CN104866390B - Asynchronous static random access memory triplication redundancy controller - Google Patents
Asynchronous static random access memory triplication redundancy controller Download PDFInfo
- Publication number
- CN104866390B CN104866390B CN201510178271.0A CN201510178271A CN104866390B CN 104866390 B CN104866390 B CN 104866390B CN 201510178271 A CN201510178271 A CN 201510178271A CN 104866390 B CN104866390 B CN 104866390B
- Authority
- CN
- China
- Prior art keywords
- signal
- address
- input
- output
- read
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003068 static effect Effects 0.000 title claims abstract description 147
- 238000012937 correction Methods 0.000 claims abstract description 86
- 238000012545 processing Methods 0.000 claims abstract description 66
- 230000003111 delayed effect Effects 0.000 claims description 30
- 238000004364 calculation method Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 85
- 238000004088 simulation Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 101100049667 Arabidopsis thaliana WEL1 gene Proteins 0.000 description 6
- 101100049668 Arabidopsis thaliana WEL2 gene Proteins 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 101100049669 Arabidopsis thaliana WEL3 gene Proteins 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 230000003471 anti-radiation Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000005510 radiation hardening Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Techniques For Improving Reliability Of Storages (AREA)
Abstract
本发明提供一种异步随机静态存储器三模冗余控制器,包括:地址信号处理单元,分别连接微处理器和SRAM的地址信号引脚,用于接收并处理第一地址信号,向SRAM输出第二地址信号;写信号处理单元,分别连接微处理器和SRAM的写信号引脚,用于接收并处理第一写信号,向SRAM输出第二写信号,并输出写操作地址选通信号;读信号处理单元,分别连接微处理器和SRAM的读信号引脚,用于接收并处理第一读信号,向SRAM输出第二读信号,并输出读操作地址选通信号;三模冗余纠错单元,分别连接微处理器和SRAM的数据信号引脚,用于进行三模冗余比较,输出错误状态信号和比较结果数据,对SRAM存储的备份数据进行纠错。本发明具有结构简单、兼容性强、适用范围广、可靠度高等优点。
The invention provides an asynchronous random static memory triple-mode redundant controller, comprising: an address signal processing unit connected to the address signal pins of the microprocessor and the SRAM respectively, used to receive and process the first address signal, and output the second address signal to the SRAM Two address signals; the write signal processing unit is connected to the write signal pins of the microprocessor and the SRAM respectively, and is used to receive and process the first write signal, output the second write signal to the SRAM, and output the write operation address strobe signal; read The signal processing unit is connected to the read signal pins of the microprocessor and the SRAM respectively, and is used to receive and process the first read signal, output the second read signal to the SRAM, and output the read operation address strobe signal; triple-mode redundant error correction The unit is respectively connected to the data signal pins of the microprocessor and the SRAM, and is used to perform triple-mode redundancy comparison, output error status signals and comparison result data, and correct errors for backup data stored in the SRAM. The invention has the advantages of simple structure, strong compatibility, wide application range and high reliability.
Description
技术领域technical field
本发明涉及存储器抗辐射容错技术领域,尤其涉及一种异步随机静态存储器三模冗余控制器。The invention relates to the technical field of anti-radiation and fault tolerance of memory, in particular to an asynchronous random static memory triple-mode redundant controller.
背景技术Background technique
异步静态随机存储器(Static Random Access Memory,以下简称异步SRAM)由于具有集成度高、读写速度快、低功耗以及与互补金属氧化物半导体(Complementary MetalOxide Semiconductor,以下简称CMOS)工艺完全兼容等特点,被广泛应用于各类电子设备中进行数据的存储。在空间应用领域,各个在轨航天器、卫星载荷等等电子学设备中同样广泛使用异步SRAM来进行数据的存储。由于空间环境中有各种各样的粒子,例如质子、电子、α粒子、重离子、γ射线等等。这些粒子轰击到异步SRAM上将会发生多种单粒子效应(SEE),包括位移损伤、总剂量效应等硬损伤,以及单粒子翻转(SEU)等软错误。异步SRAM在长期大剂量辐射环境下,尤其对单粒子翻转效应特别敏感,单粒子翻转效应将导致存储内容发生‘0’、‘1’之间突变,致使存储的数据出错。一旦数据出错,将导致系统功能紊乱,危及航天器的可靠性、功能和寿命。Asynchronous static random access memory (Static Random Access Memory, hereinafter referred to as asynchronous SRAM) has the characteristics of high integration, fast read and write speed, low power consumption and complete compatibility with complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, hereinafter referred to as CMOS) process, etc. , is widely used in various electronic devices for data storage. In the field of space applications, asynchronous SRAMs are also widely used in electronic equipment such as on-orbit spacecraft and satellite loads for data storage. Since there are various particles in the space environment, such as protons, electrons, alpha particles, heavy ions, gamma rays and so on. When these particles bombard the asynchronous SRAM, a variety of single event effects (SEE) will occur, including hard damage such as displacement damage and total dose effect, and soft errors such as single event upset (SEU). Asynchronous SRAM is particularly sensitive to the single event upset effect in a long-term high-dose radiation environment. The single event upset effect will cause a mutation between '0' and '1' in the stored content, resulting in errors in the stored data. Once the data is wrong, it will lead to system dysfunction and endanger the reliability, function and life of the spacecraft.
随着CMOS集成电路工艺的逐步微型化、器件的特征尺寸不断减小,发生单粒子翻转的临界电荷阈值越来越低。另一方面,系统对SRAM存储器的容量需求越来越高,这种集成度的提高进一步导致SRAM存储器发生单粒子翻转的概率越来越大。With the gradual miniaturization of the CMOS integrated circuit process and the continuous reduction of the feature size of the device, the critical charge threshold for single event upset is getting lower and lower. On the other hand, the capacity requirements of the system for the SRAM memory are getting higher and higher, and this increase in integration further leads to an increasing probability of a single event upset in the SRAM memory.
为了抵御单粒子效应,特别是单粒子翻转效应,目前往往从器件级和应用级来对异步SRAM来进行加固。器件级是对器件设计和工艺本身进行耐辐照加固,例如中国发明专利抗辐射SRAM单元(专利申请号201410223064.8)中公开了一种针对辐射加固设计的SRAM单元,另外还可以采用抗辐照能力更好的SOI(Silicon On Insulator,简称SOI)工艺来生产SRAM存储器。但是这类方法都仅是改善抗辐射的能力,并不能从根本上杜绝辐射引起的单粒子翻转效应。因此,从应用角度来对SRAM进行抗辐射加固是必须的。在系统应用中,一般采用三模冗余技术(Triple modular redundancy,TMR)或错误检测与纠正编码技术(Error detection and correction,EDAC)来实现。三模冗余技术是将同一个数据备份三份,通过三取二多数表决输出正确数据,如果其中一份备份数据出错可以纠正回来;EDAC技术则是对数据进行编码,增加校验位,然后通过解码算法验证数据的正确性,根据算法的复杂度可以完成1位或多位纠错。这些方法往往需要占用系统软件的运行时间。例如,中国发明专利一种面向SRAM的抗SEU错误积累的控制器及方法(专利申请号201310648233.8),中国发明专利空间计算机抗单粒子翻转的存储器纠检错与自动回写方法(专利申请号200510041617.9)。这样将会造成软件设计复杂化,浪费大量微处理器的处理时间,增加不可靠因素。针对EDAC技术,国内外也开展了专用EDAC芯片的研制,例如S698M SoC芯片中EDAC模块的设计与实现(黄琳,陈第虎,梁宝玉,等.中国集成电路,2008,112(9):50-54.)等。但是,EDAC编解码复杂,纠错能力比TMR弱,执行速度也受限。因此,基于三模冗余的方式是最佳的。但是目前没有一种有效的方案可以在不增加系统软件负担、不改变系统微处理器软件结构的基础上,对现有异步SRAM存储器进行三模冗余控制而实现数据的容错处理。In order to resist the single event effect, especially the single event upset effect, the asynchronous SRAM is often reinforced from the device level and the application level. The device level is to strengthen the radiation resistance of the device design and process itself. For example, the radiation-resistant SRAM unit of the Chinese invention patent (patent application number 201410223064.8) discloses a SRAM unit designed for radiation hardening. In addition, radiation resistance can also be used A better SOI (Silicon On Insulator, SOI for short) process is used to produce SRAM memory. However, these methods only improve the anti-radiation ability, and cannot fundamentally eliminate the single-event upset effect caused by radiation. Therefore, it is necessary to strengthen SRAM against radiation from an application point of view. In system applications, it is generally realized by using triple modular redundancy (TMR) or error detection and correction coding (EDAC). Triple-mode redundancy technology is to back up three copies of the same data, and output the correct data through a two-out-of-three majority vote. If one of the backup data is wrong, it can be corrected; EDAC technology is to encode the data and increase the check digit. Then verify the correctness of the data through the decoding algorithm, and according to the complexity of the algorithm, 1-bit or multiple-bit error correction can be completed. These methods often require running time of the system software. For example, a Chinese invention patent for a SRAM-oriented controller and method for anti-SEU error accumulation (patent application number 201310648233.8), a Chinese invention patent space computer anti-single event flip memory error correction and automatic write-back method (patent application number 200510041617.9 ). This will complicate the software design, waste a lot of microprocessor processing time, and increase unreliable factors. For EDAC technology, research and development of dedicated EDAC chips have also been carried out at home and abroad, such as the design and implementation of EDAC modules in S698M SoC chips (Huang Lin, Chen Dihu, Liang Baoyu, etc. China Integrated Circuit, 2008, 112(9): 50- 54.) etc. However, EDAC codec is complex, its error correction capability is weaker than TMR, and its execution speed is also limited. Therefore, the way based on triple redundancy is the best. However, there is currently no effective solution that can implement triple-mode redundant control on the existing asynchronous SRAM memory to achieve data fault-tolerant processing without increasing the burden on the system software and without changing the software structure of the system microprocessor.
图1为上述现有技术中异步随机静态存储器的应用场景示意图。微处理器(单片机、FPGA等)直接与SRAM连接,包括地址总线Addr、数据总线Data、片选信号CS(低电平有效)、写使能信号WE(低电平有效)和读使能信号OE(低电平有效)。这些信号是异步SRAM的标准接口,不同型号的异步SRAM的读写时序通常都是统一的,所不同的是数据总线Data和地址总线Addr的位宽可能存在不同。FIG. 1 is a schematic diagram of an application scenario of an asynchronous random SRAM in the prior art. Microprocessor (single chip microcomputer, FPGA, etc.) is directly connected to SRAM, including address bus Addr, data bus Data, chip select signal CS (active low), write enable signal WE (active low) and read enable signal OE (active low). These signals are standard interfaces of asynchronous SRAMs. The read and write timings of different types of asynchronous SRAMs are usually uniform, but the difference is that the bit widths of the data bus Data and the address bus Addr may be different.
图2和图3分别为上述现有技术中异步随机静态存储器的写操作/读操作的时序示意图。在片选信号CS为低、读使能信号OE为高的情况下,写使能信号WE低电平期间将数据Data写入指定的地址Addr中;在片选信号CS为低,写使能信号WE为高的情况下,读使能信号OE低电平期间,指定地址Addr中的数据Data将输出。FIG. 2 and FIG. 3 are schematic diagrams of the timing sequence of the write operation/read operation of the asynchronous random static memory in the above-mentioned prior art, respectively. When the chip select signal CS is low and the read enable signal OE is high, write the data Data into the specified address Addr during the low level period of the write enable signal WE; when the chip select signal CS is low, write enable When the signal WE is high, the data Data in the specified address Addr will be output during the low level period of the read enable signal OE.
发明内容Contents of the invention
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。A brief overview of the invention is given below in order to provide a basic understanding of some aspects of the invention. It should be understood that this summary is not an exhaustive overview of the invention. It is not intended to identify key or critical parts of the invention nor to delineate the scope of the invention. Its purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
本发明提供一种不占用系统软件运行时间且不改变微处理器软件结构即可实现SRAM三模冗余备份、多数表决及纠正功能的异步随机静态存储器三模冗余控制器。The invention provides an asynchronous random static memory triple-mode redundant controller capable of realizing SRAM triple-mode redundant backup, majority voting and correcting functions without occupying system software running time and without changing the microprocessor software structure.
本发明提供一种异步随机静态存储器三模冗余控制器,包括:The present invention provides an asynchronous random static memory triple-mode redundant controller, comprising:
地址信号处理单元,分别连接微处理器和随机静态存储器的地址信号引脚,用于接收并处理所述微处理器输出的第一地址信号,向所述随机静态存储器输出包含写操作地址、读操作地址或纠错操作地址的第二地址信号;The address signal processing unit is connected to the address signal pins of the microprocessor and the random static memory respectively, and is used to receive and process the first address signal output by the microprocessor, and output to the random static memory including the write operation address, read a second address signal of an operation address or an error correction operation address;
写信号处理单元,分别连接所述微处理器和所述随机静态存储器的写信号引脚,并与所述地址信号处理单元连接,用于接收并处理所述微处理器输出的第一写信号,向所述随机静态存储器输出第二写信号,向所述地址信号处理单元输出用于选通所述写操作地址的选通信号;A write signal processing unit is respectively connected to the write signal pins of the microprocessor and the random static memory, and is connected to the address signal processing unit for receiving and processing the first write signal output by the microprocessor , outputting a second write signal to the random static memory, and outputting a gate signal for gating the address of the write operation to the address signal processing unit;
读信号处理单元,分别连接所述微处理器和所述随机静态存储器的读信号引脚,并与所述地址信号处理单元连接,用于接收并处理所述微处理器输出的第一读信号,向所述随机静态存储器输出第二读信号,向所述地址信号处理单元输出用于选通所述读操作地址的选通信号;The read signal processing unit is respectively connected to the read signal pins of the microprocessor and the random static memory, and is connected to the address signal processing unit for receiving and processing the first read signal output by the microprocessor outputting a second read signal to the random static memory, and outputting a gate signal for gating the address of the read operation to the address signal processing unit;
三模冗余纠错单元,分别连接所述微处理器的数据信号引脚、错误状态信号引脚和所述随机静态存储器的数据信号引脚,并分别与所述读信号处理单元、所述写信号处理单元和所述地址信号处理单元连接,用于对输入的三份备份数据进行三模冗余比较,向所述微处理器输出错误状态信号和比较结果数据,对所述随机静态存储器存储的备份数据进行纠错。The three-mode redundant error correction unit is respectively connected to the data signal pin of the microprocessor, the error state signal pin and the data signal pin of the random static memory, and is respectively connected with the read signal processing unit and the described read signal processing unit. The write signal processing unit is connected with the address signal processing unit, and is used for performing triple-modular redundancy comparison on the input three copies of backup data, outputting an error status signal and comparison result data to the microprocessor, and performing an operation on the random static memory Stored backup data for error correction.
本发明提供的异步随机静态存储器三模冗余控制器设置在系统微处理器和异步随机静态存储器之间作为桥梁,将微处理器对异步随机静态存储器的写/读操作自动转换为三模冗余和三取二多数表决操作时序,实现三模冗余容错的自动处理,从而取代了在系统软件中处理三模冗余,减轻了系统软件的负担,同时无需改变系统微处理器软件结构,降低了系统软件设计的复杂性的同时保障了可靠性。综上所述,本发明异步随机静态存储器三模冗余控制器具有结构简单、兼容性强、适用范围广、可靠度高等优点。The three-mode redundant controller of the asynchronous random static memory provided by the present invention is set between the system microprocessor and the asynchronous random static memory as a bridge, and automatically converts the write/read operation of the microprocessor to the asynchronous random static memory into a three-mode redundant controller. Yu and the three out of two majority voting operation sequence, realize the automatic processing of triple-mode redundancy fault tolerance, thereby replacing the processing of triple-mode redundancy in the system software, reducing the burden on the system software, and at the same time without changing the system microprocessor software structure , which reduces the complexity of system software design and ensures reliability at the same time. To sum up, the three-mode redundant controller for asynchronous random static memory of the present invention has the advantages of simple structure, strong compatibility, wide application range, and high reliability.
附图说明Description of drawings
参照下面结合附图对本发明实施例的说明,会更加容易地理解本发明的以上和其它目的、特点和优点。附图中的部件只是为了示出本发明的原理。在附图中,相同的或类似的技术特征或部件将采用相同或类似的附图标记来表示。The above and other objects, features and advantages of the present invention will be more easily understood with reference to the following description of the embodiments of the present invention in conjunction with the accompanying drawings. The components in the drawings are only to illustrate the principles of the invention. In the drawings, the same or similar technical features or components will be denoted by the same or similar reference numerals.
图1为现有技术中异步随机静态存储器的应用场景示意图。FIG. 1 is a schematic diagram of an application scenario of an asynchronous random SRAM in the prior art.
图2为现有技术中异步随机静态存储器的写操作时序示意图。FIG. 2 is a schematic diagram of a write operation sequence of an asynchronous random static memory in the prior art.
图3为现有技术中异步随机静态存储器的读操作时序示意图。FIG. 3 is a schematic diagram of a read operation timing sequence of an asynchronous random static memory in the prior art.
图4为本发明异步随机静态存储器三模冗余控制器的应用场景示意图。FIG. 4 is a schematic diagram of an application scenario of an asynchronous random static memory triple-mode redundant controller of the present invention.
图5为本发明异步随机静态存储器三模冗余控制器的引脚结构示意图。FIG. 5 is a schematic diagram of the pin structure of the three-mode redundant controller of the asynchronous random static memory of the present invention.
图6为本发明异步随机静态存储器三模冗余控制器的内部结构示意图。Fig. 6 is a schematic diagram of the internal structure of the three-mode redundant controller of the asynchronous random static memory of the present invention.
图7为本发明异步随机静态存储器三模冗余控制器的写信号延时模块的结构示意图。FIG. 7 is a schematic structural diagram of the write signal delay module of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
图8为本发明异步随机静态存储器三模冗余控制器的写信号延时模块的时序示意图。FIG. 8 is a timing diagram of a write signal delay module of an asynchronous random SRAM triple-mode redundant controller according to the present invention.
图9为本发明异步随机静态存储器三模冗余控制器的写时序模块的结构示意图。FIG. 9 is a schematic structural diagram of a write sequence module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图10为本发明异步随机静态存储器三模冗余控制器的写时序模块的时序示意图。FIG. 10 is a timing schematic diagram of the write sequence module of the ARAM triple-mode redundant controller of the present invention.
图11为本发明异步随机静态存储器三模冗余控制器的读信号延时模块的结构示意图。FIG. 11 is a schematic structural diagram of the read signal delay module of the ARAM triple-mode redundant controller of the present invention.
图12为本发明异步随机静态存储器三模冗余控制器的读信号延时模块的时序示意图。FIG. 12 is a timing diagram of a read signal delay module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图13为本发明异步随机静态存储器三模冗余控制器的读时序模块的结构示意图。FIG. 13 is a schematic structural diagram of a read sequence module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图14为本发明异步随机静态存储器三模冗余控制器的读时序模块的时序示意图。FIG. 14 is a timing schematic diagram of a read timing module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图15为本发明异步随机静态存储器三模冗余控制器的地址计算模块的结构示意图。FIG. 15 is a schematic structural diagram of an address calculation module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图16为本发明异步随机静态存储器三模冗余控制器的地址计算模块的时序示意图。FIG. 16 is a timing diagram of the address calculation module of the ARAM triple-mode redundant controller of the present invention.
图17为本发明异步随机静态存储器三模冗余控制器的写地址模块的结构示意图。FIG. 17 is a schematic structural diagram of the write address module of the ARAM triple-mode redundant controller of the present invention.
图18为本发明异步随机静态存储器三模冗余控制器的写地址模块的时序示意图。FIG. 18 is a timing diagram of the write address module of the ARAM triple-mode redundant controller of the present invention.
图19为本发明异步随机静态存储器三模冗余控制器的读地址模块的结构示意图。FIG. 19 is a schematic structural diagram of the read address module of the ARAM triple-mode redundant controller of the present invention.
图20为本发明异步随机静态存储器三模冗余控制器的读地址模块的时序示意图。FIG. 20 is a timing diagram of the read address module of the ARAM triple-mode redundant controller of the present invention.
图21为本发明异步随机静态存储器三模冗余控制器对异步随机静态存储器地址空间划分的原理示意图。FIG. 21 is a schematic diagram of the principle of dividing the address space of the asynchronous random static memory by the triple-mode redundant controller of the asynchronous random static memory of the present invention.
图22为本发明异步随机静态存储器三模冗余控制器的纠错地址模块的结构示意图。Fig. 22 is a schematic structural diagram of an error correction address module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图23为本发明异步随机静态存储器三模冗余控制器的纠错地址模块第二个备份数据出错时的时序示意图。Fig. 23 is a schematic diagram of the time sequence when the second backup data of the error correction address module of the asynchronous random static memory triple-mode redundant controller of the present invention is in error.
图24为本发明异步随机静态存储器三模冗余控制器的多数表决模块的结构示意图。FIG. 24 is a schematic structural diagram of the majority voting module of the ARAM triple-mode redundant controller of the present invention.
图25为本发明异步随机静态存储器三模冗余控制器的多数表决模块无错误数据时的时序示意图。FIG. 25 is a schematic diagram of the time sequence when the majority voting module of the ARAM triple-mode redundant controller of the present invention has no error data.
图26为本发明异步随机静态存储器三模冗余控制器的多数表决模块有一个错误数据时的时序示意图。FIG. 26 is a schematic diagram of the time sequence when the majority voting module of the ARAM triple-mode redundant controller of the present invention has an error data.
图27为本发明异步随机静态存储器三模冗余控制器的多数表决模块三个数据各不相同时的时序示意图。FIG. 27 is a schematic diagram of the time sequence when the three data of the majority voting module of the asynchronous random static memory triple-mode redundant controller of the present invention are different.
图28为本发明异步随机静态存储器三模冗余控制器的纠错时序模块的结构示意图。FIG. 28 is a schematic structural diagram of an error correction sequence module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图29为本发明异步随机静态存储器三模冗余控制器的纠错时序模块的时序示意图。FIG. 29 is a timing schematic diagram of the error correction timing module of the ARAM triple-mode redundant controller of the present invention.
图30为本发明异步随机静态存储器三模冗余控制器的写操作时序示意图。FIG. 30 is a schematic diagram of the write operation sequence of the three-mode redundant controller of the asynchronous random SRAM according to the present invention.
图31为本发明异步随机静态存储器三模冗余控制器的无错误数据时的读操作时序示意图。FIG. 31 is a schematic diagram of the timing sequence of the read operation of the ARAM triple-mode redundant controller of the present invention when there is no error data.
图32为本发明异步随机静态存储器三模冗余控制器的有一个错误数据时的读操作时序示意图。FIG. 32 is a schematic diagram of the timing sequence of the read operation when there is an error data in the ARAM triple-mode redundant controller of the present invention.
图33为本发明异步随机静态存储器三模冗余控制器的三个数据各不相同时的读操作时序示意图。FIG. 33 is a schematic diagram of the timing sequence of the read operation when the three data of the three-mode redundant controller of the asynchronous random static memory of the present invention are different.
图34为本发明异步随机静态存储器三模冗余控制器的写操作的内部信号时序示意图。FIG. 34 is a schematic diagram of the internal signal sequence of the write operation of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
图35为本发明异步随机静态存储器三模冗余控制器的读操作无错误数据时的内部信号时序示意图。FIG. 35 is a schematic diagram of the internal signal sequence when the read operation of the triple-mode redundancy controller of the asynchronous random static memory of the present invention has no error data.
图36为本发明异步随机静态存储器三模冗余控制器的读操作有一个错误数据时的内部信号时序示意图。FIG. 36 is a schematic diagram of the internal signal sequence when there is an error data in the read operation of the triple-mode redundancy controller of the asynchronous random static memory of the present invention.
图37为本发明异步随机静态存储器三模冗余控制器的读操作三个数据各不相同时的内部信号时序示意图。FIG. 37 is a schematic diagram of the timing sequence of internal signals when the three data in the read operation of the asynchronous random static memory triple-mode redundant controller of the present invention are different.
图38为本发明异步随机静态存储器三模冗余控制器的写操作的仿真波形图。Fig. 38 is a simulation waveform diagram of the write operation of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
图39为本发明异步随机静态存储器三模冗余控制器的读操作无错误数据时的仿真波形图。Fig. 39 is a simulation waveform diagram when there is no error data in the read operation of the asynchronous random static memory triple-mode redundant controller of the present invention.
图40为本发明异步随机静态存储器三模冗余控制器的读操作第一个数据出错时的仿真波形图。Fig. 40 is a simulation waveform diagram when the first data error occurs in the read operation of the ARAM triple-mode redundant controller of the present invention.
图41为本发明异步随机静态存储器三模冗余控制器的读操作第二个数据出错时的仿真波形图。Fig. 41 is a simulation waveform diagram when the second data error occurs in the read operation of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
图42为本发明异步随机静态存储器三模冗余控制器的读操作第三个数据出错时的仿真波形图。Fig. 42 is a simulation waveform diagram when the third data error occurs in the read operation of the ARAM triple-mode redundancy controller of the present invention.
图43为本发明异步随机静态存储器三模冗余控制器的读操作三个数据各不相同时的仿真波形图。Fig. 43 is a simulation waveform diagram when the three data of the read operation of the asynchronous random static memory triple-mode redundant controller of the present invention are different.
附图标记说明:Explanation of reference signs:
10 异步随机静态存储器三模冗余控制器10 Asynchronous random static memory triple-mode redundant controller
1011 第一地址信号引脚1011 First address signal pin
1012 第二地址信号引脚1012 Second address signal pin
1021 第一数据信号引脚1021 The first data signal pin
1022 第二数据信号引脚1022 Second data signal pin
1031 第一写信号引脚1031 First write signal pin
1032 第二写信号引脚1032 Second write signal pin
1041 第一读信号引脚1041 First read signal pin
1042 第二读信号引脚1042 Second read signal pin
1051 第一错误状态信号引脚1051 First error status signal pin
1061 第一片选信号引脚1061 The first chip select signal pin
1062 第二片选信号引脚1062 The second chip select signal pin
121 地址计算模块121 address calculation module
123 写地址模块123 write address module
125 读地址模块125 Read address module
127 纠错地址模块127 Error correction address module
129 第二与模块129 second and module
141 写信号延时模块141 Write signal delay module
143 写时序模块143 Write timing module
145 第一与模块145 First and Modules
161 读信号延时模块161 Read signal delay module
163 读时序模块163 read timing module
181 多数表决模块181 majority voting module
183 纠错时序模块183 Error correction timing module
191 第一输入缓冲器191 First input buffer
193 第一三态输出缓冲器193 First tri-state output buffer
195 第二输入缓冲器195 Second input buffer
197 第二三态输出缓冲器197 Second tri-state output buffer
具体实施方式Detailed ways
下面参照附图来说明本发明的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。Embodiments of the present invention will be described below with reference to the drawings. Elements and features described in one drawing or one embodiment of the present invention may be combined with elements and features shown in one or more other drawings or embodiments. It should be noted that representation and description of components and processes that are not related to the present invention and known to those of ordinary skill in the art are omitted from the drawings and descriptions for the purpose of clarity.
图4为本发明异步随机静态存储器三模冗余控制器的应用场景示意图。FIG. 4 is a schematic diagram of an application scenario of an asynchronous random static memory triple-mode redundant controller of the present invention.
如图4所示,微处理器不直接对异步随机静态存储器进行读写操作,而是通过本发明异步随机静态存储器三模冗余控制器作为桥梁来间接读写异步随机静态存储器。本发明的设计保持异步随机静态存储器三模冗余控制器与微处理器之间的读写时序和普通异步随机静态存储器的读写时序一致。As shown in FIG. 4 , the microprocessor does not directly read and write the asynchronous random static memory, but indirectly reads and writes the asynchronous random static memory through the triple-mode redundant controller of the asynchronous random static memory of the present invention as a bridge. The design of the invention keeps the read-write sequence between the asynchronous random static memory triple-mode redundant controller and the microprocessor consistent with that of the common asynchronous random static memory.
对于所述微处理器的每一次写操作,所述异步随机静态存储器三模冗余控制器将其转换为三个不同地址的写操作,写入的数据相同而地址不同,从而起到数据备份三份的作用;对于所述微处理器的每一次读操作,所述异步随机静态存储器三模冗余控制器将其转换为三个不同地址的读操作,读取完三个备份数据之后进行三取二表决向所述微处理器输出正确结果,如果发生一个数据出错则回写正确结果进行纠错,如果发生两个数据出错而致使三个备份数据都不同则向所述微处理器返回错误状态信号。For each write operation of the microprocessor, the asynchronous random static memory triple-mode redundancy controller converts it into write operations of three different addresses, the written data is the same but the address is different, thereby performing data backup The role of three copies; for each read operation of the microprocessor, the three-mode redundant controller of the asynchronous random static memory converts it into three read operations of different addresses, and performs after reading three backup data Two out of three votes output the correct result to the microprocessor, if one data error occurs, the correct result is written back for error correction, and if two data errors occur and the three backup data are all different, then the result is returned to the microprocessor Error status signal.
图5为本发明异步随机静态存储器三模冗余控制器的引脚结构示意图。FIG. 5 is a schematic diagram of the pin structure of the three-mode redundant controller of the asynchronous random static memory of the present invention.
如图5所示,本发明异步随机静态存储器三模冗余控制器10设有连接所述微处理器的:As shown in Figure 5, the asynchronous random static memory triple-mode redundant controller 10 of the present invention is provided with and connects described microprocessor:
用于输入第一地址信号AddrL[N:0]的第一地址信号引脚1011,a first address signal pin 1011 for inputting a first address signal AddrL[N:0],
用于输入第一数据信号DataL[M:0]的第一数据信号引脚1021,The first data signal pin 1021 for inputting the first data signal DataL[M:0],
用于输入第一写信号WEL的第一写信号引脚1031,a first write signal pin 1031 for inputting a first write signal WEL,
用于输入第一读信号OEL的第一读信号引脚1041,a first read signal pin 1041 for inputting a first read signal OEL,
用于输出错误状态信号ErrorStatus的第一错误状态信号引脚1051,A first error status signal pin 1051 for outputting an error status signal ErrorStatus,
用于输入第一片选信号CSL的第一片选信号引脚1061;The first chip select signal pin 1061 for inputting the first chip select signal CSL;
以及连接所述随机静态存储器的:and connect the random static memory with:
用于输出第二地址信号AddrR[N:0]的第二地址信号引脚1012,a second address signal pin 1012 for outputting a second address signal AddrR[N:0],
用于输出第二数据信号DataR[M:0]的第二数据信号引脚1022,the second data signal pin 1022 for outputting the second data signal DataR[M:0],
用于输出第二写信号WER的第二写信号引脚1032,a second write signal pin 1032 for outputting a second write signal WER,
用于输出第二读信号OER的第二读信号引脚1042,a second read signal pin 1042 for outputting a second read signal OER,
用于输出第二片选信号CSR的第二片选信号引脚1062。The second chip select signal pin 1062 for outputting the second chip select signal CSR.
其中,N为地址位宽,M为数据位宽。Among them, N is the address bit width, and M is the data bit width.
图6为本发明异步随机静态存储器三模冗余控制器的内部结构示意图。Fig. 6 is a schematic diagram of the internal structure of the three-mode redundant controller of the asynchronous random static memory of the present invention.
如图6所示,在本实施例中,本发明异步随机静态存储器三模冗余控制器10包括:As shown in FIG. 6, in this embodiment, the asynchronous random static memory triple-mode redundant controller 10 of the present invention includes:
地址信号处理单元,分别连接微处理器和随机静态存储器的地址信号引脚,用于接收并处理所述微处理器输出的第一地址信号AddrL[N:0],向所述随机静态存储器输出包含写操作地址、读操作地址或纠错操作地址的第二地址信号AddrR[N:0];The address signal processing unit is respectively connected to the address signal pins of the microprocessor and the random static memory, for receiving and processing the first address signal AddrL[N:0] output by the microprocessor, and outputting to the random static memory A second address signal AddrR[N:0] including a write operation address, a read operation address or an error correction operation address;
写信号处理单元,分别连接所述微处理器和所述随机静态存储器的写信号引脚,并与所述地址信号处理单元连接,用于接收并处理所述微处理器输出的第一写信号WEL,向所述随机静态存储器输出第二写信号WER,向所述地址信号处理单元输出用于选通所述写操作地址的选通信号;A write signal processing unit is respectively connected to the write signal pins of the microprocessor and the random static memory, and is connected to the address signal processing unit for receiving and processing the first write signal output by the microprocessor WEL, outputting a second write signal WER to the random static memory, outputting a strobe signal for gating the write operation address to the address signal processing unit;
读信号处理单元,分别连接所述微处理器和所述随机静态存储器的读信号引脚,并与所述地址信号处理单元连接,用于接收并处理所述微处理器输出的第一读信号OEL,向所述随机静态存储器输出第二读信号OER,向所述地址信号处理单元输出用于选通所述读操作地址的选通信号;The read signal processing unit is respectively connected to the read signal pins of the microprocessor and the random static memory, and is connected to the address signal processing unit for receiving and processing the first read signal output by the microprocessor OEL, outputting a second read signal OER to the random static memory, outputting a strobe signal for gating the address of the read operation to the address signal processing unit;
三模冗余纠错单元,分别连接所述微处理器的数据信号引脚、错误状态信号引脚和所述随机静态存储器的数据信号引脚,并分别与所述读信号处理单元、所述写信号处理单元和所述地址信号处理单元连接,用于对输入的三份备份数据进行三模冗余比较,向所述微处理器输出错误状态信号ErrorStatus和比较结果数据,对所述随机静态存储器存储的备份数据进行纠错。The three-mode redundant error correction unit is respectively connected to the data signal pin of the microprocessor, the error state signal pin and the data signal pin of the random static memory, and is respectively connected with the read signal processing unit and the described read signal processing unit. The write signal processing unit is connected with the address signal processing unit, and is used to perform triple-modular redundancy comparison on the input three backup data, and output error status signal ErrorStatus and comparison result data to the microprocessor, and to the random static Error correction is performed on the backup data stored in the memory.
优选地,所述写信号处理单元包括:Preferably, the write signal processing unit includes:
写信号延时模块141,输入端连接第一写信号引脚1031,四个输出端分别输出第一零延时写信号WEL0、第二延时写信号WEL1、第三延时写信号WEL2和第四延时写信号WEL3,用于将第一写信号WEL多级延时输出。第一写信号引脚1031与所述微处理器的写信号引脚连接。Write signal delay module 141, the input terminal is connected to the first write signal pin 1031, and the four output terminals respectively output the first zero-delay write signal WEL0, the second delay write signal WEL1, the third delay write signal WEL2 and the first delay write signal WEL2. The four-delay write signal WEL3 is used to output the first write signal WEL with multi-stage delay. The first write signal pin 1031 is connected to the write signal pin of the microprocessor.
写时序模块143,四个输入端分别连接写信号延时模块141的四个输出端,四个输出端分别输出第三写信号WER1、第一选通信号WAddrS1、第二选通信号WAddrS2和第三选通信号WAddrS3,用于计算并输出写操作的第三写信号WER1和选通写操作地址的选通信号WAddrS1-WAddrS3。Write timing module 143, the four input ends are respectively connected to the four output ends of the write signal delay module 141, and the four output ends respectively output the third write signal WER1, the first strobe signal WAddrS1, the second strobe signal WAddrS2 and the second strobe signal WAddrS2 The three strobe signals WAddrS3 are used to calculate and output the third write signal WER1 for the write operation and the strobe signals WAddrS1-WAddrS3 for strobe the address of the write operation.
第一与模块145,输入端连接写时序模块143和所述三模冗余纠错单元,输出端连接第二写信号引脚1032,用于输出第二写信号WER,具体包括在写操作时序输出写操作的第三写信号WER1,和在纠错操作时序输出纠错操作的第四写信号WER2。所述第二写信号引脚1032与所述随机静态存储器的写信号引脚连接。The first AND module 145, the input terminal is connected to the write timing module 143 and the triple-mode redundant error correction unit, and the output terminal is connected to the second write signal pin 1032, which is used to output the second write signal WER, specifically included in the write operation sequence The third write signal WER1 for the write operation is output, and the fourth write signal WER2 for the error correction operation is output at the timing of the error correction operation. The second write signal pin 1032 is connected to the write signal pin of the RAM.
图7为本发明异步随机静态存储器三模冗余控制器的写信号延时模块的结构示意图。FIG. 7 is a schematic structural diagram of the write signal delay module of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
如图7所示,优选地,写信号延时模块141包括第一延时子模块WELDelay1、第二延时子模块WELDelay2和第三延时子模块WELDelay3。第一写信号WEL输入写信号延时模块141后分为两路,一路直接得到并输出第一零延时写信号WEL0,另一路通过第一延时子模块WELDelay1延时得到并输出第二延时写信号WEL1。第二延时写信号WEL1再通过第二延时子模块WELDelay2延时得到并输出第三延时写信号WEL2。第三延时写信号WEL2再通过第三延时子模块WELDelay3延时得到并输出第四延时写信号WEL3。As shown in FIG. 7 , preferably, the write signal delay module 141 includes a first delay sub-module WELDelay1 , a second delay sub-module WELDelay2 and a third delay sub-module WELDelay3 . The first write signal WEL is input into the write signal delay module 141 and then divided into two paths, one path directly obtains and outputs the first zero-delay write signal WEL0, and the other path is delayed by the first delay sub-module WELDelay1 to obtain and output the second delayed When writing signal WEL1. The second delayed write signal WEL1 is then delayed by the second delay sub-module WELDelay2 to obtain and output the third delayed write signal WEL2. The third delayed write signal WEL2 is then delayed by the third delay sub-module WELDelay3 to obtain and output the fourth delayed write signal WEL3.
通常情况下,上述三个延时子模块的延时参数相同。延时参数的选取需要依据所使用的异步随机静态存储器,应大于或等于所述异步随机静态存储器的最小写周期。Usually, the delay parameters of the above three delay sub-modules are the same. The selection of the delay parameter needs to be based on the asynchronous random static memory used, and should be greater than or equal to the minimum write cycle of the asynchronous random static memory.
图8为本发明异步随机静态存储器三模冗余控制器的写信号延时模块的时序示意图。如图8所示,第一写信号WEL输入写信号延时模块141后,第一零延时写信号WEL0零延时同步输出,第二延时写信号WEL1、第三延时写信号WEL2和第四延时写信号WEL3依次延时输出。FIG. 8 is a timing diagram of a write signal delay module of an asynchronous random SRAM triple-mode redundant controller according to the present invention. As shown in FIG. 8, after the first write signal WEL is input to the write signal delay module 141, the first zero-delay write signal WEL0 is synchronously output with zero delay, the second delay write signal WEL1, the third delay write signal WEL2 and The fourth delayed write signal WEL3 is sequentially delayed and output.
图9为本发明异步随机静态存储器三模冗余控制器的写时序模块的结构示意图。FIG. 9 is a schematic structural diagram of a write sequence module of an asynchronous random static memory triple-mode redundant controller of the present invention.
如图9所示,优选地,写时序模块143包括三个分别与写时序模块143四个输入端连接的4输入与非门,和一个三输入端分别与所述三个4输入与非门的输出端连接的3输入与门。所述三个4输入与非门的输出结果分别为第一选通信号WAddrS1、第二选通信号WAddrS2和第三选通信号WAddrS3。所述3输入与门的输出结果为第三写信号WER1。As shown in FIG. 9, preferably, the write sequence module 143 includes three 4-input NAND gates connected to the four input terminals of the write sequence module 143 respectively, and a three-input terminal connected to the three 4-input NAND gates respectively. The outputs of the 3-input AND gates are connected. The output results of the three 4-input NAND gates are respectively the first strobe signal WAddrS1 , the second strobe signal WAddrS2 and the third strobe signal WAddrS3 . The output result of the 3-input AND gate is the third write signal WER1.
其中,第一4输入与非门带有一个反向输入端和三个非反相输入端,反向输入端输入所述第一零延时写信号WEL0;第二4输入与非门带有两个反向输入端和两个非反相输入端,反向输入端输入第一零延时写信号WEL0和第二延时写信号WEL1;第三4输入与非门带有三个反向输入端和一个非反相输入端,反向输入端输入所述第一零延时写信号WEL0、第二延时写信号WEL1和第三延时写信号WEL2。Wherein, the first 4-input NAND gate has an inverting input terminal and three non-inverting input terminals, and the inverting input terminal inputs the first zero-delay write signal WEL0; the second 4-input NAND gate has Two inverting input terminals and two non-inverting input terminals, the inverting input terminal inputs the first zero-delay write signal WEL0 and the second delay write signal WEL1; the third 4-input NAND gate has three inverting inputs terminal and a non-inverting input terminal, and the inverting input terminal inputs the first zero-delay write signal WEL0, the second delay write signal WEL1 and the third delay write signal WEL2.
图10为本发明异步随机静态存储器三模冗余控制器的写时序模块的时序示意图。第一选通信号WAddrS1、第二选通信号WAddrS2、第三选通信号WAddrS3和第三写信号WER1的时序如图10所示。FIG. 10 is a timing schematic diagram of the write sequence module of the ARAM triple-mode redundant controller of the present invention. The timings of the first strobe signal WAddrS1 , the second strobe signal WAddrS2 , the third strobe signal WAddrS3 and the third write signal WER1 are shown in FIG. 10 .
写时序模块143工作时,第一选通信号WAddrS1、第二选通信号WAddrS2和第三选通信号WAddrS3用来选通数据备份区的三个不同地址,低电平有效。第一选通信号WAddrS1为低电平时写地址模块123输出第一备份数据的地址,第二选通信号WAddrS2为低电平时写地址模块123输出第二备份数据的地址,第三选通信号WAddrS3为低电平时写地址模块123输出第三备份数据的地址,在选择输出三个写地址的过程中第三写信号WER1均为低电平。When the write sequence module 143 is working, the first strobe signal WAddrS1 , the second strobe signal WAddrS2 and the third strobe signal WAddrS3 are used to strobe three different addresses in the data backup area, and the low level is active. When the first strobe signal WAddrS1 is low level, write address module 123 outputs the address of the first backup data, when the second strobe signal WAddrS2 is low level, write address module 123 outputs the address of the second backup data, and the third strobe signal WAddrS3 When it is at low level, the write address module 123 outputs the address of the third backup data, and the third write signal WER1 is all at low level during the process of selecting and outputting three write addresses.
优选地,所述读信号处理单元包括:Preferably, the read signal processing unit includes:
读信号延时模块161,输入端连接第一读信号引脚1041,四个输出端分别输出第一零延时读信号OEL0、第二延时读信号OEL1、第三延时读信号OEL2和第四延时读信号OEL3,用于将第一读信号OEL多级延时输出。第一读信号引脚1041与所述微处理器的读信号引脚连接。The read signal delay module 161, the input terminal is connected to the first read signal pin 1041, and the four output terminals respectively output the first zero-delay read signal OEL0, the second delayed read signal OEL1, the third delayed read signal OEL2 and the The four-delay read signal OEL3 is used to output the first read signal OEL with multi-level delay. The first read signal pin 1041 is connected to the read signal pin of the microprocessor.
读时序模块163,四个输入端分别连接读信号延时模块161的四个输出端,四个输出端分别输出第二读信号OER、第四选通信号RAddrS1、第五选通信号RAddrS2和第六选通信号RAddrS3,用于计算并输出读操作的第二读信号OER和选通读操作地址的选通信号RAddrS1、RAddrS2和RAddrS3。所述输出第二读信号OER的输出端与第二读信号引脚1042连接,第二读信号引脚1042与所述随机静态存储器的读信号引脚连接。Read timing module 163, four input terminals are respectively connected to the four output terminals of the read signal delay module 161, and the four output terminals output the second read signal OER, the fourth strobe signal RAddrS1, the fifth strobe signal RAddrS2 and the fourth strobe signal respectively. Six strobe signals RAddrS3 are used to calculate and output the second read signal OER for the read operation and the strobe signals RAddrS1 , RAddrS2 and RAddrS3 for strobe the address of the read operation. The output terminal outputting the second read signal OER is connected to the second read signal pin 1042, and the second read signal pin 1042 is connected to the read signal pin of the RAM.
图11为本发明异步随机静态存储器三模冗余控制器的读信号延时模块的结构示意图。FIG. 11 is a schematic structural diagram of the read signal delay module of the ARAM triple-mode redundant controller of the present invention.
如图11所示,优选地,读信号延时模块161包括第四延时子模块OELDelay1、第五延时子模块OELDelay2和第六延时子模块OELDelay3。第一读信号OEL输入读信号延时模块161后分为两路,一路直接得到并输出第一零延时读信号OEL0,另一路通过第四延时子模块OELDelay1延时得到并输出第二延时读信号OEL1。第二延时读信号OEL1再通过第五延时子模块OELDelay2延时得到并输出第三延时读信号OEL2。第三延时读信号OEL2再通过第六延时子模块OELDelay3延时得到并输出所述第四延时读信号OEL3。As shown in FIG. 11 , preferably, the read signal delay module 161 includes a fourth delay sub-module OELDelay1 , a fifth delay sub-module OELDelay2 and a sixth delay sub-module OELDelay3 . After the first read signal OEL is input into the read signal delay module 161, it is divided into two paths, one path directly obtains and outputs the first zero-delay read signal OEL0, and the other path is delayed by the fourth delay sub-module OELDelay1 to obtain and output the second delayed When reading signal OEL1. The second delayed read signal OEL1 is then delayed by the fifth delay sub-module OELDelay2 to obtain and output the third delayed read signal OEL2. The third delayed read signal OEL2 is then delayed by the sixth delay sub-module OELDelay3 to obtain and output the fourth delayed read signal OEL3.
图12为本发明异步随机静态存储器三模冗余控制器的读信号延时模块的时序示意图。如图12所示,第一读信号OEL输入读信号延时模块161后,第一零延时读信号OEL0零延时同步输出,第二延时读信号OEL1、第三延时读信号OEL2和第四延时读信号OEL3依次延时输出。FIG. 12 is a timing diagram of a read signal delay module of an asynchronous random static memory triple-mode redundant controller of the present invention. As shown in FIG. 12, after the first read signal OEL is input into the read signal delay module 161, the first zero-delay read signal OEL0 is synchronously output with zero delay, the second delay read signal OEL1, the third delay read signal OEL2 and The fourth delayed read signal OEL3 is sequentially delayed and output.
图13为本发明异步随机静态存储器三模冗余控制器的读时序模块的结构示意图。FIG. 13 is a schematic structural diagram of a read sequence module of an asynchronous random static memory triple-mode redundant controller of the present invention.
如图13所示,优选地,读时序模块163包括三个分别与读时序模块163四个输入端连接的4输入与非门,和一个三输入端分别与所述三个4输入与非门的输出端连接的3输入与门。所述三个4输入与非门的输出结果分别为第四选通信号RAddrS1、第五选通信号RAddrS2和第六选通信号RAddrS3,所述3输入与门的输出结果为第二读信号OER。As shown in FIG. 13, preferably, the read timing module 163 includes three 4-input NAND gates connected to the four input terminals of the read timing module 163 respectively, and a three-input NAND gate respectively connected to the three 4-input NAND gates. The outputs of the 3-input AND gates are connected. The output results of the three 4-input NAND gates are respectively the fourth strobe signal RAddrS1, the fifth strobe signal RAddrS2 and the sixth strobe signal RAddrS3, and the output results of the 3-input AND gate are the second read signal OER .
其中,第四4输入与非门带有一个反向输入端和三个非反相输入端,反向输入端输入第一零延时读信号OEL0。第五4输入与非门带有两个反向输入端和两个非反相输入端,反向输入端分别输入第一零延时读信号OEL0和第二延时读信号OEL1。第六4输入与非门带有三个反向输入端和一个非反相输入端,反向输入端分别输入第一零延时读信号OEL0、第二延时读信号OEL1和第三延时读信号OEL2。Wherein, the fourth 4-input NAND gate has an inverting input terminal and three non-inverting input terminals, and the inverting input terminal inputs the first zero-delay read signal OEL0. The fifth 4-input NAND gate has two inverting input terminals and two non-inverting input terminals, and the inverting input terminals input the first zero-delay read signal OEL0 and the second delay read signal OEL1 respectively. The sixth 4-input NAND gate has three inverting input terminals and one non-inverting input terminal, and the inverting input terminals respectively input the first zero-delay read signal OEL0, the second delay read signal OEL1 and the third delay read signal Signal OEL2.
图14为本发明异步随机静态存储器三模冗余控制器的读时序模块的时序示意图。第四选通信号RAddrS1、第五选通信号RAddrS2、第六选通信号RAddrS3和第二读信号OER的时序如图10所示。FIG. 14 is a timing schematic diagram of a read timing module of an asynchronous random static memory triple-mode redundant controller of the present invention. The timings of the fourth strobe signal RAddrS1 , the fifth strobe signal RAddrS2 , the sixth strobe signal RAddrS3 and the second read signal OER are shown in FIG. 10 .
读时序模块163工作时,第四选通信号RAddrS1、第五选通信号RAddrS2和第六选通信号RAddrS3用来选通数据备份区的三个不同地址,低电平有效。第四选通信号RAddrS1为低电平时读地址模块125输出第一备份数据的地址,第五选通信号RAddrS2为低电平时读地址模块125输出第二备份数据的地址,第六选通信号RAddrS3为低电平时读地址模块125输出第三备份数据的地址,在选择输出三个读地址的过程中第二读信号OER均为低电平。When the read sequence module 163 is working, the fourth strobe signal RAddrS1 , the fifth strobe signal RAddrS2 and the sixth strobe signal RAddrS3 are used to strobe three different addresses in the data backup area, and are active at low level. When the fourth strobe signal RAddrS1 is low level, the read address module 125 outputs the address of the first backup data, when the fifth strobe signal RAddrS2 is low level, the read address module 125 outputs the address of the second backup data, and the sixth strobe signal RAddrS3 When it is at low level, the read address module 125 outputs the address of the third backup data, and the second read signal OER is at low level during the process of selecting and outputting three read addresses.
优选地,所述地址信号处理单元包括:Preferably, the address signal processing unit includes:
地址计算模块121,输入端连接第一地址信号引脚1011,三个输出端分别输出第一备份地址信号Addr0、第二备份地址信号Addr1和第三备份地址信号Addr2,用于计算并输出第一地址信号AddrL所对应的三个备份地址Addr0、Addr1、Addr2。第一地址信号引脚1011与所述微处理器的地址信号引脚连接。The address calculation module 121, the input terminal is connected to the first address signal pin 1011, and the three output terminals respectively output the first backup address signal Addr0, the second backup address signal Addr1 and the third backup address signal Addr2, which are used to calculate and output the first Three backup addresses Addr0 , Addr1 , Addr2 corresponding to the address signal AddrL. The first address signal pin 1011 is connected to the address signal pin of the microprocessor.
写地址模块123,六个输入端分别连接写时序模块143输出选通信号WAddrS1、WAddrS2、WAddrS3的三个输出端和地址计算模块121的三个输出端,输出端输出写操作地址FA1,用于接收并处理第一选通信号WAddrS1、第二选通信号WAddrS2、第三选通信号WAddrS3,和写操作时序的第一备份地址信号Addr0、第二备份地址信号Addr1、第三备份地址信号Addr2,输出写操作地址FA1。Write address module 123, six input terminals are respectively connected to three output terminals of output strobe signal WAddrS1, WAddrS2, WAddrS3 of write timing module 143 and three output terminals of address calculation module 121, output terminal output write operation address FA1, for receiving and processing the first strobe signal WAddrS1, the second strobe signal WAddrS2, the third strobe signal WAddrS3, and the first backup address signal Addr0, the second backup address signal Addr1, and the third backup address signal Addr2 of the write operation sequence, Output write operation address FA1.
读地址模块125,六个输入端分别连接读时序模块163输出选通信号RAddrS1、RAddrS2、RAddrS3的三个输出端和地址计算模块121的三个输出端,输出端输出读操作地址FA2,用于接收并处理第四选通信号RAddrS1、第五选通信号RAddrS2、第六选通信号RAddrS3,和读操作时序的第一备份地址信号Addr0、第二备份地址信号Addr1、第三备份地址信号Addr2,输出所述读操作地址FA2。Read address module 125, six input terminals are respectively connected to three output terminals of read timing module 163 output strobe signals RAddrS1, RAddrS2, RAddrS3 and three output terminals of address calculation module 121, output terminal output read operation address FA2, for Receive and process the fourth strobe signal RAddrS1, the fifth strobe signal RAddrS2, the sixth strobe signal RAddrS3, and the first backup address signal Addr0, the second backup address signal Addr1, and the third backup address signal Addr2 of the read operation sequence, Output the read operation address FA2.
纠错地址模块127,七个输入端分别连接读时序模块163输出第二读信号OER的输出端、所述三模冗余纠错单元输出选通信号的三个输出端和地址计算模块121的三个输出端,输出端输出纠错操作地址FA3,用于接收并处理第二读信号OER、所述三模冗余纠错单元输出的纠错操作地址选通信号EAddrS1、EAddrS2、EAddrS3,和纠错操作时序的所述第一备份地址信号Addr0、所述第二备份地址信号Addr1、所述第三备份地址信号Addr2,输出所述纠错操作地址FA3。Error correction address module 127, seven input terminals are respectively connected to the output terminal of the read timing module 163 outputting the second read signal OER, the three output terminals of the triple-mode redundant error correction unit output strobe signal and the address calculation module 121 Three output terminals, the output terminal outputs the error correction operation address FA3, which is used to receive and process the second read signal OER, the error correction operation address strobe signals EAddrS1, EAddrS2, EAddrS3 output by the triple-mode redundant error correction unit, and The first backup address signal Addr0 , the second backup address signal Addr1 , and the third backup address signal Addr2 in the error correction operation sequence output the error correction operation address FA3 .
第二与模块129,三个输入端分别连接写地址模块123的输出端、读地址模块125的输出端、纠错地址模块127的输出端,输出端连接第二地址信号引脚1012,用于在写操作时序输出写操作地址FA1,在读操作时序输出读操作地址FA2,在纠错操作时序输出纠错操作地址FA3。第二地址信号引脚1012与所述随机静态存储器的地址信号引脚连接。The second AND module 129, three input terminals are respectively connected to the output terminal of the write address module 123, the output terminal of the read address module 125, and the output terminal of the error correction address module 127, and the output terminal is connected to the second address signal pin 1012 for The write operation address FA1 is output at the write operation sequence, the read operation address FA2 is output at the read operation sequence, and the error correction operation address FA3 is output at the error correction operation sequence. The second address signal pin 1012 is connected to the address signal pin of the RAM.
图15为本发明异步随机静态存储器三模冗余控制器的地址计算模块的结构示意图。FIG. 15 is a schematic structural diagram of an address calculation module of an asynchronous random static memory triple-mode redundant controller of the present invention.
图16为本发明异步随机静态存储器三模冗余控制器的地址计算模块的时序示意图。FIG. 16 is a timing diagram of the address calculation module of the ARAM triple-mode redundant controller of the present invention.
如图15所示,优选地,地址计算模块121分三路计算电路对第一地址信号AddrL进行并行计算处理,第一地址信号AddrL分别通过缓冲器直接得到并输出第一备份地址信号Addr0、通过第一加法器与偏移量相加得到并输出第二备份地址信号Addr1、通过第二加法器与两倍偏移量相加得到并输出第三备份地址信号Addr2。As shown in FIG. 15 , preferably, the address calculation module 121 is divided into three calculation circuits to perform parallel calculation processing on the first address signal AddrL, and the first address signal AddrL is respectively obtained directly through the buffer and outputs the first backup address signal Addr0, through The first adder adds the offset to obtain and output a second backup address signal Addr1, and the second adder adds to twice the offset to obtain and output a third backup address signal Addr2.
所述偏移量通过所述异步随机静态存储器的地址位宽计算得到。The offset is obtained by calculating the address bit width of the asynchronous random static memory.
优选地,所述异步随机静态存储器的地址位宽为N位,则所述偏移量Offset的计算方式为: Preferably, the address bit width of the asynchronous random static memory is N bits, then the calculation method of the offset offset is:
图21为本发明异步随机静态存储器三模冗余控制器对异步随机静态存储器地址空间划分的原理示意图。如图21所示,由于需要将同一个数据在异步随机静态存储器内部备份三份,因此首先需要对异步随机静态存储器的存储空间进行划分。异步随机静态存储器的地址位宽为N位,则总共可以存储2N个数据。为了备份三份数据的需要,将地址空间按照顺序平均分为三份,依次为0~(Offset-1)、Offset~(2*Offset-1)、2*Offset~(3*Offset-1)。其中,其中符号表示向下取整。例如,在本实施例中,异步随机静态存储器的地址位宽N为16位,则此时三个备份地址空间依次为0~0x5554、0x5555~0xAAA9、0xAAAA~0xFFFE。经过划分之后,异步随机静态存储器的有效存储空间只有其中一份,其余两份作为三模冗余的备份数据使用,即异步随机静态存储器的有效存储空间降为三分之一,由原来的0~2N缩小为0~(Offset-1)。同一个数据将分别存储在Addr,Addr+Offset,Addr+2Offset,其中Addr的地址范围为0~(Offset-1)。FIG. 21 is a schematic diagram of the principle of dividing the address space of the asynchronous random static memory by the triple-mode redundant controller of the asynchronous random static memory of the present invention. As shown in FIG. 21 , since the same data needs to be backed up three times in the asynchronous random static memory, it is first necessary to divide the storage space of the asynchronous random static memory. The address bit width of the asynchronous random static memory is N bits, so 2 N pieces of data can be stored in total. In order to backup three copies of data, the address space is divided into three parts according to the sequence, which are 0~(Offset-1), Offset~(2*Offset-1), 2*Offset~(3*Offset-1) . in, where the symbol Indicates rounding down. For example, in this embodiment, the address bit width N of the asynchronous random static memory is 16 bits, then At this time, the three backup address spaces are 0~0x5554, 0x5555~0xAAA9, 0xAAAA~0xFFFE in turn. After division, the effective storage space of the asynchronous random static memory is only one part, and the other two are used as the backup data of the three-mode redundancy, that is, the effective storage space of the asynchronous random static memory is reduced to one-third, from the original 0 ~2 N is reduced to 0~(Offset-1). The same data will be stored in Addr, Addr+Offset, Addr+2Offset respectively, where the address range of Addr is 0~(Offset-1).
由于2N不能被3整除,因此在异步随机静态存储器中最后会留下1个或2个地址不被使用,最后留下的地址(在本实施例中为0xFFFF)在所述异步随机静态存储器三模冗余控制器中作为空操作的地址使用。Because 2 N cannot be divisible by 3, so can leave 1 or 2 addresses not to be used at last in the asynchronous random static memory, the address (being 0xFFFF in this embodiment) that stays at last is in the described asynchronous random static memory It is used as a no-operation address in the triple-mode redundant controller.
图17为本发明异步随机静态存储器三模冗余控制器的写地址模块的结构示意图。FIG. 17 is a schematic structural diagram of the write address module of the ARAM triple-mode redundant controller of the present invention.
如图17所示,优选地,写地址模块123分别通过三个2输入或门和第一选通信号WAddrS1、第二选通信号WAddrS2、第三选通信号WAddrS3对第一备份地址信号Addr0、第二备份地址信号Addr1、第三备份地址信号Addr2进行输出控制,并通过一个3输入与门合并所述三个2输入或门的输出WA1、WA2和WA3,输出写操作地址FA1,从而实现连续输出写操作时序的第一备份地址信号、第二备份地址信号和第三备份地址信号。As shown in FIG. 17, preferably, the write address module 123 performs three 2-input OR gates and the first strobe signal WAddrS1, the second strobe signal WAddrS2, and the third strobe signal WAddrS3 respectively to the first backup address signal Addr0, The second backup address signal Addr1 and the third backup address signal Addr2 perform output control, and combine the outputs WA1, WA2 and WA3 of the three 2-input OR gates through a 3-input AND gate to output the write operation address FA1, thereby realizing continuous Outputting the first backup address signal, the second backup address signal and the third backup address signal of the write operation timing.
具体地,当第一选通信号WAddrS1为低电平时,WA1输出第一备份地址信号Addr0,当第一选通信号WAddrS1为高电平时,WA1输出最后一个空余地址0xFFFF;当第二选通信号WAddrS2为低电平时,WA2输出第二备份地址信号Addr1,当第二选通信号WAddrS2为高电平时,WA2输出最后一个空余地址0xFFFF;当第三选通信号WAddrS3为低电平时,WA3输出第三备份地址信号Addr2,当第三选通信号WAddrS3为高电平时,WA3输出最后一个空余地址0xFFFF。Specifically, when the first strobe signal WAddrS1 is at low level, WA1 outputs the first backup address signal Addr0, when the first strobe signal WAddrS1 is at high level, WA1 outputs the last free address 0xFFFF; when the second strobe signal When WAddrS2 is low level, WA2 outputs the second backup address signal Addr1, when the second strobe signal WAddrS2 is high level, WA2 outputs the last free address 0xFFFF; when the third strobe signal WAddrS3 is low level, WA3 outputs the first Three backup address signals Addr2, when the third strobe signal WAddrS3 is high level, WA3 outputs the last free address 0xFFFF.
图18为本发明异步随机静态存储器三模冗余控制器的写地址模块的时序示意图。FIG. 18 is a timing diagram of the write address module of the ARAM triple-mode redundant controller of the present invention.
如图18所示,当第一选通信号WAddrS1、第二选通信号WAddrS2、第三选通信号WAddrS3均为高电平时,写操作地址FA1输出为0xFFFF。当第一选通信号WAddrS1变为低电平时,写操作地址FA1输出第一备份地址信号Addr0的值。当第二选通信号WAddrS2变为低电平时,写操作地址FA1输出第二备份地址信号Addr1的值。当第三选通信号WAddrS3变为低电平时,写操作地址FA1输出第三备份地址信号Addr2的值。最终的效果是写操作地址FA1连续输出三个备份地址信号,从而实现三份数据的备份写入。As shown in FIG. 18 , when the first strobe signal WAddrS1 , the second strobe signal WAddrS2 , and the third strobe signal WAddrS3 are all at high level, the write address FA1 is output as 0xFFFF. When the first strobe signal WAddrS1 becomes low level, the write operation address FA1 outputs the value of the first backup address signal Addr0. When the second strobe signal WAddrS2 becomes low level, the write operation address FA1 outputs the value of the second backup address signal Addr1. When the third strobe signal WAddrS3 becomes low level, the write operation address FA1 outputs the value of the third backup address signal Addr2. The final effect is that the write operation address FA1 continuously outputs three backup address signals, thereby realizing backup writing of three copies of data.
图19为本发明异步随机静态存储器三模冗余控制器的读地址模块的结构示意图。FIG. 19 is a schematic structural diagram of the read address module of the ARAM triple-mode redundant controller of the present invention.
如图19所示,优选地,读地址模块125分别通过三个2输入或门和第四选通信号RAddrS1、第五选通信号RAddrS2、第六选通信号RAddrS3对第一备份地址信号Addr0、第二备份地址信号Addr1、第三备份地址信号Addr2进行输出控制,并通过一个3输入与门合并所述三个2输入或门的输出RA1、RA2和RA3,从而实现连续输出读操作时序的第一备份地址信号、第二备份地址信号和第三备份地址信号。As shown in FIG. 19, preferably, the read address module 125 performs three 2-input OR gates and the fourth strobe signal RAddrS1, the fifth strobe signal RAddrS2, and the sixth strobe signal RAddrS3 to the first backup address signal Addr0, The second backup address signal Addr1 and the third backup address signal Addr2 perform output control, and combine the outputs RA1, RA2 and RA3 of the three 2-input OR gates through a 3-input AND gate, so as to realize the first sequence of continuous output read operation timing A backup address signal, a second backup address signal and a third backup address signal.
具体地,当第四选通信号RAddrS1为低电平时,RA1输出第一备份地址信号Addr0,当第四选通信号RAddrS1为高电平时,RA1输出最后一个空余地址0xFFFF;当第五选通信号RAddrS2为低电平时,RA2输出第二备份地址信号Addr1,当第五选通信号RAddrS2为高电平时,RA2输出最后一个空余地址0xFFFF;当第六选通信号RAddrS3为低电平时,RA3输出第三备份地址信号Addr2,当第六选通信号RAddrS3为高电平时,RA3输出最后一个空余地址0xFFFF。Specifically, when the fourth strobe signal RAddrS1 is low level, RA1 outputs the first backup address signal Addr0, when the fourth strobe signal RAddrS1 is high level, RA1 outputs the last free address 0xFFFF; when the fifth strobe signal When RAddrS2 is low level, RA2 outputs the second backup address signal Addr1, when the fifth strobe signal RAddrS2 is high level, RA2 outputs the last free address 0xFFFF; when the sixth strobe signal RAddrS3 is low level, RA3 outputs the first Three backup address signals Addr2, when the sixth strobe signal RAddrS3 is high level, RA3 outputs the last free address 0xFFFF.
图20为本发明异步随机静态存储器三模冗余控制器的读地址模块的时序示意图。FIG. 20 is a timing diagram of the read address module of the ARAM triple-mode redundant controller of the present invention.
如图20所示,当第四选通信号RAddrS1、第五选通信号RAddrS2、第六选通信号RAddrS3均为高电平时,读操作地址FA2输出为0xFFFF。当第四选通信号RAddrS1变为低电平时,读操作地址FA2输出第一备份地址信号Addr0的值。当第五选通信号RAddrS2变为低电平时,读操作地址FA2输出第二备份地址信号Addr1的值。当第六选通信号RAddrS3变为低电平时,读操作地址FA2输出第三备份地址信号Addr2的值。最终的效果是读操作地址FA2连续输出三个备份地址信号,从而实现三份数据的备份读取。As shown in FIG. 20 , when the fourth strobe signal RAddrS1 , the fifth strobe signal RAddrS2 , and the sixth strobe signal RAddrS3 are all at high level, the output of the read operation address FA2 is 0xFFFF. When the fourth strobe signal RAddrS1 becomes low level, the read operation address FA2 outputs the value of the first backup address signal Addr0. When the fifth strobe signal RAddrS2 becomes low level, the read operation address FA2 outputs the value of the second backup address signal Addr1. When the sixth strobe signal RAddrS3 becomes low level, the read operation address FA2 outputs the value of the third backup address signal Addr2. The final effect is that the read operation address FA2 continuously outputs three backup address signals, thereby realizing backup reading of three copies of data.
图22为本发明异步随机静态存储器三模冗余控制器的纠错地址模块的结构示意图。Fig. 22 is a schematic structural diagram of an error correction address module of an asynchronous random static memory triple-mode redundant controller of the present invention.
如图22所示,优选地,纠错地址模块127包括三个2输入或门、一个3输入与门和一个包含一个反向输入端的第十2输入或门,分别通过所述三个2输入或门和第七选通信号EAddrS1、第八选通信号EAddrS2、第九选通信号EAddrS3对第一备份地址信号Addr0、第二备份地址信号Addr1、第三备份地址信号Addr2进行输出控制,分别输出EA1、EA2和EA3,所述三个2输入或门的输出端分别连接所述3输入与门的输入端,第十2输入或门的非反向输入端连接所述3输入与门的输出端,反向输入端连接输入第二读信号OER的输入端,输出端输出纠错操作地址FA3。As shown in FIG. 22, preferably, the error correction address module 127 includes three 2-input OR gates, a 3-input AND gate and a 10th 2-input OR gate containing an inverting input terminal, respectively through the three 2-input The OR gate and the seventh strobe signal EAddrS1, the eighth strobe signal EAddrS2, and the ninth strobe signal EAddrS3 control the output of the first backup address signal Addr0, the second backup address signal Addr1, and the third backup address signal Addr2, and output EA1, EA2 and EA3, the output terminals of the three 2-input OR gates are respectively connected to the input terminals of the 3-input AND gate, and the non-inverting input terminal of the tenth 2-input OR gate is connected to the output of the 3-input AND gate end, the reverse input end is connected to the input end of the second read signal OER, and the output end outputs the error correction operation address FA3.
具体地,当第七选通信号EAddrS1为低电平时,EA1输出第一备份地址信号Addr0,当第七选通信号EAddrS1为高电平时,EA1输出最后一个空余地址0xFFFF;当第八选通信号EAddrS2为低电平时,EA2输出第二备份地址信号Addr1,当第八选通信号EAddrS2为高电平时,EA2输出最后一个空余地址0xFFFF;当第九选通信号EAddrS3为低电平时,EA3输出第三备份地址信号Addr2,当第九选通信号EAddrS3为高电平时,EA3输出最后一个空余地址0xFFFF。Specifically, when the seventh strobe signal EAddrS1 is at low level, EA1 outputs the first backup address signal Addr0, when the seventh strobe signal EAddrS1 is at high level, EA1 outputs the last free address 0xFFFF; when the eighth strobe signal When EAddrS2 is low level, EA2 outputs the second backup address signal Addr1, when the eighth strobe signal EAddrS2 is high level, EA2 outputs the last free address 0xFFFF; when the ninth strobe signal EAddrS3 is low level, EA3 outputs the first Three backup address signals Addr2, when the ninth strobe signal EAddrS3 is at high level, EA3 outputs the last free address 0xFFFF.
EA1、EA2和EA3输入到所述3输入与门,所述3输入与门的输出与第二读信号OER连接至所述2输入或门,所述2输入或门输出纠错操作地址FA3。EA1, EA2 and EA3 are input to the 3-input AND gate, the output of the 3-input AND gate and the second read signal OER are connected to the 2-input OR gate, and the 2-input OR gate outputs an error correction operation address FA3.
图23为本发明异步随机静态存储器三模冗余控制器的纠错地址模块第二个备份数据出错时的时序示意图。Fig. 23 is a schematic diagram of the time sequence when the second backup data of the error correction address module of the asynchronous random static memory triple-mode redundant controller of the present invention is in error.
纠错地址模块127在工作时,当第七选通信号EAddrS1、第八选通信号EAddrS2、第九选通信号EAddrS3均为高电平时,纠错操作地址FA3输出为0xFFFF。当第七选通信号EAddrS1变为低电平且第二读信号OER为高电平时,纠错操作地址FA3输出第一备份地址信号Addr0的值。当第八选通信号EAddrS2变为低电平且第二读信号OER为高电平时,纠错操作地址FA3输出第二备份地址信号Addr1的值。当WAddrS3变为低电平且第二读信号OER为高电平时,纠错操作地址FA3输出第三备份地址信号Addr2的值。When the error correction address module 127 is working, when the seventh strobe signal EAddrS1 , the eighth strobe signal EAddrS2 , and the ninth strobe signal EAddrS3 are all at high level, the output of the error correction operation address FA3 is 0xFFFF. When the seventh strobe signal EAddrS1 becomes low level and the second read signal OER is high level, the error correction operation address FA3 outputs the value of the first backup address signal Addr0. When the eighth strobe signal EAddrS2 becomes low level and the second read signal OER is high level, the error correction operation address FA3 outputs the value of the second backup address signal Addr1. When WAddrS3 becomes low level and the second read signal OER is high level, the error correction operation address FA3 outputs the value of the third backup address signal Addr2.
优选地,所述三模冗余纠错单元包括:Preferably, the triple-mode redundant error correction unit includes:
多数表决模块181,六个输入端分别连接读时序模块161输出第二读信号OER的输出端、读信号延时模块163的四个输出端、第二数据信号引脚1022,六个输出端分别输出第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31、多数表决结果数据FinalDataOut、多数表决结果选通信号FinalReadOutControl和错误状态信号ErrorStatus,用于对通过第二数据信号引脚1022输入的三份备份数据进行三模冗余比较并输出比较结果,向所述微处理器输出错误状态信号ErrorStatus和比较结果数据。第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31为所述三份备份数据两两比较的结果信号。第二数据信号引脚1022与所述随机静态存储器的数据信号引脚连接。输出多数表决结果数据FinalDataOut和多数表决结果选通信号FinalReadOutControl的两个输出端与第一数据信号引脚1021连接,第一数据信号引脚1021与所述微处理器的数据信号引脚连接。输出错误状态信号ErrorStatus的输出端与第一错误状态信号引脚1051连接,第一错误状态信号引脚1051与所述微处理器的第二错误状态信号引脚连接。The majority voting module 181, the six input terminals are respectively connected to the output terminal of the second read signal OER output by the read timing module 161, the four output terminals of the read signal delay module 163, and the second data signal pin 1022, and the six output terminals are respectively Output the first comparison result signal C12, the second comparison result signal C23, the third comparison result signal C31, the majority voting result data FinalDataOut, the majority voting result strobe signal FinalReadOutControl and the error status signal ErrorStatus, for guiding by the second data signal The three copies of backup data input by pin 1022 are compared for triple redundancy and the comparison result is output, and the error status signal ErrorStatus and the comparison result data are output to the microprocessor. The first comparison result signal C12 , the second comparison result signal C23 , and the third comparison result signal C31 are result signals of pairwise comparison of the three backup data. The second data signal pin 1022 is connected to the data signal pin of the RAM. The two output terminals outputting the majority voting result data FinalDataOut and the majority voting result strobe signal FinalReadOutControl are connected to the first data signal pin 1021, and the first data signal pin 1021 is connected to the data signal pin of the microprocessor. The output end of the error status signal ErrorStatus is connected to the first error status signal pin 1051, and the first error status signal pin 1051 is connected to the second error status signal pin of the microprocessor.
纠错时序模块183,四个输入端分别连接读时序模块163输出第二读信号OER的输出端、多数表决模块181输出比较结果信号C12、C23、C31的三个输出端,四个输出端分别连接第一与模块145的输入端、纠错地址模块127用于输入选通信号EAddrS1、EAddrS2、EAddrS3的三个输入端,用于接收并处理第二读信号OER、第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31,向第一与模块145输出纠错操作的第四写信号WER2,向纠错地址模块127输出用于选通纠错操作地址的第七选通信号EAddrS1、第八选通信号EAddrS2和第九选通信号EAddrS3。Error correction timing module 183, four input terminals are respectively connected to the output terminal of the second read signal OER output by the read timing module 163, three output terminals of the majority voting module 181 output comparison result signals C12, C23, C31, the four output terminals are respectively Connect the input end of the first AND module 145, the error correction address module 127 is used to input the three input ends of the strobe signal EAddrS1, EAddrS2, EAddrS3, for receiving and processing the second read signal OER, the first comparison result signal C12, The second comparison result signal C23 and the third comparison result signal C31 output the fourth write signal WER2 of the error correction operation to the first AND module 145, and output the seventh selection for gating the error correction operation address to the error correction address module 127. The pass signal EAddrS1, the eighth strobe signal EAddrS2 and the ninth strobe signal EAddrS3.
图24为本发明异步随机静态存储器三模冗余控制器的多数表决模块的结构示意图。FIG. 24 is a schematic structural diagram of the majority voting module of the ARAM triple-mode redundant controller of the present invention.
如图24所示,优选地,多数表决模块181通过三个锁存器分别锁存所述三份备份数据,并通过三个比较器对所述三份备份数据进行两两比较,得到第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31,再通过逻辑电路运算分别得到并输出多数表决结果数据FinalDataOut、多数表决结果选通信号FinalReadOutControl和错误状态信号ErrorStatus。As shown in FIG. 24, preferably, the majority voting module 181 respectively latches the three backup data through three latches, and compares the three backup data two by two through three comparators to obtain the first The comparison result signal C12, the second comparison result signal C23, and the third comparison result signal C31 are respectively obtained and outputted through logic circuit operations: the majority voting result data FinalDataOut, the majority voting result strobe signal FinalReadOutControl and the error status signal ErrorStatus.
具体地,在多数表决模块181内部,所述随机静态存储器通过第二数据信号引脚1022输入的数据信号DataRead分别连接到三个LD8CE锁存器的数据输入端,第一零延时读信号OEL0分别连接到三个LD8CE锁存器的清零端(CLR),三个LD8CE锁存器的使能端(GE)接高电平表示使能;第二延时读信号OEL1连接第一锁存器LD1的输入端G,第二延时读信号OEL1的下降沿将DataRead数据锁存,输出第一锁存数据信号RData1,即第一个备份数据;第三延时读信号OEL2连接第二锁存器LD2的输入端G,第三延时读信号OEL2的下降沿将DataRead数据锁存,输出第二锁存数据信号RData2,即第二个备份数据;第四延时读信号OEL3连接第三锁存器LD3的输入端G,第四延时读信号OEL3的下降沿将DataRead数据锁存,输出第三锁存数据信号RData3,即第三个备份数据。Specifically, inside the majority voting module 181, the data signal DataRead input by the random static memory through the second data signal pin 1022 is respectively connected to the data input terminals of the three LD8CE latches, and the first zero-delay read signal OEL0 Connect to the clearing terminal (CLR) of the three LD8CE latches respectively, and the enable terminal (GE) of the three LD8CE latches is connected to a high level to indicate enabling; the second delayed read signal OEL1 is connected to the first latch The input terminal G of the device LD1, the falling edge of the second delayed read signal OEL1 latches the DataRead data, and outputs the first latched data signal RData1, which is the first backup data; the third delayed read signal OEL2 is connected to the second lock The input terminal G of the register LD2, the falling edge of the third delayed read signal OEL2 latches the DataRead data, and outputs the second latched data signal RData2, which is the second backup data; the fourth delayed read signal OEL3 is connected to the third At the input terminal G of the latch LD3, the falling edge of the fourth delayed read signal OEL3 latches the DataRead data, and outputs the third latched data signal RData3, that is, the third backup data.
第一比较器COMP12的输入端A输入第一锁存器LD1输出的第一锁存数据信号RData1,输入端B输入第二锁存器LD2输出的第二锁存数据信号RData2;第二比较器COMP23的输入端A输入第二锁存器LD2输出的第二锁存数据信号RData2,输入端B输入第三锁存器LD3输出的第三锁存数据信号RData3;第三比较器COMP31的输入端A输入第三锁存器LD3输出的第三锁存数据信号RData3,输入端B输入第一锁存器LD1输出的第一锁存数据信号RData1。第一比较器COMP12、第二比较器COMP23和第三比较器COMP31均为相同类型的8位比较器,用于对两个输入数据进行比较,如比较结果为相同则输出1,否则输出0。The input terminal A of the first comparator COMP12 inputs the first latch data signal RData1 output by the first latch LD1, and the input terminal B inputs the second latch data signal RData2 output by the second latch LD2; the second comparator The input terminal A of COMP23 inputs the second latch data signal RData2 that the second latch LD2 outputs, and the input terminal B inputs the third latch data signal RData3 that the third latch LD3 outputs; the input terminal of the third comparator COMP31 A inputs the third latch data signal RData3 output from the third latch LD3, and input terminal B inputs the first latch data signal RData1 output from the first latch LD1. The first comparator COMP12 , the second comparator COMP23 and the third comparator COMP31 are all 8-bit comparators of the same type, and are used to compare two input data, and output 1 if the comparison result is the same, otherwise output 0.
第一比较器COMP12、第二比较器COMP23、第三比较器COMP31的输出端分别输出第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31。The output terminals of the first comparator COMP12 , the second comparator COMP23 and the third comparator COMP31 respectively output a first comparison result signal C12 , a second comparison result signal C23 and a third comparison result signal C31 .
同时,第一锁存数据信号RData1与第一比较结果信号C12分别连接至2输入与门FData1的两个输入端,当第一锁存数据信号RData1等于第二锁存数据信号RData2时,FData1输出第一锁存数据信号RData1的值,否则FData1输出0x00;At the same time, the first latch data signal RData1 and the first comparison result signal C12 are respectively connected to the two input terminals of the 2-input AND gate FData1, when the first latch data signal RData1 is equal to the second latch data signal RData2, FData1 outputs The value of the first latch data signal RData1, otherwise FData1 outputs 0x00;
第二锁存数据信号RData2与第二比较结果信号C23分别连接至2输入与门FData2的两个输入端,当第二锁存数据信号RData2等于第三锁存数据信号RData3时,FData2输出第二锁存数据信号RData2的值,否则FData2输出0x00;The second latch data signal RData2 and the second comparison result signal C23 are respectively connected to the two input terminals of the 2-input AND gate FData2, when the second latch data signal RData2 is equal to the third latch data signal RData3, FData2 outputs the second Latch the value of the data signal RData2, otherwise FData2 outputs 0x00;
第三锁存数据信号RData3与第三比较结果信号C31分别连接至2输入与门FData3的两个输入端,当第三锁存数据信号RData3等于第一锁存数据信号RData1时,FData3输出第三锁存数据信号RData3的值,否则FData3输出0x00。The third latch data signal RData3 and the third comparison result signal C31 are respectively connected to the two input terminals of the 2-input AND gate FData3, when the third latch data signal RData3 is equal to the first latch data signal RData1, FData3 outputs the third Latch the value of the data signal RData3, otherwise FData3 outputs 0x00.
三个2输入与门FData1、FData2和FData3的输出输入到一个3输入或门,所述3输入或门的输出为多数表决结果数据FinalDataOut。The outputs of the three 2-input AND gates FData1, FData2 and FData3 are input to a 3-input OR gate, and the output of the 3-input OR gate is the majority voting result data FinalDataOut.
第一比较器COMP12、第二比较器COMP23、第三比较器COMP31的输出端分别连接至3输入或门FStatus的三个输入端,当第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31三者中至少有一个的值为1时,则表示至少有两个备份数据相同,则3输入或门FStatus的输出为1,表示有正确结果输出;当第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31三者全部为0时,则3输入或门FStatus的输出为0,表示没有正确结果输出。The output ends of the first comparator COMP12, the second comparator COMP23, and the third comparator COMP31 are respectively connected to the three input ends of the 3-input OR gate FStatus, when the first comparison result signal C12, the second comparison result signal C23, the second When at least one of the three comparison result signals C31 has a value of 1, it means that at least two backup data are the same, and the output of the 3-input OR gate FStatus is 1, which means that there is a correct result output; when the first comparison result signal When C12, the second comparison result signal C23, and the third comparison result signal C31 are all 0, the output of the 3-input OR gate FStatus is 0, indicating that no correct result is output.
第一零延时读信号OEL0、第二读信号OER以及3输入或门FStatus的输出分别输入至一个带有1个反向输入端和2个非反向输入端的3输入与非门NAND3B1,其中第一零延时读信号OEL0连接至反向输入端,所述3输入与非门NAND3B1输出多数表决结果选通信号FinalReadOutControl。The first zero-delay read signal OEL0, the second read signal OER, and the output of the 3-input OR gate FStatus are respectively input to a 3-input NAND gate NAND3B1 with 1 inverting input terminal and 2 non-inverting input terminals, where The first zero-latency read signal OEL0 is connected to the reverse input terminal, and the 3-input NAND gate NAND3B1 outputs the majority voting result strobe signal FinalReadOutControl.
第一零延时读信号OEL0、第二读信号OER以及3输入或门FStatus的输出分别输入至一个带有2个反向输入端和1个非反向输入端的3输入与非门NAND3B2,其中第一零延时读信号OEL0和3输入或门FStatus的输出分别连接至2个反向输入端,所述3输入与非门NAND3B2输出错误状态信号ErrorStatus。The first zero-delay read signal OEL0, the second read signal OER, and the output of the 3-input OR gate FStatus are respectively input to a 3-input NAND gate NAND3B2 with 2 inverting input terminals and 1 non-inverting input terminal, wherein The first zero-delay read signal OEL0 and the output of the 3-input OR gate FStatus are respectively connected to two inverting input terminals, and the 3-input NAND gate NAND3B2 outputs an error status signal ErrorStatus.
多数表决模块181的执行时序,可以分为三种情况:无错误数据、有一个备份数据出错和三个备份数据各不相同。The execution sequence of the majority voting module 181 can be divided into three situations: no error data, one backup data error and three backup data are different.
图25、图26、图27分别为本发明异步随机静态存储器三模冗余控制器的多数表决模块无错误数据时、有一个错误数据时(以第二个备份数据出错为例)、三个数据各不相同时的时序示意图。Fig. 25, Fig. 26, and Fig. 27 are respectively when the majority voting module of the asynchronous random static memory triple-mode redundant controller of the present invention has no error data, when there is one error data (taking the second backup data as an example), three Schematic diagram of the timing when the data are different.
图28为本发明异步随机静态存储器三模冗余控制器的纠错时序模块的结构示意图。FIG. 28 is a schematic structural diagram of an error correction sequence module of an asynchronous random static memory triple-mode redundant controller of the present invention.
如图28所示,优选地,纠错时序模块183包括三个输入端分别输入第一比较结果信号C12、第二比较结果信号C23、第三比较结果信号C31的3输入与非门,输入端分别连接所述三个3输入与非门输出端的3输入与门,和输入端分别连接输入第二读信号OER的输入端和所述3输入与门的输出端的2输入或门。As shown in FIG. 28 , preferably, the error correction timing module 183 includes three input terminals that respectively input the first comparison result signal C12, the second comparison result signal C23, and the third comparison result signal C31. The 3-input NAND gate, the input terminal The 3-input AND gates are respectively connected to the output terminals of the three 3-input NAND gates, and the AND input terminals are respectively connected to the input terminals of the second read signal OER and the 2-input OR gates to the output terminals of the 3-input AND gates.
所述2输入或门带一个反向输入端和一个非反向输入端,第二读信号OER连接至该反向输入端,输出端输出第四写信号WER2。The 2-input OR gate has an inverting input terminal and a non-inverting input terminal, the second read signal OER is connected to the inverting input terminal, and the output terminal outputs the fourth write signal WER2.
所述三个3输入与非门各带有两个反向输入端和一个非反向输入端,其中,第一3输入与非门的非反向输入端输入第二比较结果C23,输出端输出第七选通信号EAddrS1;第二3输入与非门的非反向输入端输入第三比较结果C31,输出端输出第八选通信号EAddrS2;第三3输入与非门的非反向输入端输入第一比较结果C12,输出端输出第九选通信号EAddrS3。The three 3-input NAND gates each have two inverting input terminals and a non-inverting input terminal, wherein the non-inverting input terminal of the first 3-input NAND gate inputs the second comparison result C23, and the output terminal Output the seventh strobe signal EAddrS1; the non-reverse input terminal of the second 3-input NAND gate inputs the third comparison result C31, and the output terminal outputs the eighth strobe signal EAddrS2; the non-reverse input of the third 3-input NAND gate The terminal inputs the first comparison result C12, and the output terminal outputs the ninth strobe signal EAddrS3.
图29为本发明异步随机静态存储器三模冗余控制器的纠错时序模块的时序示意图(以第二备份数据出错为例)。FIG. 29 is a timing schematic diagram of the error correction sequence module of the ARAM triple-mode redundant controller of the present invention (take the second backup data error as an example).
当第四写信号WER2为低电平,第七选通信号EAddrS1为低电平时,第一备份数据出错,纠错地址模块127将输出第一备份数据的地址;当第四写信号WER2为低电平,第八选通信号EAddrS2为低电平时,第二备份数据出错,纠错地址模块127将输出第二备份数据的地址;当第四写信号WER2为低电平,第九选通信号EAddrS3为低电平时,第三备份数据出错,纠错地址模块127将输出第三备份数据的地址。When the fourth write signal WER2 is low level and the seventh strobe signal EAddrS1 is low level, the first backup data is wrong, and the error correction address module 127 will output the address of the first backup data; when the fourth write signal WER2 is low Level, when the eighth strobe signal EAddrS2 is low level, the second backup data is wrong, and the error correction address module 127 will output the address of the second backup data; when the fourth write signal WER2 is low level, the ninth strobe signal When EAddrS3 is at low level, the third backup data is wrong, and the error correction address module 127 will output the address of the third backup data.
优选地,第一数据信号引脚1021和第二数据信号引脚1022之间设有第一输入缓冲器191和由第一与模块145控制的第一三态输出缓冲器193。第二数据信号引脚1022和多数表决模块181的输入端之间设有第二输入缓冲器195。所述输出多数表决结果数据FinalDataOut和多数表决结果选通信号FinalReadOutControl的两个输出端和第一数据信号引脚1021之间设有由多数表决结果选通信号FinalReadOutControl控制的第二三态输出缓冲器197。Preferably, a first input buffer 191 and a first tri-state output buffer 193 controlled by the first AND module 145 are provided between the first data signal pin 1021 and the second data signal pin 1022 . A second input buffer 195 is provided between the second data signal pin 1022 and the input end of the majority voting module 181 . A second tri-state output buffer controlled by the majority voting result strobe signal FinalReadOutControl is set between the two output ends of the output majority voting result data FinalDataOut and the majority voting result strobe signal FinalReadOutControl and the first data signal pin 1021 197.
第二写信号WER有效时,第一三态输出缓冲器193向第二数据信号引脚1022输出所述微处理器通过第一数据信号引脚1021和第一输入缓冲器191输入的数据。When the second write signal WER is valid, the first tri-state output buffer 193 outputs the data input by the microprocessor through the first data signal pin 1021 and the first input buffer 191 to the second data signal pin 1022 .
多数表决结果选通信号FinalReadOutControl有效时,第二三态输出缓冲器197向第一数据信号引脚1021输出多数表决结果数据FinalDataOut。When the majority voting result strobe signal FinalReadOutControl is valid, the second tri-state output buffer 197 outputs the majority voting result data FinalDataOut to the first data signal pin 1021 .
优选地,所述异步随机静态存储器三模冗余控制器还包括与所述微处理器的片选信号引脚连接的第一片选信号引脚1061和与所述随机静态存储器的片选信号引脚连接的第二片选信号引脚1062,第一片选信号引脚1061与第二片选信号引脚1062连接。Preferably, the asynchronous random static memory triple-mode redundancy controller also includes a first chip select signal pin 1061 connected to the chip select signal pin of the microprocessor and a first chip select signal pin 1061 connected to the chip select signal of the random static memory The pins are connected to the second chip selection signal pin 1062 , and the first chip selection signal pin 1061 is connected to the second chip selection signal pin 1062 .
图30为本发明异步随机静态存储器三模冗余控制器的写操作时序示意图。FIG. 30 is a schematic diagram of the write operation sequence of the three-mode redundant controller of the asynchronous random SRAM according to the present invention.
如图30所示,使用本发明异步随机静态存储器三模冗余控制器执行写操作时,所述微处理器的写时序不变,所述异步随机静态存储器三模冗余控制器将所述微处理器的一次写操作转换成三个地址的写操作,只需依次改变备份地址即可。As shown in Figure 30, when using the ARAM triple-mode redundancy controller of the present invention to perform a write operation, the writing sequence of the microprocessor remains unchanged, and the ARAM triple-mode redundancy controller A write operation of the microprocessor is converted into a write operation of three addresses, and only the backup addresses need to be changed in turn.
使用本发明异步随机静态存储器三模冗余控制器执行读操作时,分为无错误数据、有一个备份数据出错和三个备份数据各不相同三种情况。When using the triple-mode redundant controller of the asynchronous random static memory of the present invention to perform the read operation, there are three situations: no error data, one backup data error and three backup data different from each other.
图31为本发明异步随机静态存储器三模冗余控制器的无错误数据时的读操作时序示意图。FIG. 31 is a schematic diagram of the timing sequence of the read operation of the ARAM triple-mode redundant controller of the present invention when there is no error data.
如图31所示,在无错误数据的情况下,所述微处理器的读时序不变,所述异步随机静态存储器三模冗余控制器将所述微处理器的一次读操作转换成三个备份地址的读操作,然后将读到的三个数据进行三模冗余处理,向所述微处理器输出正确数据。As shown in Figure 31, in the case of no erroneous data, the read sequence of the microprocessor remains unchanged, and the asynchronous random static memory triple-mode redundancy controller converts one read operation of the microprocessor into three The read operation of a backup address, and then the three read data are subjected to triple-mode redundancy processing, and the correct data is output to the microprocessor.
图32为本发明异步随机静态存储器三模冗余控制器的有一个错误数据时的读操作时序示意图。FIG. 32 is a schematic diagram of the timing sequence of the read operation when there is an error data in the ARAM triple-mode redundant controller of the present invention.
如图32所示,在有一个错误数据的情况下,所述微处理器的读时序不变,所述异步随机静态存储器三模冗余控制器将所述微处理器的一次读操作转换成三个备份地址的读操作,然后将读到的三个数据进行三模冗余处理,向所述微处理器输出正确数据,并向异步随机静态存储器回写正确数据。As shown in Figure 32, in the case of an error data, the read timing of the microprocessor remains unchanged, and the asynchronous random static memory triple-mode redundancy controller converts a read operation of the microprocessor into The read operation of the three backup addresses is followed by triple-modular redundancy processing for the read three data, outputting the correct data to the microprocessor, and writing back the correct data to the asynchronous random static memory.
图33为本发明异步随机静态存储器三模冗余控制器的三个数据各不相同时的读操作时序示意图。FIG. 33 is a schematic diagram of the timing sequence of the read operation when the three data of the three-mode redundant controller of the asynchronous random static memory of the present invention are different.
如图33所示,在三个数据各不相同的情况下,所述微处理器的读时序不变,所述异步随机静态存储器三模冗余控制器将所述微处理器的一次读操作转换成三个备份地址的读操作,然后将读到的三个数据进行三模冗余处理,由于三个数据各不相同,无法输出正确结果,所述异步随机静态存储器三模冗余控制器通过错误状态信号引脚ErrorStatus返回一个高电平,表示错误状态。As shown in Figure 33, in the case that the three data are different, the read timing of the microprocessor remains unchanged, and the asynchronous random static memory triple-mode redundant controller converts a read operation of the microprocessor to Convert the read operation into three backup addresses, and then perform three-mode redundancy processing on the three read data. Since the three data are different, the correct result cannot be output. The asynchronous random static memory triple-mode redundancy controller The error status signal pin ErrorStatus returns a high level to indicate the error status.
图34为本发明异步随机静态存储器三模冗余控制器的写操作的内部信号时序示意图。FIG. 34 is a schematic diagram of the internal signal sequence of the write operation of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
如图34所示,在所述异步随机静态存储器三模冗余控制器内部,所述写操作包括如下步骤:As shown in FIG. 34, inside the triple-mode redundant controller of the asynchronous random static memory, the writing operation includes the following steps:
(1)外部微处理器开始写操作:所述微处理器通过第一写信号引脚1031输入低电平有效的第一写信号WEL开始写操作,同时通过第一数据信号引脚1021输入第一数据信号DataL,通过第一地址信号引脚1011输入第一地址信号AddrL,而与读操作相关的第一读信号OEL则为高电平。通过地址计算模块121将第一地址信号AddrL进行计算,得到三个数据备份区的地址:AddrL、AddrL+Offset和AddrL+2Offset。此时,所述异步随机静态存储器三模冗余控制器输出的写地址为AddrL,即开始写第一备份数据。(1) The external microprocessor starts the write operation: the microprocessor inputs the low-level effective first write signal WEL through the first write signal pin 1031 to start the write operation, and simultaneously inputs the first write signal WEL through the first data signal pin 1021 A data signal DataL is input to the first address signal AddrL through the first address signal pin 1011 , and the first read signal OEL related to the read operation is at a high level. The address calculation module 121 calculates the first address signal AddrL to obtain addresses of three data backup areas: AddrL, AddrL+Offset and AddrL+2Offset. At this time, the write address output by the triple-mode redundant controller of the asynchronous random static memory is AddrL, that is, to start writing the first backup data.
(2)写信号延时1到达:此时所述异步随机静态存储器三模冗余控制器输出的地址将切换到AddrL+Offset,即开始写第二备份数据。(2) The write signal arrives after a delay of 1: at this time, the address output by the asynchronous random static memory triple-mode redundancy controller will switch to AddrL+Offset, that is, start to write the second backup data.
(3)写信号延时2到达:此时所述异步随机静态存储器三模冗余控制器输出的地址将切换到AddrL+2Offset,即开始写第三备份数据。(3) The write signal arrives after a delay of 2: at this time, the address output by the ARAM triple-mode redundancy controller will switch to AddrL+2Offset, that is, start to write the third backup data.
(4)写信号延时3到达:此时所述异步随机静态存储器三模冗余控制器输出的地址将切换到空操作地址0xFFFF,同时输出的第三写信号WER1变为高电平,表示停止写操作。(4) The write signal arrives after a delay of 3: at this time, the address output by the asynchronous random static memory triple-mode redundant controller will switch to the no-operation address 0xFFFF, and the third write signal WER1 output at the same time becomes high level, indicating that Stop writing operations.
(5)写信号结束:第一写信号WEL变为高电平,外部微处理器的写操作结束。(5) End of write signal: the first write signal WEL becomes high level, and the write operation of the external microprocessor ends.
图35为本发明异步随机静态存储器三模冗余控制器的读操作无错误数据时的内部信号时序示意图。FIG. 35 is a schematic diagram of the internal signal sequence when the read operation of the triple-mode redundancy controller of the asynchronous random static memory of the present invention has no error data.
如图35所示,在所述异步随机静态存储器三模冗余控制器内部,读操作无错误数据时,所述读操作包括如下步骤:As shown in FIG. 35 , in the triple-mode redundant controller of the asynchronous random static memory, when the read operation has no error data, the read operation includes the following steps:
(1)外部微处理器开始读操作:所述微处理器通过第一读信号引脚1041输入低电平有效的第一读信号OEL开始读操作,同时通过第一地址信号引脚1011输入第一地址信号AddrL,而与写操作相关的第一写信号WEL则为高电平。通过地址计算模块121将第一地址信号AddrL进行计算,得到三个数据备份区的地址:AddrL、AddrL+Offset和AddrL+2Offset。此时,所述异步随机静态存储器三模冗余控制器输出的读地址为AddrL,即开始读第一备份数据。(1) The external microprocessor starts the read operation: the microprocessor inputs the first read signal OEL which is effective at low level through the first read signal pin 1041 to start the read operation, and simultaneously inputs the first address signal pin 1011 through the first address signal pin 1011 to start the read operation. An address signal AddrL, and the first write signal WEL related to the write operation is high level. The address calculation module 121 calculates the first address signal AddrL to obtain addresses of three data backup areas: AddrL, AddrL+Offset and AddrL+2Offset. At this time, the read address output by the ARAM triple redundancy controller is AddrL, that is, it starts to read the first backup data.
(2)读信号延时1到达:此时所述异步随机静态存储器三模冗余控制器锁存第一备份数据,并将输出的地址将切换到AddrL+Offset,即开始读第二备份数据。(2) Read signal delay 1 arrives: at this moment, described asynchronous random static memory three-mode redundant controller latches the first backup data, and the address of output will be switched to AddrL+Offset, promptly starts to read the second backup data .
(3)读信号延时2到达:此时所述异步随机静态存储器三模冗余控制器锁存第二备份数据,并将输出的地址将切换到AddrL+2Offset,即开(3) The read signal arrives after a delay of 2: at this moment, the three-mode redundancy controller of the asynchronous random static memory latches the second backup data, and the output address will be switched to AddrL+2Offset, that is, open
(4)读信号延时3到达:此时所述异步随机静态存储器三模冗余控制器锁存第三备份数据,并将输出的地址将切换到空操作地址0xFFFF,同时输出的第二读信号OER变为高电平,表示停止读操作。由于读到的三个备份数据完全相同,此时多数表决模块181将输出正确结果。(4) The read signal arrives after a delay of 3: at this moment, the three-mode redundancy controller of the asynchronous random static memory latches the third backup data, and the output address will be switched to the no-operation address 0xFFFF, and the output second read The signal OER becomes high level, indicating that the read operation is stopped. Since the three backup data read are identical, the majority voting module 181 will output a correct result at this time.
(5)读信号结束:输入的第一读信号OEL变为高电平,外部微处理器的读操作结束。(5) End of read signal: the first input read signal OEL becomes high level, and the read operation of the external microprocessor ends.
图36为本发明异步随机静态存储器三模冗余控制器的读操作有一个错误数据时的内部信号时序示意图。FIG. 36 is a schematic diagram of the internal signal sequence when there is an error data in the read operation of the triple-mode redundancy controller of the asynchronous random static memory of the present invention.
如图36所示,在所述异步随机静态存储器三模冗余控制器内部,读操作有一个错误数据时,所述读操作包括如下步骤:As shown in Figure 36, inside the triple-mode redundant controller of the asynchronous random static memory, when the read operation has an error data, the read operation includes the following steps:
(1)外部微处理器开始读操作:所述微处理器通过第一读信号引脚1041输入低电平有效的第一读信号OEL开始读操作,同时通过第一地址信号引脚1011输入第一地址信号AddrL,而与写操作相关的第一写信号WEL则为高电平。通过地址计算模块121将第一地址信号AddrL进行计算,得到三个数据备份区的地址:AddrL、AddrL+Offset和AddrL+2Offset。此时,所述异步随机静态存储器三模冗余控制器输出的读地址为AddrL,即开始读第一备份数据。(1) The external microprocessor starts the read operation: the microprocessor inputs the first read signal OEL which is effective at low level through the first read signal pin 1041 to start the read operation, and simultaneously inputs the first address signal pin 1011 through the first address signal pin 1011 to start the read operation. An address signal AddrL, and the first write signal WEL related to the write operation is high level. The address calculation module 121 calculates the first address signal AddrL to obtain addresses of three data backup areas: AddrL, AddrL+Offset and AddrL+2Offset. At this time, the read address output by the ARAM triple redundancy controller is AddrL, that is, it starts to read the first backup data.
(2)读信号延时1到达:此时所述异步随机静态存储器三模冗余控制器锁存第一备份数据,并将输出的地址将切换到AddrL+Offset,即开始读第二备份数据。(2) Read signal delay 1 arrives: at this moment, described asynchronous random static memory three-mode redundant controller latches the first backup data, and the address of output will be switched to AddrL+Offset, promptly starts to read the second backup data .
(3)读信号延时2到达:此时所述异步随机静态存储器三模冗余控制器锁存第二备份数据,并将输出的地址将切换到AddrL+2Offset,即开始读第三备份数据。(3) Read signal delay 2 arrives: at this moment, described asynchronous random static memory three-mode redundancy controller latches the second backup data, and the address of output will be switched to AddrL+2Offset, promptly starts to read the 3rd backup data .
(4)读信号延时3到达:此时所述异步随机静态存储器三模冗余控制器锁存第三备份数据,同时输出的第二读信号OER变为高电平,表示停止读操作。此处以第二备份数据出错为例,由于读到的第一备份数据与第三备份数据相同,第二备份数据出错,此时多数表决模块181将输出正确结果,并通过纠错时序模块183和纠错地址模块127重新输出第二备份地址和正确结果来完成纠错操作。(4) The arrival of the read signal with a delay of 3: at this time, the ARAM triple-mode redundancy controller latches the third backup data, and the second read signal OER output at the same time becomes a high level, indicating that the read operation is stopped. Taking the second backup data error as an example here, because the first backup data read is the same as the third backup data, the second backup data is wrong, and the majority voting module 181 will output the correct result at this time, and the error correction sequence module 183 and The error correction address module 127 re-outputs the second backup address and the correct result to complete the error correction operation.
(5)读信号结束:输入的第一读信号OEL变为高电平,外部微处理器的读操作结束。(5) End of read signal: the first input read signal OEL becomes high level, and the read operation of the external microprocessor ends.
图37为本发明异步随机静态存储器三模冗余控制器的读操作三个数据各不相同时的内部信号时序示意图。FIG. 37 is a schematic diagram of the timing sequence of internal signals when the three data in the read operation of the asynchronous random static memory triple-mode redundant controller of the present invention are different.
如图37所示,在所述异步随机静态存储器三模冗余控制器内部,读操作三个数据各不相同时,所述读操作包括如下步骤:As shown in FIG. 37 , in the three-mode redundant controller of the asynchronous random static memory, when the three data of the read operation are different, the read operation includes the following steps:
(1)外部微处理器开始读操作:所述微处理器通过第一读信号引脚1041输入低电平有效的第一读信号OEL开始读操作,同时通过第一地址信号引脚1011输入第一地址信号AddrL,而与写操作相关的第一写信号WEL则为高电平。通过地址计算模块121将第一地址信号AddrL进行计算,得到三个数据备份区的地址:AddrL、AddrL+Offset和AddrL+2Offset。此时,所述异步随机静态存储器三模冗余控制器输出的读地址为AddrL,即开始读第一备份数据。(1) The external microprocessor starts the read operation: the microprocessor inputs the first read signal OEL which is effective at low level through the first read signal pin 1041 to start the read operation, and simultaneously inputs the first address signal pin 1011 through the first address signal pin 1011 to start the read operation. An address signal AddrL, and the first write signal WEL related to the write operation is high level. The address calculation module 121 calculates the first address signal AddrL to obtain addresses of three data backup areas: AddrL, AddrL+Offset and AddrL+2Offset. At this time, the read address output by the ARAM triple redundancy controller is AddrL, that is, it starts to read the first backup data.
(2)读信号延时1到达:此时所述异步随机静态存储器三模冗余控制器锁存第一备份数据,并将输出的地址将切换到AddrL+Offset,即开始读第二备份数据。(2) Read signal delay 1 arrives: at this moment, described asynchronous random static memory three-mode redundant controller latches the first backup data, and the address of output will be switched to AddrL+Offset, promptly starts to read the second backup data .
(3)读信号延时2到达:此时所述异步随机静态存储器三模冗余控制器锁存第二备份数据,并将输出的地址将切换到AddrL+2Offset,即开始读第三备份数据。(3) Read signal delay 2 arrives: at this moment, described asynchronous random static memory three-mode redundancy controller latches the second backup data, and the address of output will be switched to AddrL+2Offset, promptly starts to read the 3rd backup data .
(4)读信号延时3到达:此时所述异步随机静态存储器三模冗余控制器锁存第三备份数据,同时输出的第二读信号OER变为高电平,表示停止读操作。由于读到的第一备份数据、第二备份数据和第三备份数据各不相同,多数表决模块181将无法输出正确结果,也无法通过纠错时序模块183和纠错地址模块127实现纠错操作,此时输出的地址将切换到空操作地址0xFFFF,并通过错误状态信号引脚ErrorStatus输出高电平信号表示数据出错,无有效数据输出。(4) The arrival of the read signal with a delay of 3: at this time, the ARAM triple-mode redundancy controller latches the third backup data, and the second read signal OER output at the same time becomes a high level, indicating that the read operation is stopped. Since the first backup data, the second backup data and the third backup data read are different, the majority voting module 181 will not be able to output the correct result, and the error correction operation cannot be realized by the error correction sequence module 183 and the error correction address module 127 At this time, the output address will switch to the no-operation address 0xFFFF, and a high-level signal will be output through the error status signal pin ErrorStatus to indicate that the data is wrong and there is no valid data output.
(5)读信号结束:输入的第一读信号OEL变为高电平,外部微处理器的读操作结束。(5) End of read signal: the first input read signal OEL becomes high level, and the read operation of the external microprocessor ends.
为了验证本发明方案的可行性,本发明的发明人在Xilinx Spartan3系列FPGA上进行原理验证。首先,在Xilinx ISE集成开发环境中,采用原理图方式输入本方案的各个模块和总体结构。然后编写相应的仿真测试输入文件,依次对上述各种类型的操作进行仿真。In order to verify the feasibility of the scheme of the present invention, the inventor of the present invention carried out principle verification on Xilinx Spartan3 series FPGA. First of all, in the Xilinx ISE integrated development environment, use the schematic diagram to input each module and overall structure of this scheme. Then write the corresponding simulation test input file, and simulate the above-mentioned various types of operations in turn.
图38为本发明异步随机静态存储器三模冗余控制器的写操作的仿真波形图。Fig. 38 is a simulation waveform diagram of the write operation of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
图39为本发明异步随机静态存储器三模冗余控制器的读操作无错误数据时的仿真波形图。Fig. 39 is a simulation waveform diagram when there is no error data in the read operation of the asynchronous random static memory triple-mode redundant controller of the present invention.
图40为本发明异步随机静态存储器三模冗余控制器的读操作第一个数据出错时的仿真波形图。Fig. 40 is a simulation waveform diagram when the first data error occurs in the read operation of the ARAM triple-mode redundant controller of the present invention.
图41为本发明异步随机静态存储器三模冗余控制器的读操作第二个数据出错时的仿真波形图。Fig. 41 is a simulation waveform diagram when the second data error occurs in the read operation of the triple-mode redundant controller of the asynchronous random static memory of the present invention.
图42为本发明异步随机静态存储器三模冗余控制器的读操作第三个数据出错时的仿真波形图。Fig. 42 is a simulation waveform diagram when the third data error occurs in the read operation of the ARAM triple-mode redundancy controller of the present invention.
图43为本发明异步随机静态存储器三模冗余控制器的读操作三个数据各不相同时的仿真波形图。Fig. 43 is a simulation waveform diagram when the three data of the read operation of the asynchronous random static memory triple-mode redundant controller of the present invention are different.
通过与前述本发明方案流程分析的内部信号时序图图34-图37进行对比,仿真结果的时序与原理分析的时序完全一致,从而验证了本发明方案的正确性。By comparing with the internal signal timing diagrams shown in Figures 34-37 of the flow analysis of the aforementioned solution of the present invention, the timing of the simulation results is completely consistent with the timing of the principle analysis, thus verifying the correctness of the solution of the present invention.
此外,在上述仿真原理验证通过后,发明人还设计了一个专用测试电路对本发明的技术方案进行了实际的硬件测试。测试电路使用XilinxSpartan3系列FPGA进行异步随机静态存储器三模冗余控制器的设计,选用双端口异步随机静态存储器,AT89LS52单片机借助异步随机静态存储器三模冗余控制器来对双端口异步随机静态存储器进行常规读写操作,测试系统通过PSoC芯片来对双端口异步随机静态存储器进行单粒子翻转模拟注入和数据检验回读。通过硬件测试验证,表明本发明方案所设计的异步随机静态存储器三模冗余控制器是可行且可靠的。In addition, after the verification of the above-mentioned simulation principle is passed, the inventor also designed a dedicated test circuit to carry out actual hardware testing of the technical solution of the present invention. The test circuit uses XilinxSpartan3 series FPGA to design the three-mode redundant controller of asynchronous random static memory. The dual-port asynchronous random static memory is selected, and the AT89LS52 microcontroller uses the triple-mode redundant controller of asynchronous random static memory to implement For routine read and write operations, the test system performs single event flip simulation injection and data verification readback on the dual-port asynchronous random static memory through the PSoC chip. Through hardware test and verification, it is shown that the asynchronous random static memory triple-mode redundant controller designed by the scheme of the present invention is feasible and reliable.
综上所述,本发明提供的异步随机静态存储器三模冗余控制器设置在系统微处理器和异步随机静态存储器之间作为桥梁,将微处理器对异步随机静态存储器的写/读操作自动转换为三模冗余和三取二多数表决操作时序,实现三模冗余容错的自动处理,从而取代了在系统软件中处理三模冗余,减轻了系统软件的负担,同时无需改变系统微处理器软件结构,降低了系统软件设计的复杂性的同时保障了可靠性。综上所述,本发明异步随机静态存储器三模冗余控制器具有结构简单、兼容性强、适用范围广、可靠度高等优点。In summary, the three-mode redundant controller for asynchronous random static memory provided by the present invention is set between the system microprocessor and the asynchronous random static memory as a bridge, and the write/read operation of the microprocessor to the asynchronous random static memory is automatically Convert to triple-mode redundancy and three-out-of-three majority voting operation sequence, realize automatic processing of triple-mode redundancy fault tolerance, thereby replacing the processing of triple-mode redundancy in the system software, reducing the burden on the system software, and without changing the system The microprocessor software structure reduces the complexity of system software design and ensures reliability at the same time. To sum up, the three-mode redundant controller for asynchronous random static memory of the present invention has the advantages of simple structure, strong compatibility, wide application range, and high reliability.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510178271.0A CN104866390B (en) | 2015-04-15 | 2015-04-15 | Asynchronous static random access memory triplication redundancy controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510178271.0A CN104866390B (en) | 2015-04-15 | 2015-04-15 | Asynchronous static random access memory triplication redundancy controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104866390A CN104866390A (en) | 2015-08-26 |
CN104866390B true CN104866390B (en) | 2018-07-20 |
Family
ID=53912237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510178271.0A Expired - Fee Related CN104866390B (en) | 2015-04-15 | 2015-04-15 | Asynchronous static random access memory triplication redundancy controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104866390B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107315649A (en) * | 2016-04-26 | 2017-11-03 | 新华三技术有限公司 | A kind of list item method of calibration and device |
CN106294260B (en) * | 2016-08-18 | 2019-05-07 | 长沙丰灼通讯科技有限公司 | The method that data are output to synchronous bus from asynchronous bus |
CN108763148B (en) * | 2018-05-31 | 2021-11-30 | 西安微电子技术研究所 | Fault-tolerant memory controller supporting upper notes |
CN110729008A (en) * | 2019-10-11 | 2020-01-24 | 中国电子科技集团公司第五十八研究所 | Asynchronous SRAM controller and debugging method |
CN111651119B (en) * | 2020-04-27 | 2023-08-08 | 中国科学院微电子研究所 | Method, device and circuit for acquiring target data in memory |
CN115756943A (en) * | 2022-09-14 | 2023-03-07 | 京微齐力(上海)信息科技有限公司 | SRAM-based FPGA single event upset resistance method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046678A (en) * | 2007-03-09 | 2007-10-03 | 北京交通大学 | Safety cut-off method and device for output in three-mould redundancy safety computer |
CN101354666A (en) * | 2008-05-22 | 2009-01-28 | 清华大学 | Error Detection and Correction System for Microsatellite Onboard Computer Data Storage |
CN103198868A (en) * | 2013-04-16 | 2013-07-10 | 西北核技术研究所 | Fault simulation system and fault analysis method for single event upset |
CN103389892A (en) * | 2013-06-25 | 2013-11-13 | 浙江大学 | Self-refreshing triple-modular redundancy counter |
CN103500125A (en) * | 2013-10-10 | 2014-01-08 | 中国科学院上海技术物理研究所 | Anti-radiation data processing system and method based on FPGA |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9076541B2 (en) * | 2013-03-14 | 2015-07-07 | Samsung Electronics Co., Ltd. | Architecture for magnetic memories including magnetic tunneling junctions using spin-orbit interaction based switching |
-
2015
- 2015-04-15 CN CN201510178271.0A patent/CN104866390B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046678A (en) * | 2007-03-09 | 2007-10-03 | 北京交通大学 | Safety cut-off method and device for output in three-mould redundancy safety computer |
CN101354666A (en) * | 2008-05-22 | 2009-01-28 | 清华大学 | Error Detection and Correction System for Microsatellite Onboard Computer Data Storage |
CN103198868A (en) * | 2013-04-16 | 2013-07-10 | 西北核技术研究所 | Fault simulation system and fault analysis method for single event upset |
CN103389892A (en) * | 2013-06-25 | 2013-11-13 | 浙江大学 | Self-refreshing triple-modular redundancy counter |
CN103500125A (en) * | 2013-10-10 | 2014-01-08 | 中国科学院上海技术物理研究所 | Anti-radiation data processing system and method based on FPGA |
Also Published As
Publication number | Publication date |
---|---|
CN104866390A (en) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104866390B (en) | Asynchronous static random access memory triplication redundancy controller | |
CN101826038B (en) | A circuit and method for resisting SRAM FPGA device SEU | |
CN101551763B (en) | Method and device for repairing single event upset in field programmable logic gate array | |
US8914687B2 (en) | Providing test coverage of integrated ECC logic en embedded memory | |
CN103218272B (en) | A kind of spaceborne digital signal processor upset reinforcement means | |
CN100570572C (en) | Error Detection and Correction System for Microsatellite Onboard Computer Data Storage | |
CN103578567B (en) | Based on triplication redundancy Flouride-resistani acid phesphatase self-refresh register | |
CN103971732A (en) | Method and system for monitoring single event upset effect of FPGA (field programmable gate array) and correcting reloading | |
CN106788379B (en) | A radiation hardened latch based on heterogeneous dual-mode redundancy | |
CN105760250A (en) | Single-event reinforced FPGA configuration circuit with code stream error detection and error correction function | |
CN103500125B (en) | A kind of radiation-resistant data handling system based on FPGA and method | |
CN106484581A (en) | Programmable SOC device single-particle inversion detecting system and method under space radiation environment | |
CN111459712B (en) | SRAM type FPGA single event upset error correction method and single event upset error correction circuit | |
US9575862B1 (en) | Integrated circuits with error handling capabilities | |
US9043683B2 (en) | Error protection for integrated circuits | |
US8436646B1 (en) | Reconfigurable logic block with user RAM | |
US20090249174A1 (en) | Fault Tolerant Self-Correcting Non-Glitching Low Power Circuit for Static and Dynamic Data Storage | |
Verducci et al. | Fault-tolerant finite state machine quasi delay insensitive in commercial FPGA devices | |
CN109408839B (en) | A design method of radiation-resistant and fault-tolerant FPGA circuit by reducing sensitive configuration bits through local redundancy | |
CN100414510C (en) | Real-time error detection and error correction chip | |
CN105468798A (en) | Anti-radiation placing and routing method for integrated circuits | |
CN106301352B (en) | A design method of anti-radiation fault-tolerant circuit based on AND gate, OR gate and selector | |
Cheng et al. | Radiation-hardened test design for aerospace SoC | |
Jin et al. | TMR group coding method for optimized SEU and MBU tolerant memory design | |
CN108631772B (en) | A three-mode redundant circuit structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180720 Termination date: 20200415 |