Leu Glu Ser Asp Arg Leu Val Pro Val Lys Leu Glu SerPro Val Lys Leu Glu Ser Asp Arg Leu Val Pro Val Lys Leu Glu Ser
900 905 910 900 905 910
Asp Gln Lys Val Phe Gly Asn Asp Glu Asn Glu Glu Glu Thr Leu TyrAsp Gln Lys Val Phe Gly Asn Asp Glu Asn Glu Glu Glu Thr Leu Tyr
915 920 925 915 920 925
Leu Asn Asp Asn Thr Thr Ala Pro Trp Thr Lys Glu Ala Ile Ala AlaLeu Asn Asp Asn Thr Thr Ala Pro Trp Thr Lys Glu Ala Ile Ala Ala
930 935 940 930 935 940
Ala Ala Ala Ala Ala Val Ala Pro Ser Asn Ile Ser Tyr Ile Asn IleAla Ala Ala Ala Ala Val Ala Pro Ser Asn Ile Ser Tyr Ile Asn Ile
945 950 955 960945 950 955 960
Asn Lys Asn Asp Met Tyr Phe Val Leu Ala Ser Phe Phe Ile Val LeuAsn Lys Asn Asp Met Tyr Phe Val Leu Ala Ser Phe Phe Ile Val Leu
965 970 975 965 970 975
Ile Leu Val Asn Ile Thr Tyr Ile Thr Ile Thr Ile Val Ile Tyr AlaIle Leu Val Asn Ile Thr Tyr Ile Thr Ile Thr Ile Val Ile Tyr Ala
980 985 990 980 985 990
Lys Cys Cys Ala Ile Lys Lys Thr Thr His Ile Asn Lys Asn Thr LysLys Cys Cys Ala Ile Lys Lys Thr Thr His Ile Asn Lys Asn Thr Lys
995 1000 1005 995 1000 1005
His Lys Phe Asn Lys Thr Lys Phe Tyr Ser Asn Asn Ser Ile GluHis Lys Phe Asn Lys Thr Lys Phe Tyr Ser Asn Asn Ser Ile Glu
1010 1015 1020 1010 1015 1020
Glu Lys Ser Asp Thr Glu Ala Lys Leu His Met Phe GluGlu Lys Ser Asp Thr Glu Ala Lys Leu His Met Phe Glu
1025 1030 1035 1025 1030 1035
<210> 3<210> 3
<211> 27<211> 27
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 3<400> 3
cagatcaacc tgtaacaatt cgaccta 27cagatcaacc tgtaacaatt cgaccta 27
<210> 4<210> 4
<211> 27<211> 27
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 4<400> 4
ttattcaaac atatgtaatt ttgcttc 27ttattcaaac atatgtaatt ttgcttc 27
<210> 5<210> 5
<211> 34<211> 34
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 5<400> 5
gcgggatcca tgttttttgt gaatacaatt atca 34gcgggatcca tgttttttgt gaatacaatt atca 34
<210> 6<210> 6
<211> 31<211> 31
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 6<400> 6
ccgggtacct tcaaacatat gtaattttgc t 31ccgggtacct tcaaacatat gtaattttgc t 31
<210> 7<210> 7
<211> 32<211> 32
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 7<400> 7
gcgaagcttt tattcaaaca tatgtaattt tg 32gcgaagcttttattcaaaca tatgtaatttttg 32
<210> 8<210> 8
<211> 29<211> 29
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 8<400> 8
ctagaaacta tggcgccgaa ttgcaccac 29ctagaaacta tggcgccgaa ttgcaccac 29
<210> 9<210> 9
<211> 29<211> 29
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 9<400> 9
gtggtgcaat tcggcgccat agtttctag 29gtggtgcaat tcggcgccat agtttctag 29
<210> 10<210> 10
<211> 28<211> 28
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 10<400> 10
actatggcca cgccttgcac cacgccat 28actatggcca cgccttgcac cacgccat 28
<210> 11<210> 11
<211> 28<211> 28
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 11<400> 11
atggcgtggt gcaaggcgtg gccatagt 28atggcgtggt gcaaggcgtg gccatagt 28
<210> 12<210> 12
<211> 28<211> 28
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 12<400> 12
cacgaattgc acgccgccat tctgtact 28cacgaattgc acgccgccat tctgtact 28
<210> 13<210> 13
<211> 28<211> 28
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 13<400> 13
agtacagaat ggcggcgtgc aattcgtg 28agtacagaat ggcggcgtgc aattcgtg 28
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510352107.7A CN104911201B (en) | 2015-06-24 | 2015-06-24 | A kind of genetic modification method improving baculoviral insecticidal efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510352107.7A CN104911201B (en) | 2015-06-24 | 2015-06-24 | A kind of genetic modification method improving baculoviral insecticidal efficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104911201A CN104911201A (en) | 2015-09-16 |
CN104911201B true CN104911201B (en) | 2018-08-10 |
Family
ID=54080642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510352107.7A Expired - Fee Related CN104911201B (en) | 2015-06-24 | 2015-06-24 | A kind of genetic modification method improving baculoviral insecticidal efficiency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104911201B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110343720B (en) * | 2019-06-17 | 2022-04-26 | 江苏科技大学 | Method for enhancing infectivity of baculovirus on insect cells, recombinant baculovirus and application thereof |
CN113293142B (en) * | 2021-03-09 | 2022-11-22 | 江西省科学院微生物研究所 | Boston crinis nuclear polyhedrosis virus strain as well as propagation method and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101209056A (en) * | 2006-12-29 | 2008-07-02 | 河南农业大学 | A virus insecticide synergist and its preparation method and its application in virus insecticide |
GB2512072A (en) * | 2013-03-19 | 2014-09-24 | Carlo Galli | Composition and method of implantable devices for localized delivery of bioactive compounds |
-
2015
- 2015-06-24 CN CN201510352107.7A patent/CN104911201B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104911201A (en) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Langen et al. | Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco | |
ES2343271T3 (en) | SELF-ACTIVATED RESISTANCE PROTEIN. | |
Li et al. | Characterization of a chitin-binding protein GP37 of Spodoptera litura multicapsid nucleopolyhedrovirus | |
CN116669558A (en) | MU-desert shrubaltoxin-DC 1A variant polypeptides for pest control | |
CN111235165A (en) | Lily susceptible fungal gene LrWRKY-S1 and application thereof | |
Liang et al. | Genomic sequencing and analysis of Clostera anachoreta granulovirus | |
CN116024234B (en) | Poplar aschersonia aleyrodis effector protein SmCSEP3 and application thereof | |
Husnain et al. | Variability in expression of insecticidal Cry1Ab gene in Indica Basmati rice | |
CN104911201B (en) | A kind of genetic modification method improving baculoviral insecticidal efficiency | |
CN110759983A (en) | A recombinant fungus targeting silencing the gene expression of pest pattern recognition protein GNBP3 and its application in pest control | |
CN108504679A (en) | The recombination Arthobotrys oligospora and preparation method thereof of Aoz1 gene double-promoters | |
WO2024037548A1 (en) | Plant immunity activation protein pmscr1 and use thereof | |
CN110452290B (en) | The application of elicitor protein and its encoded gene from fungi of the genus Sciemonium in vegetable biocontrol | |
King et al. | Entomopoxviruses | |
CN110331152A (en) | Powder Isaria Cyanovirin-N gene, recombinant protein and application | |
CN106478789B (en) | From the effector albumen and its encoding gene of grape ulcer bacterium and application | |
CN103254301A (en) | Plant disease resistance related protein GbMBL1, its coding gene and application | |
CN109796525B (en) | CSEP27 protein and its encoding gene and application | |
KR20090049668A (en) | Cayenne pepper gene CA1C2 involved in plant environmental stress and pathogen resistance | |
CN106701826B (en) | A recombinant plasmid that can be used to package a large amount of exogenous proteins and its construction method and application | |
CN111718401A (en) | A kind of Phytophthora capsicum-infected plant-related protein and its application | |
CN101942462B (en) | Preparation method and application of a kind of insecticidal synergistic protein | |
JPH06506594A (en) | Novel Entomovox virus expression system | |
CN112794888B (en) | BtSAMS1 protein from Teosinte and its application in aphid-resistant plant breeding | |
JP2002525040A (en) | Plant resistance to insect pests mediated by viral proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180810 Termination date: 20190624 |
|
CF01 | Termination of patent right due to non-payment of annual fee |