CN104857988A - Heteropolyacid-modified Zr-MOF catalyst as well as preparation method and application thereof - Google Patents
Heteropolyacid-modified Zr-MOF catalyst as well as preparation method and application thereof Download PDFInfo
- Publication number
- CN104857988A CN104857988A CN201510229870.0A CN201510229870A CN104857988A CN 104857988 A CN104857988 A CN 104857988A CN 201510229870 A CN201510229870 A CN 201510229870A CN 104857988 A CN104857988 A CN 104857988A
- Authority
- CN
- China
- Prior art keywords
- acid
- mof
- catalyst
- preparation
- heteropolyacid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013096 zirconium-based metal-organic framework Substances 0.000 title claims abstract description 52
- 239000003054 catalyst Substances 0.000 title claims abstract description 49
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 78
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims abstract description 48
- 235000011187 glycerol Nutrition 0.000 claims abstract description 31
- 239000011964 heteropoly acid Substances 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 239000007787 solid Substances 0.000 claims description 26
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 20
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 claims description 19
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 16
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- 239000002738 chelating agent Substances 0.000 claims description 7
- 239000003446 ligand Substances 0.000 claims description 7
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 6
- 235000015165 citric acid Nutrition 0.000 claims description 6
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 claims description 5
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 claims description 5
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical group Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 5
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 4
- 235000011090 malic acid Nutrition 0.000 claims description 4
- 239000001630 malic acid Substances 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 3
- 239000011975 tartaric acid Substances 0.000 claims description 3
- 235000002906 tartaric acid Nutrition 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- GPNNOCMCNFXRAO-UHFFFAOYSA-N 2-aminoterephthalic acid Chemical compound NC1=CC(C(O)=O)=CC=C1C(O)=O GPNNOCMCNFXRAO-UHFFFAOYSA-N 0.000 claims description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims 4
- 230000004048 modification Effects 0.000 claims 4
- 238000002156 mixing Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000006297 dehydration reaction Methods 0.000 abstract description 8
- 230000018044 dehydration Effects 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 abstract description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical group CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 32
- 238000003756 stirring Methods 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000011259 mixed solution Substances 0.000 description 10
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000000643 oven drying Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012621 metal-organic framework Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- ZMDDOWQHSDJXDW-UHFFFAOYSA-N 2,3-dibromopropanal Chemical compound BrCC(Br)C=O ZMDDOWQHSDJXDW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000005906 Imidacloprid Substances 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 235000016720 allyl isothiocyanate Nutrition 0.000 description 1
- HTKFORQRBXIQHD-UHFFFAOYSA-N allylthiourea Chemical compound NC(=S)NCC=C HTKFORQRBXIQHD-UHFFFAOYSA-N 0.000 description 1
- 229960001748 allylthiourea Drugs 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- YWTYJOPNNQFBPC-UHFFFAOYSA-N imidacloprid Chemical compound [O-][N+](=O)\N=C1/NCCN1CC1=CC=C(Cl)N=C1 YWTYJOPNNQFBPC-UHFFFAOYSA-N 0.000 description 1
- 229940056881 imidacloprid Drugs 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种杂多酸改性Zr-MOF催化剂,它由Zr-MOF载体经杂多酸改性而成。本发明还公开了上述催化剂的制备方法和它在催化甘油脱水制备丙烯醛反应中的应用。与现有技术相比,本发明得到催化剂寿命长,甘油转化率和丙烯醛选择性高;Zr-MOF载体热稳定性和化学稳定性好,骨架结构保持稳定;杂多酸与Zr-MOF载体间作用力较强,不易流失。The invention discloses a heteropolyacid modified Zr-MOF catalyst, which is formed by modifying a Zr-MOF carrier with a heteropolyacid. The invention also discloses the preparation method of the catalyst and its application in the reaction of catalyzing the dehydration of glycerin to prepare acrolein. Compared with the prior art, the present invention has long catalyst life, high glycerin conversion rate and acrolein selectivity; Zr-MOF carrier has good thermal stability and chemical stability, and the skeleton structure remains stable; heteropolyacid and Zr-MOF carrier Interaction force is strong, not easy to lose.
Description
技术领域technical field
本发明属于化学合成领域,具体涉及一种杂多酸改性Zr-MOF催化剂及其制备方法与应用。The invention belongs to the field of chemical synthesis, and in particular relates to a heteropolyacid modified Zr-MOF catalyst, a preparation method and application thereof.
背景技术Background technique
随着全球石化资源的日益枯竭,作为可替代能源之一的生物柴油倍受青睐。但是,随着生物柴油产量的不断上升,其副产物甘油的产量也在持续增加。当前,由于甘油主要用于医药和化妆品行业,需求十分有限,因此,由甘油出发制备高附加值化学品的研究受到很大重视。丙烯醛是一种重要的精细化工中间体,主要用于生产农药杀虫剂吡虫啉、医药抗肿瘤药二溴丙醛、饲料添加剂蛋氨酸、杀菌剂戊二醛;丙烯醛经氧化可生产丙烯酸,进一步合成丙烯酸酯;经水合还原合成1,3-丙二醇;经还原可生产丙醇,是合成香料及医药烯丙基硫脲、异硫氰酸烯丙酯的重要中间体。工业生产丙烯醛的传统方法是丙烯选择氧化。针对这一状况,由甘油制备丙烯醛即可以有效利用过剩的甘油,又可以摆脱丙烯醛生产对石化产品丙烯的依赖。With the depletion of global petrochemical resources, biodiesel, as one of the alternative energy sources, is favored. However, as the production of biodiesel continues to rise, the production of its by-product glycerin also continues to increase. At present, since glycerin is mainly used in the pharmaceutical and cosmetic industries, the demand is very limited. Therefore, the research on the preparation of high value-added chemicals from glycerin has received great attention. Acrolein is an important fine chemical intermediate, mainly used in the production of pesticide imidacloprid, pharmaceutical antineoplastic drug dibromopropanal, feed additive methionine, fungicide glutaraldehyde; acrolein can be oxidized to produce acrylic acid, further Synthesis of acrylate; Synthesis of 1,3-propanediol through hydration reduction; Propanol can be produced through reduction. It is an important intermediate in the synthesis of perfumes, pharmaceuticals, allylthiourea, and allyl isothiocyanate. The traditional method for the industrial production of acrolein is the selective oxidation of propylene. In response to this situation, the preparation of acrolein from glycerol can not only effectively utilize excess glycerol, but also get rid of the dependence of acrolein production on the petrochemical product propylene.
关于将杂多酸负载于载体上作为催化剂用于甘油脱水制备丙烯醛反应中的研究报道较多。常用于甘油脱水反应的杂多酸主要是负载在氧化物载体上的磷钨酸(HPW)和硅钨酸(HSiW)。对于磷钨酸来说,HPW/α-Al2O3催化剂由于比表面积较小,失活较快;当以二氧化硅为载体时,由于其与磷钨酸的相互作用较弱,热稳定性较差。为了克服以上问题,Chai等制备了HPW/ZrO2,由于磷钨酸在ZrO2载体上能够更好地分散,该催化剂具有很好的热稳定性,进而通过改进载体制备方法,制备了纳米ZrO2,使得催化剂寿命在一定程度上得以延长,但丙烯醛的选择性只有71%。硅钨酸有比磷钨酸更好的低温活性,且丙烯醛选择性较高,当负载在孔径为10nm的二氧化硅上时,丙烯醛选择性可达86.2%,但是该催化剂易于失活。Atia等制备了HSiW/Al2O3催化剂,用于甘油脱水反应时失活问题大大改善,200h内甘油转化率高于80%,丙烯醛选择性75%,并且考察了碱性金属的加入对催化剂性能的影响,发现催化剂性能未显著提高,且该催化剂热稳定性较差,这使得其再生及重复使用存在很大障碍。总之,由于目前负载杂多酸催化剂存在寿命短或热稳定性差的问题,无法达到工业应用的要求。There are many research reports on the use of heteropolyacids loaded on carriers as catalysts in the reaction of glycerol dehydration to acrolein. Heteropolyacids commonly used in glycerol dehydration are mainly phosphotungstic acid (HPW) and silicotungstic acid (HSiW) supported on oxide supports. For phosphotungstic acid, the HPW/α-Al 2 O 3 catalyst deactivates quickly due to its small specific surface area; when silica is used as a carrier, it is thermally stable due to its weak interaction with phosphotungstic acid Sex is poor. In order to overcome the above problems, Chai et al. prepared HPW/ZrO 2 . Because phosphotungstic acid can be better dispersed on the ZrO 2 carrier, the catalyst has good thermal stability, and then by improving the carrier preparation method, prepared nano-ZrO 2 , so that the catalyst life can be extended to a certain extent, but the selectivity of acrolein is only 71%. Silicotungstic acid has better low-temperature activity than phosphotungstic acid, and has a higher selectivity to acrolein. When loaded on silica with a pore size of 10nm, the selectivity to acrolein can reach 86.2%, but the catalyst is prone to deactivation . Atia et al. prepared HSiW/Al 2 O 3 catalyst, which greatly improved the deactivation problem when used in glycerin dehydration reaction. The conversion rate of glycerol was higher than 80% within 200h, and the selectivity of acrolein was 75%. Influenced by the performance of the catalyst, it was found that the performance of the catalyst was not significantly improved, and the thermal stability of the catalyst was poor, which made its regeneration and reuse a great obstacle. In short, due to the problems of short lifetime or poor thermal stability of supported heteropolyacid catalysts, the requirements of industrial applications cannot be met.
金属有机骨架材料(MOF)是一类有前景的杂化晶体材料,由有机配体和节点金属构成。它具有比较高的比表面积,大的孔隙率,以及可调控的孔道和配体的功能化等特性,这使得它在催化,吸附,化学分离等方面受到越来越多的关注。但是,将MOF材料作为载体负载杂多酸用于甘油脱水制备丙烯醛反应的研究还未见报道。Metal-organic frameworks (MOFs) are a promising class of hybrid crystalline materials composed of organic ligands and node metals. It has a relatively high specific surface area, large porosity, and adjustable pores and functionalization of ligands, which makes it attract more and more attention in catalysis, adsorption, and chemical separation. However, there are no reports on the use of MOF materials as carriers to load heteropolyacids for the dehydration of glycerol to acrolein.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种杂多酸改性Zr-MOF催化剂,以解决现有类似催化剂催化效果不佳等问题。The technical problem to be solved by the present invention is to provide a heteropolyacid modified Zr-MOF catalyst to solve the problems of poor catalytic effect of existing similar catalysts.
本发明还要解决的技术问题是提供上述催化剂的制备方法。The technical problem to be solved by the present invention is to provide the preparation method of the above-mentioned catalyst.
本发明最后要解决的技术问题是提供上述催化剂在催化甘油脱水制备丙烯醛反应中的应用。The final technical problem to be solved by the present invention is to provide the application of the above-mentioned catalyst in the reaction of catalyzing the dehydration of glycerol to prepare acrolein.
为解决上述技术问题,本发明采用的技术方案如下:In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
一种杂多酸改性Zr-MOF催化剂的制备方法,它包括如下步骤:A kind of preparation method of heteropolyacid modified Zr-MOF catalyst, it comprises the steps:
(1)将锆源、桥连配体、模板剂和螯合剂混合后溶于有机溶剂中,溶解完全后移至水热合成釜中,再置于均相反应器中200~250℃下反应24~72h;(1) Mix zirconium source, bridging ligand, templating agent and chelating agent and dissolve in an organic solvent. After the dissolution is complete, move it to a hydrothermal synthesis kettle, and then place it in a homogeneous reactor at 200-250°C for reaction 24~72h;
(2)将步骤(1)处理后得到的混合体系冷却后过滤,取固体部分洗涤后真空干燥12~24h,再焙烧3~5h,得到Zr-MOF载体;(2) Cool and filter the mixed system obtained after the treatment in step (1), take the solid part, wash it, dry it in vacuum for 12-24 hours, and then roast it for 3-5 hours to obtain the Zr-MOF carrier;
(3)将步骤(2)所得的Zr-MOF载体浸于杂多酸水溶液中,等体积浸渍后,110~120℃下干燥12~24h,得到杂多酸改性Zr-MOF催化剂。(3) Immerse the Zr-MOF carrier obtained in the step (2) in the heteropolyacid aqueous solution, and after equal volume impregnation, dry at 110-120°C for 12-24h to obtain the heteropolyacid-modified Zr-MOF catalyst.
步骤(1)中,优选温度为220℃,优选反应时间36h。In step (1), the preferred temperature is 220°C, and the preferred reaction time is 36h.
步骤(1)中,所述的锆源为四氯化锆、氧氯化锆或正丙醇锆;所述的桥连配体为对苯二甲酸、2-氨基对苯二甲酸、均苯三酸或2-磺酸基对苯二甲酸;所述的模板剂为十六烷基三甲基溴化铵、十二烷基苯磺酸钠或石油磺酸钠;所述的螯合剂为柠檬酸、酒石酸或苹果酸;所述的有机溶剂为N,N-二甲基甲酰胺或无水乙醇。In step (1), the zirconium source is zirconium tetrachloride, zirconium oxychloride or zirconium n-propoxide; Triacid or 2-sulfonic terephthalic acid; the template agent is cetyltrimethylammonium bromide, sodium dodecylbenzenesulfonate or sodium petroleum sulfonate; the chelating agent is Citric acid, tartaric acid or malic acid; the organic solvent is N,N-dimethylformamide or absolute ethanol.
其中,锆源优选氧氯化锆,桥连配体优选对苯二甲酸,模板剂优选十六烷基三甲基溴化铵,螯合剂优选柠檬酸。Wherein, the zirconium source is preferably zirconium oxychloride, the bridging ligand is preferably terephthalic acid, the templating agent is preferably cetyltrimethylammonium bromide, and the chelating agent is preferably citric acid.
步骤(1)中,锆源、桥连配体、模板剂与螯合剂四者的摩尔比为1:1~3:0.5~1:0.3~1,优选摩尔比为1:2:0.6:0.6。In step (1), the molar ratio of zirconium source, bridging ligand, templating agent and chelating agent is 1:1~3:0.5~1:0.3~1, preferably 1:2:0.6:0.6 .
步骤(2)中,真空干燥的温度为50~80℃,优选70℃,焙烧温度为300~400℃,优选350℃。In step (2), the vacuum drying temperature is 50-80°C, preferably 70°C, and the calcination temperature is 300-400°C, preferably 350°C.
步骤(3)中,所述的杂多酸为磷钨酸、硅钨酸或磷钼酸;杂多酸与Zr-MOF载体的质量比为1:9~49,优选1:19;所述的杂多酸水溶液中,溶质杂多酸的质量百分比为0.5%~2.0%,优选1.0%。In step (3), the heteropolyacid is phosphotungstic acid, silicotungstic acid or phosphomolybdic acid; the mass ratio of heteropolyacid to Zr-MOF carrier is 1:9-49, preferably 1:19; the In the heteropolyacid aqueous solution, the mass percentage of the solute heteropolyacid is 0.5% to 2.0%, preferably 1.0%.
上述制备方法制备得到的杂多酸改性Zr-MOF催化剂也在本发明的保护范围之内。The heteropolyacid modified Zr-MOF catalyst prepared by the above preparation method is also within the protection scope of the present invention.
上述杂多酸改性Zr-MOF催化剂在催化甘油脱水制备丙烯醛反应中的应用也在本发明的保护范围之内。The application of the above-mentioned heteropolyacid-modified Zr-MOF catalyst in catalyzing the dehydration of glycerol to prepare acrolein is also within the protection scope of the present invention.
其中,在甘油脱水制备丙烯醛反应中,原料优选5~15wt%的甘油水溶液,催化剂用量为1.0g。Wherein, in the reaction of preparing acrolein by dehydration of glycerin, the raw material is preferably 5-15 wt% aqueous glycerin solution, and the catalyst dosage is 1.0 g.
其中,催化温度为280~320℃,原料空速为0.3-15h-1;其中,优选催化温度为300℃,优选原料空速为10h-1。Wherein, the catalytic temperature is 280-320°C, and the raw material space velocity is 0.3-15h -1 ; among them, the preferred catalytic temperature is 300°C, and the preferred raw material space velocity is 10h -1 .
有益效果:Beneficial effect:
与现有技术相比,本发明具有如下优势:Compared with the prior art, the present invention has the following advantages:
本发明得到催化剂寿命长,甘油转化率和丙烯醛选择性高;Zr-MOF载体热稳定性和化学稳定性好,骨架结构保持稳定;杂多酸与Zr-MOF载体间作用力较强,不易流失。The catalyst obtained by the invention has long service life, high glycerin conversion rate and acrolein selectivity; the Zr-MOF carrier has good thermal stability and chemical stability, and the skeleton structure remains stable; drain.
具体实施方式Detailed ways
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。The present invention can be better understood from the following examples. However, those skilled in the art can easily understand that the content described in the embodiments is only for illustrating the present invention, and should not and will not limit the present invention described in the claims.
实施例1:Example 1:
Zr-MOF载体的合成:将0.01mol四氯化锆、0.01mol对苯二甲酸、0.005mol十六烷基三甲基溴化铵、0.003mol柠檬酸加入至50mL的N,N-二甲基甲酰胺(DMF)中,搅拌;搅拌至固体全部溶解后,将混合溶液转移至聚四氟乙烯材质内衬的水热合成釜中,并放置于220℃温度的均相反应器中保持24h,然后冷却至室温;将反应釜中的混合液进行过滤,并用N,N-二甲基甲酰胺(DMF)洗涤过滤所得固体5次,每次使用10mL,然后将固体置于60℃温度的真空干燥箱干燥12h;真空干燥后的固体置于300℃温度的马弗炉中焙烧3h后,制得Zr-MOF载体。Synthesis of Zr-MOF support: 0.01mol zirconium tetrachloride, 0.01mol terephthalic acid, 0.005mol cetyltrimethylammonium bromide, 0.003mol citric acid were added to 50mL of N,N-dimethyl In formamide (DMF), stir; after stirring until the solids are completely dissolved, transfer the mixed solution to a polytetrafluoroethylene-lined hydrothermal synthesis kettle, and place it in a homogeneous reactor at a temperature of 220°C for 24h. Then cool to room temperature; filter the mixture in the reaction kettle, and wash the filtered solid with N,N-dimethylformamide (DMF) 5 times, each time using 10mL, and then place the solid in a vacuum at a temperature of 60°C Dried in a drying oven for 12 hours; the vacuum-dried solid was placed in a muffle furnace at a temperature of 300° C. and calcined for 3 hours to obtain a Zr-MOF carrier.
杂多酸/Zr-MOF的合成:先将0.1g磷钨酸溶于15mL去离子水中,搅拌配成溶液,将4.9g上述制备的Zr-MOF载体浸渍于磷钨酸水溶液中,放入110℃烘箱干燥12小时,制得磷钨酸/Zr-MOF催化剂。Synthesis of heteropolyacid/Zr-MOF: First, dissolve 0.1g of phosphotungstic acid in 15mL of deionized water, stir to make a solution, impregnate 4.9g of the Zr-MOF carrier prepared above in aqueous solution of phosphotungstic acid, put it in 110 ℃ oven drying for 12 hours to prepare phosphotungstic acid/Zr-MOF catalyst.
催化剂性能评价采用固定床反应器,以5wt%的甘油水溶液作为原料,催化剂用量1.0g,反应温度为290℃,原料空速为0.3h-1,得甘油转化率85.5%,丙烯醛选择性96.3%。Catalyst performance evaluation uses a fixed-bed reactor, using 5wt% glycerol aqueous solution as raw material, catalyst dosage 1.0g, reaction temperature 290°C, raw material space velocity 0.3h -1 , the conversion rate of glycerol is 85.5%, and the selectivity of acrolein is 96.3 %.
实施例2:Example 2:
Zr-MOF载体的合成:将0.01mol氧氯化锆、0.02mol对苯二甲酸、0.006mol十六烷基三甲基溴化铵、0.008mol柠檬酸加入至50mL的N,N-二甲基甲酰胺(DMF)中,搅拌;搅拌至固体全部溶解后,将混合溶液转移至聚四氟乙烯材质内衬的水热合成釜中,并放置于220℃温度的均相反应器中保持24h,然后冷却至室温;将反应釜中的混合液进行过滤,并用N,N-二甲基甲酰胺(DMF)洗涤过滤所得固体5次,每次使用10mL,然后将固体置于70℃温度的真空干燥箱干燥12h;真空干燥后的固体置于350℃温度的马弗炉中焙烧3h后,制得Zr-MOF载体。Synthesis of Zr-MOF support: 0.01mol zirconium oxychloride, 0.02mol terephthalic acid, 0.006mol cetyltrimethylammonium bromide, 0.008mol citric acid were added to 50mL of N,N-dimethyl In formamide (DMF), stir; after stirring until the solids are completely dissolved, transfer the mixed solution to a polytetrafluoroethylene-lined hydrothermal synthesis kettle, and place it in a homogeneous reactor at a temperature of 220°C for 24h. Then cool to room temperature; filter the mixed solution in the reaction kettle, and wash the filtered solid with N,N-dimethylformamide (DMF) 5 times, each time using 10mL, and then place the solid in a vacuum at a temperature of 70°C Dried in a drying oven for 12 hours; the vacuum-dried solid was placed in a muffle furnace at a temperature of 350° C. and calcined for 3 hours to prepare the Zr-MOF carrier.
杂多酸/Zr-MOF的合成:先将0.1g磷钨酸溶于8mL去离子水中,搅拌配成溶液,将1.15g上述制备的Zr-MOF载体浸渍于磷钨酸水溶液中,放入110℃烘箱干燥12小时,制得磷钨酸/Zr-MOF催化剂。Synthesis of heteropolyacid/Zr-MOF: Dissolve 0.1g of phosphotungstic acid in 8mL of deionized water, stir to make a solution, impregnate 1.15g of the Zr-MOF carrier prepared above in aqueous solution of phosphotungstic acid, put it in 110 ℃ oven drying for 12 hours to prepare phosphotungstic acid/Zr-MOF catalyst.
催化剂性能评价采用固定床反应器,以10wt%的甘油水溶液作为原料,催化剂用量1.0g,反应温度为280℃,原料空速为10h-1,得甘油转化率96.4%,丙烯醛选择性98.9%。Catalyst performance evaluation uses a fixed-bed reactor, using 10wt% glycerol aqueous solution as raw material, catalyst dosage 1.0g, reaction temperature 280°C, raw material space velocity 10h -1 , the conversion rate of glycerol is 96.4%, and the selectivity of acrolein is 98.9% .
实施例3:Example 3:
Zr-MOF载体的合成:将0.01mol四氯化锆、0.03mol均苯三酸、0.001mol十二烷基苯磺酸钠、0.007mol酒石酸加入至50mL的无水乙醇中,搅拌;搅拌至固体全部溶解后,将混合溶液转移至聚四氟乙烯材质内衬的水热合成釜中,并放置于250℃温度的均相反应器中保持36h,然后冷却至室温;将反应釜中的混合液进行过滤,并用无水乙醇洗涤过滤所得固体5次,每次使用10mL,然后将固体置于70℃温度的真空干燥箱干燥12h;真空干燥后的固体置于400℃温度的马弗炉中焙烧3h后,制得Zr-MOF载体。Synthesis of Zr-MOF carrier: Add 0.01mol zirconium tetrachloride, 0.03mol trimesic acid, 0.001mol sodium dodecylbenzenesulfonate, and 0.007mol tartaric acid to 50mL of absolute ethanol, stir; stir until solid After all dissolved, the mixed solution was transferred to a polytetrafluoroethylene-lined hydrothermal synthesis kettle, and placed in a homogeneous reactor at a temperature of 250°C for 36 hours, and then cooled to room temperature; the mixed solution in the reactor was Filter and wash the filtered solid with absolute ethanol 5 times, using 10 mL each time, then place the solid in a vacuum oven at 70°C for 12 hours; place the vacuum-dried solid in a muffle furnace at 400°C for roasting After 3h, the Zr-MOF carrier was prepared.
杂多酸/Zr-MOF的合成:先将0.1g硅钨酸溶于6mL去离子水中,搅拌配成溶液,将0.9g上述制备的Zr-MOF载体浸渍于硅钨酸水溶液中,放入110℃烘箱干燥12小时,制得硅钨酸/Zr-MOF催化剂。Synthesis of heteropolyacid/Zr-MOF: Dissolve 0.1g of silicotungstic acid in 6mL of deionized water and stir to form a solution. Immerse 0.9g of the Zr-MOF carrier prepared above in the aqueous solution of silicotungstic acid and put it in 110 ℃ oven drying for 12 hours to prepare silicotungstic acid/Zr-MOF catalyst.
催化剂性能评价采用固定床反应器,以10wt%的甘油水溶液作为原料,催化剂用量1.0g,反应温度为300℃,原料空速为8.5h-1,得甘油转化率92.1%,丙烯醛选择性97.9%。Catalyst performance evaluation uses a fixed bed reactor, using 10wt% glycerol aqueous solution as raw material, catalyst dosage 1.0g, reaction temperature 300°C, raw material space velocity 8.5h -1 , the conversion rate of glycerol is 92.1%, and the selectivity of acrolein is 97.9% %.
实施例4:Example 4:
Zr-MOF载体的合成:将0.01mol正丙醇锆、0.02mol 2-磺酸基对苯二甲酸、0.008mol十六烷基三甲基溴化铵、0.008mol柠檬酸加入至50mL的N,N-二甲基甲酰胺(DMF)中,搅拌;搅拌至固体全部溶解后,将混合溶液转移至聚四氟乙烯材质内衬的水热合成釜中,并放置于220℃温度的均相反应器中保持24h,然后冷却至室温;将反应釜中的混合液进行过滤,并用N,N-二甲基甲酰胺(DMF)洗涤过滤所得固体5次,每次使用10mL,然后将固体置于60℃温度的真空干燥箱干燥12h;真空干燥后的固体置于350℃温度的马弗炉中焙烧3h后,制得Zr-MOF载体。Synthesis of Zr-MOF carrier: Add 0.01mol zirconium n-propoxide, 0.02mol 2-sulfonic acid terephthalic acid, 0.008mol cetyltrimethylammonium bromide, 0.008mol citric acid to 50mL of N, Stir in N-dimethylformamide (DMF); stir until the solids are completely dissolved, transfer the mixed solution to a polytetrafluoroethylene-lined hydrothermal synthesis kettle, and place it in a homogeneous reaction at a temperature of 220°C Keep it in the container for 24h, then cool to room temperature; filter the mixed solution in the reaction kettle, and wash the filtered solid with N,N-dimethylformamide (DMF) 5 times, each time using 10mL, and then place the solid in Drying in a vacuum oven at a temperature of 60° C. for 12 hours; placing the vacuum-dried solid in a muffle furnace at a temperature of 350° C. for 3 hours and roasting to obtain a Zr-MOF carrier.
杂多酸/Zr-MOF的合成:先将0.1g磷钨酸溶于10mL去离子水中,搅拌配成溶液,将1.9g上述制备的Zr-MOF载体浸渍于磷钨酸水溶液中,放入110℃烘箱干燥12小时,制得磷钨酸/Zr-MOF催化剂。Synthesis of heteropolyacid/Zr-MOF: Dissolve 0.1g of phosphotungstic acid in 10mL of deionized water, stir to make a solution, impregnate 1.9g of the Zr-MOF carrier prepared above in aqueous solution of phosphotungstic acid, put it in 110 ℃ oven drying for 12 hours to prepare phosphotungstic acid/Zr-MOF catalyst.
催化剂性能评价采用固定床反应器,以10wt%的甘油水溶液作为原料,催化剂用量1.0g,反应温度为320℃,原料空速为15h-1,得甘油转化率88.7%,丙烯醛选择性98.2%。Catalyst performance evaluation uses a fixed-bed reactor, using 10wt% glycerin aqueous solution as raw material, catalyst dosage 1.0g, reaction temperature 320°C, raw material space velocity 15h -1 , the conversion rate of glycerol is 88.7%, and the selectivity of acrolein is 98.2% .
实施例5:Example 5:
Zr-MOF载体的合成:将0.01mol氧氯化锆、0.02mol2-氨基对苯二甲酸、0.007mol石油磺酸钠、0.005mol苹果酸加入至50mL的N,N-二甲基甲酰胺(DMF)中,搅拌;搅拌至固体全部溶解后,将混合溶液转移至聚四氟乙烯材质内衬的水热合成釜中,并放置于220℃温度的均相反应器中保持30h,然后冷却至室温;将反应釜中的混合液进行过滤,并用N,N-二甲基甲酰胺(DMF)洗涤过滤所得固体5次,每次使用10mL,然后将固体置于50℃温度的真空干燥箱干燥12h;真空干燥后的固体置于350℃温度的马弗炉中焙烧3h后,制得Zr-MOF载体。Synthesis of Zr-MOF support: 0.01mol zirconium oxychloride, 0.02mol 2-aminoterephthalic acid, 0.007mol sodium petroleum sulfonate, 0.005mol malic acid were added to 50mL of N,N-dimethylformamide (DMF ), stirred; after stirring until all the solids were dissolved, the mixed solution was transferred to a polytetrafluoroethylene-lined hydrothermal synthesis kettle, and placed in a homogeneous reactor at a temperature of 220°C for 30h, and then cooled to room temperature ; Filter the mixed solution in the reaction kettle, and wash the filtered solid with N,N-dimethylformamide (DMF) 5 times, each time using 10mL, and then dry the solid in a vacuum oven at 50°C for 12h ; The vacuum-dried solid was placed in a muffle furnace at a temperature of 350° C. and calcined for 3 hours to obtain a Zr-MOF carrier.
杂多酸/Zr-MOF的合成:先将0.1g磷钨酸溶于12mL去离子水中,搅拌配成溶液,将2.9g上述制备的Zr-MOF载体浸渍于磷钨酸水溶液中,放入110℃烘箱干燥12小时,制得磷钨酸/Zr-MOF催化剂。Synthesis of heteropoly acid/Zr-MOF: Dissolve 0.1g of phosphotungstic acid in 12mL of deionized water, stir to form a solution, impregnate 2.9g of the Zr-MOF carrier prepared above in aqueous solution of phosphotungstic acid, put it in 110 ℃ oven drying for 12 hours to prepare phosphotungstic acid/Zr-MOF catalyst.
催化剂性能评价采用固定床反应器,以10wt%的甘油水溶液作为原料,催化剂用量1.0g,反应温度为220℃,原料空速为5.3h-1,得甘油转化率88.1%,丙烯醛选择性97.5%。Catalyst performance evaluation uses a fixed-bed reactor, using 10wt% glycerin aqueous solution as raw material, catalyst dosage 1.0g, reaction temperature 220°C, raw material space velocity 5.3h -1 , the conversion rate of glycerin is 88.1%, and the selectivity of acrolein is 97.5% %.
实施例6:Embodiment 6:
Zr-MOF载体的合成:将0.01mol四氯化锆、0.02mol均苯三酸、0.007mol十六烷基三甲基溴化铵、0.007mol苹果酸加入至50mL的N,N-二甲基甲酰胺(DMF)中,搅拌;搅拌至固体全部溶解后,将混合溶液转移至聚四氟乙烯材质内衬的水热合成釜中,并放置于230℃温度的均相反应器中保持24h,然后冷却至室温;将反应釜中的混合液进行过滤,并用N,N-二甲基甲酰胺(DMF)洗涤过滤所得固体5次,每次使用10mL,然后将固体置于80℃温度的真空干燥箱干燥12h;真空干燥后的固体置于400℃温度的马弗炉中焙烧3h后,制得Zr-MOF载体。Synthesis of Zr-MOF support: 0.01mol zirconium tetrachloride, 0.02mol trimesic acid, 0.007mol cetyltrimethylammonium bromide, 0.007mol malic acid were added to 50mL of N,N-dimethyl In formamide (DMF), stir; after stirring until the solids are completely dissolved, transfer the mixed solution to a polytetrafluoroethylene-lined hydrothermal synthesis kettle, and place it in a homogeneous reactor at a temperature of 230°C for 24h. Then cool to room temperature; filter the mixed liquid in the reaction kettle, and wash the filtered solid with N,N-dimethylformamide (DMF) 5 times, each time using 10mL, and then place the solid in a vacuum at a temperature of 80°C Drying in a drying oven for 12 hours; the vacuum-dried solid was placed in a muffle furnace at a temperature of 400° C. for 3 hours and then calcined to obtain a Zr-MOF carrier.
杂多酸/Zr-MOF的合成:先将0.1g磷钼酸溶于6mL去离子水中,搅拌配成溶液,将0.9g上述制备的Zr-MOF载体浸渍于磷钼酸水溶液中,放入110℃烘箱干燥12小时,制得磷钼酸/Zr-MOF催化剂。Synthesis of heteropolyacid/Zr-MOF: Dissolve 0.1g of phosphomolybdic acid in 6mL of deionized water and stir to form a solution, then impregnate 0.9g of the Zr-MOF support prepared above into the aqueous solution of phosphomolybdic acid, put it in 110 ℃ oven drying for 12 hours to prepare phosphomolybdic acid/Zr-MOF catalyst.
催化剂性能评价采用固定床反应器,以8wt%的甘油水溶液作为原料,催化剂用量1.0g,反应温度为300℃,原料空速为8h-1,得甘油转化率93.7%,丙烯醛选择性96.2%。Catalyst performance evaluation uses a fixed-bed reactor, using 8wt% glycerin aqueous solution as raw material, catalyst dosage 1.0g, reaction temperature 300°C, raw material space velocity 8h -1 , the conversion rate of glycerol is 93.7%, and the selectivity of acrolein is 96.2% .
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510229870.0A CN104857988A (en) | 2015-05-07 | 2015-05-07 | Heteropolyacid-modified Zr-MOF catalyst as well as preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510229870.0A CN104857988A (en) | 2015-05-07 | 2015-05-07 | Heteropolyacid-modified Zr-MOF catalyst as well as preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104857988A true CN104857988A (en) | 2015-08-26 |
Family
ID=53904412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510229870.0A Pending CN104857988A (en) | 2015-05-07 | 2015-05-07 | Heteropolyacid-modified Zr-MOF catalyst as well as preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104857988A (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105233800A (en) * | 2015-09-23 | 2016-01-13 | 辽宁大学 | Ternary compound based on ZIF-8, and preparation method and applications thereof |
CN105294739A (en) * | 2015-11-20 | 2016-02-03 | 哈尔滨理工大学 | Multi-acid-group microporous crystalline material with one-dimensional metal and dual-ligand nanotube structure and preparation method for multi-acid-group microporous crystalline material |
CN105498845A (en) * | 2015-12-07 | 2016-04-20 | 盐城工学院 | A CsPW/Zr-MCM-41 catalyst prepared in a supercritical CO2 environment and its application |
CN105665019A (en) * | 2016-04-06 | 2016-06-15 | 上海应用技术学院 | Mn-Anderson type heteropolyacid catalyst modified with (S)-1-(3-hydroxy-1-phenylpropyl) thiourea, as well as preparation method and application thereof |
CN105772102A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | (R)-1-(1-(2-naphthyl) ethyl) thiourea modified Mn-Anderson type heteropoly acid catalyst, and preparation method and application thereof |
CN105772088A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | Mn-Anderson type heteropolyacid catalyst modified by (S)-1-(1-phenethyl) thiourea, and preparation method and application thereof |
CN105772085A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | Cr-Anderson type heteropolyacid catalyst modified by (S)-1-(1-ethoxyl-1-isopropyl) thiourea, and preparation method and application thereof |
CN105797771A (en) * | 2016-04-06 | 2016-07-27 | 上海应用技术学院 | (R)-1-(1-phenethyl) thiourea modified Mn-Anderson type heteropolyacid catalyst as well as preparation method and application thereof |
CN105833910A (en) * | 2016-04-06 | 2016-08-10 | 上海应用技术学院 | (R)-1-(2-hydrox-1-phenethyl)thiourea modified Cr-Anderson heteropolyacid catalyst, and preparation method and application thereof |
CN105833911A (en) * | 2016-04-06 | 2016-08-10 | 上海应用技术学院 | 1-Phenethylthiourea modified Cr-Anderson heteropolyacid catalyst, and preparation method and application thereof |
CN105854941A (en) * | 2016-04-06 | 2016-08-17 | 上海应用技术学院 | (S)-1-(1-phenethyl) thiourea-modified Cr-Anderson heteropolyacid catalyst, and preparation method and application thereof |
CN106540751A (en) * | 2016-08-31 | 2017-03-29 | 中国科学院福建物质结构研究所 | A kind of overstable oxidation-desulfurizing catalyst and its preparation method and application |
CN106589398A (en) * | 2016-12-06 | 2017-04-26 | 首都师范大学 | Zirconium organic frame material and preparation method and application thereof |
CN107930591A (en) * | 2017-11-29 | 2018-04-20 | 广西大学 | A kind of gravity Method metal-organic solution deposition doping amino acid composite material and preparation method thereof |
CN108654685A (en) * | 2017-03-31 | 2018-10-16 | 南京工业大学 | Method for improving catalytic selectivity of organic matter sites |
CN108927220A (en) * | 2018-06-28 | 2018-12-04 | 华南理工大学 | A kind of synthetic method of Jie of synchronous immobilized phosphotungstic acid-micro-diplopore Cr-MIL-101 carrier |
CN108948364A (en) * | 2018-05-24 | 2018-12-07 | 福州大学 | A kind of preparation method and application of graded structure cobalt-based metal organic frame |
CN109097354A (en) * | 2018-08-27 | 2018-12-28 | 盐城工学院 | Cellulase-metal organic frame composite catalyst and its preparation method and application |
CN109174013A (en) * | 2018-10-17 | 2019-01-11 | 五邑大学 | A kind of acid modified metal organic framework material and preparation method thereof |
CN109486199A (en) * | 2018-11-30 | 2019-03-19 | 中广核高新核材科技(苏州)有限公司 | The preparation method of new type high temperature rubber antioxidant |
CN109705066A (en) * | 2019-01-29 | 2019-05-03 | 吉林大学 | Synthesis of POMOF catalyst and a one-pot method for efficient conversion of furfural to γ-valerolactone |
CN110078931A (en) * | 2019-04-12 | 2019-08-02 | 浙江大学 | A kind of organic framework materials and purposes |
CN111944160A (en) * | 2020-07-31 | 2020-11-17 | 浙江大学 | An oxalic acid functionalized microporous coordination polymer material and its preparation method and application |
CN112844481A (en) * | 2021-01-13 | 2021-05-28 | 泰州九润环保科技有限公司 | Zirconium-based metal organic framework solid acid catalyst for synthesizing hydroquinone monomethyl ether and preparation method and application thereof |
CN112871190A (en) * | 2021-01-13 | 2021-06-01 | 泰州九润环保科技有限公司 | Chromium-based metal organic framework solid acid catalyst for synthesizing hydroquinone monomethyl ether and preparation method and application thereof |
CN113231102A (en) * | 2021-05-26 | 2021-08-10 | 济宁学院 | Glutaric acid selective polyacid catalyst based on micro-mesoporous Zr-MOF material and preparation method and application thereof |
CN113368900A (en) * | 2021-05-26 | 2021-09-10 | 长春工业大学 | Preparation method and application of zirconium-based microporous coordination polymer composite material loaded by heteropoly acid or heteropoly acid salt |
CN113457742A (en) * | 2021-06-11 | 2021-10-01 | 哈尔滨理工大学 | Preparation and photocatalytic application of phosphomolybdic acid constructed polyacid-based cadmium metal hybrid material |
CN114505100A (en) * | 2021-12-27 | 2022-05-17 | 辽宁大学 | A kind of preparation method of phosphomolybdic acid doped Zr-MOF material for treating printing and dyeing wastewater |
US11369942B2 (en) * | 2019-12-12 | 2022-06-28 | Tongji University | Method for assembling and synthesizing Cu2O particle-supported porous CuBTC |
CN115672404A (en) * | 2022-10-27 | 2023-02-03 | 滁州学院 | Heteropolyacid (salt) @ Zr-MOFs catalyst, preparation method and application thereof |
CN116159599A (en) * | 2022-12-28 | 2023-05-26 | 大连理工大学 | Defect multi-acid-base metal organic framework catalyst and preparation and application thereof |
CN116396496A (en) * | 2023-05-19 | 2023-07-07 | 安徽建筑大学 | A kind of molecularly imprinted Zr-MOF fluorescent probe material and its preparation method and application |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144758A2 (en) * | 2011-04-18 | 2012-10-26 | 한국화학연구원 | Method for functionalizing porous metal-organic framework materials, solid acid catalyst using same, and method for evaporating alcohol using the solid acid catalyst |
CN102921466A (en) * | 2012-10-30 | 2013-02-13 | 上海师范大学 | Heterogeneous Au/Ze-MOF catalyst and preparation method and application thereof |
CN103041863A (en) * | 2012-12-05 | 2013-04-17 | 北京化工大学常州先进材料研究院 | Method for preparing ethyl acetate by metal-organic framework-loading phosphotungstic acid catalyst |
CN103316714A (en) * | 2013-06-28 | 2013-09-25 | 中国石油大学(北京) | Catalyst for photo-catalytically decomposing water to produce hydrogen and preparation method of catalyst |
CN103920462A (en) * | 2013-01-15 | 2014-07-16 | 中国科学院大连化学物理研究所 | Preparation method for metal-organic framework nanoparticle material with mesoporous structure |
CN103991897A (en) * | 2014-06-12 | 2014-08-20 | 福州大学 | Parallelepiped zinc oxide aggregate and preparation method thereof |
CN104383965A (en) * | 2014-11-19 | 2015-03-04 | 河南工业大学 | Metal-organic framework immobilized tungsten oxide catalyst for synthesizing glutaraldehyde and production method of metal-organic framework immobilized tungsten oxide catalyst |
CN104437645A (en) * | 2014-11-19 | 2015-03-25 | 河南工业大学 | Metal-organic framework supported heteropoly acid catalyst for synthesizing glutaraldehyde and production method of metal-organic framework supported heteropoly acid catalyst |
CN104549508A (en) * | 2014-12-17 | 2015-04-29 | 天津大学 | Phosphotungstic acid-metal organic framework compound composite material for catalyzing thiophenic sulfur and application of phosphotungstic acid-metal organic framework compound composite material |
-
2015
- 2015-05-07 CN CN201510229870.0A patent/CN104857988A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144758A2 (en) * | 2011-04-18 | 2012-10-26 | 한국화학연구원 | Method for functionalizing porous metal-organic framework materials, solid acid catalyst using same, and method for evaporating alcohol using the solid acid catalyst |
CN102921466A (en) * | 2012-10-30 | 2013-02-13 | 上海师范大学 | Heterogeneous Au/Ze-MOF catalyst and preparation method and application thereof |
CN103041863A (en) * | 2012-12-05 | 2013-04-17 | 北京化工大学常州先进材料研究院 | Method for preparing ethyl acetate by metal-organic framework-loading phosphotungstic acid catalyst |
CN103920462A (en) * | 2013-01-15 | 2014-07-16 | 中国科学院大连化学物理研究所 | Preparation method for metal-organic framework nanoparticle material with mesoporous structure |
CN103316714A (en) * | 2013-06-28 | 2013-09-25 | 中国石油大学(北京) | Catalyst for photo-catalytically decomposing water to produce hydrogen and preparation method of catalyst |
CN103991897A (en) * | 2014-06-12 | 2014-08-20 | 福州大学 | Parallelepiped zinc oxide aggregate and preparation method thereof |
CN104383965A (en) * | 2014-11-19 | 2015-03-04 | 河南工业大学 | Metal-organic framework immobilized tungsten oxide catalyst for synthesizing glutaraldehyde and production method of metal-organic framework immobilized tungsten oxide catalyst |
CN104437645A (en) * | 2014-11-19 | 2015-03-25 | 河南工业大学 | Metal-organic framework supported heteropoly acid catalyst for synthesizing glutaraldehyde and production method of metal-organic framework supported heteropoly acid catalyst |
CN104549508A (en) * | 2014-12-17 | 2015-04-29 | 天津大学 | Phosphotungstic acid-metal organic framework compound composite material for catalyzing thiophenic sulfur and application of phosphotungstic acid-metal organic framework compound composite material |
Non-Patent Citations (4)
Title |
---|
LIN-BING SUN ET AL.: "Cooperative Template-Directed Assembly of Mesoporous Metal-Organic Frameworks", 《J. AM. CHEM.SOC.》 * |
WU TIANBIN ET AL.: "Catalytic activity of immobilized Ru nanoparticles in a porous metal‐organic framework using supercritical fluid", 《CHINESE JOURNAL OF CATALYSIS》 * |
XIN-LI YANG ET AL.: "Phosphotungstic acid encapsulated in metal-organic framework UiO-66: An effective catalyst for the selective oxidation of cyclopentene to glutaraldehyde", 《MICROPOROUS AND MESOPOROUS MATERIALS》 * |
刘洋等: "Co-MOFs 固载杂多酸的制备及催化性能研究", 《广东化工》 * |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105233800A (en) * | 2015-09-23 | 2016-01-13 | 辽宁大学 | Ternary compound based on ZIF-8, and preparation method and applications thereof |
CN105233800B (en) * | 2015-09-23 | 2017-12-05 | 辽宁大学 | A kind of ternary complex based on ZIF 8 and its preparation method and application |
CN105294739B (en) * | 2015-11-20 | 2017-03-22 | 哈尔滨理工大学 | Multi-acid-group microporous crystalline material with one-dimensional metal and dual-ligand nanotube structure and preparation method for multi-acid-group microporous crystalline material |
CN105294739A (en) * | 2015-11-20 | 2016-02-03 | 哈尔滨理工大学 | Multi-acid-group microporous crystalline material with one-dimensional metal and dual-ligand nanotube structure and preparation method for multi-acid-group microporous crystalline material |
CN105498845A (en) * | 2015-12-07 | 2016-04-20 | 盐城工学院 | A CsPW/Zr-MCM-41 catalyst prepared in a supercritical CO2 environment and its application |
CN105854941A (en) * | 2016-04-06 | 2016-08-17 | 上海应用技术学院 | (S)-1-(1-phenethyl) thiourea-modified Cr-Anderson heteropolyacid catalyst, and preparation method and application thereof |
CN105772102A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | (R)-1-(1-(2-naphthyl) ethyl) thiourea modified Mn-Anderson type heteropoly acid catalyst, and preparation method and application thereof |
CN105797771A (en) * | 2016-04-06 | 2016-07-27 | 上海应用技术学院 | (R)-1-(1-phenethyl) thiourea modified Mn-Anderson type heteropolyacid catalyst as well as preparation method and application thereof |
CN105833910A (en) * | 2016-04-06 | 2016-08-10 | 上海应用技术学院 | (R)-1-(2-hydrox-1-phenethyl)thiourea modified Cr-Anderson heteropolyacid catalyst, and preparation method and application thereof |
CN105833911A (en) * | 2016-04-06 | 2016-08-10 | 上海应用技术学院 | 1-Phenethylthiourea modified Cr-Anderson heteropolyacid catalyst, and preparation method and application thereof |
CN105772088B (en) * | 2016-04-06 | 2018-07-10 | 上海应用技术学院 | (S) Mn-Anderson types heteropolyacid catalyst thiourea modified -1- (1- phenethyls), preparation method and applications |
CN105772088A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | Mn-Anderson type heteropolyacid catalyst modified by (S)-1-(1-phenethyl) thiourea, and preparation method and application thereof |
CN105854941B (en) * | 2016-04-06 | 2018-07-10 | 上海应用技术学院 | (S) Cr-Anderson types heteropolyacid catalyst thiourea modified -1- (1- phenethyls), preparation method and applications |
CN105772102B (en) * | 2016-04-06 | 2018-05-15 | 上海应用技术学院 | (R) Mn-Anderson types heteropolyacid catalyst thiourea modified -1- (1- (2- naphthyls) ethyl), preparation method and applications |
CN105772085A (en) * | 2016-04-06 | 2016-07-20 | 上海应用技术学院 | Cr-Anderson type heteropolyacid catalyst modified by (S)-1-(1-ethoxyl-1-isopropyl) thiourea, and preparation method and application thereof |
CN105665019B (en) * | 2016-04-06 | 2018-03-02 | 上海应用技术学院 | (S) the thiourea modified Mn Anderson types heteropolyacid catalyst of 1 (phenylpropyl of 3 hydroxyl 1), preparation method and applications |
CN105833911B (en) * | 2016-04-06 | 2018-03-09 | 上海应用技术学院 | The Cr Anderson types heteropolyacid catalyst of 1 Phenethylthiourea modification, preparation method and applications |
CN105833910B (en) * | 2016-04-06 | 2018-03-30 | 上海应用技术学院 | (R) the thiourea modified Cr Anderson types heteropolyacid catalyst of 1 (phenethyl of 2 hydroxyl 1), preparation method and applications |
CN105772085B (en) * | 2016-04-06 | 2018-04-13 | 上海应用技术学院 | (S) the thiourea modified Cr Anderson types heteropolyacid catalyst of 1 (1 ethoxy, 1 isopropyl), preparation method and applications |
CN105665019A (en) * | 2016-04-06 | 2016-06-15 | 上海应用技术学院 | Mn-Anderson type heteropolyacid catalyst modified with (S)-1-(3-hydroxy-1-phenylpropyl) thiourea, as well as preparation method and application thereof |
CN105797771B (en) * | 2016-04-06 | 2018-05-15 | 上海应用技术学院 | (R) Mn-Anderson types heteropolyacid catalyst thiourea modified -1- (1- phenethyls), preparation method and applications |
CN106540751A (en) * | 2016-08-31 | 2017-03-29 | 中国科学院福建物质结构研究所 | A kind of overstable oxidation-desulfurizing catalyst and its preparation method and application |
CN106589398A (en) * | 2016-12-06 | 2017-04-26 | 首都师范大学 | Zirconium organic frame material and preparation method and application thereof |
CN108654685A (en) * | 2017-03-31 | 2018-10-16 | 南京工业大学 | Method for improving catalytic selectivity of organic matter sites |
CN107930591B (en) * | 2017-11-29 | 2020-07-28 | 广西大学 | Super-gravity method metal organic ligand doped amino acid composite material and preparation method thereof |
CN107930591A (en) * | 2017-11-29 | 2018-04-20 | 广西大学 | A kind of gravity Method metal-organic solution deposition doping amino acid composite material and preparation method thereof |
CN108948364A (en) * | 2018-05-24 | 2018-12-07 | 福州大学 | A kind of preparation method and application of graded structure cobalt-based metal organic frame |
CN108927220A (en) * | 2018-06-28 | 2018-12-04 | 华南理工大学 | A kind of synthetic method of Jie of synchronous immobilized phosphotungstic acid-micro-diplopore Cr-MIL-101 carrier |
CN108927220B (en) * | 2018-06-28 | 2021-06-08 | 华南理工大学 | Synthesis method of a meso-micro biporous Cr-MIL-101 carrier immobilizing phosphotungstic acid simultaneously |
CN109097354A (en) * | 2018-08-27 | 2018-12-28 | 盐城工学院 | Cellulase-metal organic frame composite catalyst and its preparation method and application |
CN109174013A (en) * | 2018-10-17 | 2019-01-11 | 五邑大学 | A kind of acid modified metal organic framework material and preparation method thereof |
CN109486199A (en) * | 2018-11-30 | 2019-03-19 | 中广核高新核材科技(苏州)有限公司 | The preparation method of new type high temperature rubber antioxidant |
CN109705066A (en) * | 2019-01-29 | 2019-05-03 | 吉林大学 | Synthesis of POMOF catalyst and a one-pot method for efficient conversion of furfural to γ-valerolactone |
CN109705066B (en) * | 2019-01-29 | 2023-02-28 | 吉林大学 | Synthesis of POMOF catalyst and efficient one-pot conversion of furfural to γ-valerolactone |
CN110078931A (en) * | 2019-04-12 | 2019-08-02 | 浙江大学 | A kind of organic framework materials and purposes |
US11369942B2 (en) * | 2019-12-12 | 2022-06-28 | Tongji University | Method for assembling and synthesizing Cu2O particle-supported porous CuBTC |
CN111944160A (en) * | 2020-07-31 | 2020-11-17 | 浙江大学 | An oxalic acid functionalized microporous coordination polymer material and its preparation method and application |
CN111944160B (en) * | 2020-07-31 | 2021-05-11 | 浙江大学 | An oxalic acid functionalized microporous coordination polymer material and its preparation method and application |
CN112871190A (en) * | 2021-01-13 | 2021-06-01 | 泰州九润环保科技有限公司 | Chromium-based metal organic framework solid acid catalyst for synthesizing hydroquinone monomethyl ether and preparation method and application thereof |
CN112871190B (en) * | 2021-01-13 | 2021-08-20 | 泰州九润环保科技有限公司 | Chromium-based metal organic framework solid acid catalyst for synthesizing hydroquinone monomethyl ether, preparation method and application thereof |
CN112844481A (en) * | 2021-01-13 | 2021-05-28 | 泰州九润环保科技有限公司 | Zirconium-based metal organic framework solid acid catalyst for synthesizing hydroquinone monomethyl ether and preparation method and application thereof |
CN113368900A (en) * | 2021-05-26 | 2021-09-10 | 长春工业大学 | Preparation method and application of zirconium-based microporous coordination polymer composite material loaded by heteropoly acid or heteropoly acid salt |
CN113231102B (en) * | 2021-05-26 | 2022-04-26 | 济宁学院 | Glutaric acid selective polyacid catalyst based on micro-mesoporous Zr-MOF material and preparation method and application thereof |
CN113231102A (en) * | 2021-05-26 | 2021-08-10 | 济宁学院 | Glutaric acid selective polyacid catalyst based on micro-mesoporous Zr-MOF material and preparation method and application thereof |
CN113457742A (en) * | 2021-06-11 | 2021-10-01 | 哈尔滨理工大学 | Preparation and photocatalytic application of phosphomolybdic acid constructed polyacid-based cadmium metal hybrid material |
CN114505100A (en) * | 2021-12-27 | 2022-05-17 | 辽宁大学 | A kind of preparation method of phosphomolybdic acid doped Zr-MOF material for treating printing and dyeing wastewater |
CN114505100B (en) * | 2021-12-27 | 2023-09-15 | 辽宁大学 | Preparation method of phosphomolybdic acid doped Zr-MOF material for treating printing and dyeing wastewater |
CN115672404A (en) * | 2022-10-27 | 2023-02-03 | 滁州学院 | Heteropolyacid (salt) @ Zr-MOFs catalyst, preparation method and application thereof |
CN115672404B (en) * | 2022-10-27 | 2023-12-26 | 滁州学院 | Heteropoly acid (salt) @ Zr-MOFs catalyst, preparation method and application thereof |
CN116159599A (en) * | 2022-12-28 | 2023-05-26 | 大连理工大学 | Defect multi-acid-base metal organic framework catalyst and preparation and application thereof |
CN116396496A (en) * | 2023-05-19 | 2023-07-07 | 安徽建筑大学 | A kind of molecularly imprinted Zr-MOF fluorescent probe material and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104857988A (en) | Heteropolyacid-modified Zr-MOF catalyst as well as preparation method and application thereof | |
CN110787840B (en) | Bimetallic MOFs catalyst and preparation method and application thereof | |
CN103816933B (en) | A kind of catalysis dehydrogenation material and its preparation method and application | |
CN104888858B (en) | A kind of ternary high efficiency composition visible-light photocatalysis material and preparation method thereof | |
CN101797499B (en) | Preparation method of Ce-Zr-La-O compound oxide material with high specific surface | |
CN101757919B (en) | Integral catalyst applied to biological oil reforming hydrogen production, preparation and application thereof | |
CN107413374B (en) | A kind of solid base catalyst for synthesizing alkyl 3-alkoxy propionate | |
CN104801342B (en) | A kind of heteropolyacid salt catalyst and preparation method thereof | |
CN106881155B (en) | A kind of Au/TiO2/metal-organic framework composite photocatalyst and its preparation method and application | |
CN104324746A (en) | Metal modified ZSM-5 molecular sieve catalyst and its application | |
CN103566949B (en) | By the copper-based catalysts and preparation method thereof of preparing ethylene glycol by using dimethyl oxalate plus hydrogen and glycol monoethyl ether | |
CN103272595A (en) | Catalyst for preparing isosorbide by utilizing celluloses and preparation method of catalyst | |
CN107486195A (en) | Preparation method of low-carbon alkane dehydrogenation catalyst | |
CN106268880A (en) | A kind of spherical Bi3O4Cl/BiOCl visible light catalyst and its preparation method | |
CN102527403A (en) | Cerium-based solid solution catalyst and preparation method | |
CN105413749B (en) | A kind of material load CoB of ZIF 8 method for preparing catalyst | |
CN105363491B (en) | A kind of carried heteropoly acid catalyst for methacrolein oxidation preparing isobutene acid | |
CN111744518A (en) | A kind of amino acid modified supported heteropoly acid salt catalyst and preparation method thereof | |
CN104707632A (en) | A Visible Light Responsive Ag-AgBr/Bi20TiO32 Composite Photocatalyst and Its Preparation and Application | |
CN106215969B (en) | A kind of cerium dopping solid super acid catalyst and preparation method thereof | |
CN103769095B (en) | Hydrogenation of Dimethyl Oxalate reaction generates ethylene glycol catalyst and preparation method thereof | |
CN107486197A (en) | Preparation method of low-carbon alkane dehydrogenation microspherical catalyst | |
CN104383906A (en) | Method for preparing porous strontium titanate photocatalyst | |
CN104959150B (en) | Preferential oxidation CO Au/CuO/CeO2‑TiO2Catalyst and preparation method | |
CN109647461A (en) | The composite material of Keggin-type heteropoly acid or heteropolyacid salt and carbon molecular sieve, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150826 |
|
RJ01 | Rejection of invention patent application after publication |