[go: up one dir, main page]

CN104898135B - Satellite navigation signals analogy method and simulation system based on FPGA - Google Patents

Satellite navigation signals analogy method and simulation system based on FPGA Download PDF

Info

Publication number
CN104898135B
CN104898135B CN201510341287.9A CN201510341287A CN104898135B CN 104898135 B CN104898135 B CN 104898135B CN 201510341287 A CN201510341287 A CN 201510341287A CN 104898135 B CN104898135 B CN 104898135B
Authority
CN
China
Prior art keywords
signal
channel
parameter
module
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510341287.9A
Other languages
Chinese (zh)
Other versions
CN104898135A (en
Inventor
路辉
欧国标
崔吉慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201510341287.9A priority Critical patent/CN104898135B/en
Publication of CN104898135A publication Critical patent/CN104898135A/en
Application granted granted Critical
Publication of CN104898135B publication Critical patent/CN104898135B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种基于FPGA的卫星导航信号模拟方法和模拟系统。模拟方法包括:对输入的系统参数和通道参数进行接收和存储,并间隔发出中断信号控制外部输入数据的更新;控制相位产生电文、伪码、子码、载波和子载波并调制输出数字中频信号。本发明具有如下优点:基于FPGA搭建,可模拟实时、高精度、高动态的卫星导航信号;各个功能模块之间相互独立,易于维护和系统升级;频点信息和参数来自外部输入,调制工程依据频点和参数信息对调制工程进行配置,可实现特定频点的信号调制;调制工程兼容BDS、GPS、GLONASS和GALILEO卫导系统的各个频点,满足新型信号体制对模拟器提出的新要求。

The invention discloses an FPGA-based satellite navigation signal simulation method and simulation system. The simulation method includes: receiving and storing the input system parameters and channel parameters, and sending interrupt signals at intervals to control the update of external input data; controlling the phase to generate text, pseudocode, subcode, carrier and subcarrier and modulating the output digital intermediate frequency signal. The present invention has the following advantages: based on FPGA construction, real-time, high-precision, and high-dynamic satellite navigation signals can be simulated; each functional module is independent of each other, easy to maintain and system upgrade; frequency point information and parameters come from external input, modulation engineering basis Frequency point and parameter information configure the modulation project to realize signal modulation at a specific frequency point; the modulation project is compatible with each frequency point of BDS, GPS, GLONASS and GALILEO satellite navigation systems, and meets the new requirements of the new signal system for the simulator.

Description

基于FPGA的卫星导航信号模拟方法和模拟系统FPGA-based satellite navigation signal simulation method and simulation system

技术领域technical field

本发明涉及基于FPGA的卫星导航信号模拟方法和模拟系统,属于无线通信领域。The invention relates to an FPGA-based satellite navigation signal simulation method and simulation system, belonging to the field of wireless communication.

背景技术Background technique

全球卫星导航系统作为一种主要的定位手段成为世界各国发展的重点。目前GPS系统正在开展现代化建设进程、Glonass、Galileo和BDS等系统处于建设和完善阶段。在各个系统研制的过程中,提升卫星导航系统性能成为各个系统发展和建设的重点,因此新型信号体制得到了论证和应用。例如Galileo和GPS系统采用了TMBOC、CBOC、AltBOC和TDDM-BPSK等新型信号调制方法。新型信号体制的带宽更宽,大多包括导频和数据两路信号,调制方式中增加了方波子载波和子码。新型信号体制的特点以及其对卫星导航系统性能的影响需要进行理论和实践的验证,同时信号体制的变化对于接收机的研制提出了挑战,针对新型信号体制的特点研制接收机是必然发展过程。这些工作的开展都离不开卫星导航系统模拟器的研制。As a main positioning means, the global satellite navigation system has become the focus of the development of all countries in the world. At present, the GPS system is in the process of modernization, Glonass, Galileo and BDS and other systems are in the construction and improvement stage. During the development of each system, improving the performance of the satellite navigation system has become the focus of the development and construction of each system, so the new signal system has been demonstrated and applied. For example, Galileo and GPS systems have adopted new signal modulation methods such as TMBOC, CBOC, AltBOC and TDDM-BPSK. The bandwidth of the new signal system is wider, and most of them include two signals of pilot frequency and data, and the square wave subcarrier and subcode are added to the modulation method. The characteristics of the new signal system and its impact on the performance of the satellite navigation system need to be verified in theory and practice. At the same time, the change of the signal system poses challenges to the development of the receiver. It is an inevitable development process to develop the receiver according to the characteristics of the new signal system. The development of these works is inseparable from the development of the satellite navigation system simulator.

目前卫星导航系统模拟器系统的主要架构包括三种,分别是软件、硬件和软硬件结合。软件架构模拟器产生数字中频信号数据文件,可经回放和上变频产生射频信号,但受计算机硬件的限制,无法模拟长时间、高采样率的中频信号。硬件架构的模拟器功能则相对固定,系统升级困难。对于软硬件结合架构的模拟器,软件部分负责计算信号参数和编写导航电文,硬件部分负责中频信号的调制和上变频等工作。At present, the main structure of the satellite navigation system simulator system includes three types, which are software, hardware and combination of software and hardware. The software architecture simulator generates digital IF signal data files, which can be played back and up-converted to generate RF signals, but limited by computer hardware, it cannot simulate long-term, high-sampling-rate IF signals. The emulator functions of the hardware architecture are relatively fixed, and it is difficult to upgrade the system. For a simulator with a combination of software and hardware architecture, the software part is responsible for calculating signal parameters and writing navigation messages, and the hardware part is responsible for the modulation and up-conversion of intermediate frequency signals.

现有技术硬件部分的硬件开发平台主要可分为DSP、ASIC、PLD三大类。The hardware development platform of the hardware part in the prior art can be mainly divided into three categories: DSP, ASIC, and PLD.

DSP依靠指令实现数据的处理操作,只能串行处理,在应对高速、大数据流,以及并行运算时,无法满足设计要求。DSP relies on instructions to realize data processing operations, which can only be processed serially, and cannot meet the design requirements when dealing with high-speed, large data streams, and parallel operations.

AISC指为专门目的而设计的集成电路,缺点在于内部逻辑架构无法改变,重构性低,开发周期长,成本高。AISC refers to integrated circuits designed for special purposes. The disadvantages are that the internal logic structure cannot be changed, the reconfiguration is low, the development cycle is long, and the cost is high.

其中PLD主要分为FPGA和CPLD两大类。CPLD的逻辑资源较少,主要用于逻辑相对简单、功耗较低的场合。FPGA的逻辑资源较为丰富,适合大规模的数字信号处理。Among them, PLD is mainly divided into two categories: FPGA and CPLD. CPLD has less logic resources, and is mainly used in occasions with relatively simple logic and low power consumption. FPGA has rich logic resources and is suitable for large-scale digital signal processing.

现有技术中,模拟器一般针对某一特定功能进行实现,如高精度或高动态信号的模拟。且现有的模拟器架构多用于实现单一频点的信号模拟,对多模多通道信号的模拟不够完善,不便于用户设备的测试。In the prior art, the simulator is generally implemented for a specific function, such as the simulation of high-precision or high-dynamic signals. Moreover, the existing simulator architecture is mostly used to realize signal simulation of a single frequency point, and the simulation of multi-mode and multi-channel signals is not perfect enough, which is not convenient for user equipment testing.

发明内容Contents of the invention

本发明旨在至少解决上述技术问题之一。The present invention aims to solve at least one of the above-mentioned technical problems.

为此,本发明的第一个目的在于提出一种基于FPGA的卫星导航信号模拟方法。该方法适用于模拟高精度或高动态卫星导航信号。同时兼容BDS、GPS、GLONASS和GALILEO系统的各个频点,可通过模拟器的软件部分对硬件部分进行控制,选择模拟产生相应频点的数字中频卫星导航信号,方便测试,有效缩短用户设备的开发时间,并满足新型信号体制对模拟器提出的新要求。For this reason, the first object of the present invention is to propose a kind of FPGA-based satellite navigation signal simulation method. This method is suitable for simulating high precision or high dynamic satellite navigation signals. At the same time, it is compatible with each frequency point of BDS, GPS, GLONASS and GALILEO systems. The hardware part can be controlled through the software part of the simulator, and the digital intermediate frequency satellite navigation signal of the corresponding frequency point can be selected and simulated to facilitate testing and effectively shorten the development of user equipment. Time, and meet the new requirements of the new signal system for the simulator.

本发明的第二个目的在于提出一种基于FPGA的卫星导航信号模拟系统。该系统适用于模拟高精度或高动态卫星导航信号。同时兼容BDS、GPS、GLONASS和GALILEO系统的各个频点,可通过模拟器的软件部分对硬件部分进行控制,选择模拟产生相应频点的数字中频卫星导航信号,方便测试,有效缩短用户设备的开发时间,并满足新型信号体制对模拟器提出的新要求。The second object of the present invention is to propose a FPGA-based satellite navigation signal simulation system. The system is suitable for simulating high precision or high dynamic satellite navigation signals. At the same time, it is compatible with each frequency point of BDS, GPS, GLONASS and GALILEO systems. The hardware part can be controlled through the software part of the simulator, and the digital intermediate frequency satellite navigation signal of the corresponding frequency point can be selected and simulated to facilitate testing and effectively shorten the development of user equipment. Time, and meet the new requirements of the new signal system for the simulator.

为了实现上述目的,本发明的第一方面的实施例公开了一种基于FPGA的卫星导航信号模拟方法,包括以下步骤1)对输入的系统参数和通道参数进行接收和存储,并间隔发出中断信号控制外部输入数据的更新;2)控制相位产生电文、伪码、子码、载波和子载波并调制输出数字中频信号;在步骤2)中,进一步包括:接收电文速率参数、伪码NCO参数、载波NCO参数、子码长度参数、子码速率参数和伪码周期脉冲,根据所述伪码周期脉冲和所述电文速率参数的控制下逐比特输出电文,根据所述伪码NCO参数通过伪码DDS控制生成伪码相位,由所述伪码相位控制读取所述伪码;对所述伪码周期脉冲进行计数,在子码速率和子码长度参数的控制下输出子码相位,根据所述子码相位控制读取所述子码;根据所述载波NCO参数通过载波DDS控制生成载波相位,由所述载波相位控制读取所述载波的采样幅值得到所述载波;接收所述伪码DDS的输出相位控制字,并根据调制系数,控制子载波相位的跳变逐比特输出子载波。In order to achieve the above object, the embodiment of the first aspect of the present invention discloses a satellite navigation signal simulation method based on FPGA, including the following steps 1) receiving and storing the input system parameters and channel parameters, and sending interrupt signals at intervals Control the update of the external input data; 2) Control the phase to generate message, pseudocode, subcode, carrier and subcarrier and modulate the output digital intermediate frequency signal; in step 2), further include: receiving message rate parameter, pseudocode NCO parameter, carrier NCO parameters, subcode length parameters, subcode rate parameters and pseudocode periodic pulses, output text bit by bit under the control of the pseudocode periodic pulses and the text rate parameters, and pass pseudocode DDS according to the pseudocode NCO parameters Control generates pseudo-code phase, read described pseudo-code by described pseudo-code phase control; Count described pseudo-code periodic pulse, output sub-code phase under the control of sub-code rate and sub-code length parameter, according to described sub-code phase The code phase control reads the subcode; generates the carrier phase through the carrier DDS control according to the carrier NCO parameter, and reads the sampling amplitude of the carrier by the carrier phase control to obtain the carrier; receives the pseudo code DDS The output phase control word of the control word, and according to the modulation factor, control the subcarrier phase hopping to output the subcarrier bit by bit.

根据本发明实施例的基于FPGA的卫星导航信号模拟方法,软件用于模拟缓慢变化的误差,能够完成对这些模拟模型的计算;硬件完成信号的调制,保证信号能实时产生,采用这种架构的模拟器可以进行长时间的信号测试;使用软件部分下发的参数对FPGA的各模块进行配置可以灵活改变FPGA的功能,而不用频繁修改FPGA程序;基于FPGA搭建,频点信息和参数来自外部输入,调制工程通过频点信息和参数对调制工程进行配置,可实现特定频点的信号调制,兼容BDS、GPS、GLONASS和GALILEO卫星导航系统的各个频点,方便测试,缩短用户设备的开发时间;各个功能模块之间相对独立,具有良好的兼容性、可扩展性,易于维护且有利于系统升级。According to the FPGA-based satellite navigation signal simulation method of the embodiment of the present invention, the software is used to simulate slowly changing errors, and can complete the calculation of these simulation models; the hardware completes the modulation of the signal to ensure that the signal can be generated in real time. The simulator can perform long-term signal testing; using the parameters delivered by the software to configure each module of the FPGA can flexibly change the functions of the FPGA without frequently modifying the FPGA program; based on the FPGA, the frequency point information and parameters come from external input , The modulation project configures the modulation project through frequency point information and parameters, which can realize signal modulation at a specific frequency point, and is compatible with each frequency point of BDS, GPS, GLONASS and GALILEO satellite navigation systems, which is convenient for testing and shortens the development time of user equipment; Each functional module is relatively independent, has good compatibility and scalability, is easy to maintain and is conducive to system upgrades.

另外,根据本发明上述实施例的基于FPGA的卫星导航信号模拟方法,还可以具有如下附加的技术特征:In addition, the FPGA-based satellite navigation signal simulation method according to the above-mentioned embodiments of the present invention can also have the following additional technical features:

进一步地,在步骤1)中,还包括输入的外部参数,所述外部参数的高位为输入的第一有效数据,低位用于所述第一有效数据的类型判定,所述第一有效数据包括通道状态参数、系统初始化参数,初始化数据下发完成标志、NCO参数更新标志和新可见星标志。Further, in step 1), the input external parameters are also included, the high bits of the external parameters are the first valid data input, and the low bits are used to determine the type of the first valid data, and the first valid data includes Channel status parameters, system initialization parameters, initialization data delivery completion flag, NCO parameter update flag and new visible star flag.

进一步地,在步骤1)中,根据输入的所述外部参数,所述外部参数的高位为输入的第二有效数据,低位用于第二有效数据的类型判定,所述第二有效数据包括通道初始化参数、NCO参数和电文。Further, in step 1), according to the input external parameter, the high bit of the external parameter is the input second valid data, and the low bit is used for the type determination of the second valid data, and the second valid data includes channel Initialization parameters, NCO parameters and telegrams.

进一步地,在步骤1)中,所述中断信号控制外部输入数据的更新过程为:在模拟器初始化完毕信号开始调制时,中断开始计时;如果满足更新周期条件,则向外部设备发出中断并复位计数,中断用于控制外部设备为模拟器输入最新的NCO参数和最新的电文;如果不满足更新周期条件,则继续计时。Further, in step 1), the update process of the external input data controlled by the interrupt signal is as follows: when the simulator is initialized and the signal starts to modulate, the interrupt starts counting; if the update period condition is met, an interrupt is sent to the external device and reset Counting and interrupt are used to control the external device to input the latest NCO parameters and the latest message for the simulator; if the update period condition is not met, continue timing.

进一步地,在步骤2)中,所述中频信号的调制过程为:接收所述电文、所述伪码、所述子码、所述载波和所述子载波,根据频点代号选择相应的调制方式,对所述导频路信号和所述数据路信号进行中频调制,其中,输入伪码更新跳变时通过寄存器设置延迟实现电文、子码、子载波随所述伪码在满足需要跳变条件下同时跳变。Further, in step 2), the modulation process of the intermediate frequency signal is: receiving the message, the pseudocode, the subcode, the carrier and the subcarrier, and selecting the corresponding modulation according to the frequency point code Mode, the intermediate frequency modulation is performed on the pilot channel signal and the data channel signal, wherein, when the input pseudo code is updated and jumped, the delay is set by the register to realize the message, subcode, and subcarrier jumping with the pseudo code to meet the needs Under the condition of jumping at the same time.

进一步地,在步骤2)中,还包括:中频调制后的所述数据路信号经过第一乘法器控制数据路相对于导频路的功率,得到数据路信号;中频调制后的所述导频路信号经过第二乘法器控制导频路相对于数据路的功率,得到导频路信号。Further, in step 2), it also includes: the data channel signal after intermediate frequency modulation passes through the first multiplier to control the power of the data channel relative to the pilot channel to obtain the data channel signal; the pilot channel signal after intermediate frequency modulation The channel signal passes through the second multiplier to control the power of the pilot channel relative to the data channel to obtain the pilot channel signal.

进一步地,在步骤2)中,还包括:接收幅度控制字和加法器输出信号幅值,采用第三乘法器控制通道所调制卫星信号相对其他卫星信号的幅值并输出,以此模拟接收机接收到的功率不一致的各卫星导航信号。Further, in step 2), it also includes: receiving the amplitude control word and the output signal amplitude of the adder, using the third multiplier to control the amplitude of the satellite signal modulated by the channel relative to other satellite signals and outputting it, so as to simulate the receiver Each satellite navigation signal received with inconsistent power.

进一步地,步骤2)中,还包括对所有通道信号进行合并,得到最终数字中频卫星导航信号。Further, in step 2), it also includes combining all channel signals to obtain the final digital intermediate frequency satellite navigation signal.

为了实现上述目的,本发明的第二方面的实施例公开了一种基于FPGA的卫星导航信号模拟系统,包括:参数接收模块,用于对输入的系统参数和通道参数进行接收和存储,将数据传递至信号调制模块;信号调制模块,根据从所述参数接收模块接收的参数,控制电文、伪码、子码、载波、子载波的生成,调制并输出数字中频信号。In order to achieve the above object, the embodiment of the second aspect of the present invention discloses a satellite navigation signal simulation system based on FPGA, including: a parameter receiving module, which is used to receive and store the input system parameters and channel parameters, and store the data Passed to the signal modulation module; the signal modulation module, according to the parameters received from the parameter receiving module, controls the generation of text, pseudocode, subcode, carrier and subcarrier, and modulates and outputs the digital intermediate frequency signal.

根据本发明实施例的基于FPGA的卫星导航信号模拟系统,软件用于模拟缓慢变化的误差,能够完成对这些模拟模型的计算;硬件完成信号的调制,保证信号能实时产生,采用这种架构的模拟器可以进行长时间的信号测试;使用软件部分下发的参数对FPGA的各模块进行配置可以灵活改变FPGA的功能,而不用频繁修改FPGA程序;基于FPGA搭建,频点信息和参数来自外部输入,调制工程通过频点信息和参数对调制工程进行配置,可实现特定频点的信号调制,兼容BDS、GPS、GLONASS和GALILEO卫星导航系统的各个频点,方便测试,缩短用户设备的开发时间,各个功能模块之间相对独立,具有良好的兼容性、可扩展性,易于维护且有利于系统升级。According to the satellite navigation signal simulation system based on FPGA of the embodiment of the present invention, the software is used to simulate slowly changing errors, and can complete the calculation of these simulation models; the hardware completes the modulation of the signal to ensure that the signal can be generated in real time. The simulator can perform long-term signal testing; using the parameters delivered by the software to configure each module of the FPGA can flexibly change the functions of the FPGA without frequently modifying the FPGA program; based on the FPGA, the frequency point information and parameters come from external input , The modulation project configures the modulation project through frequency point information and parameters, which can realize signal modulation at a specific frequency point, and is compatible with each frequency point of BDS, GPS, GLONASS and GALILEO satellite navigation systems, which is convenient for testing and shortens the development time of user equipment. Each functional module is relatively independent, has good compatibility and scalability, is easy to maintain and is conducive to system upgrades.

另外,根据本发明上述实施例的基于FPGA的卫星导航信号模拟系统,还可以具有如下附加的技术特征:In addition, the FPGA-based satellite navigation signal simulation system according to the foregoing embodiments of the present invention can also have the following additional technical features:

进一步地,所述参数接收模块包括:系统参数接收模块,用于接收多个通道状态参数以及多个所述通道共用的系统参数,其中所述系统参数包括:频点代号、伪码长度、数据子码长度、导频子码长度、数据子码速率、导频子码速率以及余弦子载波标志位;以及通道参数接收模块,用于接收所述通道调制卫星信号的通道参数,所述通道参数包括星号、码相位初始值、伪码NCO参数、载波NCO参数、电文和电文速率。Further, the parameter receiving module includes: a system parameter receiving module, configured to receive multiple channel state parameters and system parameters shared by multiple channels, wherein the system parameters include: frequency point code, pseudo code length, data Subcode length, pilot subcode length, data subcode rate, pilot subcode rate and cosine subcarrier flag; and a channel parameter receiving module for receiving the channel parameters of the channel modulated satellite signal, the channel parameters Including asterisk, initial value of code phase, pseudo-code NCO parameters, carrier NCO parameters, message and message rate.

进一步地,所述信号调制模块包括:电文模块,用于从所述通道参数接收模块接收所述电文,并在电文速率参数的控制下逐比特输出所述电文;伪码模块,用于在模拟器初始化时根据频点代号产生相应的伪码,在模拟器运行时接收所述各通道输出的伪码相位读取所述伪码并传回所述伪码对应星号所对应的通道;子码模块,用于在模拟器初始化时根据频点代号产生相应的子码,在模拟器运行时接收所述各通道输出的子码相位读取所述子码并传回所述子码对应星号所对应的通道;载波模块,用于从所述通道参数接收模块接收所述载波NCO参数,控制载波DDS输出载波相位,以系统时钟频率对正弦波采样,输出量化的载波幅值;子载波模块,用于从所述系统参数接收模块接收所述余弦子载波标志位和伪码DDS输出的相位控制字,控制产生子载波;参数选择模块,用于接收所述电文、所述伪码、所述子码、所述子载波和所述载波,根据频点代号选择相应的参数输出;以及中频调制模块,根据接收的所述电文、所述伪码、所述子码、所述载波和所述子载波的数据,根据所述频点代号选择相应的调制方式,完成信号的调制。Further, the signal modulation module includes: a message module, configured to receive the message from the channel parameter receiving module, and output the message bit by bit under the control of the message rate parameter; a pseudocode module, used to simulate When the device is initialized, the corresponding pseudo-code is generated according to the frequency point code, and the pseudo-code phase output of each channel is received when the simulator is running, and the pseudo-code is read and returned to the channel corresponding to the asterisk corresponding to the pseudo-code; The code module is used to generate corresponding subcodes according to the frequency point code when the simulator is initialized, and receives the subcode phases output by each channel when the simulator is running, reads the subcode and returns the subcode corresponding to the star The channel corresponding to the number; the carrier module, used to receive the carrier NCO parameter from the channel parameter receiving module, control the carrier DDS to output the carrier phase, sample the sine wave with the system clock frequency, and output the quantized carrier amplitude; the subcarrier Module, used to receive the cosine subcarrier flag bit and the phase control word output by the pseudocode DDS from the system parameter receiving module, and control the generation of subcarriers; the parameter selection module is used to receive the message, the pseudocode, The subcode, the subcarrier and the carrier, select corresponding parameters according to the frequency point code to output; and the intermediate frequency modulation module, according to the received message, the pseudo code, the subcode, the carrier and For the data of the sub-carriers, a corresponding modulation mode is selected according to the frequency code to complete signal modulation.

进一步地,还包括幅度控制模块,用于接收所述数据路中频调制模块和所述导频路中频调制模块的输出信号的和,控制信号的幅值并输出通道数字中频信号。Further, an amplitude control module is also included, configured to receive the sum of the output signals of the data path IF modulation module and the pilot path IF modulation module, control the amplitude of the signal, and output channel digital IF signals.

进一步地,还包括信号合并模块,用于对所有通道信号进行合并,得到最终数字中频卫星导航信号。Further, a signal combining module is also included, which is used to combine all channel signals to obtain the final digital intermediate frequency satellite navigation signal.

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.

附图说明Description of drawings

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:

图1是本发明基于FPGA的数字中频卫星导航信号模拟器的结构示意图;Fig. 1 is the structural representation of the digital intermediate frequency satellite navigation signal simulator based on FPGA of the present invention;

图2是本发明输入数据存储和更新的流程图;Fig. 2 is a flow chart of the present invention's input data storage and update;

图3是本发明信号调制流程图。Fig. 3 is a flow chart of signal modulation in the present invention.

具体实施方式detailed description

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "upper", "lower", "front", "rear", "left", "right", " The orientations or positional relationships indicated by "vertical", "horizontal", "top", "bottom", "inner" and "outer" are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and Simplified descriptions, rather than indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and thus should not be construed as limiting the invention. In addition, the terms "first" and "second" are used for descriptive purposes only, and should not be understood as indicating or implying relative importance.

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.

参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。These and other aspects of embodiments of the invention will become apparent with reference to the following description and drawings. In these descriptions and drawings, some specific implementations of the embodiments of the present invention are specifically disclosed to represent some ways of implementing the principles of the embodiments of the present invention, but it should be understood that the scope of the embodiments of the present invention is not limited by this limit. On the contrary, the embodiments of the present invention include all changes, modifications and equivalents coming within the spirit and scope of the appended claims.

以下结合附图描述根据本发明实施例的。Embodiments of the present invention are described below in conjunction with the accompanying drawings.

图1是本发明基于FPGA的数字中频卫星导航信号模拟器的结构示意图。请参考图1,本实施例是结合L1C频点进行详细说明,本领域技术人员应该理解,实施例仅用于解释本发明,并不用于限制本发明的保护范围,对于其它频点,可以参照本发明实施例进行,在此不再赘述。Fig. 1 is the structural representation of the FPGA-based digital intermediate frequency satellite navigation signal simulator of the present invention. Please refer to Figure 1. This embodiment is described in detail in conjunction with the L1C frequency point. Those skilled in the art should understand that the embodiment is only used to explain the present invention and is not intended to limit the scope of protection of the present invention. For other frequency points, refer to The embodiments of the present invention are carried out, and details are not repeated here.

本发明包括一种基于FPGA的卫星导航信号模拟系统,包括系统参数接收模块1、通道参数模块2、中断模块3、伪码模块4、子码模块5、通道模块6、电文模块7、相位控制模块8、子码相位模块9、载波模块10、子载波模块11、参数选择模块12、中频调制模块13和幅度控制模块14。各个模块的输入输出端口如下表所示。The present invention includes an FPGA-based satellite navigation signal simulation system, including a system parameter receiving module 1, a channel parameter module 2, an interrupt module 3, a pseudocode module 4, a subcode module 5, a channel module 6, a message module 7, and a phase control module. Module 8 , subcode phase module 9 , carrier module 10 , subcarrier module 11 , parameter selection module 12 , intermediate frequency modulation module 13 and amplitude control module 14 . The input and output ports of each module are shown in the table below.

表1 系统参数接收模块Table 1 System parameter receiving module

表2 通道参数接收模块Table 2 Channel parameter receiving module

表3 中断模块Table 3 Interrupt Module

表4 伪码模块Table 4 Pseudocode module

表5 子码模块Table 5 Subcode module

表6 通道模块Table 6 Channel Modules

表7 电文模块Table 7 Message module

表8 相位控制模块Table 8 Phase Control Module

表9 子码相位模块Table 9 Subcode phase module

表10 载波模块Table 10 Carrier module

表11 子载波模块Table 11 Subcarrier module

表12 参数选择模块Table 12 parameter selection module

表13 中频调制模块Table 13 IF modulation module

表14 幅度控制模块Table 14 Amplitude Control Module

这里对一些端口参数做出说明。Some port parameters are explained here.

数据输入参数:数据输入参数位宽128比特,低16位提供通道编号和FIFO分类信息,用于判断并控制外部输入数据正确地写入对应的FIFO或赋值给特定的参数,高112位为传输的有效数据。Data input parameters: The data input parameters have a bit width of 128 bits, the lower 16 bits provide channel number and FIFO classification information, which are used to judge and control the external input data to be correctly written into the corresponding FIFO or assigned to specific parameters, and the upper 112 bits are for transmission valid data.

通道状态参数:通道状态参数位宽2比特,可分为四种状态。包括通道调制的卫星为新可见、通道调制的卫星为之前就已可见,通道调制的卫星由可见转为不可见,通道没有调制卫星。当通道为第一种状态时,需要根据新可见星信息对通道重新初始化;当通道为第二种状态时,保持通道现有状态;当通道为第三种状态时,需要将对应通道进行复位操作;当通道为第四种状态时,需要将对应通道进行复位操作。Channel state parameter: The bit width of the channel state parameter is 2 bits, which can be divided into four states. Satellites with channel modulation are newly visible, satellites with channel modulation are previously visible, satellites with channel modulation change from visible to invisible, and satellites with no channel modulation. When the channel is in the first state, the channel needs to be re-initialized according to the new visible star information; when the channel is in the second state, the existing state of the channel should be maintained; when the channel is in the third state, the corresponding channel needs to be reset Operation; when the channel is in the fourth state, the corresponding channel needs to be reset.

通道编号参数:模拟器的各个通道均由同一个通道模块例化而来。通道编号参数在通道外声明并输入通道。以L1C为例,通道编号参数值为从1至16。各个通道输入不同的通道编号,参于数据输入参数低16位的判断。Channel number parameter: Each channel of the simulator is instantiated from the same channel module. The channel number parameter is declared outside the channel and entered into the channel. Taking L1C as an example, the channel number parameter value is from 1 to 16. Each channel inputs a different channel number, which is used to judge the lower 16 bits of the data input parameter.

NCO参数:NCO参数的位宽由系统时钟频率、伪码速率、光速、模拟精度和模拟范围决定。为适用于各个频点的高精度、高动态的模拟信号要求,取系统时钟频率为256M、伪码速率取1.023M(保证模拟器各频点的兼容性)、光速3×108m/s、模拟速度精度1mm/s、加速度的精度5mm/s2,加加速度的精度5mm/s3、模拟最大加速度50g、最大加加速度500m/s3,则计算选择伪码初始相位控制字为48比特,伪码频率控制字48比特,伪码一次频率控制字24比特,伪码二次频率控制字28比特,载波初始相位控制字36比特,载波频率控制字36比特,载波一次频率控制字26比特,载波二次频率控制字28比特。NCO parameters: The bit width of the NCO parameters is determined by the system clock frequency, pseudocode rate, light speed, analog accuracy, and analog range. In order to meet the high-precision and high-dynamic analog signal requirements of each frequency point, the system clock frequency is 256M, the pseudo-code rate is 1.023M (to ensure the compatibility of each frequency point of the simulator), and the speed of light is 3×10 8 m/s , simulated speed accuracy 1mm/s, acceleration accuracy 5mm/s 2 , jerk accuracy 5mm/s 3 , simulated maximum acceleration 50g, maximum jerk 500m/s 3 , then calculate and select the initial phase control word of the pseudocode to be 48 bits , pseudo-code frequency control word 48 bits, pseudo-code primary frequency control word 24 bits, pseudo-code secondary frequency control word 28 bits, carrier initial phase control word 36 bits, carrier frequency control word 36 bits, carrier primary frequency control word 26 bits , Carrier secondary frequency control word 28 bits.

调制信号:调制信号与载波参数位宽相同,为16比特量化。调制信号经加法器或乘法器导致位宽变宽,均取高16位,保证模拟器输出的数字中频信号可用于后续DAC模块。Modulated signal: The modulated signal has the same bit width as the carrier parameter, and is quantized with 16 bits. The modulated signal is passed through the adder or multiplier to cause the bit width to widen, and the upper 16 bits are taken to ensure that the digital intermediate frequency signal output by the simulator can be used in the subsequent DAC module.

参数位宽:一些参数的位宽比实际模拟频点所需的宽度要宽,是为兼容各个频点,取各个频点中所需位宽的最大值。Parameter bit width: The bit width of some parameters is wider than the width required by the actual analog frequency point. In order to be compatible with each frequency point, take the maximum value of the required bit width in each frequency point.

图2是本发明输入数据存储和更新的流程图,请参考图2。FIG. 2 is a flowchart of input data storage and updating in the present invention, please refer to FIG. 2 .

第一步:输入数据的更新和存储Step 1: Update and store input data

模拟器输入数据的存储和更新,包括系统参数接收、通道参数接收和中断控制,在系统时钟的统一控制下执行相应的功能。The storage and update of simulator input data, including system parameter reception, channel parameter reception and interrupt control, execute corresponding functions under the unified control of the system clock.

1.1:系统参数接收1.1: System parameter reception

该步骤主要完成对系统参数的接收和存储。系统参数具体内容如表1所示。This step mainly completes the receiving and storing of system parameters. The details of the system parameters are shown in Table 1.

该步骤接收的输入参数为i_BusData_in,其为外部数据输入,该参数的高位为输入的第一有效数据,低位用于第一有效数据的类型判定。其中,第一有效数据包括:通道状态参数、系统初始化数据、初始化数据下发完成标志、NCO参数更新标志和新可见星标志。The input parameter received in this step is i_BusData_in, which is an external data input, the high bit of this parameter is the input first valid data, and the low bit is used for the type determination of the first valid data. Wherein, the first valid data includes: channel state parameters, system initialization data, initialization data delivery completion flag, NCO parameter update flag and new visible star flag.

具体以L1C为例,在模拟器初始化阶段,外部输入传输系统参数时,低16位有三个值:1、2、3。若为1则该参数为通道状态参数,接收并存入FIFO。每有卫星状态发生变化,外部设备便输出更新的通道状态参数;若为2则该参数为模拟频点的系统初始化数据,从低位至高位分别为码长、子码长、子码速率、余弦子载波标志位和频点代号;若为3则该参数为系统初始化数据下发完成标志,在初始化数据下发结束后有效。未采用FIFO存储的数据在系统参数接收模块中分别设置相应的参数完成对数据的接收。Taking L1C as an example, in the initialization stage of the simulator, when the transmission system parameters are input externally, the lower 16 bits have three values: 1, 2, and 3. If it is 1, the parameter is the channel status parameter, received and stored in FIFO. Every time the status of the satellite changes, the external device will output the updated channel status parameter; if it is 2, the parameter is the system initialization data of the analog frequency point, and the code length, subcode length, subcode rate, cosine Subcarrier flag and frequency point code; if it is 3, this parameter is the completion flag of system initialization data delivery, which is valid after the initialization data delivery is completed. For data not stored in FIFO, set corresponding parameters in the system parameter receiving module to complete data reception.

在模拟器初始化完毕,进入运行阶段时,当NCO参数需要更新或出现新可见星时,外部设备在模拟器中断的控制下为模拟器传输通道NCO参数更新标志或新可见星标志。NCO参数更新标志用于控制相位控制模块和载波模块的NCO参数的更新,新可见星标志用于控制重新初始化各个通道。此时输入参数i_BusData_in低16位的值为1,高位任取两位用于传输NCO参数更新标志和新可见星标志。After the simulator is initialized and enters the running stage, when the NCO parameters need to be updated or a new visible star appears, the external device transmits the NCO parameter update flag or the new visible star flag for the simulator under the control of the simulator interrupt. The NCO parameter update flag is used to control the update of the NCO parameters of the phase control module and the carrier module, and the new visible star flag is used to control the reinitialization of each channel. At this time, the value of the lower 16 bits of the input parameter i_BusData_in is 1, and the upper bit can take two bits to transmit the NCO parameter update flag and the new visible star flag.

1.2:通道参数接收1.2: Channel parameter reception

该步骤完成对通道参数的接收和存储。This step completes the receiving and storing of channel parameters.

该步骤接收的输入参数为i_BusData_in,其为外部数据输入,该参数的高位为输入的第二有效数据,低位用于第二有效数据的类型判定。其中,第二有效数据包括:通道初始化参数、NCO参数和电文。The input parameter received in this step is i_BusData_in, which is an external data input, the high bit of this parameter is the input second valid data, and the low bit is used to determine the type of the second valid data. Wherein, the second valid data includes: channel initialization parameters, NCO parameters and message.

具体以L1C为例,在系统的初始化阶段和运行阶段,依据输入参数i_BusData_in低位的值将三类数据存入特定通道参数接收模块中的三个不同FIFO。第一类数据为通道初始化参数,包括星号、电文速率、伪码初始相位、伪码DDS初始相位控制字和载波DDS初始相位控制字,此类数据在模拟器初始化和有新可见星时下发并接收;第二类为NCO参数,包括伪码频率控制字、伪码一次频率控制字、伪码二次频率控制字、载波频率控制字、载波一次频率控制字、载波二次频率控制字和通道信号幅度控制字,此类数据每隔固定时间间隔下发并接收;第三类为电文,电文一次下发一子帧,调制完毕后更新电文。电文来自外部设备输入,不同于FPGA实时产生的伪码、子码、载波和子载波。Specifically taking L1C as an example, during the initialization and operation phases of the system, the three types of data are stored in three different FIFOs in the specific channel parameter receiving module according to the low value of the input parameter i_BusData_in. The first type of data is the channel initialization parameters, including asterisk, message rate, pseudo code initial phase, pseudo code DDS initial phase control word and carrier DDS initial phase control word. This type of data is sent when the simulator is initialized and there are new visible stars. and receive; the second type is NCO parameters, including pseudo code frequency control word, pseudo code primary frequency control word, pseudo code secondary frequency control word, carrier frequency control word, carrier primary frequency control word, carrier secondary frequency control word and The channel signal amplitude control word, this type of data is sent and received at regular intervals; the third type is the message, the message is sent one subframe at a time, and the message is updated after the modulation is completed. The message comes from the input of external equipment, which is different from the pseudocode, subcode, carrier and subcarrier generated by FPGA in real time.

1.3:中断控制1.3: Interrupt Control

该步骤每隔固定时间发出中断信号,控制外部输入数据的更新。This step sends an interrupt signal at regular intervals to control the update of external input data.

在模拟器初始化完毕,信号开始调制时,中断模块开始计时。如果时间满足更新周期条件,中断模块则向外部设备发出中断并复位计数,中断用于控制外部设备为模拟器输入最新的NCO参数和最新的电文,保证模拟信号的准确度。如果时间不满足更新周期条件,则继续计时。After the simulator is initialized and the signal starts to be modulated, the interrupt module starts timing. If the time meets the update cycle conditions, the interrupt module will send an interrupt to the external device and reset the count. The interrupt is used to control the external device to input the latest NCO parameters and the latest message for the simulator to ensure the accuracy of the analog signal. If the time does not meet the update period condition, continue timing.

以L1C为例,计时固定时间间隔为20ms,在系统时钟为256M的情况下,每计数5119999(256M*20ms-1)便发出中断并复位计数。Taking L1C as an example, the fixed time interval of timing is 20ms. When the system clock is 256M, an interrupt is issued and the count is reset every time 5119999 (256M*20ms-1) is counted.

图3是本发明信号调制流程图,请参考图3。FIG. 3 is a flow chart of signal modulation in the present invention, please refer to FIG. 3 .

第二步:信号的调制Step 2: Modulation of the signal

在模拟器初始化完毕,调制部分接收来自系统参数接收模块1和通道参数接收模块2的数据开始信号的调制。After the simulator is initialized, the modulation part receives the modulation of the data start signal from the system parameter receiving module 1 and the channel parameter receiving module 2 .

2.1:相位控制2.1: Phase Control

相位控制功能主要由相位控制模块完成。相位控制模块接收来自通道参数接收模块的伪码NCO参数,通过伪码DDS控制伪码相位的产生。The phase control function is mainly completed by the phase control module. The phase control module receives the pseudo-code NCO parameters from the channel parameter receiving module, and controls the generation of the pseudo-code phase through the pseudo-code DDS.

模块对伪码DDS输出相位控制字进行判断,最高位每溢出一次伪码相位加一;每经过一个伪码周期相位控制模块便发出一个伪码周期脉冲,子码相位模块和电文模块接收此脉冲控制子码和电文的更新。子载波模块接收相位控制模块输出的伪码DDS输出相位控制字,用于控制子载波的产生。The module judges the pseudo-code DDS output phase control word, and every time the highest bit overflows, the pseudo-code phase is incremented by one; the phase control module sends a pseudo-code period pulse every time a pseudo-code period passes, and the sub-code phase module and the message module receive this pulse Control subcode and message update. The sub-carrier module receives the pseudo-code DDS output by the phase control module and outputs a phase control word, which is used to control the generation of sub-carriers.

2.2:载波产生2.2: Carrier generation

载波由载波模块产生,载波模块接收来自通道参数接收模块的载波NCO参数,通过载波DDS控制载波相位的产生。The carrier is generated by the carrier module, which receives the carrier NCO parameters from the channel parameter receiving module, and controls the generation of the carrier phase through the carrier DDS.

模块采用IP核形式存储正弦波的幅值查找表,幅值16bit量化。查找表地址为截取载波DDS输出相位控制字的高位,以L1C为例,截取载波DDS输出控制字的高14位,模拟的伪距精度即可达到亚毫米级。正弦波从相位0处开始读取,余弦波从相位π/2处开始读取。模块产生的正余弦波满足对导频路和数据路载波相位有不同要求的频点信号的调制。The module uses the IP core to store the amplitude lookup table of the sine wave, and the amplitude is 16bit quantized. The address of the lookup table is to intercept the upper bits of the carrier DDS output phase control word. Take L1C as an example, intercept the upper 14 bits of the carrier DDS output control word, and the simulated pseudo-range accuracy can reach submillimeter level. Sine waves are read from phase 0 and cosine waves are read from phase π/2. The sine and cosine waves generated by the module meet the modulation of frequency point signals that have different requirements for the carrier phase of the pilot channel and the data channel.

2.3:电文产生2.3: Message generation

电文由电文模块产生,电文模块接收来自通道参数接收模块的电文、电文速率参数和来自相位控制模块的伪码周期脉冲。The message is generated by the message module, and the message module receives the message from the channel parameter receiving module, the rate parameter of the message and the pseudo-code period pulse from the phase control module.

电文长度为一子帧,在脉冲和电文速率参数的控制下逐比特输出。The message length is one subframe, and is output bit by bit under the control of pulse and message rate parameters.

以L1C为例,电文每比特宽10ms,伪码周期10ms,则在伪码周期脉冲有效时更新1比特电文。同时设置电文比特计数参数,电文每更新1比特,计数加一,计数达到299(一子帧300bit)时,发出电文子帧更新脉冲将通道参数接收模块的FIFO3读使能信号置1,以此更新电文模块的输入电文。Taking L1C as an example, the width of each bit of the message is 10ms, and the period of the pseudocode is 10ms, and the message of 1 bit is updated when the period pulse of the pseudocode is valid. At the same time, set the message bit counting parameter. Every time a message is updated by 1 bit, the count is increased by one. When the count reaches 299 (300 bits per subframe), a message subframe update pulse is sent to set the FIFO3 read enable signal of the channel parameter receiving module to 1, thereby Update the input message of the message module.

2.4:子码相位产生2.4: Subcode phase generation

子码相位由子码相位模块产生,子码相位模块接收来自通道参数模块的子码长度参数、子码速率参数和相位控制模块输出的伪码周期脉冲。对伪码周期脉冲进行计数,在子码速率和子码长度参数的控制下输出子码相位。The sub-code phase is generated by the sub-code phase module, and the sub-code phase module receives the sub-code length parameter, the sub-code rate parameter and the pseudo-code period pulse output by the phase control module from the channel parameter module. Count the pulses of the pseudo-code period, and output the sub-code phase under the control of the sub-code rate and sub-code length parameters.

L1C频点无子码,故不需例化子码相位产生模块。There is no subcode at the L1C frequency point, so there is no need to instantiate the subcode phase generation module.

2.5:伪码读取2.5: Pseudo-code reading

伪码模块输入码相位参数X,读取相应相位的伪码值。伪码在模拟器初始化时产生,采用IP核的形式存储,IP核输入伪码相位,输出相应伪码值。The pseudo code module inputs the code phase parameter X, and reads the pseudo code value of the corresponding phase. The pseudo-code is generated when the simulator is initialized and stored in the form of an IP core. The IP core inputs the pseudo-code phase and outputs the corresponding pseudo-code value.

其中参数X的产生原理如下:The generation principle of the parameter X is as follows:

各通道模块均输出该通道所调制卫星的星号和伪码相位,用于产生包含所有通道伪码相位的参数X并输入至伪码模块。参数X不为某个模块的输入或输出,为中间参数。产生方法:以L1C的伪码读取为例,模拟器包含16个通道,最大星号假设为32比特,伪码相位参数位宽14。则设置参数X位宽为448(32×14),根据卫星号将相应伪码相位由低位至高位赋值给参数X,未调制卫星的伪码相位值默认为0。Each channel module outputs the asterisk and pseudo code phase of the satellite modulated by the channel, which is used to generate the parameter X including the pseudo code phase of all channels and input to the pseudo code module. Parameter X is not an input or output of a certain module, but an intermediate parameter. Generation method: Taking L1C pseudo code reading as an example, the simulator contains 16 channels, the maximum asterisk is assumed to be 32 bits, and the bit width of the pseudo code phase parameter is 14. Then set the bit width of the parameter X to 448 (32×14), assign the corresponding pseudo code phase to the parameter X from the low bit to the high bit according to the satellite number, and the pseudo code phase value of the unmodulated satellite is 0 by default.

伪码模块输入包含所有通道伪码相位的参数X,根据卫星号从参数X中获得相应的伪码相位值,读取相应卫星号的伪码,再根据星号由低位至高位将读取的32颗星的伪码值赋值给输出的数据伪码和导频伪码参数,再根据星号将相应的伪码值传回通道模块。The pseudo-code module inputs the parameter X containing the pseudo-code phase of all channels, obtains the corresponding pseudo-code phase value from the parameter X according to the satellite number, reads the pseudo-code of the corresponding satellite number, and then reads the pseudo-code from low to high according to the asterisk The pseudo code value of 32 stars is assigned to the output data pseudo code and pilot pseudo code parameters, and then the corresponding pseudo code value is sent back to the channel module according to the asterisk.

以L1C为例,设置32个IP核分别存储32颗星的伪码,分别输入相应星号的伪码相位,则输出相应伪码值。Taking L1C as an example, 32 IP cores are set to store the pseudo codes of 32 stars respectively, and the pseudo code phases of the corresponding asterisks are input respectively, and the corresponding pseudo code values are output.

2.6:子码读取2.6: Subcode reading

子码模块输入子码相位参数Y,读取相应相位的子码值。子码在模拟器初始化时产生,采用IP核的形式存储,IP核输入子码相位,输出相应子码值。The subcode module inputs the subcode phase parameter Y, and reads the subcode value of the corresponding phase. The subcode is generated when the simulator is initialized and stored in the form of an IP core. The IP core inputs the subcode phase and outputs the corresponding subcode value.

其中参数Y的产生原理如下:The generation principle of the parameter Y is as follows:

各通道模块均输出该通道所调制卫星的星号和导频子码相位,用于产生包含所有通道子码相位的参数Y并输入至子码模块。参数Y不为某个模块的输入或输出,为中间参数。产生方法:模拟器包含16个通道,最大星号假设为32,子码相位参数位宽假设为11比特。则设置参数Y位宽为352(32×11),根据卫星号将相应子码相位由低位至高位赋值给参数Y,未调制卫星的伪码相位默认为0。Each channel module outputs the asterisk and pilot subcode phase of the satellite modulated by the channel, which is used to generate the parameter Y including the subcode phases of all channels and input to the subcode module. Parameter Y is not an input or output of a certain module, but an intermediate parameter. Generation method: The simulator contains 16 channels, the maximum asterisk is assumed to be 32, and the subcode phase parameter bit width is assumed to be 11 bits. Then set the parameter Y bit width to 352 (32×11), assign the corresponding subcode phase from low to high according to the satellite number to the parameter Y, and the pseudo code phase of the unmodulated satellite is 0 by default.

子码模块输入包含所有通道子码相位的参数Y,根据卫星号从参数Y中获得相应的子码相位值,读取相应卫星号的子码,再根据卫星号由低位至高位将读取的32颗星的子码值赋值给输出的导频子码参数,再根据卫星号将子码值传回通道模块。The subcode module inputs the parameter Y including the subcode phase of all channels, obtains the corresponding subcode phase value from the parameter Y according to the satellite number, reads the subcode of the corresponding satellite number, and then reads the subcode according to the satellite number from low to high. The subcode value of 32 satellites is assigned to the output pilot subcode parameter, and then the subcode value is sent back to the channel module according to the satellite number.

一般数据子码比较短且各个通道相同,则只需在通道内对数据子码相位进行判断,为中频调制模块的数据子码输入赋相应的数据子码值即可。Generally, the data subcode is relatively short and each channel is the same, so it only needs to judge the phase of the data subcode in the channel, and assign the corresponding data subcode value to the data subcode input of the IF modulation module.

L1C频点无子码,故不需例化子码模块。There is no subcode at the L1C frequency point, so there is no need to instantiate the subcode module.

2.7:子载波产生2.7: Subcarrier generation

子载波由子载波模块产生,模块接收相位控制模块的伪码DDS的输出相位控制字,乘以BOC调制方式的调制系数,则高两位在伪码的一个码片时间内会按00、01、10、11循环变化,以此变化和BOC调制系数控制子载波相位的跳变并逐比特输出子载波,包括BOC(1,1)子载波、BOC(6,1)子载波和BOC(15,10)子载波。The subcarrier is generated by the subcarrier module. The module receives the output phase control word of the pseudo-code DDS of the phase control module and multiplies it by the modulation coefficient of the BOC modulation mode. 10, 11 cyclical changes, using this change and BOC modulation coefficient to control the subcarrier phase jump and output subcarriers bit by bit, including BOC (1,1) subcarriers, BOC (6,1) subcarriers and BOC (15, 10) Subcarriers.

以L1C频点,调制方式为TMBOC(6,1,4/33)为例,子载波包括BOC(1,1)子载波、BOC(6,1)子载波,通道模块需例化两个子载波模块,输入不同的调制系数,分别产生BOC(1,1)子载波和BOC(6,1)子载波,并对伪码相位进行判断,将相应的子载波值输入中频调制模块。Take the L1C frequency point, the modulation mode is TMBOC (6,1,4/33) as an example, the sub-carriers include BOC (1,1) sub-carriers, BOC (6,1) sub-carriers, and the channel module needs to instantiate two sub-carriers The module inputs different modulation coefficients to generate BOC(1,1) subcarriers and BOC(6,1) subcarriers respectively, and judges the pseudo code phase, and inputs the corresponding subcarrier values into the intermediate frequency modulation module.

2.8:参数选择2.8: Parameter selection

参数选择由参数选择模块实现。步骤2.1-2.7产生的电文、数据伪码、导频伪码、数据子码、导频子码、BOC(1,1)子载波、BOC(6,1)子载波、BOC(15,10)子载波、正弦载波和余弦载波输入至参数选择模块。参数选择模块根据频点代号和数据子码相位产生相应的数据子码,并输出相应的电文、伪码、子码、子载波和载波。The parameter selection is realized by the parameter selection module. The message generated in steps 2.1-2.7, data pseudocode, pilot pseudocode, data subcode, pilot subcode, BOC(1,1) subcarrier, BOC(6,1) subcarrier, BOC(15,10) The subcarrier, sine carrier and cosine carrier are input to the parameter selection module. The parameter selection module generates the corresponding data subcode according to the frequency point code and the phase of the data subcode, and outputs the corresponding message, pseudocode, subcode, subcarrier and carrier.

以L1C频点为例,输入参数经选择,为数据路输出电文、数据路伪码、BOC(1,1)子载波、余弦载波,为导频路输出导频路伪码、BOC(1,1)与BOC(6,1)时分的子载波、余弦载波。Taking the L1C frequency point as an example, the input parameters are selected to output text, data channel pseudo code, BOC(1,1) subcarrier, cosine carrier for the data channel, and output pilot channel pseudo code, BOC(1, 1) Subcarrier and cosine carrier in time division with BOC(6,1).

2.9:数据路中频调制2.9: Data channel IF modulation

数据路中频调制模块接收电文、伪码、子码、载波和子载波,根据频点代号选择相应的调制方式,包括BPSK、BOC、TMBOC、CBOC、QPSK、ALTBOC和TD-ALTBOC(其中ALTBOC和TD-ALTBOC可采用QPSK和BPSK实现),完成数据路信号的调制。The intermediate frequency modulation module of the data path receives text, pseudocode, subcode, carrier and subcarrier, and selects the corresponding modulation method according to the frequency point code, including BPSK, BOC, TMBOC, CBOC, QPSK, ALTBOC and TD-ALTBOC (where ALTBOC and TD- ALTBOC can be realized by using QPSK and BPSK) to complete the modulation of the data path signal.

输入数据需要对齐,即在输入伪码更新跳变时,电文、子码、子载波也同时更新跳变,可通过在各参数传输过程中设置寄存器实现。The input data needs to be aligned, that is, when the input pseudo code is updated and jumped, the message, subcode, and subcarrier are also updated and jumped at the same time, which can be realized by setting registers during the transmission of each parameter.

以L1C频点为例,输入无子载波,模块判断频点代号,根据BOC(1,1)调制方法先将电文、伪码、子码同或得到一个值,通过判断此值为1或0对载波采取保持当前相位或者反相操作,然后输出载波幅值。Take the L1C frequency point as an example, input without subcarrier, the module judges the frequency point code, and according to the BOC(1,1) modulation method, the text, pseudocode, and subcode are ORed together to obtain a value, and the value is judged as 1 or 0 Maintain the current phase or reverse the phase of the carrier, and then output the carrier amplitude.

2.10:导频路中频调制2.10: IF modulation of pilot channel

数据路中频调制模块接收伪码、子码、载波和子载波,根据频点代号选择相应的调制方式,包括BPSK、BOC、TMBOC、CBOC、QPSK、ALTBOC和TD-ALTBOC(其中ALTBOC和TD-ALTBOC可采用QPSK和BPSK实现),完成导频路信号的调制。The intermediate frequency modulation module of the data path receives the pseudocode, subcode, carrier and subcarrier, and selects the corresponding modulation method according to the code of the frequency point, including BPSK, BOC, TMBOC, CBOC, QPSK, ALTBOC and TD-ALTBOC (wherein ALTBOC and TD-ALTBOC can be Adopt QPSK and BPSK to realize), complete the modulation of pilot channel signal.

输入数据需要对齐,即在输入伪码更新跳变时,子码、子载波也同时更新跳变,可通过在各参数传输过程中设置寄存器实现。The input data needs to be aligned, that is, when the input pseudocode updates and jumps, the subcode and subcarrier also update and jump at the same time, which can be realized by setting registers during the transmission of each parameter.

以L1C频点为例,输入无子载波,模块判断频点代号,根据TMBOC(6,1,4/33)调制方法先将伪码、子码同或得到一个值,通过判断此值为1或0对载波采取保持当前相位或者反相操作,然后输出载波幅值。Take the L1C frequency point as an example, input no subcarrier, the module judges the frequency point code, and according to the TMBOC (6, 1, 4/33) modulation method first OR the pseudo code and sub code to get a value, and judge that the value is 1 Or 0 to maintain the current phase or invert the carrier, and then output the carrier amplitude.

2.11:数据路相对幅值控制2.11: Relative amplitude control of data path

根据数据路中频调制模块输出的调制信号经过第一乘法器,控制数据路相对于导频路的功率,得到数据路信号。According to the modulated signal output by the intermediate frequency modulation module of the data path, the power of the data path relative to the pilot path is controlled through the first multiplier to obtain a data path signal.

2.12:导频路相对幅值控制2.12: Relative amplitude control of pilot channel

由导频路中频调制模块输出的调制信号经过第二乘法器,控制导频路相对于数据路的功率,得到导频路信号。The modulated signal output by the intermediate frequency modulation module of the pilot channel passes through the second multiplier to control the power of the pilot channel relative to the data channel to obtain a pilot channel signal.

数据路信号和导频路信号经加法器相加取高16位作为幅度控制模块的输入。The data path signal and the pilot path signal are added by an adder to take the upper 16 bits as the input of the amplitude control module.

2.13:通道信号幅度控制2.13: Channel signal amplitude control

幅度控制模块接收来自通道参数接收模块的幅度控制字和2.12中的加法器的输出信号幅值,采用第三乘法器实现控制各颗卫星的相对幅值并输出,模拟实际中接收机接收到的功率不一致的各卫星导航信号。The amplitude control module receives the amplitude control word from the channel parameter receiving module and the output signal amplitude of the adder in 2.12, and uses the third multiplier to control and output the relative amplitude of each satellite, simulating the actual signal received by the receiver Satellite navigation signals with inconsistent power.

2.14:通道信号合并2.14: Channel signal merge

以L1C为例,模拟器设置16通道,每个通道模块调制一路可见星的导航信号,其中未调制可见星的通道模块输出信号幅值默认为零。采用加法器实现各通道调制信号signal_1、signal_2、…、signal_k、…signal_16的和,取高16位得到最终数字中频导航模拟信号。Taking L1C as an example, the simulator is set with 16 channels, and each channel module modulates a navigation signal of a visible star, and the output signal amplitude of the channel module that does not modulate the visible star is zero by default. The adder is used to realize the sum of the modulation signals signal_1, signal_2, ..., signal_k, ... signal_16 of each channel, and the upper 16 bits are taken to obtain the final digital intermediate frequency navigation analog signal.

另外,本发明实施例的基于FPGA的卫星导航信号模拟方法和系统的其它构成以及作用对于本领域的技术人员而言都是已知的,为了减少冗余,不做赘述。In addition, other components and functions of the FPGA-based satellite navigation signal simulation method and system of the embodiment of the present invention are known to those skilled in the art, and will not be repeated in order to reduce redundancy.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions with reference to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.

Claims (10)

1.一种基于FPGA的卫星导航信号模拟方法,其特征在于,包括以下步骤:1. a satellite navigation signal simulation method based on FPGA, is characterized in that, comprises the following steps: 1)对输入的系统参数和通道参数进行接收和存储,并间隔发出中断信号控制外部输入数据的更新;以及1) Receive and store the input system parameters and channel parameters, and send interrupt signals at intervals to control the update of external input data; and 2)控制相位产生电文、伪码、子码、载波和子载波,调制并输出数字中频信号;2) Control phase to generate message, pseudocode, subcode, carrier and subcarrier, modulate and output digital intermediate frequency signal; 在步骤2)中,进一步包括:接收电文速率参数、伪码NCO参数、载波NCO参数、子码长度参数、子码速率参数和伪码周期脉冲,根据所述伪码周期脉冲和所述电文速率参数的控制下逐比特输出电文,根据所述伪码NCO参数通过伪码DDS控制生成伪码相位,由所述伪码相位控制读取所述伪码;对所述伪码周期脉冲进行计数,在子码速率和子码长度参数的控制下输出子码相位,根据所述子码相位控制读取所述子码;根据所述载波NCO参数通过载波DDS控制生成载波相位,由所述载波相位控制读取所述载波的采样幅值得到所述载波;接收所述伪码DDS的输出相位控制字,并根据调制系数,控制子载波相位的跳变逐比特输出子载波;In step 2), it further includes: receiving message rate parameter, pseudocode NCO parameter, carrier NCO parameter, subcode length parameter, subcode rate parameter and pseudocode period pulse, according to the pseudocode period pulse and the message rate Under the control of the parameters, the message is output bit by bit, and the pseudo code phase is generated through the pseudo code DDS control according to the pseudo code NCO parameter, and the pseudo code is read by the pseudo code phase control; the pseudo code periodic pulse is counted, Under the control of the subcode rate and subcode length parameters, the subcode phase is output, and the subcode is read according to the subcode phase control; the carrier phase is generated by the carrier DDS control according to the carrier NCO parameter, and is controlled by the carrier phase Read the sampling amplitude of the carrier to obtain the carrier; receive the output phase control word of the pseudo code DDS, and according to the modulation factor, control the jump of the subcarrier phase to output the subcarrier bit by bit; 其中,在步骤2)中,所述中频信号的调制过程为:接收所述电文、所述伪码、所述子码、所述载波和所述子载波,对导频路信号和数据路信号进行中频调制,其中,输入伪码更新跳变时通过寄存器设置延迟实现电文、子码、子载波随所述伪码在满足需要跳变条件下同时跳变。Wherein, in step 2), the modulation process of the intermediate frequency signal is: receiving the message, the pseudocode, the subcode, the carrier and the subcarrier, and the pilot channel signal and the data channel signal Carry out intermediate frequency modulation, wherein, when the pseudo-code is updated and hopped, the delay is set by the register to realize the simultaneous hopping of the message, sub-code, and sub-carrier along with the pseudo-code under the condition that the required hopping is satisfied. 2.根据权利要求1所述的基于FPGA的卫星导航信号模拟方法,其特征在于,在步骤1)中,还包括输入的第一外部参数,所述第一外部参数的高位为输入的第一有效数据,低位用于所述第一有效数据的类型判定,所述第一有效数据包括通道状态参数、系统初始化参数、初始化数据下发完成标志、NCO参数更新标志和新可见星标志。2. the satellite navigation signal simulation method based on FPGA according to claim 1, is characterized in that, in step 1) in, also comprises the first external parameter of input, the high position of described first external parameter is the first of input Valid data, the lower bits are used to determine the type of the first valid data, and the first valid data includes channel state parameters, system initialization parameters, initialization data delivery completion flags, NCO parameter update flags, and new visible star flags. 3.根据权利要求2所述的基于FPGA的卫星导航信号模拟方法,其特征在于,在步骤1)中,还包括输入的第二外部参数,所述第二外部参数的高位为输入的第二有效数据,低位用于第二有效数据的类型判定,所述第二有效数据包括通道初始化参数、NCO参数和电文。3. the satellite navigation signal simulation method based on FPGA according to claim 2, is characterized in that, in step 1) in, also comprises the second external parameter of input, the high position of described second external parameter is the second of input For valid data, the lower bits are used to determine the type of the second valid data, and the second valid data includes channel initialization parameters, NCO parameters and message. 4.根据权利要求1所述的基于FPGA的卫星导航信号模拟方法,其特征在于,在步骤1)中,所述中断信号控制外部输入数据的更新过程为:在模拟器初始化完毕信号开始调制时,开始计时;4. the satellite navigation signal simulation method based on FPGA according to claim 1, is characterized in that, in step 1) in, the renewal process of described interruption signal control external input data is: when simulator initialization finishes signal and starts to modulate ,start the timer; 如果满足更新周期条件,则向外部设备发出中断并复位计数,中断用于控制外部设备为模拟器输入最新的NCO参数和最新的电文;If the update cycle conditions are met, an interrupt is sent to the external device and the count is reset, and the interrupt is used to control the external device to input the latest NCO parameters and the latest message for the simulator; 如果不满足更新周期条件,则继续计时。If the update period condition is not met, continue timing. 5.根据权利要求1所述的基于FPGA的卫星导航信号模拟方法,其特征在于,在步骤2)中,还包括:中频调制后的所述数据路信号经过第一乘法器控制数据路相对于导频路的功率,得到数据路信号;5. the satellite navigation signal simulation method based on FPGA according to claim 1, is characterized in that, in step 2) in, also comprises: described data path signal after intermediate frequency modulation passes through first multiplier control data path with respect to The power of the pilot channel is used to obtain the signal of the data channel; 中频调制后的所述导频路信号经过第二乘法器控制导频路相对于数据路的功率,得到导频路信号。The pilot channel signal after IF modulation passes through the second multiplier to control the power of the pilot channel relative to the data channel to obtain the pilot channel signal. 6.根据权利要求5所述的基于FPGA的卫星导航信号模拟方法,其特征在于,在步骤2)中,还包括:接收幅度控制字和加法器输出的信号,采用第三乘法器控制通道所调制卫星信号相对其他卫星信号的幅值并输出,以此模拟接收机接收到的功率不一致的各卫星导航信号。6. the satellite navigation signal simulation method based on FPGA according to claim 5, is characterized in that, in step 2) in, also comprises: receive the signal of amplitude control word and adder output, adopt the 3rd multiplier control passage to place The amplitude of the satellite signal relative to other satellite signals is modulated and output, so as to simulate the satellite navigation signals with inconsistent power received by the receiver. 7.根据权利要求1-6任一所述的基于FPGA的卫星导航信号模拟方法,其特征在于,步骤2)中,还包括对所有通道信号进行合并,得到最终模拟的数字中频卫星导航信号。7. according to the arbitrary described satellite navigation signal simulation method based on FPGA of claim 1-6, it is characterized in that, in step 2), also comprise all channel signals are merged, obtain the digital intermediate frequency satellite navigation signal of final simulation. 8.一种基于FPGA的卫星导航信号模拟系统,其特征在于,包括:8. A satellite navigation signal simulation system based on FPGA, is characterized in that, comprises: 参数接收模块,用于对输入的系统参数和通道参数进行接收和存储,将数据传递至信号调制模块,其中,所述参数接收模块包括:The parameter receiving module is used to receive and store the input system parameters and channel parameters, and transmit the data to the signal modulation module, wherein the parameter receiving module includes: 系统参数接收模块,用于接收多个通道的状态参数以及多个所述通道共用的系统参数,其中所述系统参数包括:频点代号、伪码长度、数据子码长度、导频子码长度、数据子码速率、导频子码速率以及余弦子载波标志位;以及A system parameter receiving module, configured to receive status parameters of multiple channels and system parameters shared by multiple channels, wherein the system parameters include: frequency point code, pseudocode length, data subcode length, pilot subcode length , data subcode rate, pilot subcode rate and cosine subcarrier flag; and 通道参数接收模块,用于接收所述通道调制卫星信号的通道参数,所述通道参数包括星号、码相位初始值、伪码NCO参数、载波NCO参数、电文和电文速率;The channel parameter receiving module is used to receive the channel parameters of the channel modulated satellite signal, the channel parameters include asterisk, code phase initial value, pseudo code NCO parameters, carrier NCO parameters, message and message rate; 信号调制模块,根据从所述参数接收模块接收的参数,控制电文、伪码、子码、载波、子载波的生成,根据频点代号选择相应的调制方式,调制并输出数字中频信号,其中,所述信号调制模块包括:The signal modulation module, according to the parameters received from the parameter receiving module, controls the generation of text, pseudocode, subcode, carrier and subcarrier, selects the corresponding modulation mode according to the frequency point code, modulates and outputs the digital intermediate frequency signal, wherein, The signal modulation module includes: 电文模块,用于从所述通道参数接收模块接收所述电文,并在电文速率参数的控制下逐比特输出所述电文;A message module, configured to receive the message from the channel parameter receiving module, and output the message bit by bit under the control of the message rate parameter; 伪码模块,用于在模拟器初始化时根据频点代号产生相应的伪码,在模拟器运行时接收所述各通道输出的伪码相位读取所述伪码并传回所述伪码对应星号所对应的通道;The pseudo-code module is used to generate corresponding pseudo-codes according to the frequency point code when the simulator is initialized, receive the pseudo-code phases output by each channel when the simulator is running, read the pseudo-codes and return the corresponding pseudo-codes The channel corresponding to the asterisk; 子码模块,用于在模拟器初始化时根据频点代号产生相应的子码,在模拟器运行时接收所述各通道输出的子码相位读取所述子码并传回所述子码对应星号所对应的通道;The subcode module is used to generate corresponding subcodes according to the frequency point code when the simulator is initialized, receive the subcode phases output by each channel when the simulator is running, read the subcodes and return the corresponding subcodes The channel corresponding to the asterisk; 载波模块,用于从所述通道参数接收模块接收所述载波NCO参数,控制载波DDS输出载波相位,以系统时钟频率对正弦波采样,输出量化的载波幅值;The carrier module is used to receive the carrier NCO parameter from the channel parameter receiving module, control the carrier DDS to output the carrier phase, sample the sine wave at the system clock frequency, and output the quantized carrier amplitude; 子载波模块,用于从所述系统参数接收模块接收所述余弦子载波标志位和伪码DDS输出的相位控制字,控制产生子载波;The subcarrier module is used to receive the cosine subcarrier flag and the phase control word output by the pseudo code DDS from the system parameter receiving module, and control the generation of subcarriers; 参数选择模块,用于接收所述电文、所述伪码、所述子码、所述子载波和所述载波,根据频点代号选择相应的参数输出;以及A parameter selection module, configured to receive the message, the pseudo-code, the sub-code, the sub-carrier and the carrier, and select the corresponding parameter output according to the frequency point code; and 中频调制模块,根据接收的所述电文、所述伪码、所述子码、所述载波和所述子载波的数据,根据所述频点代号选择相应的调制方式,完成信号的调制。The intermediate frequency modulation module selects a corresponding modulation method according to the frequency point code according to the received data of the message, the pseudocode, the subcode, the carrier and the subcarrier, and completes signal modulation. 9.根据权利要求8所述的基于FPGA的卫星导航信号模拟系统,其特征在于,还包括幅度控制模块,用于接收数据路中频调制模块和导频路中频调制模块的输出信号的和,控制信号的幅值并输出通道数字中频信号。9. the satellite navigation signal simulation system based on FPGA according to claim 8, is characterized in that, also comprises amplitude control module, is used to receive the sum of the output signal of data road intermediate frequency modulation module and pilot frequency road intermediate frequency modulation module, control Signal amplitude and output channel digital IF signal. 10.根据权利要求8或9的基于FPGA的卫星导航信号模拟系统,其特征在于,还包括信号合并模块,用于对所有通道数字中频信号进行合并。10. according to the satellite navigation signal simulation system based on FPGA of claim 8 or 9, it is characterized in that, also comprise signal combining module, be used to combine all channel digital intermediate frequency signals.
CN201510341287.9A 2015-06-18 2015-06-18 Satellite navigation signals analogy method and simulation system based on FPGA Expired - Fee Related CN104898135B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510341287.9A CN104898135B (en) 2015-06-18 2015-06-18 Satellite navigation signals analogy method and simulation system based on FPGA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510341287.9A CN104898135B (en) 2015-06-18 2015-06-18 Satellite navigation signals analogy method and simulation system based on FPGA

Publications (2)

Publication Number Publication Date
CN104898135A CN104898135A (en) 2015-09-09
CN104898135B true CN104898135B (en) 2017-07-28

Family

ID=54030896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510341287.9A Expired - Fee Related CN104898135B (en) 2015-06-18 2015-06-18 Satellite navigation signals analogy method and simulation system based on FPGA

Country Status (1)

Country Link
CN (1) CN104898135B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974231B (en) * 2016-05-10 2018-09-07 电子科技大学 A kind of intermediate-freuqncy signal generation device for the test of avionics system L-band equipment
CN106526624B (en) * 2017-01-18 2023-08-15 桂林电子科技大学 A satellite navigation signal simulator and its simulation method
CN108680935A (en) * 2018-05-15 2018-10-19 北京遥测技术研究所 A kind of portable production multisystem satellite navigation analogue system
CN109613569A (en) * 2018-11-27 2019-04-12 北京航空航天大学 A CPU+FPGA-based Satellite Navigation Abnormal Signal Simulator and Abnormal Signal Simulation Method
CN112187341B (en) * 2020-09-30 2022-06-14 哈尔滨理工大学 An FPGA-based data simulation source and its construction and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2656650A1 (en) * 2006-06-20 2007-12-27 The Secretary Of State For Defence Signals, system, method and apparatus
JP4718341B2 (en) * 2006-02-06 2011-07-06 日本無線株式会社 Spread spectrum signal receiver
CN102841362A (en) * 2012-09-24 2012-12-26 桂林电子科技大学 Three-mode satellite signal simulation method and simulator
CN103576168A (en) * 2012-08-08 2014-02-12 深圳中冀联合科技股份有限公司 Beidou satellite signal simulator and implementation method thereof
CN103792552A (en) * 2014-03-11 2014-05-14 北京华力创通科技股份有限公司 System and method for generating satellite navigation baseband signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718341B2 (en) * 2006-02-06 2011-07-06 日本無線株式会社 Spread spectrum signal receiver
CA2656650A1 (en) * 2006-06-20 2007-12-27 The Secretary Of State For Defence Signals, system, method and apparatus
CN103576168A (en) * 2012-08-08 2014-02-12 深圳中冀联合科技股份有限公司 Beidou satellite signal simulator and implementation method thereof
CN102841362A (en) * 2012-09-24 2012-12-26 桂林电子科技大学 Three-mode satellite signal simulation method and simulator
CN103792552A (en) * 2014-03-11 2014-05-14 北京华力创通科技股份有限公司 System and method for generating satellite navigation baseband signal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Programmable FPGA Implementation of a Multi-Coded BOC(m,n) Signal Generator for Navigation Systems;Mohammad S. Sharawi et al.;《51st Midwest Symposium on Circuits and Systems》;20080903;第886-889页 *
GPS L1C信号模拟器设计实现;张海涛等;《数字通信世界》;20110630(第6期);第77-80页 *
一种基于FPGA的导航信号生成方法;王华等;《第四届中国卫星导航学术年会电子文集》;20130531;摘要,第2页左栏-第4页右栏,图1-5,图9 *

Also Published As

Publication number Publication date
CN104898135A (en) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104898135B (en) Satellite navigation signals analogy method and simulation system based on FPGA
CN102841362A (en) Three-mode satellite signal simulation method and simulator
CN105974439A (en) Satellite navigation signal simulator based on CPU and FPGA and control method thereof
CN109613569A (en) A CPU+FPGA-based Satellite Navigation Abnormal Signal Simulator and Abnormal Signal Simulation Method
CN111538046B (en) Method for testing autonomous orbit determination and time synchronization of satellite in dynamic satellite network
CN106526624A (en) Satellite navigation signal simulator and simulation method thereof
CN103135116B (en) Method and device produced by satellite simulating signal
CN110531384A (en) A kind of Galilean satellite signal imitation system and its analogy method
CN108123894B (en) Method for realizing low-delay transmission of sampled data stream based on Intel gigabit network card
CN110958059B (en) Testing device, system and method of satellite receiver
CN110677829A (en) LTE-V2X test system and test method for long term evolution vehicle-to-everything
CN115685265B (en) Satellite navigation cloud simulation system, method and device, electronic equipment and storage medium
CN115913426B (en) A virtual-real collaborative ground-earth integrated scene simulation system
CN202794536U (en) Triple-modular satellite signal simulator
CN110932737B (en) SCA waveform assembly combination and deployment method
CN206421030U (en) A kind of satellite navigation signal simulator
CN109086044B (en) Simulation model development method based on components
CN102841364A (en) GPS (global position system) velocity measurement implementation method and GPS velocity meter
CN109416667A (en) With dynamic and configurable response, serial device emulator using two storage levels
CN102970126A (en) Simple analogy method and device of static timing satellite signals
CN110134392A (en) Sequence frame animation play plug-in unit based on kanzi
CN101158717B (en) False satellite baseband signal maker and control method of built-in processor thereof
CN106324572B (en) A kind of GPS simulator and its implementation
CN202794546U (en) Global position system (GPS) velocimeter
CN113504551A (en) Satellite navigation signal simulator based on GPU + CPU + FPGA and signal simulation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170728