CN104851809A - Thin-film transistor, producing method thereof, array substrate, and display device - Google Patents
Thin-film transistor, producing method thereof, array substrate, and display device Download PDFInfo
- Publication number
- CN104851809A CN104851809A CN201510167213.8A CN201510167213A CN104851809A CN 104851809 A CN104851809 A CN 104851809A CN 201510167213 A CN201510167213 A CN 201510167213A CN 104851809 A CN104851809 A CN 104851809A
- Authority
- CN
- China
- Prior art keywords
- layer
- gate
- thin film
- containing gas
- film transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 110
- 239000010409 thin film Substances 0.000 title claims abstract description 61
- 239000000758 substrate Substances 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 claims abstract description 74
- 238000002425 crystallisation Methods 0.000 claims abstract description 40
- 230000008025 crystallization Effects 0.000 claims abstract description 40
- 238000000151 deposition Methods 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 32
- 239000002243 precursor Substances 0.000 claims abstract description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 20
- 230000008021 deposition Effects 0.000 claims abstract description 13
- 239000010410 layer Substances 0.000 claims description 153
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 238000005468 ion implantation Methods 0.000 claims description 21
- 238000000059 patterning Methods 0.000 claims description 18
- 238000005224 laser annealing Methods 0.000 claims description 16
- 238000002161 passivation Methods 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 10
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000005234 chemical deposition Methods 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 23
- 229920005591 polysilicon Polymers 0.000 abstract description 20
- 230000031700 light absorption Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 63
- 238000002513 implantation Methods 0.000 description 17
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 230000005641 tunneling Effects 0.000 description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 239000011574 phosphorus Substances 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical class [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- 229910018540 Si C Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- VZPPHXVFMVZRTE-UHFFFAOYSA-N [Kr]F Chemical compound [Kr]F VZPPHXVFMVZRTE-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- ISQINHMJILFLAQ-UHFFFAOYSA-N argon hydrofluoride Chemical compound F.[Ar] ISQINHMJILFLAQ-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- MGRWKWACZDFZJT-UHFFFAOYSA-N molybdenum tungsten Chemical compound [Mo].[W] MGRWKWACZDFZJT-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- HGCGQDMQKGRJNO-UHFFFAOYSA-N xenon monochloride Chemical compound [Xe]Cl HGCGQDMQKGRJNO-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007715 excimer laser crystallization Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005499 laser crystallization Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0321—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
- H10D30/0323—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon comprising monocrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Thin Film Transistor (AREA)
Abstract
一种薄膜晶体管的制作方法,包括:晶化前驱物的沉积步骤,所述沉积步骤采用化学气相沉积工艺,且在所述化学气相沉积工艺中以含碳气体及含硅气体为反应源;晶化步骤;形成有源层的步骤;形成栅极绝缘层及栅极的步骤;形成源极及漏极的步骤。上述薄膜晶体管的制作方法可提高有源层的禁带宽度,进而降低了低温多晶硅薄膜晶体管的漏电流。而且,还可降低低温多晶硅的可见光吸收系数,降低背光源产生的光致漏电流。此外,上述薄膜晶体管的制作方法,可适用于现有多晶硅薄膜晶体管生产线,无需增加光掩膜次数或更改生产设备,操作方法简单方便。本发明还提供一种薄膜晶体管、阵列基板及显示装置。
A method for manufacturing a thin film transistor, comprising: a deposition step of a crystallization precursor, the deposition step adopts a chemical vapor deposition process, and a carbon-containing gas and a silicon-containing gas are used as reaction sources in the chemical vapor deposition process; The step of forming an active layer, the step of forming a gate insulating layer and a gate, and the step of forming a source and a drain. The manufacturing method of the above thin film transistor can increase the forbidden band width of the active layer, thereby reducing the leakage current of the low temperature polysilicon thin film transistor. Moreover, it can also reduce the visible light absorption coefficient of the low-temperature polysilicon, and reduce the photoinduced leakage current generated by the backlight source. In addition, the manufacturing method of the above thin film transistor can be applied to the existing polysilicon thin film transistor production line without increasing the number of photomasks or changing production equipment, and the operation method is simple and convenient. The invention also provides a thin film transistor, an array substrate and a display device.
Description
技术领域 technical field
本发明涉及半导体器件领域,特别是涉及一种薄膜晶体管及其制作方法、以及阵列基板与显示装置。 The invention relates to the field of semiconductor devices, in particular to a thin film transistor and a manufacturing method thereof, an array substrate and a display device.
背景技术 Background technique
薄膜晶体管液晶显示器(TFT-LCD)是平板显示领域中最重要的一种,由于其具有众多优点,如体积薄、重量轻、画面品质优异、功耗低、寿命长、数字化等,而且也是唯一可跨越所有尺寸的显示技术,其应用领域非常广泛,几乎涵盖了当今信息社会的主要电子产品,如电视、监视器、便携式电脑、手机、PDA、GPS、车载显示、仪器仪表、公共显示和医用显示等。 Thin film transistor liquid crystal display (TFT-LCD) is the most important type in the field of flat panel display, because it has many advantages, such as thin size, light weight, excellent picture quality, low power consumption, long life, digital, etc., and it is also the only Display technology that spans all sizes, and its application fields are very wide, covering almost the main electronic products in today's information society, such as TV, monitor, portable computer, mobile phone, PDA, GPS, vehicle display, instrumentation, public display and medical display etc.
在液晶显示器中,薄膜晶体管一般用作开关元件来控制像素,或是用作驱动元件来驱动像素。薄膜晶体管按照硅薄膜性质通常可分为非晶硅(a-Si)与多晶硅(Poly-Si)两种,与非晶硅薄膜晶体管相比,多晶硅薄膜晶体管的载流子迁移率高2-3个数量级,这使得多晶硅薄膜晶体管在高分辨率平板上有极大的优势。然而,多晶硅薄膜晶体管的关态电流(即漏电流)比非晶硅薄膜晶体管高近1个数量级。关态电流过大,则会影响薄膜晶体管的开关特性,从而导致TFT-LCD出现显示不均、发白、窜扰等显示类缺陷。 In liquid crystal displays, thin film transistors are generally used as switching elements to control pixels, or as driving elements to drive pixels. Thin film transistors can generally be divided into two types: amorphous silicon (a-Si) and polycrystalline silicon (Poly-Si) according to the properties of silicon thin films. Compared with amorphous silicon thin film transistors, the carrier mobility of polycrystalline silicon thin film transistors is 2-3 times higher. An order of magnitude, which makes polysilicon thin film transistors have great advantages in high-resolution flat panels. However, the off-state current (ie, leakage current) of polysilicon thin film transistors is nearly an order of magnitude higher than that of amorphous silicon thin film transistors. If the off-state current is too large, it will affect the switching characteristics of the thin film transistor, which will lead to display defects such as uneven display, whitening, and crosstalk in TFT-LCD.
目前,多数面板显示厂商大都通过改变TFT结构来控制多晶硅薄膜晶体管的关态电流,如将TFT做成双栅极结构,或将TFT的沟道做成S形等,通过增加TFT沟道的长度来增加TFT的长宽比,从而降低其关态电流。然而,这些方法带来负面影响是TFT面积明显增加,显示器开口率下降。在高分辨率显示上,随着分辨率的提高,每个像素的面积变得越来越小,在有限的像素面积内,靠增加TFT沟道长度来降低多晶硅薄膜晶体管的关态电流的方法的缺点也变得越来越明显和难以维持。如何解决这一矛盾,在控制多晶硅薄膜晶体管的关态电流同时避免显示器开口率的降低,一直是行业追求的方向和研究的重点。 At present, most panel display manufacturers control the off-state current of polysilicon thin film transistors by changing the TFT structure, such as making the TFT a double gate structure, or making the TFT channel into an S shape, etc., by increasing the length of the TFT channel To increase the aspect ratio of the TFT, thereby reducing its off-state current. However, the negative impact of these methods is that the TFT area increases significantly and the aperture ratio of the display decreases. In high-resolution displays, as the resolution increases, the area of each pixel becomes smaller and smaller. In a limited pixel area, the method of reducing the off-state current of the polysilicon thin film transistor by increasing the channel length of the TFT The disadvantages are also becoming more and more obvious and difficult to maintain. How to solve this contradiction and avoid the reduction of the aperture ratio of the display while controlling the off-state current of the polysilicon thin film transistor has always been the direction pursued by the industry and the focus of research.
发明内容 Contents of the invention
基于此,本发明提供一种薄膜晶体管及其制作方法、以及阵列基板与显示装置,能够在降低多晶硅薄膜晶体管的关态电流同时避免显示器开口率的降低,而且此方法可适用于现有多晶硅薄膜晶体管生产线,无需增加光掩膜次数或更改生产设备,操作方法简单方便。 Based on this, the present invention provides a thin film transistor and its manufacturing method, as well as an array substrate and a display device, which can reduce the off-state current of the polysilicon thin film transistor while avoiding the reduction of the aperture ratio of the display, and this method can be applied to the existing polysilicon thin film The transistor production line does not need to increase the number of photomasks or change production equipment, and the operation method is simple and convenient.
一种薄膜晶体管的制作方法,包括: A method for manufacturing a thin film transistor, comprising:
晶化前驱物的沉积步骤,所述沉积步骤采用化学气相沉积工艺,且在所述化学气相沉积工艺中以含碳气体及含硅气体为反应源; A deposition step of a crystallization precursor, the deposition step adopts a chemical vapor deposition process, and in the chemical vapor deposition process, a carbon-containing gas and a silicon-containing gas are used as reaction sources;
晶化步骤; Crystallization step;
形成有源层的步骤; the step of forming an active layer;
形成栅极绝缘层及栅极的步骤; a step of forming a gate insulating layer and a gate;
形成源极及漏极的步骤。 The step of forming source and drain.
在其中一个实施例中,所述化学气相沉积工艺中,所述含碳气体与所述含硅气体的气体流量比为1/10~1。 In one embodiment, in the chemical vapor deposition process, the gas flow ratio of the carbon-containing gas to the silicon-containing gas is 1/10˜1.
在其中一个实施例中,所述含硅气体为SiH4、SiH2Cl2或SiH3Cl中的至少一种,所述含碳气体为CH4、C2H6、CH3OH、C2H5OH或CH3COOH中的至少一种。 In one embodiment, the silicon-containing gas is at least one of SiH 4 , SiH 2 Cl 2 or SiH 3 Cl, and the carbon-containing gas is CH 4 , C 2 H 6 , CH 3 OH, C 2 At least one of H 5 OH or CH 3 COOH.
在其中一个实施例中,所述化学沉积工艺为等离子体增强化学气相沉积,其中,所采用的温度为250~400℃,所采用的压强为100~400Pa,所采用的射频功率为10~80mW/cm2。 In one embodiment, the chemical deposition process is plasma-enhanced chemical vapor deposition, wherein the temperature used is 250-400°C, the pressure used is 100-400Pa, and the radio frequency power used is 10-80mW /cm 2 .
在其中一个实施例中,具体包括: In one of the embodiments, it specifically includes:
在基板上沉积栅极金属层,通过构图工艺,形成栅极; Deposit a gate metal layer on the substrate, and form a gate through a patterning process;
在所述栅极上沉积栅极绝缘层; depositing a gate insulating layer on the gate;
在所述栅极绝缘层上采用等离子体增强化学气相沉积工艺沉积晶化前驱物,且在所述等离子体增强化学气相沉积工艺中以含碳气体及含硅气体为反应源; Depositing a crystallization precursor on the gate insulating layer by using a plasma-enhanced chemical vapor deposition process, and using a carbon-containing gas and a silicon-containing gas as a reaction source in the plasma-enhanced chemical vapor deposition process;
对所述晶化前驱物进行准分子激光退火工艺,形成晶化层; performing an excimer laser annealing process on the crystallization precursor to form a crystallization layer;
对所述晶化层进行构图工艺,形成有源层; performing a patterning process on the crystallized layer to form an active layer;
对所述有源层进行离子注入,实现沟道掺杂; performing ion implantation on the active layer to achieve channel doping;
在所述有源层上沉积沟道绝缘层,通过构图工艺,形成沟道保护层; depositing a channel insulating layer on the active layer, and forming a channel protective layer through a patterning process;
以沟道保护层为掩膜,对所述有源层进行离子注入,形成源区和漏区; Using the channel protection layer as a mask, performing ion implantation on the active layer to form a source region and a drain region;
在所述有源层沉积上中间保护层,并在所述中间保护层上形成过孔; depositing an intermediate protective layer on the active layer, and forming via holes on the intermediate protective layer;
在所述中间绝缘层上沉积金属层,通过构图工艺,形成源极及漏极。 A metal layer is deposited on the intermediate insulating layer, and a source electrode and a drain electrode are formed through a patterning process.
在其中一个实施例中,具体包括: In one of the embodiments, it specifically includes:
在基板上形成缓冲层; forming a buffer layer on the substrate;
在所述缓冲层上采用等离子体增强化学气相沉积工艺沉积晶化前驱物,且在所述等离子体增强化学气相沉积工艺中以含碳气体及含硅气体为反应源; Depositing a crystallization precursor on the buffer layer by using a plasma-enhanced chemical vapor deposition process, and using a carbon-containing gas and a silicon-containing gas as a reaction source in the plasma-enhanced chemical vapor deposition process;
对所述晶化前驱物进行准分子激光退火工艺,形成晶化层; performing an excimer laser annealing process on the crystallization precursor to form a crystallization layer;
对所述晶化层进行构图工艺,形成有源层; performing a patterning process on the crystallized layer to form an active layer;
对所述有源层进行离子注入,实现沟道掺杂; performing ion implantation on the active layer to achieve channel doping;
在所述有源层上沉积栅极绝缘层; depositing a gate insulating layer on the active layer;
在所述栅极绝缘层上沉积栅极金属层,通过构图工艺,形成栅极; depositing a gate metal layer on the gate insulating layer, and forming a gate through a patterning process;
以栅极为掩膜,对所述有源层进行离子注入,形成源区和漏区; Using the gate as a mask, performing ion implantation on the active layer to form a source region and a drain region;
在所述栅极上沉积钝化层,在所述栅极绝缘层及所述钝化层形成过孔; Depositing a passivation layer on the gate, forming via holes in the gate insulating layer and the passivation layer;
制作源极及漏极。 Make source and drain.
在其中一个实施例中,所述晶化前驱物的厚度为40nm~60nm。 In one embodiment, the thickness of the crystallization precursor is 40nm-60nm.
一种薄膜晶体管,所述薄膜晶体管采用上述任一所述的制作方法制造得到。 A thin film transistor, which is manufactured by any one of the above-mentioned manufacturing methods.
一种阵列基板,包括基板,以及设置于所述基板上的上述薄膜晶体管、栅线、数据线及像素电极。 An array substrate, including a substrate, and the above-mentioned thin film transistors, gate lines, data lines and pixel electrodes arranged on the substrate.
一种显示装置,包括上述的阵列基板。 A display device includes the above-mentioned array substrate.
上述薄膜晶体管的制作方法通过在晶化前驱物的沉积过程中同时以含碳气体及含硅气体为反应源,经激光晶化后得到掺杂碳元素的有源层,与无掺杂的低温多晶硅相比,碳掺杂可以使低温多晶硅中形成键能较强的Si-C键,提高有源层的禁带宽度,进而有效降低低温多晶硅薄膜晶体管的漏电流。而且,还可降低低温多晶硅的可见光吸收系数,降低背光源产生的光致漏电流。此外,上述薄膜晶体管的制作方法,可适用于现有多晶硅薄膜晶体管生产线,无需增加光掩膜次数或更改生产设备,操作方法简单方便。 The manufacturing method of the above-mentioned thin film transistor uses carbon-containing gas and silicon-containing gas as reaction sources at the same time during the deposition process of the crystallization precursor, and obtains an active layer doped with carbon elements after laser crystallization, and an undoped low-temperature Compared with polysilicon, carbon doping can form Si-C bonds with stronger bond energy in low-temperature polysilicon, increase the band gap of the active layer, and effectively reduce the leakage current of low-temperature polysilicon thin film transistors. Moreover, it can also reduce the visible light absorption coefficient of the low-temperature polysilicon, and reduce the photoinduced leakage current generated by the backlight source. In addition, the manufacturing method of the above thin film transistor can be applied to the existing polysilicon thin film transistor production line without increasing the number of photomasks or changing production equipment, and the operation method is simple and convenient.
附图说明 Description of drawings
图1为本发明一实施例的制作方法的流程示意图; Fig. 1 is the schematic flow chart of the manufacturing method of an embodiment of the present invention;
图2为本发明另一实施例的制作方法的流程示意图; 2 is a schematic flow diagram of a manufacturing method according to another embodiment of the present invention;
图3A-3G分别为图2所示的薄膜晶体管在制作过程中的各步骤的结构示意图。 3A-3G are structural schematic diagrams of each step in the manufacturing process of the thin film transistor shown in FIG. 2 .
具体实施方式 detailed description
为能进一步了解本发明的特征、技术手段以及所达到的具体目的、功能,下面结合具体实施方式对本发明作进一步详细描述。 In order to further understand the features, technical means and specific objectives and functions achieved by the present invention, the present invention will be further described in detail below in conjunction with specific embodiments.
本发明提供一种薄膜晶体管的制作方法,包括: The invention provides a method for manufacturing a thin film transistor, comprising:
晶化前驱物的沉积步骤,所述沉积步骤采用化学气相沉积工艺,且在所述化学气相沉积工艺中以含碳气体及含硅气体为反应源; A deposition step of a crystallization precursor, the deposition step adopts a chemical vapor deposition process, and in the chemical vapor deposition process, a carbon-containing gas and a silicon-containing gas are used as reaction sources;
晶化步骤; Crystallization step;
形成有源层的步骤; the step of forming an active layer;
形成栅极绝缘层及栅极的步骤; a step of forming a gate insulating layer and a gate;
形成源极及漏极的步骤。 The step of forming source and drain.
薄膜晶体管按栅极及源极漏极的位置关系,可以分为底栅结构和顶栅结构。本实施例可用于制作底栅结构的薄膜晶体管,其具体包括如下步骤: Thin film transistors can be divided into bottom-gate structure and top-gate structure according to the positional relationship between gate, source and drain. This embodiment can be used to make a thin film transistor with a bottom gate structure, which specifically includes the following steps:
S110:在基板上沉积栅极金属层,通过构图工艺,形成栅极。 S110: depositing a gate metal layer on the substrate, and forming a gate through a patterning process.
在干净的透明基板上,如玻璃、聚酰亚胺(PI)及聚对苯二甲酸乙二醇酯(PET)等,采用溅射、热蒸发或等离子体增强化学气相沉积(PECVD)、低压力化学气相沉积(LPCVD)、常压化学气相淀积(APCVD)、电子回旋共振微波等离子体化学气相沉积(ECR-CVD)等方法沉积栅极金属层,然后,利用掩膜板(mask)进行曝光、显影和刻蚀,将栅极金属层图形化,形成栅极。 On clean transparent substrates, such as glass, polyimide (PI) and polyethylene terephthalate (PET), etc., using sputtering, thermal evaporation or plasma enhanced chemical vapor deposition (PECVD), low The gate metal layer is deposited by pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-CVD), and then, using a mask (mask) Expose, develop and etch to pattern the gate metal layer to form the gate.
例如,栅极金属层的材料为钼、铝、铬、铜、铝镍合金及钼钨合金等金属或合金,又如,使用上述几种材料的组合。在本实施例中,栅极金属层的厚度为100-800nm,当然,栅极金属层的厚度也可根据具体工艺需要选择合适的厚度。 For example, the material of the gate metal layer is metal or alloy such as molybdenum, aluminum, chromium, copper, aluminum-nickel alloy, molybdenum-tungsten alloy, or a combination of the above-mentioned materials. In this embodiment, the thickness of the gate metal layer is 100-800 nm. Of course, the thickness of the gate metal layer can also be selected according to specific process requirements.
S120:在栅极上沉积栅极绝缘层。 S120: depositing a gate insulating layer on the gate.
例如,采用化学气相沉积方法,在形成了栅极的基板上形成栅极绝缘层。又如,沉积温度一般控制在500℃以下。又如,栅极绝缘层的厚度可为30~300nm,也可根据具体工艺需要选择合适的厚度。又如,栅极绝缘层采用单层的氧化硅、氮化硅,或者二者的叠层。 For example, a gate insulating layer is formed on a substrate on which a gate is formed by using a chemical vapor deposition method. As another example, the deposition temperature is generally controlled below 500°C. As another example, the thickness of the gate insulating layer may be 30-300 nm, and an appropriate thickness may also be selected according to specific process requirements. In another example, the gate insulating layer is a single layer of silicon oxide, silicon nitride, or a stack of the two.
S130:在栅极绝缘层上采用等离子体增强化学气相沉积工艺沉积晶化前驱物,且在等离子体增强化学气相沉积工艺中以含碳气体及含硅气体为反应源。 S130: Deposit crystallization precursors on the gate insulating layer by plasma-enhanced chemical vapor deposition, and use carbon-containing gas and silicon-containing gas as reaction sources in the plasma-enhanced chemical vapor deposition process.
等离子体增强化学气相沉积(PECVD)的技术原理是利用低温等离子体作能量源,样品置于PECVD设备的电极上,利用发热体使样品升温到预定的温度,然后向反应腔室通入适量的反应气体,在两电极板上施加高频交流电压,气体在高频电场下被电离,然后经过一系列化学反应,在样品表面形成固态薄膜。 The technical principle of plasma-enhanced chemical vapor deposition (PECVD) is to use low-temperature plasma as an energy source. The sample is placed on the electrode of the PECVD equipment, and the heating element is used to heat the sample to a predetermined temperature, and then an appropriate amount of Reactive gas, apply a high-frequency AC voltage on the two electrode plates, the gas is ionized under the high-frequency electric field, and then undergo a series of chemical reactions to form a solid film on the surface of the sample.
一般地,利用PECVD技术沉积薄膜材料时,主要有以下三个基本过程:(1)电子在辉光放电的等离子体中经外电场加速后,与反应气体发生初级反应,使得反应气体发生分解,形成离子和活性基团的混合物;(2)正离子受到离子层加速电场的加速与上电极碰撞,在下电极附近也会存在较小的离子层电场,所以衬底也受到一定程度的离子轰击,各种活性基团向薄膜生长表面和管壁扩散输运,同时发生各反应物之间的次级反应;(3)到达衬底表面的各种初级反应和次级反应物被吸附并与表面相互发生反应,从而形成薄膜,同时伴有气相分子物的再放出。 Generally, when using PECVD technology to deposit thin film materials, there are mainly the following three basic processes: (1) After the electrons are accelerated by an external electric field in the glow discharge plasma, they undergo a primary reaction with the reactive gas, causing the reactive gas to decompose. Form a mixture of ions and active groups; (2) The positive ions are accelerated by the ion layer acceleration electric field and collide with the upper electrode, and there will be a small ion layer electric field near the lower electrode, so the substrate is also bombarded by ions to a certain extent. Various active groups are diffused and transported to the film growth surface and tube wall, and secondary reactions between reactants occur at the same time; (3) Various primary reactions and secondary reactants that reach the substrate surface are adsorbed and bonded to the surface React with each other to form a thin film, accompanied by the re-emission of gas phase molecules.
在本实施例中,以含碳气体及含硅气体为反应源,以氢气为载气,控制含碳气体与含硅气体的气体流量比为1/10~1,即10%至100%,控制反应腔的压强为100~400Pa,温度为250~400℃,射频功率为10~80mW/cm2时进行等离子增强化学气相沉积。其中,含硅气体可为SiH4、SiH2Cl2或SiH3Cl,含碳气体可为CH4、C2H6、CH3OH、C2H5OH或CH3COOH。例如,反应源与载气的体积比为1~10:1~1000;例如,1~10:1~100;又如,以含碳气体及含硅气体为反应源,以氩气为载气。 In this embodiment, carbon-containing gas and silicon-containing gas are used as reaction sources, hydrogen is used as carrier gas, and the gas flow ratio of carbon-containing gas and silicon-containing gas is controlled to be 1/10-1, that is, 10% to 100%. The plasma-enhanced chemical vapor deposition is performed when the pressure of the reaction chamber is controlled to be 100-400 Pa, the temperature is 250-400° C., and the radio frequency power is 10-80 mW/cm 2 . Wherein, the silicon-containing gas may be SiH 4 , SiH 2 Cl 2 or SiH 3 Cl, and the carbon-containing gas may be CH 4 , C 2 H 6 , CH 3 OH, C 2 H 5 OH or CH 3 COOH. For example, the volume ratio of the reaction source to the carrier gas is 1-10:1-1000; for example, 1-10:1-100; another example is to use carbon-containing gas and silicon-containing gas as the reaction source and argon as the carrier gas .
在本实施例中,晶化前驱物的厚度为40nm~60nm。当然,也可根据具体的工艺需要选择合适的厚度。例如,晶化前驱物的厚度为42nm~55nm,又如,晶化前驱物的厚度为45nm、48nm、50nm、51nm、52nm或54nm。 In this embodiment, the thickness of the crystallization precursor is 40nm˜60nm. Of course, an appropriate thickness can also be selected according to specific process requirements. For example, the thickness of the crystallization precursor is 42nm-55nm, and for another example, the thickness of the crystallization precursor is 45nm, 48nm, 50nm, 51nm, 52nm or 54nm.
S140:对晶化前驱物进行激光退火工艺,形成晶化层。 S140: performing a laser annealing process on the crystallization precursor to form a crystallization layer.
例如,激光退火可采用氯化氙(XeCl)、氟化氪(KrF)、氟化氩(ArF)等准分子激光器,例如波长为308nm,来进行准分子激光退火。激光光束经过光学系统后为线性光源。 For example, laser annealing may use excimer lasers such as xenon chloride (XeCl), krypton fluoride (KrF), argon fluoride (ArF), etc., for example, with a wavelength of 308 nm, for excimer laser annealing. The laser beam becomes a linear light source after passing through the optical system.
例如,准分子激光退火的脉冲重复率(pulse repetition ratio)为300Hz~800Hz,又如,准分子激光退火的脉冲重复率为400Hz~600Hz;又如,扫描间距(scan pitch)为15μm~30μm;又如,激光能量密度为250~600mJ/cm2,又如,激光能量密度为350~500mJ/cm2;又如,扫描速率优选为0.5mm/s~50mm/s,又如,扫描速率为0.5mm/s~50mm/s 1mm/s~30mm/s,又如,扫描速率为2mm/s~10mm/s。 For example, the pulse repetition rate (pulse repetition ratio) of excimer laser annealing is 300Hz-800Hz, another example, the pulse repetition rate of excimer laser annealing is 400Hz-600Hz; another example, the scan pitch (scan pitch) is 15μm-30μm; As another example, the laser energy density is 250-600mJ/cm 2 , as another example, the laser energy density is 350-500mJ/cm 2 ; as another example, the scanning rate is preferably 0.5mm/s-50mm/s, and as another example, the scanning rate is 0.5mm/s~50mm/s 1mm/s~30mm/s, another example, the scan rate is 2mm/s~10mm/s.
优选地,在进行激光退火工艺之前,需要对该晶化前驱物进行去氢处理,使得氢含量降至2%以下,防止氢爆现象的产生。例如,采用热处理将氢从该晶化前驱物中排除。 Preferably, before performing the laser annealing process, the crystallization precursor needs to be dehydrogenated, so that the hydrogen content is reduced to below 2%, so as to prevent hydrogen explosion. For example, heat treatment is used to remove hydrogen from the crystallization precursor.
S150:对晶化层进行构图工艺,形成有源层; S150: performing a patterning process on the crystallized layer to form an active layer;
例如,具体地,其包括以下步骤: For example, specifically, it includes the following steps:
S151:利用光刻工艺形成掩膜,采用干法刻蚀方法形成图形,形成包括源区、漏区、沟道区的有源层。 S151: Forming a mask by using a photolithography process, forming a pattern by using a dry etching method, and forming an active layer including a source region, a drain region, and a channel region.
S152:对有源层进行离子注入,实现沟道掺杂。 S152: performing ion implantation on the active layer to achieve channel doping.
本实施例中,掺杂的目的是为了调节薄膜晶体管的阈值电压。例如,当需要薄膜晶体管的阈值电压向正的方向移动时,对有源层进行硼元素掺杂;当需要薄膜晶体管的阈值电压向负的方向移动时,对有源层进行磷元素掺杂或砷元素掺杂;而根据工艺如果不需要调节阈值电压,则不需要对有源层进行离子注入实现沟道掺杂。 In this embodiment, the purpose of doping is to adjust the threshold voltage of the thin film transistor. For example, when the threshold voltage of the thin film transistor needs to move in the positive direction, the active layer is doped with boron; when the threshold voltage of the thin film transistor needs to be moved in the negative direction, the active layer is doped with phosphorus or Doping with arsenic element; and if the threshold voltage does not need to be adjusted according to the process, it is not necessary to perform ion implantation on the active layer to achieve channel doping.
离子注入方式包括具有质量分析仪的离子注入方式、不具有质量分析仪的离子云式注入方式、等离子注入方式或固态扩散式注入方式。例如,在本实施例中采用具有质量分析仪的离子注入方式。 The ion implantation method includes an ion implantation method with a mass analyzer, an ion cloud implantation method without a mass analyzer, a plasma implantation method, or a solid-state diffusion implantation method. For example, in this embodiment, an ion implantation method with a mass analyzer is used.
根据薄膜晶体管阈值电压的需要,注入介质为含硼元素或含磷元素的气体。例如,需要含硼元素注入时,如以B2H6与H2的混合气体为注入介质,又如,B2H6与H2的比例为1%~30%,注入能量范围为2~50KeV,更优选的能量范围为 4~10KeV,注入剂量范围为0~5×1013atoms/cm3,优选地,注入剂量范围为0~9×1012atoms/cm3。又如,采用含磷元素,如以PH3与H2的混合气体作为注入介质,例如,PH3与H2的比例为1%~30%;注入能量范围为5~50KeV,更优选的能量范围为7~20KeV;注入剂量范围为0~5×1013atoms/cm3,优选地,注入剂量范围为0~9×1012atoms/cm3。 According to the requirements of the threshold voltage of the thin film transistor, the injection medium is a gas containing boron element or phosphorus element. For example, when boron-containing elements are required to be implanted, for example, the mixed gas of B 2 H 6 and H 2 is used as the injection medium, and the ratio of B 2 H 6 to H 2 is 1% to 30%, and the implantation energy ranges from 2 to 30%. 50KeV, more preferably the energy range is 4-10KeV, the implantation dose range is 0-5×10 13 atoms/cm 3 , preferably, the implantation dose range is 0-9×10 12 atoms/cm 3 . As another example, phosphorus-containing elements are used, such as a mixed gas of PH 3 and H 2 as the injection medium, for example, the ratio of PH 3 and H 2 is 1% to 30%; the range of injection energy is 5 to 50KeV, and the more preferred energy The range is 7-20KeV; the implantation dose is in the range of 0-5×10 13 atoms/cm 3 , preferably, the implantation dose is in the range of 0-9×10 12 atoms/cm 3 .
S160:在有源层上沉积沟道绝缘层,通过构图工艺,形成沟道保护层。 S160: depositing a channel insulating layer on the active layer, and forming a channel protective layer through a patterning process.
例如,采用化学气相沉积方法,在有源层上沉积沟道绝缘层。又如,沉积温度一般控制在500℃以下。又如,沟道绝缘层的厚度可为20~300nm,也可根据具体工艺需要选择合适的厚度。又如,沟道绝缘层采用单层的氧化硅、氮化硅,或者二者的叠层。 For example, a channel insulating layer is deposited on the active layer using a chemical vapor deposition method. As another example, the deposition temperature is generally controlled below 500°C. As another example, the thickness of the channel insulating layer may be 20-300 nm, and an appropriate thickness may also be selected according to specific process requirements. In another example, the channel insulating layer is made of a single layer of silicon oxide, silicon nitride, or a stack of the two.
例如,在沟道绝缘层上涂覆光刻胶,通过掩膜板曝光。又如,使用正性光刻胶,曝光光源从基板方向透过基板对光刻胶进行曝光,有栅极的地方曝光光源被遮挡,后面的光刻胶不被曝光,显影后形成图案。 For example, a photoresist is coated on the channel insulating layer and exposed through a mask. As another example, using a positive photoresist, the exposure light source passes through the substrate to expose the photoresist from the direction of the substrate, the exposure light source is blocked at the place where the grid is located, and the photoresist behind is not exposed, and a pattern is formed after development.
以保留的光刻胶做模板,对沟道保护层进行刻蚀。将没有光刻胶覆盖的保护层刻蚀掉。然后通过脱模工艺将光刻胶去除。 Using the remaining photoresist as a template, the channel protection layer is etched. The protective layer not covered by photoresist is etched away. The photoresist is then removed by a stripping process.
S170:以沟道保护层为掩膜,对有源层进行离子注入,形成源区和漏区。 S170: Using the channel protective layer as a mask, perform ion implantation on the active layer to form a source region and a drain region.
离子注入方式包括具有质量分析仪的离子注入方式、不具有质量分析仪的离子云式注入方式、等离子注入方式或固态扩散式注入方式。例如,在本实施例中采用具有质量分析仪的离子注入方式。 The ion implantation method includes an ion implantation method with a mass analyzer, an ion cloud implantation method without a mass analyzer, a plasma implantation method, or a solid-state diffusion implantation method. For example, in this embodiment, an ion implantation method with a mass analyzer is used.
根据设计需要,注入介质为含硼元素和/或含磷元素的气体,以形成P型或N型薄膜晶体管。例如,采用含硼元素,如以B2H6/H2的混合气体为注入介质,例如,B2H6与H2的比例为1%~30%;注入能量范围为5~50KeV,更优选的能量范围为7~25KeV;注入剂量范围为1×1013~1×1017atoms/cm3,优选地,注入剂量范围为5×1014~5×1015atoms/cm3;又如,采用含磷元素,如以PH3/H2的混合气体作为注入介质。 According to design requirements, the injection medium is a gas containing boron and/or phosphorus to form a P-type or N-type thin film transistor. For example, using boron-containing elements, such as B 2 H 6 /H 2 mixed gas as the injection medium, for example, the ratio of B 2 H 6 to H 2 is 1% to 30%; the range of implantation energy is 5 to 50KeV, more The preferred energy range is 7-25KeV; the implantation dose ranges from 1×10 13 to 1×10 17 atoms/cm 3 , preferably, the implantation dose ranges from 5×10 14 to 5×10 15 atoms/cm 3 ; , using phosphorus-containing elements, such as PH 3 /H 2 mixed gas as the injection medium.
S180:在沟道保护层上沉积中间绝缘层,并对中间绝缘层进行过孔。 S180: Depositing an intermediate insulating layer on the channel protection layer, and forming a via hole in the intermediate insulating layer.
例如,采用化学气相沉积方法,在沟道保护层上沉积中间绝缘层。又如,沉积温度一般控制在500℃以下。又如,中间绝缘层的厚度可为100~1000nm, 也可根据具体工艺需要选择合适的厚度。又如,中间绝缘层采用单层的氧化硅、氮化硅,或者二者的叠层。 For example, a chemical vapor deposition method is used to deposit an intermediate insulating layer on the channel protection layer. As another example, the deposition temperature is generally controlled below 500°C. In another example, the thickness of the intermediate insulating layer may be 100-1000 nm, and an appropriate thickness may also be selected according to specific process requirements. For another example, the intermediate insulating layer is a single layer of silicon oxide, silicon nitride, or a stack of the two.
例如,采用干法刻蚀的方法,以光刻工艺形成掩膜,在中间绝缘层上形成过孔以暴露源区和漏区。其中,干法刻蚀工艺中,可采用含氟元素或含氯元素的气体,如SF6、CF4、CHF3、CCl2F2等气体或者前述气体与O2的混合气体作为刻蚀介质,采用反应离子刻蚀法、等离子刻蚀法或电感耦合等离子体刻蚀法进行刻蚀。 For example, a dry etching method is used to form a mask with a photolithography process, and via holes are formed on the intermediate insulating layer to expose the source region and the drain region. Among them, in the dry etching process, gases containing fluorine elements or chlorine elements, such as SF 6 , CF 4 , CHF 3 , CCl 2 F 2 , or a mixture of the aforementioned gases and O 2 can be used as the etching medium. Etching is carried out by reactive ion etching, plasma etching or inductively coupled plasma etching.
S190:在中间保护层上沉积金属层,通过构图工艺,形成源极及漏极。 S190: Deposit a metal layer on the intermediate protection layer, and form a source electrode and a drain electrode through a patterning process.
例如,S190具体包括如下步骤: For example, S190 specifically includes the following steps:
S191:在中间保护层沉积源漏金属薄膜; S191: Depositing a source-drain metal thin film on the intermediate protective layer;
S192:采用湿法刻蚀或干法刻蚀的方法,以光刻工艺形成掩膜,对源漏金属薄膜进行构图,形成源极和漏极。 S192: Using wet etching or dry etching, a photolithography process is used to form a mask, and the source and drain metal thin films are patterned to form a source and a drain.
至此,已完成阵列基板包含栅极、源极和漏极的薄膜晶体管的制备,而阵列基板上的栅线、数据线及像素电极可根据常规工艺得到。根据阵列基板的结构需求,可通过常规工艺最终形成显示面板,进一步形成显示装置。 So far, the preparation of the thin film transistors including the gate, source and drain of the array substrate has been completed, and the gate lines, data lines and pixel electrodes on the array substrate can be obtained according to conventional processes. According to the structural requirements of the array substrate, a display panel can be finally formed through conventional processes, and further a display device can be formed.
本发明另一实施例还提供一用于顶栅结构的薄膜晶体管的制作方法,其具体步骤如下: Another embodiment of the present invention also provides a method for manufacturing a thin film transistor with a top-gate structure, the specific steps of which are as follows:
S210:在基板上形成缓冲层。 S210: forming a buffer layer on the substrate.
请参阅图3A,在干净的基板100上形成缓冲层200,基板100可为玻璃基板或柔性基板。形成的缓冲层200可以提高待形成的晶化前驱物与基板之间的附着程度。同时,还可以防止基板中的金属离子扩散至有源层,降低杂质缺陷,并且可以减少漏电流的产生。 Referring to FIG. 3A , a buffer layer 200 is formed on a clean substrate 100 , which may be a glass substrate or a flexible substrate. The formed buffer layer 200 can improve the degree of adhesion between the crystallization precursor to be formed and the substrate. At the same time, it can also prevent metal ions in the substrate from diffusing to the active layer, reduce impurity defects, and reduce leakage current generation.
具体地,在玻璃基板上利用等离子体化学气相沉积法(PECVD)沉积一层一定厚度的缓冲层。沉积材料可以为单层的氧化硅(SiOx)膜层或氮化硅(SiNx)膜层,或者为氧化硅(SiOx)和氮化硅(SiNx)的叠层。 Specifically, a buffer layer with a certain thickness is deposited on the glass substrate by plasma chemical vapor deposition (PECVD). The deposition material can be a single layer of silicon oxide (SiO x ) film layer or silicon nitride (SiN x ) film layer, or a stack of silicon oxide (SiO x ) and silicon nitride (SiN x ).
其中,形成SiNx膜层的反应气体可以为SiH4、NH3、N2的混合气体,或者为SiH2Cl2、NH3、N2的混合气体;形成SiOx膜层的反应气体可以为SiH4、N2O的混合气体,或者为SiH4、硅酸乙酯(TEOS)的混合气体。 Wherein, the reaction gas for forming the SiN x film layer can be a mixed gas of SiH 4 , NH 3 , N 2 , or a mixed gas of SiH 2 Cl 2 , NH 3 , N 2 ; the reaction gas for forming a SiO x film layer can be A mixed gas of SiH 4 and N2O, or a mixed gas of SiH 4 and ethyl silicate (TEOS).
S220:在缓冲层上采用等离子体增强化学气相沉积工艺沉积晶化前驱物,且在等离子体增强化学气相沉积工艺中以含碳气体及含硅气体为反应源。 S220: Deposit crystallization precursors on the buffer layer by using a plasma-enhanced chemical vapor deposition process, and use carbon-containing gas and silicon-containing gas as reaction sources in the plasma-enhanced chemical vapor deposition process.
在本实施例中,以含碳气体及含硅气体为反应源,以氢气为载气,控制含碳气体与含硅气体的气体流量比为1/10~1,控制反应腔的压强为100~400Pa,温度为250~400℃,射频功率为10~80mW/cm2时进行等离子增强化学气相沉积。其中,含硅气体可为SiH4、SiH2Cl2或SiH3Cl,含碳气体可为CH4、C2H6、CH3OH、C2H5OH或CH3COOH。例如,反应源与载气的体积比为1~10:1~1000;例如,1~10:1~100;又如,以含碳气体及含硅气体为反应源,以氩气为载气。 In this embodiment, carbon-containing gas and silicon-containing gas are used as reaction sources, hydrogen is used as carrier gas, the gas flow ratio of carbon-containing gas and silicon-containing gas is controlled to be 1/10-1, and the pressure of the reaction chamber is controlled to be 100 ~ 400Pa, the temperature is 250 ~ 400 ℃, and the radio frequency power is 10 ~ 80mW/cm 2 for plasma enhanced chemical vapor deposition. Wherein, the silicon-containing gas may be SiH 4 , SiH 2 Cl 2 or SiH 3 Cl, and the carbon-containing gas may be CH 4 , C 2 H 6 , CH 3 OH, C 2 H 5 OH or CH 3 COOH. For example, the volume ratio of the reaction source to the carrier gas is 1-10:1-1000; for example, 1-10:1-100; another example is to use carbon-containing gas and silicon-containing gas as the reaction source and argon as the carrier gas .
在本实施例中,晶化前驱物的厚度为40nm~60nm。当然,也可根据具体的工艺需要选择合适的厚度。例如,晶化前驱物的厚度为42nm~55nm,又如,晶化前驱物的厚度为45nm、48nm、50nm、51nm、52nm或54nm。 In this embodiment, the thickness of the crystallization precursor is 40nm˜60nm. Of course, an appropriate thickness can also be selected according to specific process requirements. For example, the thickness of the crystallization precursor is 42nm-55nm, and for another example, the thickness of the crystallization precursor is 45nm, 48nm, 50nm, 51nm, 52nm or 54nm.
S230:对晶化前驱物进行激光退火工艺,形成晶化层。 S230: performing a laser annealing process on the crystallization precursor to form a crystallization layer.
例如,激光退火可采用氯化氙(XeCl)、氟化氪(KrF)、氟化氩(ArF)等准分子激光器,例如波长为308nm,来进行准分子激光退火。激光光束经过光学系统后为线性光源。 For example, laser annealing may use excimer lasers such as xenon chloride (XeCl), krypton fluoride (KrF), argon fluoride (ArF), etc., for example, with a wavelength of 308 nm, for excimer laser annealing. The laser beam becomes a linear light source after passing through the optical system.
例如,准分子激光退火的脉冲重复率(pulse repetition ratio)为300Hz~800Hz,又如,准分子激光退火的脉冲重复率为400Hz~600Hz;又如,扫描间距(scan pitch)为15μm~30μm;又如,激光能量密度为250~600mJ/cm2,又如,激光能量密度为350~500mJ/cm2;又如,扫描速率优选为0.5mm/s~50mm/s,又如,扫描速率为0.5mm/s~50mm/s 1mm/s~30mm/s,又如,扫描速率为2mm/s~10mm/s。 For example, the pulse repetition rate (pulse repetition ratio) of excimer laser annealing is 300Hz-800Hz, another example, the pulse repetition rate of excimer laser annealing is 400Hz-600Hz; another example, the scan pitch (scan pitch) is 15μm-30μm; As another example, the laser energy density is 250-600mJ/cm 2 , as another example, the laser energy density is 350-500mJ/cm 2 ; as another example, the scanning rate is preferably 0.5mm/s-50mm/s, and as another example, the scanning rate is 0.5mm/s~50mm/s 1mm/s~30mm/s, another example, the scan rate is 2mm/s~10mm/s.
优选地,在进行激光退火工艺之前,需要对该晶化前驱物进行去氢处理,使得氢含量降至2%以下,防止氢爆现象的产生。例如,采用热退火处理将氢从该晶化前驱物中排除。 Preferably, before performing the laser annealing process, the crystallization precursor needs to be dehydrogenated, so that the hydrogen content is reduced to below 2%, so as to prevent hydrogen explosion. For example, hydrogen is removed from the crystallization precursor using a thermal annealing treatment.
S240:对晶化层进行构图工艺,形成有源层。 S240: Perform a patterning process on the crystallized layer to form an active layer.
例如,具体地,其包括以下步骤: For example, specifically, it includes the following steps:
S241:利用光刻工艺形成掩膜,采用干法刻蚀方法形成图形,形成包括源区、漏区和沟道区的有源层300,其完成后的截面请参阅图3B。 S241: Form a mask by using a photolithography process, and form a pattern by dry etching to form an active layer 300 including a source region, a drain region and a channel region. Please refer to FIG. 3B for a cross-section after completion.
S242:对有源层进行离子注入,实现沟道掺杂。 S242: performing ion implantation on the active layer to achieve channel doping.
对沟道进行掺杂的目的是为了调节器件的阈值电压。例如,当需要薄膜晶体管的阈值电压向正的方向移动时,对有源层进行硼元素掺杂;当需要薄膜晶体管的阈值电压向负的方向移动时,对有源层进行磷元素掺杂或砷元素掺杂;而根据工艺如果不需要调节阈值电压,则不需要对有源层进行离子注入实现沟道掺杂。 The purpose of doping the channel is to adjust the threshold voltage of the device. For example, when the threshold voltage of the thin film transistor needs to move in the positive direction, the active layer is doped with boron; when the threshold voltage of the thin film transistor needs to be moved in the negative direction, the active layer is doped with phosphorus or Doping with arsenic element; and if the threshold voltage does not need to be adjusted according to the process, it is not necessary to perform ion implantation on the active layer to achieve channel doping.
S250:在有源层300上沉积栅极绝缘层400,其完成后的截面请参阅图3C。 S250 : Deposit a gate insulating layer 400 on the active layer 300 , and refer to FIG. 3C for a cross-section after completion.
例如,采用化学气相沉积方法,在形成了有源层的基板上形成栅极绝缘层。又如,沉积温度一般控制在500℃以下。又如,栅极绝缘层的厚度可为80~200nm,也可根据具体工艺需要选择合适的厚度。又如,栅极绝缘层采用单层的氧化硅、氮化硅,或者二者的叠层。 For example, a gate insulating layer is formed on the substrate on which the active layer is formed using a chemical vapor deposition method. As another example, the deposition temperature is generally controlled below 500°C. As another example, the thickness of the gate insulating layer may be 80-200 nm, and an appropriate thickness may also be selected according to specific process requirements. In another example, the gate insulating layer is a single layer of silicon oxide, silicon nitride, or a stack of the two.
S260:在栅极绝缘层400上沉积栅极金属层,通过构图工艺,形成栅极500,其完成后的截面请参阅图3D。 S260: Deposit a gate metal layer on the gate insulating layer 400, and form a gate 500 through a patterning process. Please refer to FIG. 3D for a cross-section after completion.
例如,采用溅射、热蒸发或等离子体增强化学气相沉积(PECVD)、低压力化学气相沉积(LPCVD)、常压化学气相淀积(APCVD)、电子回旋共振微波等离子体化学气相沉积(ECR-CVD)等方法沉积栅极金属层,然后,利用掩膜板(mask)进行曝光、显影和刻蚀,将栅极金属层图形化,形成栅极。 For example, sputtering, thermal evaporation or plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), electron cyclotron resonance microwave plasma chemical vapor deposition (ECR- CVD) and other methods to deposit a gate metal layer, and then use a mask to perform exposure, development and etching to pattern the gate metal layer to form a gate.
例如,栅极金属层的材料为钼、铝、铬、铜、铝镍合金及钼钨合金等金属或合金,又如,使用上述几种材料的组合。在本实施例中,栅极金属层的厚度为100-800nm,当然,栅极金属层的厚度也可根据具体工艺需要选择合适的厚度。 For example, the material of the gate metal layer is metal or alloy such as molybdenum, aluminum, chromium, copper, aluminum-nickel alloy, molybdenum-tungsten alloy, or a combination of the above-mentioned materials. In this embodiment, the thickness of the gate metal layer is 100-800 nm. Of course, the thickness of the gate metal layer can also be selected according to specific process requirements.
S270:以栅极500作为掩膜,对有源层300进行离子注入,形成源区310及漏区320,其完成后的截面请参阅图3E。 S270 : Using the gate 500 as a mask, perform ion implantation on the active layer 300 to form the source region 310 and the drain region 320 , please refer to FIG. 3E for the completed cross-section.
例如,在本实施例中采用具有质量分析仪的离子注入方式。又如,根据设计需要,注入介质为含硼元素和/或含磷元素的气体,以形成P型或N型薄膜晶体管。例如,采用含硼元素,如以B2H6/H2的混合气体为注入介质,例如,B2H6与H2的比例为1%~30%;注入能量范围为5~50KeV,更优选的能量范围为20~30KeV;注入剂量范围为1×1013~1×1017atoms/cm3,优选地,注入剂量范围为5×1014~5×1015atoms/cm3;又如,采用含磷元素,如以PH3/H2的混合气体作为注入介质。如以PH3/H2的混合气体为注入介质,例如,PH3与H2的比例为 1%~30%;注入能量范围为20~110KeV,更优选的能量范围为50~70KeV;注入剂量范围为1×1013~1×1017atoms/cm3,优选地,注入剂量范围为5×1014~5×1015atoms/cm3。 For example, in this embodiment, an ion implantation method with a mass analyzer is used. For another example, according to design requirements, the implant medium is a gas containing boron and/or phosphorus to form a P-type or N-type thin film transistor. For example, using boron-containing elements, such as B 2 H 6 /H 2 mixed gas as the injection medium, for example, the ratio of B 2 H 6 to H 2 is 1% to 30%; the range of implantation energy is 5 to 50KeV, more The preferred energy range is 20-30KeV; the implantation dose ranges from 1×10 13 to 1×10 17 atoms/cm 3 , preferably, the implantation dose ranges from 5×10 14 to 5×10 15 atoms/cm 3 ; , using phosphorus-containing elements, such as PH 3 /H 2 mixed gas as the injection medium. For example, the mixed gas of PH 3 /H 2 is used as the injection medium, for example, the ratio of PH 3 to H 2 is 1% to 30%; the injection energy range is 20 to 110KeV, and the more preferred energy range is 50 to 70KeV; the injection dose The range is 1×10 13 to 1×10 17 atoms/cm 3 , preferably, the injection dose is in the range of 5×10 14 to 5×10 15 atoms/cm 3 .
S280:在栅极500上沉积钝化层600,并在栅极绝缘层400及钝化层600形成过孔610,其完成后的截面请参阅图3F。 S280: Deposit a passivation layer 600 on the gate 500, and form a via hole 610 in the gate insulating layer 400 and the passivation layer 600. Please refer to FIG. 3F for a cross-section after completion.
具体地,可以通过化学气相沉积工艺沉积厚度为200nm~800nm的钝化层,例如,钝化层为氧化物、氮化物或者氧氮化合物,又如,钝化层为单层结构或者多层结构,又如,形成钝化层的气体为SiH4,NH3,N2或者SiH4,N2O。 Specifically, a passivation layer with a thickness of 200 nm to 800 nm can be deposited by a chemical vapor deposition process, for example, the passivation layer is an oxide, nitride or oxynitride compound, and for another example, the passivation layer is a single-layer structure or a multi-layer structure , as another example, the gas for forming the passivation layer is SiH 4 , NH 3 , N 2 or SiH 4 , N 2 O.
例如,采用干法刻蚀的方法,以光刻工艺形成掩膜,在钝化层和栅极绝缘层上形成过孔以暴露源区和漏区。其中,干法刻蚀工艺中,可采用含氟元素或含氯元素的气体,如SF6、CF4、CHF3、CCl2F2等气体或者前述气体与O2的混合气体作为刻蚀介质,采用反应离子刻蚀法、等离子刻蚀法或电感耦合等离子体刻蚀法进行刻蚀。 For example, a dry etching method is used to form a mask by a photolithography process, and via holes are formed on the passivation layer and the gate insulating layer to expose the source region and the drain region. Among them, in the dry etching process, gases containing fluorine elements or chlorine elements, such as SF 6 , CF 4 , CHF 3 , CCl 2 F 2 , or a mixture of the aforementioned gases and O 2 can be used as the etching medium. Etching is carried out by reactive ion etching, plasma etching or inductively coupled plasma etching.
S290:制作源极710及漏极720,其完成后的截面请参阅图3G。 S290 : Fabricate the source electrode 710 and the drain electrode 720 , please refer to FIG. 3G for the completed cross section.
具体地,在钝化层的上方采用溅射方式、热蒸发方式或等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式形成金属层。在金属层的上方,采用光刻工艺以光刻胶形成光阻掩模,并采用湿法刻蚀或干法刻蚀形成包括源极和漏极的图形。请参阅图3G,源极710贯穿过孔610并与源区310电连接,漏极720贯穿过孔610并与漏区320电连接。 Specifically, the metal layer is formed on the passivation layer by sputtering, thermal evaporation or plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition or electron cyclotron resonance chemical vapor deposition. Above the metal layer, a photoresist mask is formed with photoresist by photolithography process, and patterns including source and drain are formed by wet etching or dry etching. Referring to FIG. 3G , the source 710 penetrates through the via hole 610 and is electrically connected to the source region 310 , and the drain 720 penetrates through the via hole 610 and is electrically connected to the drain region 320 .
至此,通过该方法即已完成阵列基板包含栅极、源极和漏极的薄膜晶体管的制备,而阵列基板上的栅线、数据线及像素电极可根据常规工艺得到。根据阵列基板的结构需求,可通过常规工艺最终形成显示面板,进一步形成显示装置。 So far, through this method, the preparation of the thin film transistors including the gate, source and drain of the array substrate has been completed, and the gate lines, data lines and pixel electrodes on the array substrate can be obtained according to conventional processes. According to the structural requirements of the array substrate, a display panel can be finally formed through conventional processes, and further a display device can be formed.
又如,一种薄膜晶体管,其采用上述任一实施例所述制作方法制备得到。 As another example, a thin film transistor is manufactured by using the manufacturing method described in any of the above embodiments.
又如,一种阵列基板,其包括基板,以及设置于所述基板上的薄膜晶体管、栅线、数据线及像素电极,其中,所述薄膜晶体管采用上述任一实施例所述制作方法制备得到。 Another example is an array substrate, which includes a substrate, and thin film transistors, gate lines, data lines, and pixel electrodes disposed on the substrate, wherein the thin film transistors are prepared by the manufacturing method described in any of the above-mentioned embodiments .
本实施例中提供一显示装置,该显示装置包括上述任一实施例中的阵列基板。例如,该显示装置为具有显示功能的产品或部件;例如,该显示装置为液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或者导航仪。 In this embodiment, a display device is provided, and the display device includes the array substrate in any one of the above embodiments. For example, the display device is a product or component with a display function; for example, the display device is a liquid crystal panel, electronic paper, OLED panel, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame or navigator.
上述薄膜晶体管的制作方法通过在晶化前驱物的沉积过程中同时以含碳气体及含硅气体为反应源,经准分子激光晶化后得到掺杂碳元素的有源层,与无掺杂的低温多晶硅相比,碳掺杂可以使低温多晶硅中形成键能较强的Si-C键,提高有源层的禁带宽度。 The manufacturing method of the above-mentioned thin film transistor uses carbon-containing gas and silicon-containing gas as reaction sources at the same time during the deposition process of the crystallization precursor, and obtains an active layer doped with carbon elements after excimer laser crystallization, which is different from that without doping. Compared with low-temperature polysilicon, carbon doping can form Si-C bonds with stronger bond energy in low-temperature polysilicon, and increase the band gap of the active layer.
而低温多晶硅中漏电流主要包括:反向饱和电流,带带隧穿电流及缺陷辅助的带带隧穿电流。 The leakage current in low-temperature polysilicon mainly includes: reverse saturation current, band-band tunneling current and defect-assisted band-band tunneling current.
对于反向饱和电流,根据反向饱和电流公式: For the reverse saturation current, according to the reverse saturation current formula:
其中:j为反向饱和电流、A及κ为系数、T为温度、Eg为材料禁带宽度,Ln及Lp分别为电子空穴的作为少子的扩散长度、τn及τp分别为电子及空穴作为少子时的少子寿命、NA及ND分别为P区及N区的掺杂浓度、q为电荷,V为反偏电压。 Among them: j is the reverse saturation current, A and κ are the coefficients, T is the temperature, E g is the band gap width of the material, L n and L p are the diffusion lengths of electron holes as minority carriers, τ n and τ p are respectively is the minority carrier lifetime when electrons and holes are minority carriers, N A and N D are the doping concentrations of the P region and N region respectively, q is the charge, and V is the reverse bias voltage.
由此可知,反应饱和电流j随材料禁带宽度Eg的升高而呈指数降低。 It can be seen that the reaction saturation current j decreases exponentially with the increase of the material gap Eg .
对于带带隧穿电流和缺陷辅助的带带隧穿电流,根据Kane带带隧穿几率公式: For band-band tunneling current and defect-assisted band-band tunneling current, according to the Kane band-band tunneling probability formula:
其中:GBTBT为带带隧穿几率、m*为电子有效质量、E为横向电场强度、为约化普朗克常数。 Among them: G BTBT is the band tunneling probability, m * is the electron effective mass, E is the transverse electric field strength, is the reduced Planck constant.
由此可知,带带隧穿GBTBT几率随材料禁带宽度Eg的增加而减小,因此,带带隧穿电流和缺陷辅助的带带隧穿电流也会随材料禁带宽度Eg的增加而减小。 It can be seen that the probability of band-band tunneling G BTBT decreases with the increase of the material gap Eg, so the band-band tunneling current and defect-assisted band-band tunneling current will also increase with the increase of the material gap Eg increase and decrease.
因此,碳掺杂以使有源层的禁带宽度提高,从而能够有效降低该低温多晶硅薄膜晶体管的漏电流。而且,增加有源层禁带宽度,还可降低其可见光吸收系数,降低背光源产生的光致漏电流。 Therefore, carbon doping increases the forbidden band width of the active layer, thereby effectively reducing the leakage current of the low temperature polysilicon thin film transistor. Moreover, increasing the band gap of the active layer can also reduce its visible light absorption coefficient and reduce the photo-induced leakage current generated by the backlight source.
此外,上述薄膜晶体管的制作方法,可适用于现有的多晶硅薄膜晶体管生产线,无需增加光掩膜次数或更改生产设备,操作方法简单方便。 In addition, the manufacturing method of the above thin film transistor can be applied to the existing polysilicon thin film transistor production line without increasing the number of photomasks or changing the production equipment, and the operation method is simple and convenient.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。 The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。 The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510167213.8A CN104851809A (en) | 2015-04-09 | 2015-04-09 | Thin-film transistor, producing method thereof, array substrate, and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510167213.8A CN104851809A (en) | 2015-04-09 | 2015-04-09 | Thin-film transistor, producing method thereof, array substrate, and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104851809A true CN104851809A (en) | 2015-08-19 |
Family
ID=53851360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510167213.8A Pending CN104851809A (en) | 2015-04-09 | 2015-04-09 | Thin-film transistor, producing method thereof, array substrate, and display device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104851809A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017071662A1 (en) * | 2015-10-29 | 2017-05-04 | 陆磊 | Thin film transistor, manufacturing method therefore, and display panel |
CN107039284A (en) * | 2017-04-17 | 2017-08-11 | 武汉华星光电技术有限公司 | A kind of method for making low-temperature polysilicon film transistor |
CN111192908A (en) * | 2020-01-09 | 2020-05-22 | 武汉华星光电半导体显示技术有限公司 | Display panel and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849797A (en) * | 1987-01-23 | 1989-07-18 | Hosiden Electronics Co., Ltd. | Thin film transistor |
US5581092A (en) * | 1993-09-07 | 1996-12-03 | Semiconductor Energy Laboratory Co., Ltd. | Gate insulated semiconductor device |
-
2015
- 2015-04-09 CN CN201510167213.8A patent/CN104851809A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849797A (en) * | 1987-01-23 | 1989-07-18 | Hosiden Electronics Co., Ltd. | Thin film transistor |
US5581092A (en) * | 1993-09-07 | 1996-12-03 | Semiconductor Energy Laboratory Co., Ltd. | Gate insulated semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017071662A1 (en) * | 2015-10-29 | 2017-05-04 | 陆磊 | Thin film transistor, manufacturing method therefore, and display panel |
WO2017071661A1 (en) * | 2015-10-29 | 2017-05-04 | 陆磊 | Thin film transistor, manufacturing method therefor, and display panel |
CN107039284A (en) * | 2017-04-17 | 2017-08-11 | 武汉华星光电技术有限公司 | A kind of method for making low-temperature polysilicon film transistor |
CN111192908A (en) * | 2020-01-09 | 2020-05-22 | 武汉华星光电半导体显示技术有限公司 | Display panel and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6648186B2 (en) | Liquid crystal display | |
US9054206B2 (en) | Method for manufacturing semiconductor device | |
US8030147B2 (en) | Method for manufacturing thin film transistor and display device including the thin film transistor | |
US8637866B2 (en) | Thin film transistor | |
US7833845B2 (en) | Manufacturing method of semiconductor device | |
JP5542277B2 (en) | Method for manufacturing microcrystalline semiconductor film and thin film transistor | |
CN101350331B (en) | Method for manufacturing display device | |
JP2020061573A (en) | Semiconductor device | |
US8344378B2 (en) | Thin film transistor and method for manufacturing the same | |
JP4488039B2 (en) | Method for manufacturing thin film semiconductor device | |
US20110175091A1 (en) | Display device and manufacturing method thereof | |
US20090137103A1 (en) | Method for manufacturing semiconductor device | |
TW201140846A (en) | Thin film transistor | |
US8383434B2 (en) | Thin film transistor and manufacturing method thereof | |
CN105144391A (en) | Metal oxide TFT stability improvement | |
US9159841B2 (en) | Method for manufacturing semiconductor device | |
JP5324837B2 (en) | Method for manufacturing display device | |
CN104851809A (en) | Thin-film transistor, producing method thereof, array substrate, and display device | |
CN104966663A (en) | LTPS film, preparation method thereof, and TFT | |
CN107731929B (en) | Method for manufacturing thin film transistor | |
JP4079364B2 (en) | Method for manufacturing a thin film transistor | |
CN104867833A (en) | Thin-film transistor and manufacturing method thereof, array substrate and display device | |
TW202143294A (en) | Method of forming strained channel layer | |
JP2005259818A (en) | Semiconductor film crystallization method, thin film transistor manufacturing method, electro-optical device, and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150819 |