CN104897250B - A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference - Google Patents
A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference Download PDFInfo
- Publication number
- CN104897250B CN104897250B CN201510358402.3A CN201510358402A CN104897250B CN 104897250 B CN104897250 B CN 104897250B CN 201510358402 A CN201510358402 A CN 201510358402A CN 104897250 B CN104897250 B CN 104897250B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- msup
- mtr
- mtd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000003044 adaptive effect Effects 0.000 claims abstract description 12
- 230000000737 periodic effect Effects 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 2
- 238000005183 dynamical system Methods 0.000 claims 1
- 239000000284 extract Substances 0.000 claims 1
- 230000000306 recurrent effect Effects 0.000 claims 1
- 238000012795 verification Methods 0.000 abstract description 9
- 238000000605 extraction Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measuring Phase Differences (AREA)
Abstract
本发明提供一种抗强谐波干扰的多台位流量计基波相位脉冲补偿方法,所述方法包括:获取流量计及标准表输出脉冲信号,用前置截止频率可调数字Butterworth滤波器提取基波信号y(t),利用自适应陷波器状态变量周期轨道计算计数起止时刻基波相位,获取测量时间内的测得脉冲个数值,根据相位补偿原理计算得到补偿计数值,得到计数补偿后的精确计数值,实现脉冲计数补偿。本发明实现了在强谐波干扰下正确提取基波信号、获取基波相位、对多路不同步脉冲信号进行精度补偿,可有效提高流量计的检定精度。
The invention provides a method for compensating fundamental wave phase pulses of multi-position flowmeters against strong harmonic interference. The method includes: obtaining the output pulse signals of flowmeters and standard meters, and extracting them with a digital Butterworth filter with adjustable pre-cutoff frequency. The fundamental wave signal y(t), using the adaptive notch filter state variable period track to calculate the fundamental wave phase at the start and end of the counting time, obtain the measured pulse number value within the measurement time, calculate the compensation count value according to the phase compensation principle, and obtain the counting compensation The final accurate count value realizes pulse count compensation. The invention realizes the correct extraction of the fundamental wave signal, the acquisition of the fundamental wave phase, and the precision compensation of multiple asynchronous pulse signals under strong harmonic interference, and can effectively improve the verification accuracy of the flowmeter.
Description
技术领域technical field
本发明涉及流量计脉冲计数补偿领域,尤其涉及一种抗强谐波干扰的多台位流量计脉冲计数补偿方法。The invention relates to the field of flow meter pulse count compensation, in particular to a multi-stage flow meter pulse count compensation method for resisting strong harmonic interference.
背景技术Background technique
随着现代工业发展,流量计需求不断增加,尤其是脉冲输出式流量计(在流场稳定情况下,脉冲输出式流量计瞬时流量正比于脉冲频率)得到空前应用,对其快速、准确检定意义重大。通用的检定装置,工控机根据流量计脉冲信号的锁相信号驱动换向器,可对流量计的脉冲信号实现整周期截取。然而,在台位装置中,并不能保证另一台流量计脉冲计数的测量精度要求。With the development of modern industry, the demand for flowmeters continues to increase, especially the pulse output flowmeter (in the case of a stable flow field, the instantaneous flow rate of the pulse output flowmeter is proportional to the pulse frequency) has been unprecedentedly applied, which is of great significance for its rapid and accurate verification. major. Universal verification device, the industrial computer drives the commutator according to the phase-locked signal of the pulse signal of the flowmeter, and can intercept the pulse signal of the flowmeter for the entire period. However, in the stage device, the measurement accuracy requirement of the pulse count of another flowmeter cannot be guaranteed.
专利CN 103176045A提出了一种基于重合脉冲计数的异频双相位重合检测方法。该专利构建了异频信号相位重合预检测及相位重合脉冲群产生电路、双相位重合检测相位偏差修正电路和门时产生电路,声称解决了传统相位重合检测易受相位噪声和触发误差的影响,存在相位重合检测相位偏差的缺点。事实上,该专利给出的相位修正公式(其中,N2、N1对应两路脉冲的计数值,T2、T1对应两路脉冲的周期),不适合多台位流量计检定装置脉冲变频率、变脉宽的应用需求。Patent CN 103176045A proposes a method for detecting coincidence of different frequencies and two phases based on coincidence pulse counting. The patent constructs phase coincidence pre-detection and phase coincidence pulse group generation circuits for inter-frequency signals, a phase deviation correction circuit for double-phase coincidence detection, and a gate time generation circuit, claiming to solve the problem that traditional phase coincidence detection is susceptible to phase noise and trigger errors. There is a disadvantage of phase coincidence detection phase deviation. In fact, the phase correction formula given by the patent (N2 and N1 correspond to the count values of the two pulses, and T2 and T1 correspond to the periods of the two pulses), which are not suitable for the application requirements of variable frequency and pulse width of the multi-position flowmeter verification device.
其它相位重合检测法,例如CN 102680808A、CN 102323739 B、CN103472299 A等,用于多台位流量计检定装置都存在检定时间不确定、需额外配套复杂的硬件装置、不利于基于工控机的检测系统集成等问题。Other phase coincidence detection methods, such as CN 102680808A, CN 102323739 B, CN103472299 A, etc., are used in multi-position flowmeter verification devices, which have uncertain verification time, require additional complex hardware devices, and are not conducive to detection systems based on industrial computers. Integration etc.
发明内容Contents of the invention
为解决上述存在的问题与缺陷,本发明提供一种抗强谐波干扰的多台位流量计基波相位脉冲补偿方法,该方法实现了在强谐波干扰下正确提取基波信号、获取基波相位、对多路不同步脉冲信号进行精度补偿,可有效提高流量计的检定精度。In order to solve the above existing problems and defects, the present invention provides a method for compensating the fundamental wave phase pulse of multi-position flowmeters against strong harmonic interference. The method realizes the correct extraction of fundamental wave signals and the acquisition of fundamental The wave phase and the accuracy compensation of multiple asynchronous pulse signals can effectively improve the verification accuracy of the flowmeter.
本发明的目的通过以下的技术方案来实现:The purpose of the present invention is achieved through the following technical solutions:
一种抗强谐波干扰的多台位流量计基波相位脉冲补偿方法,其特征在于,所述方法包括:A fundamental phase pulse compensation method for multi-position flowmeters against strong harmonic interference, characterized in that the method includes:
A获取流量计及标准表输出脉冲信号u(t);A obtains the output pulse signal u(t) of the flowmeter and the standard meter;
B用前置截止频率可调数字Butterworth滤波器提取基波信号y(t);B Use the digital Butterworth filter with adjustable front cut-off frequency to extract the fundamental wave signal y(t);
C利用自适应陷波器状态变量周期轨道计算计数起止时刻ts、te基波相位 C Utilize the self-adaptive notch filter state variable period orbit to calculate the counting start and end time t s , t e fundamental wave phase
D获取测量时间内的测得脉冲个数值Np,根据相位补偿原理计算得到补偿计数值Nc,得到计数补偿后的精确计数值N。D obtains the value N p of the measured pulses within the measurement time, calculates the compensation count value N c according to the phase compensation principle, and obtains the accurate count value N after count compensation.
本发明有益效果是:The beneficial effects of the present invention are:
实现了在强谐波干扰下正确提取基波信号、获取基波相位、对多路不同步脉冲信号进行精度补偿,可有效提高流量计的检定精度。It realizes the correct extraction of the fundamental wave signal, the acquisition of the fundamental wave phase, and the precision compensation of multiple asynchronous pulse signals under strong harmonic interference, which can effectively improve the verification accuracy of the flowmeter.
附图说明Description of drawings
图1是本发明所述的抗强谐波干扰的多台位流量计基波相位脉冲补偿方法流程框图;Fig. 1 is a flow chart of the multi-stage flowmeter fundamental wave phase pulse compensation method against strong harmonic interference according to the present invention;
图2是脉冲信号相位提取流程框图;Fig. 2 is a block diagram of pulse signal phase extraction process;
图3是Butterworth滤波曲线图;Fig. 3 is a Butterworth filter curve;
图4是输入角频率估计曲线图。Figure 4 is a graph of input angular frequency estimation.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述。The present invention will be further described in detail below in conjunction with the embodiments and accompanying drawings.
本发明是基于前置截止频率可调数字Butterworth滤波器提取基波信号、自适应陷波器状态变量周期轨道计算基波相位的不同步脉冲信号精度补偿方法,如图1所示,该方法包括如下步骤:The present invention is an asynchronous pulse signal accuracy compensation method based on the adjustable digital Butterworth filter with pre-cutoff frequency to extract the fundamental wave signal, and the state variable period track of the self-adaptive notch filter to calculate the fundamental wave phase. As shown in Figure 1, the method includes Follow the steps below:
步骤10、获取流量计及标准表输出脉冲信号u(t)。Step 10, obtaining the output pulse signal u(t) of the flow meter and the standard meter.
步骤20、用前置截止频率可调数字滤波器提取基波信号y(t);其中:Step 20, extracting the fundamental wave signal y(t) with a digital filter with adjustable pre-cutoff frequency; wherein:
1、前置截止频率可调数字滤波器频率归一化传递函数为:1. The frequency normalized transfer function of the digital filter with adjustable pre-cutoff frequency is:
其中b1=2.6131、b2=3.4142、b3=2.6131为Butterworth滤波器的特性参数。设采样间隔时间为Ts,ωi为第i路脉冲信号角频率,设Butterworth低通滤波器截止频率ωc为3ωi,则其非归一化传递函数为:Where b 1 =2.6131, b 2 =3.4142, b 3 =2.6131 are characteristic parameters of the Butterworth filter. Suppose the sampling interval time is T s , ω i is the angular frequency of the i-th pulse signal, and the cut-off frequency ω c of the Butterworth low-pass filter is set to 3ω i , then its unnormalized transfer function is:
如图2所示为脉冲信号相位提取流程框图。As shown in Fig. 2, it is a flow chart of pulse signal phase extraction.
2、对上式进行Z变换离散化,令u(k)、y(k)为k时刻离散形式滤波器的输入、输出,则有:2. Perform Z-transform discretization on the above formula, let u(k) and y(k) be the input and output of the discrete form filter at time k, then:
其中,A1、A2、B1、B2、C1、C2、D1、D2、E1、E2为与ωci、Ts、b1、b2、b3相关的常数。Among them, A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , D 2 , E 1 , E 2 are constants related to ω ci , T s , b 1 , b 2 , b 3 .
步骤30、利用自适应陷波器状态变量周期轨道计算计数起止时刻ts、te基波相位的方法为:Step 30, use the adaptive notch filter state variable period orbit to calculate the counting start and end time t s , t e fundamental wave phase The method is:
1、若不考虑自适应律,陷波器的传递函数为:1. If the adaptive law is not considered, the transfer function of the notch filter is:
令f为输入信号,二阶系统状态变量为x1、x2,阻尼比为ξ,自适应增益为γ,角频率ω瞬态估计值为θ(如图4所示,为输入角频率估计曲线图),那么可设计自适应陷波器为:Let f be the input signal, the state variables of the second-order system are x 1 and x 2 , the damping ratio is ξ, the adaptive gain is γ, and the angular frequency ω transient estimate is θ (as shown in Figure 4, it is the input angular frequency estimate curve), then the adaptive notch filter can be designed as:
2、令Butterworth数字滤波器滤波后周期脉冲基波信号为则离散化自适应陷波器为(如图3所示为Butterworth滤波曲线):2. Make the periodic pulse fundamental wave signal filtered by the Butterworth digital filter be Then the discrete adaptive notch filter is (as shown in Figure 3 is the Butterworth filter curve):
3、对于第i路周期输入信号,设动态系统⑷在ts时刻进入其周期轨道,则具有唯一周期轨道:3. For the i-th periodic input signal, suppose the dynamic system (4) enters its periodic orbit at time t s , then has a unique periodic orbit:
4、根据周期轨道Γi,状态变量x2与输入信号y完全一致,并可通过Γi求得脉冲信号在任意n时刻相位:4. According to the periodic orbit Γ i , the state variable x 2 is completely consistent with the input signal y, and the phase of the pulse signal at any n moment can be obtained through Γ i :
按上式求得闸门信号发生时刻ts、te时脉冲信号实时相位 Calculate the real-time phase of the pulse signal at the gate signal occurrence time t s and t e according to the above formula
由于式:Due to the formula:
为差分结构,并且流量计检定过程中有保持供水压力恒定的要求,因而利用式该公式求补偿计数值Nc可不考虑低通滤波导致的相位损失。It is a differential structure, and there is a requirement to keep the water supply pressure constant during the flowmeter verification process, so using this formula to calculate the compensation count value N c does not take into account the phase loss caused by low-pass filtering.
步骤40获取测量时间内的测得脉冲个数值Np,根据相位补偿原理计算得到补偿计数值Nc,得到计数补偿后的精确计数值N的方法为:Step 40 obtains the value N p of the measured pulses within the measurement time, calculates the compensated count value N c according to the principle of phase compensation, and obtains the accurate count value N after count compensation as follows:
设脉冲信号周期为T,脉冲信号在闸门信号发生时刻ts、te的相位分别为 有则可得计数补偿值Nc为:Assuming that the period of the pulse signal is T, the phases of the pulse signal at the time t s and t e of the gate signal are respectively have Then the counting compensation value N c can be obtained as:
按上升沿跳变模式计数,设在测量时间内的测得脉冲个数值NP,则经计数补偿后的精确计数值N为:Count according to the rising edge transition mode, set the measured pulse value N P within the measurement time, then the accurate count value N after counting compensation is:
N=Np+Nc。N =Np + Nc .
虽然本发明所揭露的实施方式如上。但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the embodiments disclosed in the present invention are as above. However, the content described is only an implementation mode adopted for easy understanding of the present invention, and is not intended to limit the present invention. Anyone skilled in the technical field to which the present invention belongs can make any modifications and changes in the form and details of the implementation without departing from the spirit and scope disclosed by the present invention, but the patent protection scope of the present invention, The scope defined by the appended claims must still prevail.
Claims (4)
- A kind of 1. more bit stream gauge fundamental phase impulse compensation methods for resisting strong harmonic wave interference, it is characterised in that methods described Including:A obtains flowmeter and standard scale output pulse signal u (t);B extracts fundamental signal y (t) with preposition cut-off frequency adjustable digital Butterworth wave filters;C utilizes adaptive notch filter state variable periodic orbit count start/stop time ts、teFundamental phaseD is obtained in time of measuring and is measured pulse number value Np, compensation count value N is calculated according to phase compensation principlec, obtain Accurate metering value N after to count compensation.
- 2. resist more bit stream gauge fundamental phase impulse compensation methods of strong harmonic wave interference, its feature as claimed in claim 1 It is, preposition cut-off frequency adjustable digital Butterworth filter frequencies normalized transfer functions are in the step B:<mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>s</mi> <mn>4</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>Wherein b1、b2、b3For the characterisitic parameter of Butterworth wave filters;If sampling interval duration is Ts, ωiFor the i-th tunnel pulse Signal angular frequency, if Butterworth low pass filter cutoff frequencies ωcFor 3 ωi, then its non-normalized transmission function be:<mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msubsup> <mi>&omega;</mi> <mi>c</mi> <mn>4</mn> </msubsup> <mrow> <msup> <mi>S</mi> <mn>4</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msub> <mi>&omega;</mi> <mi>c</mi> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msubsup> <mi>&omega;</mi> <mi>c</mi> <mn>2</mn> </msubsup> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <msubsup> <mi>&omega;</mi> <mi>c</mi> <mn>3</mn> </msubsup> <mi>s</mi> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mi>c</mi> <mn>4</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>Using transform to formula (2) discretization, input, output that u (k), y (k) are k moment discrete form wave filters are made, then is had:<mrow> <mtable> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>A</mi> <mn>2</mn> </msub> </mfrac> <mo>&lsqb;</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mrow> <mo>+</mo> <mi>C</mi> </mrow> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>Wherein, A1、A2、B1、B2、C1、C2、D1、D2、E1、E2For with ωci、Ts、b1、b2、b3Related constant.
- 3. resist more bit stream gauge fundamental phase impulse compensation methods of strong harmonic wave interference, its feature as claimed in claim 1 It is, in the step C, utilizes adaptive notch filter state variable periodic orbit count start/stop time ts、teFundamental phaseMethod be:If not considering adaptive law, the transmission function of trapper is:<mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&xi;</mi> <mi>&theta;</mi> </mrow> <mrow> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>&xi;</mi> <mi>&theta;</mi> <mi>s</mi> <mo>+</mo> <msup> <mi>&theta;</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow>It is input signal to make f, and second-order system state variable is x1、x2, damping ratio ξ, adaptive gain γ, angular frequency wink State estimate is θ, then can design adaptive notch filter is:<mrow> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>&xi;&theta;x</mi> <mn>2</mn> </msub> <mo>-</mo> <msup> <mi>&theta;</mi> <mn>2</mn> </msup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <mi>&xi;</mi> <mi>&theta;</mi> <mi>f</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <msub> <mi>&gamma;x</mi> <mn>1</mn> </msub> <mi>&theta;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>Recurrent pulse fundamental signal is after making Butterworth digital filtersThen Discretization adaptive notch filter is:<mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>&lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&xi;</mi> <mi>&theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mo>&rsqb;</mo> </mrow> <mi>x</mi> <mtext> </mtext> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&theta;</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>2</mn> <mi>&xi;</mi> <mi>&theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&theta;</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>&gamma;x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>&theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>&lsqb;</mo> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>&theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>For the i-th road periodic input signal, if dynamical system is (4) in tsMoment enters its periodic orbit, then With unique periodic orbit:Thus, according to periodic orbit Γi, state variable x2It is completely the same with input signal y, and Γ can be passed throughiTry to achieve pulse signal In any n moment phase:Signal strobe is (6) tried to achieve by formula moment t occurss、teWhen pulse signal real-time phase be respectively
- 4. resist more bit stream gauge fundamental phase impulse compensation methods of strong harmonic wave interference, its feature as claimed in claim 1 It is, in the step D, obtains in time of measuring and measure pulse number value Np, benefit is calculated according to phase compensation principle Repay count value Nc, the method for obtaining the accurate metering value N after count compensation is:If pulse signal cycle is T, in signal strobe occurs for pulse signal moment ts、tePhase be respectivelyHaveIt can must then count offset NcFor:Counted by rising edge Hopping Pattern, be located in time of measuring and measure pulse number value NP, then it is accurate after count compensation Count value N is:N=Np+Nc。 ⑻
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510358402.3A CN104897250B (en) | 2015-06-25 | 2015-06-25 | A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510358402.3A CN104897250B (en) | 2015-06-25 | 2015-06-25 | A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104897250A CN104897250A (en) | 2015-09-09 |
CN104897250B true CN104897250B (en) | 2018-02-02 |
Family
ID=54030057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510358402.3A Active CN104897250B (en) | 2015-06-25 | 2015-06-25 | A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104897250B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105318940B (en) * | 2015-10-08 | 2018-07-13 | 华南理工大学 | A kind of multi-way stream gauge calibrating installation pulse counting signal reconstructing method |
CN107782984A (en) * | 2017-12-08 | 2018-03-09 | 国家电网公司 | A kind of method of each order components in measurement power network |
CN112162820A (en) * | 2020-09-23 | 2021-01-01 | 广州六环信息科技有限公司 | Timing method and device of timer |
CN116915215B (en) * | 2023-09-12 | 2023-12-08 | 青岛艾诺仪器有限公司 | Implementation method of high sampling rate variable cut-off frequency digital filter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101014839A (en) * | 2004-08-24 | 2007-08-08 | 微动公司 | Method and apparatus for calibrating flow meter |
CN102869959A (en) * | 2010-04-28 | 2013-01-09 | 米托尔斯有限公司 | Ultrasonic flow meter |
CN103364055A (en) * | 2013-07-15 | 2013-10-23 | 河南理工大学 | Automatic correcting method and device for flow meter impulse |
CN104266732A (en) * | 2014-10-24 | 2015-01-07 | 广州能源检测研究院 | Pulse counting precision compensation method for dual-bit flowmeter calibrating device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5073949B2 (en) * | 2006-02-02 | 2012-11-14 | 日立オートモティブシステムズ株式会社 | Flow measuring device |
-
2015
- 2015-06-25 CN CN201510358402.3A patent/CN104897250B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101014839A (en) * | 2004-08-24 | 2007-08-08 | 微动公司 | Method and apparatus for calibrating flow meter |
CN102869959A (en) * | 2010-04-28 | 2013-01-09 | 米托尔斯有限公司 | Ultrasonic flow meter |
CN103364055A (en) * | 2013-07-15 | 2013-10-23 | 河南理工大学 | Automatic correcting method and device for flow meter impulse |
CN104266732A (en) * | 2014-10-24 | 2015-01-07 | 广州能源检测研究院 | Pulse counting precision compensation method for dual-bit flowmeter calibrating device |
Also Published As
Publication number | Publication date |
---|---|
CN104897250A (en) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104897250B (en) | A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference | |
CN103616814B (en) | A kind of synchronized sampling closed-loop corrected method and system of clock based on FPGA | |
CN103248356B (en) | A kind of counter and implementation method based on adopting phase-locked loop pulse interpolation technology | |
CN101476906B (en) | Anti-strong fixed interference digital signal processing system of vortex street flowmeter | |
CN108020282B (en) | Coriolis mass flowmeter signal processing method based on complex coefficient filtering | |
CN103185837B (en) | Method for measuring frequency of power system | |
CN1963543A (en) | Improved method and apparatus for measuring stability of frequency of time domain signal | |
CN113675850B (en) | Power grid information rapid and accurate sensing method based on nonlinear robust estimation | |
CN103941088A (en) | Method for quickly measuring frequency of electric power system based on three-phase signals | |
CN203534650U (en) | Cloud transmission digital signal processing device with Coriolis mass flow meter | |
CN102043091B (en) | Digital High Precision Phase Detector | |
CN110389312A (en) | A calibrator phasor measurement method suitable for on-site PMU testing | |
CN104121956B (en) | Time difference measuring method of time difference type ultrasonic flow meter | |
CN110646042A (en) | A cross-correlation interpolation method for time-of-flight difference calculation of low-power ultrasonic flowmeters | |
CN106597097A (en) | High-precision frequency measurement method | |
CN104266732B (en) | Dual stage bit stream gauge calibrating installation step-by-step counting precision compensation method | |
CN102590598A (en) | Method for predicting zero crossing point of ultrasonic signal based on multi-threshold comparison | |
CN201795819U (en) | A Static Drift Suppression Model of Transit-Time Ultrasonic Flowmeter | |
CN108120452A (en) | The filtering method of MEMS gyroscope dynamic data | |
CN104990616B (en) | The asynchronous step-by-step counting compensation method of multichannel based on cascade adaptive trapper | |
CN106291102A (en) | A kind of Frequency Standard Comparison device and method | |
CN111948454A (en) | A synchrophasor measurement method and system for resisting attenuated DC component interference | |
CN103487805A (en) | Doppler parameter linear fitting method based on time division multiplexing | |
CN102520246A (en) | Constant frequency phasor extraction method | |
CN106053936A (en) | Method and system for acquiring instantaneous frequency of electrical signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |