CN104901149A - Spectral beam combining system based on three diffraction gratings - Google Patents
Spectral beam combining system based on three diffraction gratings Download PDFInfo
- Publication number
- CN104901149A CN104901149A CN201510224501.2A CN201510224501A CN104901149A CN 104901149 A CN104901149 A CN 104901149A CN 201510224501 A CN201510224501 A CN 201510224501A CN 104901149 A CN104901149 A CN 104901149A
- Authority
- CN
- China
- Prior art keywords
- diffraction grating
- diffraction
- beam combining
- combining system
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003595 spectral effect Effects 0.000 title claims abstract description 18
- 239000013307 optical fiber Substances 0.000 claims abstract description 7
- 238000003491 array Methods 0.000 claims abstract description 4
- 239000000835 fiber Substances 0.000 claims description 25
- 238000002834 transmittance Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 claims description 3
- 230000010287 polarization Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013173 literature analysis Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域technical field
本发明涉及光纤激光光谱合束系统,特别是一种基于三块衍射光栅的光谱合束系统。The invention relates to a fiber laser spectrum combining system, in particular to a spectrum combining system based on three diffraction gratings.
背景技术Background technique
光纤激光器由于具有体积小、效率高、光束质量好和便于热管理等良好的特点,近年来实现了飞速的发展,在空间通信、激光武器、材料加工、遥感和激光雷达等领域得到了广泛的应用。随着技术的发展,高功率高光束质量的光纤激光逐渐成为各个应用领域的迫切需求,然而由于非线性效应、热效应以及端面损伤的限制,单路光纤激光器存在着一定的功率极限。在这种情况下,光纤激光合束技术应运而生,其中包括相干合束和非相干合束。相干合束对激光的线宽、相位都有着严格的要求,在实现高功率合成的路途上遭遇了一定的瓶颈。而非相干合束,又称作光谱合束,对激光的波长、相位以及线宽等要求大大降低,这种方法是通过一块衍射光栅将不同角度入射的不同波长的激光以同样的衍射角出射,从而得到一个共孔径输出的合束激光,光谱合束技术被认为是一种非常有希望获得高功率的合束技术,近来成为了研究热点。Due to the good characteristics of small size, high efficiency, good beam quality and easy thermal management, fiber lasers have achieved rapid development in recent years, and have been widely used in the fields of space communication, laser weapons, material processing, remote sensing and laser radar. application. With the development of technology, fiber lasers with high power and high beam quality have gradually become an urgent demand in various application fields. However, due to the limitations of nonlinear effects, thermal effects, and end-face damage, single-channel fiber lasers have a certain power limit. In this case, fiber laser beam combining technology came into being, including coherent beam combining and incoherent beam combining. Coherent beam combining has strict requirements on the linewidth and phase of the laser, and encountered certain bottlenecks on the way to achieve high-power combining. Non-coherent beam combining, also known as spectral beam combining, greatly reduces the requirements on the wavelength, phase and line width of the laser. This method uses a diffraction grating to emit lasers of different wavelengths incident at different angles at the same diffraction angle. , so as to obtain a beam combining laser with a common aperture output. The spectral beam combining technology is considered to be a very promising high-power beam combining technology, and has recently become a research hotspot.
现有的光纤激光光谱合束系统的结构如图2所示,由N个不同波长的种子源201,N个光纤放大器202以及N个准直输出器203,折反镜组204,衍射光栅205,平面反射镜206,傅里叶透镜207,CCD相机208组成。N个不同波长的种子源经过N个光纤放大器放大至一定的功率,经过N个准直输出器出射。每一路出射激光经过一对折反镜入射到衍射光栅上,衍射光栅以波长为λ0的立特罗角摆放,通过调整折反镜可以使各路光束以合适的角度入射到衍射光栅上,从而以相同的角度出射,实现多路激光的高功率共孔径输出。The structure of the existing fiber laser spectrum beam combining system is shown in Figure 2, by N seed sources 201 of different wavelengths, N fiber amplifiers 202 and N collimator output devices 203, folding mirror group 204, and diffraction grating 205 , a flat mirror 206, a Fourier lens 207, and a CCD camera 208. The seed sources of N different wavelengths are amplified to a certain power by N fiber amplifiers, and emitted by N collimated output devices. Each outgoing laser beam is incident on the diffraction grating through a pair of refraction mirrors, and the diffraction grating is placed at a Littrow angle with a wavelength of λ0. By adjusting the refraction mirrors, each beam can be incident on the diffraction grating at a suitable angle. Therefore, they emit at the same angle to achieve high-power common-aperture output of multiple lasers.
然而,上述现有的光谱合成系统存在一定的缺陷,实验中所用的激光源都是有一定线宽的,根据闪耀光栅方程2d sinθ=λ可以推算出,衍射光栅对于有一定线宽的光源存在着色散效应Δθ=Δλ/2d cosθ,由于光束质量直接取决于远场发散角和束腰半径,这个色散效应就会导致合成光束质量的下降,为了尽量保证合成光束质量不至于严重退化,需要限制各路子光束的线宽Δλ,根据相关的文献分析,可知Δλ应限制在GHz量级,而对于窄线宽光纤激光器来说,Δλ又直接决定着受激布里渊散射的散射阈值,较小的Δλ就限制了单路子光束的功率,从而限制了光谱合成的功率拓展。However, there are certain defects in the above-mentioned existing spectrum synthesis system. The laser sources used in the experiment all have a certain linewidth. According to the blazed grating equation 2d sinθ=λ, it can be deduced that the diffraction grating exists for a light source with a certain linewidth. Chromatic dispersion effect Δθ=Δλ/2d cosθ, since the beam quality directly depends on the far-field divergence angle and the beam waist radius, this dispersion effect will lead to a decline in the quality of the combined beam. In order to ensure that the quality of the combined beam will not be severely degraded, it is necessary to limit The linewidth Δλ of each sub-beam, according to the relevant literature analysis, shows that Δλ should be limited to GHz level, and for narrow linewidth fiber lasers, Δλ directly determines the scattering threshold of stimulated Brillouin scattering, which is smaller The Δλ limits the power of a single sub-beam, thereby limiting the power expansion of spectral synthesis.
发明内容Contents of the invention
本发明针对上述现有的光纤激光合束系统所存在的合成光束质量退化严重、合束激光路数扩展不便利的问题,提出一种基于三块衍射光栅的光谱合束系统。该系统能通过平行光栅的色散补偿特性大大降低光束质量的退化,并且通过三块光栅的空间结构实现更为便利的路数扩展。The present invention aims at the above-mentioned existing fiber laser beam combining system with serious degradation of combined beam quality and inconvenient expansion of beam combining laser paths, and proposes a spectral beam combining system based on three diffraction gratings. The system can greatly reduce the degradation of beam quality through the dispersion compensation characteristics of parallel gratings, and realize more convenient channel number expansion through the spatial structure of three gratings.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种基于三块衍射光栅的光谱合束系统,包括M个不同波长的种子源、M个光纤放大器阵列、M个准直输出器、第一块衍射光栅、第二块衍射光栅、第三块衍射光栅、平面镜、傅里叶透镜和CCD相机,上述元件的位置关系如下:第二块衍射光栅以波长为λ0的立特罗角摆放,第一块衍射光栅在第二块衍射光栅的右上方与其平行放置,第三块衍射光栅在第二块衍射光栅的右下方与其平行放置,所述的种子源、光纤放大器和准直输出器依次串联并按波长排列成M行一列的高功率光纤放大器阵列,波长小于λ0的高功率光纤放大器输出的激光平行地入射到第一块衍射光栅,波长大于λ0的高功率光纤放大器输出的激光平行地入射到第三块衍射光栅,第一块衍射光栅的衍射光和第三块衍射光栅的衍射光均经第二块衍射光栅衍射形成共孔径的激光经所述的平面镜输出,该平面镜与光路成45°,在该平面镜的反射光束方向依次是所述的傅里叶透镜和CCD相机,该CCD相机位于所述的傅里叶透镜焦平面。A spectral beam combining system based on three diffraction gratings, including M seed sources of different wavelengths, M fiber amplifier arrays, M collimated output devices, the first diffraction grating, the second diffraction grating, and the third Diffraction grating, plane mirror, Fourier lens and CCD camera, the positional relationship of above-mentioned elements is as follows: the second diffraction grating is placed with the Littrow angle that wavelength is λ 0 , and the first diffraction grating is in the second diffraction grating The upper right is placed parallel to it, and the third diffraction grating is placed parallel to it at the lower right of the second diffraction grating. The seed source, optical fiber amplifier and collimator output device are connected in series in sequence and arranged into M rows and columns of high-power In the fiber amplifier array, the laser output from the high-power fiber amplifier with a wavelength less than λ 0 is incident parallel to the first diffraction grating, and the laser output from the high-power fiber amplifier with a wavelength greater than λ 0 is incident parallel to the third diffraction grating. The diffracted light of the first diffraction grating and the diffracted light of the third diffraction grating are all diffracted by the second diffraction grating to form a common-aperture laser output through the described plane mirror. The Fourier lens and the CCD camera are in sequence, and the CCD camera is located at the focal plane of the Fourier lens.
所述的不同波长的种子源的波长范围在1040nm-1090nm,线宽为数十GHz。The wavelength range of the seed sources with different wavelengths is 1040nm-1090nm, and the line width is tens of GHz.
所述的第一块衍射光栅、第二块衍射光栅以及第三块衍射光栅均为偏振非相关的多层电解质反射式衍射光栅,刻线密度均为每毫米960刻线。The first diffraction grating, the second diffraction grating and the third diffraction grating are all polarization-independent multilayer electrolyte reflective diffraction gratings, and the groove density is 960 grooves per millimeter.
所述的一片平面反射镜的前表面镀有对激光透射率99%的高透射率膜,后表面镀有增透膜。The front surface of the one piece of plane reflector is coated with a high transmittance film with a laser transmittance of 99%, and the rear surface is coated with an anti-reflection film.
本发明的技术效果:Technical effect of the present invention:
本发明采用三块衍射光栅对各种激光进行合束,可以视作上下两组双光栅结构,双光栅结构可以实现一定的色散补偿,这就大大降低了由于入射光源的有限线宽所引起的光束质量退化的问题,这就使得双光栅结构能够降低对子光束的线宽的要求,由于我们知道对于窄线宽高功率光纤激光器来说,线宽直接影响着受激布里渊散射的散射阈值,那么放宽了线宽的要求,也就意味着子光束的功率可以做得更高,这对合束技术是非常有益的。同时受限于光栅制造工艺,单块光栅尺寸不可能制作得特别大,现实情况下,不可能有无限个平行光束同时入射到一块衍射光栅,而三块衍射光栅的结构恰恰能解决这个问题,我们将波长不同的子光束分作上下两部分分别平行入射到两块衍射光栅,它们的衍射光共同入射到第三块光栅上,从而实现了多路光束的光谱合束。The present invention uses three diffraction gratings to combine various laser beams, which can be regarded as two sets of upper and lower double grating structures. The double grating structure can achieve a certain dispersion compensation, which greatly reduces the distortion caused by the limited line width of the incident light source. The problem of beam quality degradation, which makes the double grating structure can reduce the requirements for the line width of the sub-beam, because we know that for narrow line width high power fiber lasers, the line width directly affects the scattering of stimulated Brillouin scattering Threshold, then the requirement for line width is relaxed, which means that the power of sub-beams can be made higher, which is very beneficial to beam combining technology. At the same time, limited by the grating manufacturing process, the size of a single grating cannot be made particularly large. In reality, it is impossible to have infinite parallel light beams incident on a diffraction grating at the same time, and the structure of three diffraction gratings can just solve this problem. We divide the sub-beams with different wavelengths into upper and lower parts, which are respectively incident on two diffraction gratings in parallel, and their diffracted light is jointly incident on the third grating, thus realizing the spectral combination of multiple beams.
三块衍射光栅均采用石英基底,热稳定性好,能承受高功率密度的激光照射,无需复杂的冷却系统。The three diffraction gratings all use quartz substrates, which have good thermal stability and can withstand high-power-density laser irradiation without complex cooling systems.
附图说明Description of drawings
图1为本发明基于三块衍射光栅的光谱合束系统示意图Fig. 1 is the schematic diagram of the spectral beam combining system based on three diffraction gratings of the present invention
图2为现有的光谱合束系统示意图Figure 2 is a schematic diagram of the existing spectral beam combining system
具体实施方式Detailed ways
下面结合附图对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
先请参阅图1,图1为本发明基于三块衍射光栅的光谱合束系统示意图。由图可见,本发明基于三块衍射光栅的光谱合束系统,包括M个不同波长的种子源101、M个光纤放大器阵列102、M个准直输出器103、第一块衍射光栅104、第二块衍射光栅105、第三块衍射光栅106、平面镜107、傅里叶透镜108和CCD相机109,上述元件的位置关系如下:第二块衍射光栅105以波长为λ0的立特罗角摆放,第一块衍射光栅104在第二块衍射光栅105的右上方与其平行放置,第三块衍射光栅106在第二块衍射光栅105的右下方与其平行放置,所述的种子源101、光纤放大器102和准直输出器103依次串联并按波长排列成M行一列的高功率光纤放大器阵列,波长小于λ0的高功率光纤放大器输出的激光平行地入射到第一块衍射光栅104,波长大于λ0的高功率光纤放大器输出的激光平行地入射到第三块衍射光栅106,第一块衍射光栅104的衍射光和第三块衍射光栅106的衍射光均经第二块衍射光栅105衍射形成共孔径激光经所述的平面镜107输出,该平面镜107与光路成45°,在该平面镜107的反射光束方向依次是所述的傅里叶透镜108和CCD相机109,该CCD相机109位于所述的傅里叶透镜焦平面。Please refer to FIG. 1 first. FIG. 1 is a schematic diagram of a spectral beam combining system based on three diffraction gratings according to the present invention. It can be seen from the figure that the spectral beam combining system based on three diffraction gratings in the present invention includes M seed sources 101 of different wavelengths, M fiber amplifier arrays 102, M collimator output devices 103, a first diffraction grating 104, a second Two diffraction gratings 105, the third diffraction grating 106, plane mirror 107, Fourier lens 108 and CCD camera 109, the positional relationship of the above-mentioned elements is as follows: the second diffraction grating 105 is the Littrow angle pendulum of λ 0 with wavelength Put, the first diffraction grating 104 is placed parallel to it on the upper right of the second diffraction grating 105, and the third diffraction grating 106 is placed parallel to it on the lower right of the second diffraction grating 105. The seed source 101, optical fiber Amplifier 102 and collimator output device 103 are connected in series successively and arranged into a high-power fiber amplifier array of M rows and one column according to wavelength, and the laser light output by the high-power fiber amplifier with wavelength less than λ 0 is incident on the first diffraction grating 104 in parallel, and the wavelength is greater than The laser light output by the high-power optical fiber amplifier of λ 0 is incident on the third diffraction grating 106 in parallel, and the diffracted light of the first diffraction grating 104 and the diffracted light of the third diffraction grating 106 are formed through the diffraction of the second diffraction grating 105 Common-aperture laser is exported through described plane mirror 107, and this plane mirror 107 forms 45 ° with optical path, and the reflected light beam direction of this plane mirror 107 is described Fourier lens 108 and CCD camera 109 successively, and this CCD camera 109 is positioned at described The focal plane of the Fourier lens.
所述的不同波长的种子源101的波长范围在1040nm-1090nm,线宽为数十GHz。The wavelength range of the seed sources 101 of different wavelengths is 1040nm-1090nm, and the line width is tens of GHz.
所述的第一块衍射光栅104、第二块衍射光栅105以及第三块衍射光栅106均为偏振非相关的多层电解质反射式衍射光栅,刻线密度均为每毫米960刻线。The first diffraction grating 104 , the second diffraction grating 105 and the third diffraction grating 106 are all polarization-independent multilayer electrolyte reflective diffraction gratings, and the groove density is 960 grooves per millimeter.
所述的一片平面反射镜107前表面镀有对激光透射率99%的高透射率膜,后表面镀有增透膜。The front surface of the piece of flat mirror 107 is coated with a high transmittance film with a laser transmittance of 99%, and the rear surface is coated with an anti-reflection film.
所述的不同波长的种子源101按照波长分为两组,如图2所示,一组波长均小于λ0,λn<…λ1<λ0,位于图2上半部分;另一组波长大于λ0,λm>…λn+1>λ0,位于图2下半部分。波长小于λ0的一组光束平行入射到第一块衍射光栅104,以不同的衍射角出射并传输到第二块衍射光栅105的同一个点处,波长大于λ0的一组光束平行入射到第三块衍射光栅106,以不同的衍射角出射并传输到第二块衍射光栅105,与第一组光束作用在同一个点处。根据光栅方程,第二块衍射光栅105对入射到其上的所有光束衍射,从而实现所有子光束的共孔径输出,输出的合成光束传输到一片平面镜107,99%的光透过平面镜107,1%的光经过平面镜107反射,通过一片傅里叶透镜108成像在位于焦平面处的CCD相机109,从而对远场合成光斑进行检测。The seed sources 101 of different wavelengths are divided into two groups according to the wavelengths, as shown in Figure 2, one group of wavelengths is less than λ 0 , λ n <...λ 1 <λ 0 , located in the upper part of Figure 2; the other group The wavelength is greater than λ 0 , and λ m >...λ n+1 >λ 0 , located in the lower half of Fig. 2 . A group of light beams with a wavelength smaller than λ 0 are incident parallel to the first diffraction grating 104, emerge at different diffraction angles and are transmitted to the same point of the second diffraction grating 105, and a group of light beams with a wavelength greater than λ 0 are incident parallel to the first diffraction grating 104. The third diffraction grating 106 emits at different diffraction angles and transmits to the second diffraction grating 105, acting on the same point as the first group of light beams. According to the grating equation, the second diffraction grating 105 diffracts all the light beams incident on it, thereby realizing the common-aperture output of all sub-beams, and the output combined light beam is transmitted to a plane mirror 107, and 99% of the light passes through the plane mirror 107,1 % of the light is reflected by the plane mirror 107, and is imaged by a Fourier lens 108 on the CCD camera 109 located at the focal plane, so as to detect the far-field synthetic light spot.
下面以四路光纤放大器合束的实例进行说明,四路种子源101波长分别为1060nm、1064nm、1072nm、1076nm,首先将第二块衍射光栅105以1068nm波长激光的立特罗角摆放,根据闪耀光栅方程2d sinθ=λ,可以得出对于1064nm波长,960线每毫米的衍射光栅,其立特罗角为30.84°;然后将第一块衍射光栅104和第三块衍射光栅106在一定距离处分别在第二块衍射光栅105右上方和右下方与其平行摆放;1060nm和1064nm子光束入射到第一块衍射光栅104,1072nm和1076nm子光束入射到第三块衍射光栅;开启四路种子源101,开启四路光纤放大器102,调整准直器103使得各路激光平行入射到相应的衍射光栅上,精细调整三块衍射光栅的位置,使得1060nm、1064nm子光束经过第一块衍射光栅的衍射光和1072nm、1076nm子光束经过第三块衍射光栅的衍射光作用到第二块衍射光栅105的同一点处;平面镜107与光轴成45°摆放,精细调整傅里叶透镜108和CCD相机109的位置,使得在CCD相机上可以监测到合成光束远场光斑,通过调整光路中的光学调整元件使得CCD相机中的合成光束远场光斑完全共孔径,从而完成四路光纤激光器的光谱合成。The following is an example of four-way fiber amplifier beam combining. The four-way seed sources 101 have wavelengths of 1060nm, 1064nm, 1072nm, and 1076nm respectively. First, the second diffraction grating 105 is placed at the Littrow angle of the 1068nm wavelength laser. The blazed grating equation 2d sinθ=λ, can draw that for a wavelength of 1064nm, a diffraction grating with 960 lines per millimeter has a Littrow angle of 30.84°; then place the first diffraction grating 104 and the third diffraction grating 106 at a certain distance Placed at the upper right and lower right of the second diffraction grating 105 respectively; the sub-beams of 1060nm and 1064nm are incident on the first diffraction grating 104, and the sub-beams of 1072nm and 1076nm are incident on the third diffraction grating; Source 101, turn on the four-way fiber amplifier 102, adjust the collimator 103 so that each laser beam is incident on the corresponding diffraction grating in parallel, finely adjust the positions of the three diffraction gratings, so that the 1060nm and 1064nm sub-beams pass through the first diffraction grating Diffraction light and 1072nm, 1076nm sub-beams pass through the diffraction light of the third diffraction grating and act on the same point of the second diffraction grating 105; the plane mirror 107 is placed at 45° to the optical axis, and the Fourier lens 108 and CCD are finely adjusted The position of the camera 109 makes it possible to monitor the far-field spot of the synthesized beam on the CCD camera. By adjusting the optical adjustment element in the optical path, the far-field spot of the synthesized beam in the CCD camera is completely common in aperture, thereby completing the spectrum synthesis of the four-way fiber laser. .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510224501.2A CN104901149A (en) | 2015-05-05 | 2015-05-05 | Spectral beam combining system based on three diffraction gratings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510224501.2A CN104901149A (en) | 2015-05-05 | 2015-05-05 | Spectral beam combining system based on three diffraction gratings |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104901149A true CN104901149A (en) | 2015-09-09 |
Family
ID=54033645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510224501.2A Pending CN104901149A (en) | 2015-05-05 | 2015-05-05 | Spectral beam combining system based on three diffraction gratings |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104901149A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105140769A (en) * | 2015-09-28 | 2015-12-09 | 湖北航天技术研究院总体设计所 | Spectral-combined beam overlapping detection and adjustment device |
CN105762632A (en) * | 2016-05-06 | 2016-07-13 | 中国人民解放军国防科学技术大学 | High-power laser high-brightness spectrum synthesis system |
CN107121782A (en) * | 2017-05-26 | 2017-09-01 | 武汉光迅科技股份有限公司 | A kind of compact multi-wavelength light component and its application method |
WO2017197883A1 (en) * | 2016-05-18 | 2017-11-23 | 上海高意激光技术有限公司 | Laser array beam combining device |
CN108321677A (en) * | 2018-04-28 | 2018-07-24 | 上海高意激光技术有限公司 | A kind of semiconductor laser beam merging apparatus |
DE102017115786A1 (en) * | 2017-07-13 | 2019-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optical arrangement and method for generating a combined beam of a plurality of laser light sources |
CN110109259A (en) * | 2019-04-25 | 2019-08-09 | 中国科学院苏州生物医学工程技术研究所 | The beam merging apparatus of semiconductor laser high light beam quality high-power output |
CN110323672A (en) * | 2019-06-27 | 2019-10-11 | 苏州长光华芯光电技术有限公司 | A kind of Bragg grating outside cavity gas laser module beam merging apparatus and close Shu Fangfa |
CN111289987A (en) * | 2018-12-06 | 2020-06-16 | 深圳市速腾聚创科技有限公司 | Laser radar apparatus and laser radar ranging system |
CN111854291A (en) * | 2020-01-20 | 2020-10-30 | 中国科学院上海光学精密机械研究所 | High-efficiency active heat exchange spectral beam-combining grating integrated module and preparation method thereof |
WO2020171865A3 (en) * | 2018-12-11 | 2020-12-17 | Northrop Grumman Systems Corporation | Wavelength-controlled beam stabilizer for spectrally beam combined laser sources |
CN112157345A (en) * | 2020-09-27 | 2021-01-01 | 华夏鲲鹏科技股份有限公司 | Multi-wavelength laser beam combining device |
CN113794100A (en) * | 2021-11-15 | 2021-12-14 | 中国工程物理研究院激光聚变研究中心 | Two-dimensional spectrum synthesizer |
CN113794098A (en) * | 2021-11-15 | 2021-12-14 | 中国工程物理研究院激光聚变研究中心 | High-light-beam-quality spectrum beam combining device |
CN114234131A (en) * | 2021-11-18 | 2022-03-25 | 晶影光学技术(常熟)有限公司 | Beam-combining and light-splitting illumination system |
CN115096177A (en) * | 2022-01-06 | 2022-09-23 | 同济大学 | Device and method for monitoring beam of laser beam combining system by position of sub-beam |
CN115360571A (en) * | 2022-08-23 | 2022-11-18 | 中国科学院上海光学精密机械研究所 | Wavelength Adaptive Feedback Control System Based on Spectral Combining |
CN115629483A (en) * | 2022-12-23 | 2023-01-20 | 中国航天三江集团有限公司 | Two-dimensional array spectrum synthesis device and synthesis method thereof |
US20230108080A1 (en) * | 2020-03-05 | 2023-04-06 | Panasonic Holdings Corporation | Semiconductor laser device |
CN118299909A (en) * | 2024-06-06 | 2024-07-05 | 中国工程物理研究院激光聚变研究中心 | Multichannel gain optical fiber, multichannel laser and light beam synthesis system |
CN119231302A (en) * | 2024-12-03 | 2024-12-31 | 中国人民解放军国防科技大学 | High-power mid-infrared fiber gas laser based on spectral beam combining |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070229939A1 (en) * | 2005-01-26 | 2007-10-04 | Aculight Corporation | Method and apparatus for spectral-beam combining of fiber-amplified laser beams using high-efficiency dielectric diffractive gratings |
US20080084605A1 (en) * | 2006-10-05 | 2008-04-10 | Rothenberg Joshua E | Method and system for hybrid coherent and incoherent diffractive beam combining |
CN103633548A (en) * | 2013-12-13 | 2014-03-12 | 山东海富光子科技股份有限公司 | Spectrum pulse beam-combining fiber laser device based on volume Bragg gratings |
-
2015
- 2015-05-05 CN CN201510224501.2A patent/CN104901149A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070229939A1 (en) * | 2005-01-26 | 2007-10-04 | Aculight Corporation | Method and apparatus for spectral-beam combining of fiber-amplified laser beams using high-efficiency dielectric diffractive gratings |
US20080084605A1 (en) * | 2006-10-05 | 2008-04-10 | Rothenberg Joshua E | Method and system for hybrid coherent and incoherent diffractive beam combining |
CN103633548A (en) * | 2013-12-13 | 2014-03-12 | 山东海富光子科技股份有限公司 | Spectrum pulse beam-combining fiber laser device based on volume Bragg gratings |
Non-Patent Citations (2)
Title |
---|
THOMAS H. LOFTUS ET AL.: "522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality", 《OPTICS LETTERS》 * |
马毅等: "光纤激光共孔径光谱合成实现5kW高效优质输出", 《强激光与粒子束》 * |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105140769A (en) * | 2015-09-28 | 2015-12-09 | 湖北航天技术研究院总体设计所 | Spectral-combined beam overlapping detection and adjustment device |
CN105140769B (en) * | 2015-09-28 | 2018-06-26 | 湖北航天技术研究院总体设计所 | A kind of Spectral beam combining light beam overlapping detection adjusting apparatus |
CN105762632A (en) * | 2016-05-06 | 2016-07-13 | 中国人民解放军国防科学技术大学 | High-power laser high-brightness spectrum synthesis system |
CN105762632B (en) * | 2016-05-06 | 2019-06-07 | 中国人民解放军国防科学技术大学 | High power laser high brightness spectrum synthesis system |
WO2017197883A1 (en) * | 2016-05-18 | 2017-11-23 | 上海高意激光技术有限公司 | Laser array beam combining device |
CN107121782A (en) * | 2017-05-26 | 2017-09-01 | 武汉光迅科技股份有限公司 | A kind of compact multi-wavelength light component and its application method |
DE102017115786A1 (en) * | 2017-07-13 | 2019-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optical arrangement and method for generating a combined beam of a plurality of laser light sources |
GB2566145A (en) * | 2017-07-13 | 2019-03-06 | Fraunhofer Ges Forschung | Optical arrangement and method for producing a combined beam of a plurality of laser light sources |
DE102017115786B4 (en) * | 2017-07-13 | 2021-02-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optical arrangement and method for generating a combined beam of several laser light sources |
CN108321677A (en) * | 2018-04-28 | 2018-07-24 | 上海高意激光技术有限公司 | A kind of semiconductor laser beam merging apparatus |
US11784465B2 (en) | 2018-04-28 | 2023-10-10 | Ii-Vi Suwtech, Inc. | Semiconductor laser beam combining device |
WO2019205500A1 (en) * | 2018-04-28 | 2019-10-31 | Ii-Vi Suwtech Inc. | Semiconductor laser beam combining device |
CN111289987A (en) * | 2018-12-06 | 2020-06-16 | 深圳市速腾聚创科技有限公司 | Laser radar apparatus and laser radar ranging system |
WO2020171865A3 (en) * | 2018-12-11 | 2020-12-17 | Northrop Grumman Systems Corporation | Wavelength-controlled beam stabilizer for spectrally beam combined laser sources |
JP7438218B2 (en) | 2018-12-11 | 2024-02-26 | ノースロップ グラマン システムズ コーポレーション | Wavelength-controlled beam stabilizer for spectrally beam-combined laser sources |
JP2022512390A (en) * | 2018-12-11 | 2022-02-03 | ノースロップ グラマン システムズ コーポレーション | Wavelength controlled beam stabilizer for spectral beam coupled laser sources |
EP4167402A1 (en) * | 2018-12-11 | 2023-04-19 | Northrop Grumman Systems Corporation | Wavelength-controlled beam stabilizer for spectrally beam combined laser sources |
US11294193B2 (en) | 2018-12-11 | 2022-04-05 | Northrop Grumman Systems Corporation | Wavelength-controlled beam stabilizer for spectrally beam combined laser sources |
CN110109259A (en) * | 2019-04-25 | 2019-08-09 | 中国科学院苏州生物医学工程技术研究所 | The beam merging apparatus of semiconductor laser high light beam quality high-power output |
WO2020259198A1 (en) * | 2019-06-27 | 2020-12-30 | 苏州长光华芯光电技术有限公司 | Beam combining device and beam combining method for bragg grating external-cavity laser module |
CN110323672A (en) * | 2019-06-27 | 2019-10-11 | 苏州长光华芯光电技术有限公司 | A kind of Bragg grating outside cavity gas laser module beam merging apparatus and close Shu Fangfa |
US11631966B2 (en) | 2019-06-27 | 2023-04-18 | Suzhou Everbright Photonics Co., Ltd. | Beam combining device and beam combining method for Bragg grating external-cavity laser module |
CN111854291A (en) * | 2020-01-20 | 2020-10-30 | 中国科学院上海光学精密机械研究所 | High-efficiency active heat exchange spectral beam-combining grating integrated module and preparation method thereof |
US20230108080A1 (en) * | 2020-03-05 | 2023-04-06 | Panasonic Holdings Corporation | Semiconductor laser device |
CN112157345A (en) * | 2020-09-27 | 2021-01-01 | 华夏鲲鹏科技股份有限公司 | Multi-wavelength laser beam combining device |
CN113794098A (en) * | 2021-11-15 | 2021-12-14 | 中国工程物理研究院激光聚变研究中心 | High-light-beam-quality spectrum beam combining device |
CN113794100A (en) * | 2021-11-15 | 2021-12-14 | 中国工程物理研究院激光聚变研究中心 | Two-dimensional spectrum synthesizer |
CN114234131A (en) * | 2021-11-18 | 2022-03-25 | 晶影光学技术(常熟)有限公司 | Beam-combining and light-splitting illumination system |
CN115096177A (en) * | 2022-01-06 | 2022-09-23 | 同济大学 | Device and method for monitoring beam of laser beam combining system by position of sub-beam |
CN115096177B (en) * | 2022-01-06 | 2023-08-04 | 同济大学 | A device and method for monitoring the beam of a laser beam combining system by using the sub-beam position |
CN115360571A (en) * | 2022-08-23 | 2022-11-18 | 中国科学院上海光学精密机械研究所 | Wavelength Adaptive Feedback Control System Based on Spectral Combining |
CN115360571B (en) * | 2022-08-23 | 2025-02-11 | 中国科学院上海光学精密机械研究所 | Wavelength adaptive feedback control system based on spectral beam combining |
CN115629483A (en) * | 2022-12-23 | 2023-01-20 | 中国航天三江集团有限公司 | Two-dimensional array spectrum synthesis device and synthesis method thereof |
CN118299909A (en) * | 2024-06-06 | 2024-07-05 | 中国工程物理研究院激光聚变研究中心 | Multichannel gain optical fiber, multichannel laser and light beam synthesis system |
CN119231302A (en) * | 2024-12-03 | 2024-12-31 | 中国人民解放军国防科技大学 | High-power mid-infrared fiber gas laser based on spectral beam combining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104901149A (en) | Spectral beam combining system based on three diffraction gratings | |
US10333265B2 (en) | Spectral beam combined laser system and method | |
US7948680B2 (en) | Spectral beam combination using broad bandwidth lasers | |
US7724789B2 (en) | Method and apparatus for optical mode multiplexing of multimode lasers and arrays | |
JP7674345B2 (en) | Optical monolithic beam shaper array with miniature tiles. | |
JP7507235B2 (en) | A hybrid spectrally and coherently combined fiber laser amplifier system including a coherent optical monolithic phased array with miniature tiles. | |
CN104300368B (en) | Semiconductor laser beam merging apparatus | |
CN204156286U (en) | A kind of diode laser spectrum synthesizer based on double-grating external cavity feedback | |
US20200028332A1 (en) | Wavelength combining laser apparatus | |
CN104332821A (en) | Diode laser spectrum synthesizer based on double-grating external cavity feedback | |
CN102208753A (en) | External cavity semiconductor laser with multi-wavelength combination | |
CN208062488U (en) | A kind of semiconductor laser beam merging apparatus | |
CN105652452A (en) | Space beam combination device and system | |
JP7654645B2 (en) | Spectrally combined fiber laser amplifier system including optical monolithic beam shaper array with miniature tiles | |
CN107727250A (en) | Grating inclination of wave front dispersion compensation device | |
CN113253472B (en) | Reference light generating device and method for light beam synthesis system | |
Schreiber et al. | High-brightness fiber-coupling schemes for diode laser bars | |
WO2015145608A1 (en) | Laser device | |
CN115981017A (en) | A multi-channel laser color separation and beam combining module and its adjustment method | |
CN104348555B (en) | Semiconductor laser for fiber optic communication | |
CN104577690B (en) | Ultra wide band optics coherence tomography Chirp pulse amplification laser system | |
CN113794100B (en) | Two-dimensional spectrum synthesizer | |
CN105406353B (en) | More single tubes based on grating isosceles prism close beam semiconductor laser | |
CN116435872A (en) | A Narrow Linewidth Spectral Beam Combining Device for Arrayed Semiconductor Lasers | |
CN103424882B (en) | Based on the conjunction beam orifice filling device of inverse Darman raster |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150909 |
|
WD01 | Invention patent application deemed withdrawn after publication |