CN104846025A - Method for preparing (2S, 3R)-2-benzoyl aminomethyl-3-hydroxy methyl butyrate - Google Patents
Method for preparing (2S, 3R)-2-benzoyl aminomethyl-3-hydroxy methyl butyrate Download PDFInfo
- Publication number
- CN104846025A CN104846025A CN201510149171.5A CN201510149171A CN104846025A CN 104846025 A CN104846025 A CN 104846025A CN 201510149171 A CN201510149171 A CN 201510149171A CN 104846025 A CN104846025 A CN 104846025A
- Authority
- CN
- China
- Prior art keywords
- methyl ester
- resting cell
- reaction
- gene
- engineering bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 title claims 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 title claims 2
- 230000000284 resting effect Effects 0.000 claims abstract description 58
- 241000894006 Bacteria Species 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 108010031132 Alcohol Oxidoreductases Proteins 0.000 claims abstract description 26
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 claims abstract description 17
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 16
- 239000008103 glucose Substances 0.000 claims abstract description 16
- 239000006285 cell suspension Substances 0.000 claims abstract description 12
- 238000006722 reduction reaction Methods 0.000 claims abstract description 11
- 239000000852 hydrogen donor Substances 0.000 claims abstract description 7
- -1 2-benzamidomethyl-3-carbonylbutyl Chemical group 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 4
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical group NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 13
- 102000005751 Alcohol Oxidoreductases Human genes 0.000 claims description 12
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical group CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 4
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 239000011535 reaction buffer Substances 0.000 claims description 3
- 239000013604 expression vector Substances 0.000 claims description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 101710088194 Dehydrogenase Proteins 0.000 claims 2
- 229910019142 PO4 Inorganic materials 0.000 claims 2
- 239000010452 phosphate Substances 0.000 claims 2
- 241000588724 Escherichia coli Species 0.000 claims 1
- 238000012258 culturing Methods 0.000 claims 1
- 238000013016 damping Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 62
- ATBIFOORFZTUKF-KOLCDFICSA-N methyl (2s,3r)-2-(benzamidomethyl)-3-hydroxybutanoate Chemical compound COC(=O)[C@H]([C@@H](C)O)CNC(=O)C1=CC=CC=C1 ATBIFOORFZTUKF-KOLCDFICSA-N 0.000 abstract description 24
- LVJARDSTTGGMSM-UHFFFAOYSA-N methyl 2-(benzamidomethyl)-3-oxobutanoate Chemical compound COC(=O)C(C(C)=O)CNC(=O)C1=CC=CC=C1 LVJARDSTTGGMSM-UHFFFAOYSA-N 0.000 abstract description 21
- 150000004702 methyl esters Chemical class 0.000 abstract description 14
- 108090000790 Enzymes Proteins 0.000 abstract description 4
- 238000006356 dehydrogenation reaction Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 24
- 108090000623 proteins and genes Proteins 0.000 description 23
- 238000004128 high performance liquid chromatography Methods 0.000 description 21
- 239000013612 plasmid Substances 0.000 description 21
- 239000006228 supernatant Substances 0.000 description 20
- 239000000872 buffer Substances 0.000 description 17
- SPTHNPYIQDZOIP-SCZZXKLOSA-N (2s,3r)-2-(benzamidomethyl)-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)CNC(=O)C1=CC=CC=C1 SPTHNPYIQDZOIP-SCZZXKLOSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 13
- 230000001580 bacterial effect Effects 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 238000001471 micro-filtration Methods 0.000 description 13
- 230000006340 racemization Effects 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052708 sodium Inorganic materials 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- LEAHFJQFYSDGGP-UHFFFAOYSA-K trisodium;dihydrogen phosphate;hydrogen phosphate Chemical group [Na+].[Na+].[Na+].OP(O)([O-])=O.OP([O-])([O-])=O LEAHFJQFYSDGGP-UHFFFAOYSA-K 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 239000008055 phosphate buffer solution Substances 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 7
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 230000006037 cell lysis Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229930027917 kanamycin Natural products 0.000 description 5
- 229960000318 kanamycin Drugs 0.000 description 5
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 5
- 229930182823 kanamycin A Natural products 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 4
- 239000005515 coenzyme Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 239000000411 inducer Substances 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NOIIUHRQUVNIDD-UHFFFAOYSA-N 3-[[oxo(pyridin-4-yl)methyl]hydrazo]-N-(phenylmethyl)propanamide Chemical compound C=1C=CC=CC=1CNC(=O)CCNNC(=O)C1=CC=NC=C1 NOIIUHRQUVNIDD-UHFFFAOYSA-N 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004296 chiral HPLC Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- BRFMYUCUGXFMIO-UHFFFAOYSA-N phosphono dihydrogen phosphate phosphoric acid Chemical compound OP(O)(O)=O.OP(O)(=O)OP(O)(O)=O BRFMYUCUGXFMIO-UHFFFAOYSA-N 0.000 description 2
- 239000012474 protein marker Substances 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- SPTHNPYIQDZOIP-WPRPVWTQSA-N (2s,3s)-2-(benzamidomethyl)-3-hydroxybutanoic acid Chemical compound C[C@H](O)[C@@H](C(O)=O)CNC(=O)C1=CC=CC=C1 SPTHNPYIQDZOIP-WPRPVWTQSA-N 0.000 description 1
- OEYMQQDJCUHKQS-UHFFFAOYSA-N (4-oxoazetidin-2-yl) acetate Chemical compound CC(=O)OC1CC(=O)N1 OEYMQQDJCUHKQS-UHFFFAOYSA-N 0.000 description 1
- HGGAKXAHAYOLDJ-FHZUQPTBSA-N 6alpha-[(R)-1-hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylic acid Chemical compound S([C@@H]1[C@H](C(N1C=1C(O)=O)=O)[C@H](O)C)C=1[C@H]1CCCO1 HGGAKXAHAYOLDJ-FHZUQPTBSA-N 0.000 description 1
- 241001165345 Acinetobacter baylyi Species 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 240000001929 Lactobacillus brevis Species 0.000 description 1
- 241001104455 Lactobacillus kefiri DSM 20587 = JCM 5818 Species 0.000 description 1
- LDLDJEAVRNAEBW-UHFFFAOYSA-N Methyl 3-hydroxybutyrate Chemical compound COC(=O)CC(C)O LDLDJEAVRNAEBW-UHFFFAOYSA-N 0.000 description 1
- 241000096640 Rubrobacter xylanophilus DSM 9941 Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- 241000222292 [Candida] magnoliae Species 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960003169 biapenem Drugs 0.000 description 1
- MRMBZHPJVKCOMA-YJFSRANCSA-N biapenem Chemical compound C1N2C=NC=[N+]2CC1SC([C@@H]1C)=C(C([O-])=O)N2[C@H]1[C@@H]([C@H](O)C)C2=O MRMBZHPJVKCOMA-YJFSRANCSA-N 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229960000379 faropenem Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- FFJMPYODEQVBEX-UHFFFAOYSA-N methyl 3-hydroxy-2-methylbutanoate Chemical compound COC(=O)C(C)C(C)O FFJMPYODEQVBEX-UHFFFAOYSA-N 0.000 description 1
- CBYVTZIZMFSPBT-UHFFFAOYSA-N methyl 3-methyl-4-oxobut-3-enoate Chemical compound COC(=O)CC(C)=C=O CBYVTZIZMFSPBT-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- HHXMXAQDOUCLDN-RXMQYKEDSA-N penem Chemical compound S1C=CN2C(=O)C[C@H]21 HHXMXAQDOUCLDN-RXMQYKEDSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一种制备(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的方法,该方法包括:制备含羰基还原酶基因的工程菌和含葡萄糖脱氢酶基因的工程菌;分别制备两种工程菌的静息细胞悬液;将两种静息细胞悬液混合后,再与底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯、氢供体和辅因子混合,进行不对称还原反应,制得(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯;羰基还原酶基因的碱基序列如SEQ ID NO.1所示,所述葡萄糖脱氢酶基因的碱基序列如SEQ ID NO.2所示。该方法可催化底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯反应生成(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯,提高了产物的转化率和纯度。The invention discloses a method for preparing (2S, 3R)-2-benzamidomethyl-3-hydroxybutyrate methyl ester, the method comprising: preparing engineering bacteria containing carbonyl reductase gene and glucose dehydrogenation Enzyme gene engineering bacteria; prepare the resting cell suspensions of two engineering bacteria respectively; mix the two resting cell suspensions, and then racemize 2-benzamidomethyl-3-carbonylbutyl with the substrate Methyl ester, hydrogen donor and cofactor are mixed for asymmetric reduction reaction to produce (2S,3R)-2-benzoylaminomethyl-3-hydroxybutyric acid methyl ester; the base of carbonyl reductase gene The sequence is shown in SEQ ID NO.1, and the base sequence of the glucose dehydrogenase gene is shown in SEQ ID NO.2. The method can catalyze the reaction of the substrate racemic 2-benzoylaminomethyl-3-oxobutyric acid methyl ester to generate (2S, 3R)-2-benzoylaminomethyl-3-hydroxybutyric acid methyl ester, The conversion rate and purity of the product are improved.
Description
技术领域 technical field
本发明涉及生物制药技术领域,尤其涉及一种制备(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的方法。 The invention relates to the technical field of biopharmaceuticals, in particular to a method for preparing (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester.
背景技术 Background technique
(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯是一种具有光学活性的β-羟基酯类物质,也是手性醇的一种,其化学结构式如式(II)所示。(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯是合成(3R,4R)-3-[(R)-1-叔丁基二甲基硅氧乙基]-4-乙酰氧基-2-氮杂环丁酮(简称为4-AA,化学结构式如式(III)所示)的关键起始原料,4-AA是一种重要的医药精细化学品,主要用于合成各类培南类的抗生素,如亚胺培南、比阿培南、美罗培南和法罗培南等。这些药物用途广泛,对革兰阴性和阳性菌、需氧菌、厌氧菌等均具有广谱强效抗菌作用,因而受到人们极大重视。目前,在4-AA的合成工艺方面,以外消旋的2-苯甲酰氨甲基-3-羰基丁酸甲酯为原料的合成路线是相对较为优越的,因此,如何通过反应高选择性地建立手性中心是反应过程的关键所在。 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester is a kind of optically active β-hydroxy esters, and is also a kind of chiral alcohol. Its chemical structure is as follows: II) shown. (2S,3R)-2-Benzamidomethyl-3-hydroxybutyrate methyl ester is synthesized from (3R,4R)-3-[(R)-1-tert-butyldimethylsiloxyethyl] - the key starting material of 4-acetoxy-2-azetidinone (abbreviated as 4-AA, chemical structural formula as shown in formula (III)), 4-AA is a kind of important pharmaceutical fine chemicals, It is mainly used for the synthesis of various penem antibiotics, such as imipenem, biapenem, meropenem and faropenem. These drugs have a wide range of uses, and have broad-spectrum and potent antibacterial effects on Gram-negative and positive bacteria, aerobic bacteria, and anaerobic bacteria, so they have received great attention. At present, in terms of the synthesis process of 4-AA, the synthetic route of racemic 2-benzamidomethyl-3-oxobutanoic acid methyl ester as raw material is relatively superior, therefore, how to pass the reaction with high selectivity The precise establishment of the chiral center is the key to the reaction process.
目前已有的报道中效果较好的是使用手性催化剂(R)-BINAP-Ru,但该法需要使用到贵重金属钌作为催化剂,且需要在高温高压条件下进行,对反应器要求较高,因此该路线限制了4-AA的大规模工业化生产。此外,也有一些利用生物催化法进行不对称反应的报道,如Peter Schneider等(美国专利,US 4927507)曾报道了一种利用面包酵母还原2-苯甲酰氨甲基-3-羰基丁酸酯的方法,得到的产物构型为(2S,3S)-2-苯甲酰氨甲基-3-羟基丁酸酯和(2R,3S)-2-苯甲酰氨甲基-3-羟基丁酸酯,因而需要再经过化学方法进行构型翻转,操作繁琐,回 收率低。 In the existing reports, the chiral catalyst (R)-BINAP-Ru is used as a better effect, but this method needs to use the precious metal ruthenium as a catalyst, and it needs to be carried out under high temperature and high pressure conditions, which requires high requirements for the reactor. , so this route limits the large-scale industrial production of 4-AA. In addition, there are also some reports on utilizing biocatalysis to carry out asymmetric reactions, such as Peter Schneider et al. (US Patent, US 4927507) have reported a method of reducing 2-benzamidomethyl-3-carbonylbutyrate by baker's yeast method, the product configuration obtained is (2S, 3S)-2-benzoylaminomethyl-3-hydroxybutyrate and (2R, 3S)-2-benzoylaminomethyl-3-hydroxybutyrate Ester, thus need to carry out configuration flip through chemical method again, the operation is cumbersome, and the recovery rate is low.
美国Codexis公司筛选到了一种羰基还原酶AdhR,通过在分子生物学手段上对其进行了一系列改良后,利用异丙醇作为共底物实现辅酶再生,使AdhR直接催化制备(2S,3R)构型的产物。但利用这种方法难以使辅酶消耗和再生的活力相匹配,从而影响AdhR的催化效果;反应容易受到两个底物和产物热力学平衡的限制,较难获得最适反应的热力学条件;过量的共底物也会对酶产生抑制作用而降低催化效率,且辅助底物的加入会增加产物分离纯化的复杂性,增加成本。 American Codexis Company has screened a carbonyl reductase AdhR, and after a series of improvements in molecular biology, it uses isopropanol as a co-substrate to achieve coenzyme regeneration, allowing AdhR to directly catalyze the production of (2S, 3R) configuration product. However, it is difficult to match the activity of coenzyme consumption and regeneration by using this method, thereby affecting the catalytic effect of AdhR; the reaction is easily limited by the thermodynamic equilibrium of the two substrates and products, and it is difficult to obtain the optimal thermodynamic conditions for the reaction; excessive coenzyme The substrate will also inhibit the enzyme and reduce the catalytic efficiency, and the addition of auxiliary substrates will increase the complexity of product separation and purification and increase the cost.
发明内容 Contents of the invention
本发明提供了一种制备(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的方法,该方法可催化底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯反应生成(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯,提高了产物的转化率和纯度。 The invention provides a method for preparing (2S, 3R)-2-benzoylaminomethyl-3-hydroxybutyric acid methyl ester, which can catalyze the substrate racemization 2-benzoylaminomethyl- The 3-carbonylbutyric acid methyl ester reacts to generate (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester, which improves the conversion rate and purity of the product.
一种制备(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的方法,包括: A method for preparing (2S, 3R)-2-benzoylaminomethyl-3-hydroxybutyric acid methyl ester, comprising:
(1)制备含羰基还原酶基因的工程菌和含葡萄糖脱氢酶基因的工程菌; (1) preparing engineering bacteria containing the carbonyl reductase gene and engineering bacteria containing the glucose dehydrogenase gene;
(2)分别制备两种工程菌的静息细胞悬液; (2) prepare the resting cell suspensions of two kinds of engineering bacteria respectively;
(3)将两种静息细胞悬液混合后,再与底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯、氢供体和辅因子混合,进行不对称还原反应,制得(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯; (3) After mixing the two resting cell suspensions, they are mixed with the substrate racemic 2-benzamidomethyl-3-oxobutanoic acid methyl ester, hydrogen donor and cofactor for asymmetric reduction Reaction to obtain (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester;
所述羰基还原酶基因的碱基序列如SEQ ID NO.1所示,所述葡萄糖脱氢酶基因的碱基序列如SEQ ID NO.2所示。 The base sequence of the carbonyl reductase gene is shown in SEQ ID NO.1, and the base sequence of the glucose dehydrogenase gene is shown in SEQ ID NO.2.
所述羰基还原酶基因(简称为LbADH基因),克隆自野生菌Lactobacillus brevis,羰基还原酶基因编码的蛋白质的氨基酸序列如SEQ ID NO.7所示;所述葡萄糖脱氢酶基因(简称为GdhBM基因),克隆自Bacillus Megaterium,葡萄糖脱氢酶基因编码的蛋白质的氨基酸序列如SEQ ID NO.8所示。 The carbonyl reductase gene (abbreviated as LbADH gene), is cloned from wild bacterium Lactobacillus brevis, and the amino acid sequence of the protein encoded by the carbonyl reductase gene is as shown in SEQ ID NO.7; The glucose dehydrogenase gene (abbreviated as GdhBM Gene), cloned from Bacillus Megaterium, the amino acid sequence of the protein encoded by the glucose dehydrogenase gene is shown in SEQ ID NO.8.
其中,所述的工程菌含有表达载体pET-30a(+),宿主细胞为大肠杆菌BL21(DE3)。 Wherein, the engineering bacterium contains the expression vector pET-30a(+), and the host cell is Escherichia coli BL21(DE3).
所述的羰基还原酶基因和葡萄糖脱氢酶基因分别在大肠杆菌BL21(DE3)中表达,获得羰基还原酶和葡萄糖脱氢酶。 The carbonyl reductase gene and the glucose dehydrogenase gene are respectively expressed in Escherichia coli BL21 (DE3) to obtain the carbonyl reductase and glucose dehydrogenase.
所述的羰基还原酶和葡萄糖脱氢酶均以基因工程菌的静息细胞形式作为不对称还原反应中的催化剂。静息细胞悬液的制备方法,包括:将所述的工程菌接种到含卡纳霉素的培养基中,摇床活化后,扩大培养至OD600值达到0.8~1.2时,加入诱导剂,继续培养,离心收集细胞,用缓冲液重悬,获得所述的静息细胞悬液。 Both the carbonyl reductase and the glucose dehydrogenase are in the form of resting cells of genetically engineered bacteria as catalysts in the asymmetric reduction reaction. The preparation method of the resting cell suspension comprises: inoculating the engineering bacterium into the culture medium containing kanamycin, after the shaker is activated, expanding the culture until the OD600 value reaches 0.8-1.2, adding an inducer, and continuing Cultivate, collect cells by centrifugation, and resuspend with buffer to obtain the resting cell suspension.
作为优选,所述的诱导剂为IPTG,浓度为0.5~0.8mM。作为优选,加入诱导剂后的培养条件为:培养温度为16~25℃,培养时间为10~20h。所述的缓冲液为磷酸二氢钠-磷酸氢二钠,作为优选,所述缓冲液的浓度为100~150mM;所述缓冲液中还含有1~10mM的MgCl2。 Preferably, the inducer is IPTG at a concentration of 0.5-0.8mM. Preferably, the culture conditions after adding the inducer are as follows: the culture temperature is 16-25° C., and the culture time is 10-20 h. The buffer is sodium dihydrogen phosphate-disodium hydrogen phosphate, preferably, the buffer has a concentration of 100-150 mM; the buffer also contains 1-10 mM MgCl 2 .
本发明不对称还原反应的反应式,如下: The reaction formula of asymmetric reduction reaction of the present invention is as follows:
在整个反应过程中,一方面,羰基还原酶LbADH催化外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯不对称还原生成立体异构纯的(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯,同时伴随着还原型辅因子NADPH转化为氧化型辅因子NADP+的过程,另一方面,葡萄糖脱氢酶将葡萄糖氧化为葡萄糖内酯,同时再生了还原型辅因子NADPH,形成一个辅因子消耗与再生的闭合回路,推动主反应的进行。 Throughout the reaction, on the one hand, the carbonyl reductase LbADH catalyzes the asymmetric reduction of racemic 2-benzamidomethyl-3-oxobutanoic acid methyl ester to generate stereoisomerically pure (2S,3R)-2- Benzamidomethyl-3-hydroxybutyrate, accompanied by the conversion of the reduced cofactor NADPH to the oxidized cofactor NADP + , on the other hand, glucose dehydrogenase oxidizes glucose to gluconolactone, At the same time, the reduced cofactor NADPH is regenerated, forming a closed loop of cofactor consumption and regeneration to promote the main reaction.
不对称还原反应中,所述的氢供体为葡萄糖,所述的辅因子为NADP+/NADPH。 In the asymmetric reduction reaction, the hydrogen donor is glucose, and the cofactor is NADP + /NADPH.
反应过程中,羰基还原酶与葡萄糖脱氢酶的浓度,对最终产物的得率有影响。作为优选,两种静息细胞悬液的混合液中,含羰基还原酶的静息细胞与含葡萄糖脱氢酶的静息细胞的质量比为4∶1~1∶2。更优选,含羰基还原酶的静息细胞与含葡萄糖脱氢酶的静息细胞的质量比为1∶1。 During the reaction, the concentration of carbonyl reductase and glucose dehydrogenase has an influence on the yield of the final product. Preferably, in the mixture of the two resting cell suspensions, the mass ratio of the resting cells containing carbonyl reductase to the resting cells containing glucose dehydrogenase is 4:1-1:2. More preferably, the mass ratio of resting cells containing carbonyl reductase to resting cells containing glucose dehydrogenase is 1:1.
具体地,不对称还原反应中,所述底物浓度为2.5~500g/L,含羰基还原酶的静息细胞的浓度为0.1g干重/L~25g干重/L,含葡萄糖脱氢酶的静息细胞的浓度为0.1g干重/L~25g干重/L,氢供体的浓度为5~750g/L,辅因子的浓度为0~0.5mM。 Specifically, in the asymmetric reduction reaction, the substrate concentration is 2.5-500 g/L, the concentration of resting cells containing carbonyl reductase is 0.1 g dry weight /L-25 g dry weight /L, and the concentration of glucose dehydrogenase The concentration of resting cells is 0.1g dry weight /L-25g dry weight /L, the concentration of hydrogen donor is 5-750g/L, and the concentration of cofactor is 0-0.5mM.
作为优选,所述不对称还原反应的温度为25~40℃,反应缓冲液pH为6.0~8.0。更优选,反应温度为30~37℃,反应缓冲液pH为6.5~7.5。 Preferably, the temperature of the asymmetric reduction reaction is 25-40° C., and the pH of the reaction buffer is 6.0-8.0. More preferably, the reaction temperature is 30-37° C., and the pH of the reaction buffer is 6.5-7.5.
整个反应过程中,待反应至HPLC检测底物完全耗尽后,用等体积的有机溶剂萃取2~4次,合并萃取相,无水硫酸钠干燥,减压蒸馏除去有机溶剂,得到目标产物。 During the whole reaction process, after reacting until the substrate is completely consumed by HPLC, extract with an equal volume of organic solvent for 2 to 4 times, combine the extract phases, dry over anhydrous sodium sulfate, and distill off the organic solvent under reduced pressure to obtain the target product.
与现有技术相比,本发明具有以下有益效果: Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明将构建的含羰基还原酶LbADH的工程菌和含葡萄糖脱氢酶GdhBM的工程菌应用于催化底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯生成(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的反应中,为(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的生产提供了一种新的制备途径; (1) The present invention applies the engineered bacteria containing carbonyl reductase LbADH and the engineered bacteria containing glucose dehydrogenase GdhBM to catalytic substrate racemization 2-benzamidomethyl-3-carbonyl butyrate methyl ester In the reaction to generate (2S, 3R)-2-benzoylaminomethyl-3-hydroxybutyric acid methyl ester, as (2S, 3R)-2-benzoylaminomethyl-3-hydroxybutyric acid methyl ester The production of provides a new preparation route;
(2)本发明采用羰基还原酶LbADH和葡萄糖脱氢酶GdhBM进行组合,使反应过程中辅酶消耗和再生的活力相匹配,获得了最佳的制备(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的 方法,提高了产物的转化率和纯度。 (2) The present invention uses carbonyl reductase LbADH and glucose dehydrogenase GdhBM to combine, so that the activity of coenzyme consumption and regeneration in the reaction process is matched, and the best preparation of (2S, 3R)-2-benzamide is obtained The method of methyl-3-hydroxybutyrate methyl ester improves the conversion rate and purity of the product.
附图说明 Description of drawings
图1为本发明基因Lbadh的电泳图; Fig. 1 is the electrophoresis figure of gene Lbadh of the present invention;
M:核酸Marker,1、2:基因Lbadh样品。 M: nucleic acid marker, 1, 2: gene Lbadh sample.
图2为本发明基因GdhBM的电泳图; Fig. 2 is the electrophoresis figure of gene GdhBM of the present invention;
M:核酸Marker,1、2:基因GdhBM样品。 M: nucleic acid marker, 1, 2: gene GdhBM sample.
图3为质粒pET30-LbADH的图谱。 Figure 3 is a map of plasmid pET30-LbADH.
图4为质粒pET30-GdhBM的图谱。 Figure 4 is a map of plasmid pET30-GdhBM.
图5为基因工程菌EcoLbADH诱导表达的蛋白质SDS-PAGE电泳图; Fig. 5 is the SDS-PAGE electrophoresis diagram of the protein induced and expressed by the genetically engineered bacterium EcoLbADH;
M:蛋白质Marker,1:pET-30a(+)空载质粒对照破胞上清,2:基因工程菌EcoLbADH诱导菌体破胞上清,3:基因工程菌EcoLbADH诱导菌体破胞沉淀。 M: Protein Marker, 1: pET-30a(+) empty plasmid control cell lysis supernatant, 2: genetically engineered bacteria EcoLbADH induced cell lysis supernatant, 3: genetically engineered bacteria EcoLbADH induced cell lysis supernatant.
图6为基因工程菌EcoGdhBM诱导表达的蛋白质SDS-PAGE电泳图; Fig. 6 is the SDS-PAGE electrophoresis figure of the protein induced and expressed by the genetically engineered bacteria EcoGdhBM;
M:蛋白质Marker,1:基因工程菌EcoGdhBM诱导菌体破胞上清,2:基因工程菌EcoGdhBM诱导菌体破胞沉淀。 M: Protein Marker, 1: supernatant of cell lysis induced by genetically engineered bacteria EcoGdhBM, 2: cell lysis precipitate induced by genetically engineered bacteria EcoGdhBM.
图7为2-苯甲酰氨甲基-3-羰基丁酸甲酯标准品的HPLC分析图谱。 Fig. 7 is the HPLC analytical spectrum of 2-benzamidomethyl-3-oxobutanoic acid methyl ester standard.
图8为(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯标准品的HPLC分析图谱。 Fig. 8 is the HPLC analysis spectrum of (2S, 3R)-2-benzamidomethyl-3-hydroxybutyrate standard product.
图9为(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯测ee值的HPLC分析标准图谱。 Fig. 9 is an HPLC analysis standard spectrum of the measured ee value of (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester.
图10为2-苯甲酰氨甲基-3-羰基丁酸甲酯的1H NMR谱图。 Fig. 10 is the 1 H NMR spectrum of methyl 2-benzamidomethyl-3-oxobutanoate.
图11为反应产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的1H NMR谱图。 Fig. 11 is the 1 H NMR spectrum of the reaction product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester.
具体实施方式 Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细说明。 The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1质粒pET30-LbADH的构建 Construction of embodiment 1 plasmid pET30-LbADH
用引物F_LbADH/R_LbADH克隆Lbadh基因,得到长度为759bp的Lbadh基因(如SEQ ID NO.1所示)。核酸电泳验证基因大小,如图1。 The Lbadh gene was cloned with primers F_LbADH/R_LbADH to obtain a 759bp Lbadh gene (as shown in SEQ ID NO.1). Nucleic acid electrophoresis to verify gene size, as shown in Figure 1.
引物F_LbADH的序列为:5’CGCGGATCCATGTCTAACCGTTTGGATG-3’; The sequence of primer F_LbADH is: 5'CGC GGATCC ATGTCTAACCGTTTGGATG-3';
引物R_LbADH的序列为:5’CCGCTCGAGCTATTGAGCAGTGTAGCCAC-3’。 The sequence of primer R_LbADH is: 5'CCG CTCGAG CTATTGAGCAGTGTAGCCAC-3'.
BamHI和XhoI双酶切Lbadh基因,回收酶切后的基因条带,BamHI和XhoI双酶切pET-30a(+)质粒,回收酶切后的质粒条带,将酶切后的Lbadh基因和酶切后的pET-30a(+)质粒,用连接酶连接,转化克隆宿主Escherichia coli DH5α。用引物F_LbADH/R_LbADH进行菌落PCR,验证转化重组子,然后提取重组质粒,进行测序。测序结果无误的重组质粒,即为重组质粒pET30-LbADH,质粒图谱如图3所示,-20℃保存备用。 BamHI and XhoI double-digest Lbadh gene, recover the gene band after digestion, BamHI and XhoI double-digest pET-30a(+) plasmid, recover the plasmid band after digestion, and digest the Lbadh gene and enzyme The cut pET-30a(+) plasmid was ligated with ligase and transformed into the cloning host Escherichia coli DH5α. Colony PCR was performed with primers F_LbADH/R_LbADH to verify the transformed recombinant, and then the recombinant plasmid was extracted for sequencing. The recombinant plasmid with correct sequencing results is the recombinant plasmid pET30-LbADH, the plasmid map is shown in Figure 3, and it is stored at -20°C for future use.
实施例2质粒pET30-GdhBM的构建 Construction of embodiment 2 plasmid pET30-GdhBM
用引物F_GdhBM/R_GdhBM克隆GdhBM基因,得到长度为786bp的GdhBM基因(如SEQ ID NO.2所示)。核酸电泳验证基因大小,如图2。 The GdhBM gene was cloned with primers F_GdhBM/R_GdhBM to obtain a GdhBM gene (as shown in SEQ ID NO.2) with a length of 786bp. Nucleic acid electrophoresis to verify gene size, as shown in Figure 2.
引物F_GdhBM的序列为:5’-GGAAGATCTGATGTATAAAGATTTAGAAGGA-3’; The sequence of primer F_GdhBM is: 5'-GGA AGATCTG ATGTATAAAGATTTAGAAGGA-3';
引物R_GdhBM的序列为:5’CCGCTCGAGTTATCCGCGTCCTGCTTGGAA-3’。 The sequence of primer R_GdhBM is: 5'CCG CTCGAG TTATCCGCGTCCTGCTTGGAA-3'.
glII和XhoI双酶切GdhBM基因,回收酶切后的基因条带,BglII和XhoI双酶切pET-30a(+)质粒,回收酶切后的质粒条带,将酶切后的GdhBM基因和酶切后的pET-30a(+)质粒,用连接酶连接,转化克隆宿主Escherichia coli DH5α。用引物F_GdhBM/R_GdhBM进行菌落PCR,验证转化重组子,然后提取重组质粒,进行测序。测序结果无误的重组质粒,即为重组质粒pET30-GdhBM,质粒图谱如图4所示,-20℃保存备用。 GdhBM gene was digested with glII and XhoI, and the gene band after digestion was recovered. The pET-30a(+) plasmid was digested with BglII and XhoI, and the plasmid band after digestion was recovered. The digested GdhBM gene and enzyme The cut pET-30a(+) plasmid was ligated with ligase and transformed into the cloning host Escherichia coli DH5α. Colony PCR was performed with primers F_GdhBM/R_GdhBM to verify the transformed recombinants, and then the recombinant plasmids were extracted for sequencing. The recombinant plasmid with correct sequencing results is the recombinant plasmid pET30-GdhBM, the plasmid map is shown in Figure 4, and it is stored at -20°C for future use.
实施例3基因工程菌的构建及诱导表达 Construction and induced expression of embodiment 3 genetically engineered bacteria
用实例1和2中构建的质粒pET30-LbADH和pET30-GdhBM,分别转化表达宿主Escherichia coli BL21(DE3)。用引物F_LbADH/R_LbADH和F_GdhBM/R_GdhBM分别做菌落PCR,验证转化的重组子。验证无误的基因工程菌即为EcoLbADH和EcoGdhBM。将EcoLbADH和EcoGdhBM分别接种到含卡纳霉素抗性的3~5mL液体LB试管培养基中,于35℃下摇床活化12小时,将活化后得到的培养物按1%转接量转接到含卡纳霉素抗性的液体LB摇瓶培养基中,发酵培养基中恒温震荡培养3h,培养条件为37℃,200rpm。待菌体浓度长到OD600=0.8时,加入0.5mM IPTG(终浓度),16℃诱导16h,10,000g离心5min收集细胞,用pH7.0磷酸钠缓冲液洗涤1次后,弃上清,即得静息细胞,置于-80℃冻存。蛋白表达情况用SDS-pAGE检测,如图5和6所示。 The expression host Escherichia coli BL21(DE3) was transformed with the plasmids pET30-LbADH and pET30-GdhBM constructed in Examples 1 and 2, respectively. Colony PCR was performed with primers F_LbADH/R_LbADH and F_GdhBM/R_GdhBM respectively to verify the transformed recombinants. The verified genetically engineered bacteria are EcoLbADH and EcoGdhBM. Inoculate EcoLbADH and EcoGdhBM into 3-5mL liquid LB test tube culture medium containing kanamycin resistance respectively, activate on a shaking table at 35°C for 12 hours, transfer the culture obtained after activation according to 1% transfer amount Into the liquid LB shake flask medium containing kanamycin resistance, culture in the fermentation medium with constant temperature shaking for 3 hours, the culture condition is 37°C, 200rpm. When the cell concentration reaches OD 600 =0.8, add 0.5mM IPTG (final concentration), induce at 16°C for 16h, centrifuge at 10,000g for 5min to collect the cells, wash once with pH7.0 sodium phosphate buffer, discard the supernatant, The resting cells were obtained and stored at -80°C. Protein expression was detected by SDS-pAGE, as shown in Figures 5 and 6.
实施例4基因工程菌的构建及诱导表达 Construction and induced expression of embodiment 4 genetically engineered bacteria
用实例1和2中构建的质粒pET30-LbADH和pET30-GdhBM,分别转化表达宿主Escherichia coli BL21(DE3)。用引物F_LbADH/R_LbADH和F_GdhBM/R_GdhBM分别做菌落PCR,验证转化的重组子。验证无误的基因工程菌即为EcoLbADH和EcoGdhBM。将EcoLbADH和EcoGdhBM分别接种到含卡纳霉素抗性的3~5mL液体LB试管培养基中,于40℃下摇床活化8小时,将活化后得到的培养物按1%转接量转接到含卡纳霉素抗性的液体LB摇瓶培养基中,发酵培养基中恒温震荡培养3h,培养条件为35℃,200rpm。待菌体浓度长到OD600=1.2时,加入0.8mM IPTG(终浓度),25℃诱导10h,10,000g离心5min收集细胞,用pH7.0磷酸钠缓冲液洗涤1次后,弃上清,即得静息细胞,置于-80℃冻存。 The expression host Escherichia coli BL21(DE3) was transformed with the plasmids pET30-LbADH and pET30-GdhBM constructed in Examples 1 and 2, respectively. Colony PCR was performed with primers F_LbADH/R_LbADH and F_GdhBM/R_GdhBM respectively to verify the transformed recombinants. The verified genetically engineered bacteria are EcoLbADH and EcoGdhBM. Inoculate EcoLbADH and EcoGdhBM into 3-5mL liquid LB test tube culture medium containing kanamycin resistance respectively, activate on a shaking table at 40°C for 8 hours, transfer the culture obtained after activation according to 1% transfer amount Into the liquid LB shake flask medium containing kanamycin resistance, culture in the fermentation medium with constant temperature shaking for 3 hours, the culture condition is 35°C, 200rpm. When the cell concentration reaches OD600 = 1.2, add 0.8mM IPTG (final concentration), induce at 25°C for 10h, centrifuge at 10,000g for 5min to collect the cells, wash once with pH7.0 sodium phosphate buffer, discard the supernatant, The resting cells were obtained and stored at -80°C.
实施例5反应过程监测方法 Embodiment 5 reaction process monitoring method
采用HPLC检测方法测定2-苯甲酰氨甲基-3-羰基丁酸甲酯到(2S,3R)-2-苯甲酰氨甲基 -3-羟基丁酸甲酯的转化情况。样品处理:取不同时间点反应液50μL,加入乙腈150~950μL,混匀后于12,000g离心5min,取上清用0.45μm微孔滤膜过滤待进样检测。色谱条件为:色谱柱:Pursuit C18(150*4.6mm);流动相:10mM乙酸铵水溶液∶乙腈=55∶45(v/v);流速:0.5mL/min;进样量:5μL;检测波长:254nm。HPLC图谱如图7所示。2-苯甲酰氨甲基-3-羰基丁酸甲酯的保留时间为9.811min,其结构鉴定的H谱如图10所示;(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的保留时间为7.438min,其结构鉴定的H谱如图11所示。 The conversion of 2-benzoylaminomethyl-3-oxobutyric acid methyl ester to (2S, 3R)-2-benzoylaminomethyl-3-hydroxybutyric acid methyl ester was determined by HPLC detection method. Sample treatment: Take 50 μL of reaction solution at different time points, add 150-950 μL of acetonitrile, mix well, and centrifuge at 12,000 g for 5 min, take the supernatant and filter it with a 0.45 μm microporous membrane to be injected for detection. The chromatographic conditions are: chromatographic column: Pursuit C18 (150*4.6mm); mobile phase: 10mM ammonium acetate aqueous solution: acetonitrile = 55:45 (v/v); flow rate: 0.5mL/min; injection volume: 5μL; detection wavelength : 254nm. The HPLC spectrum is shown in FIG. 7 . The retention time of 2-benzamidomethyl-3-oxobutyric acid methyl ester is 9.811min, and the H spectrum of its structural identification is as shown in Figure 10; (2S, 3R)-2-benzamidomethyl- The retention time of methyl 3-hydroxybutyrate is 7.438 min, and the H spectrum of its structural identification is shown in Figure 11.
实施例6产物ee值测定方法 Embodiment 6 product ee value determination method
目标产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的ee值测定采用手性HPLC的方法来测定。样品处理:取不同时间点反应液100μL,乙酸乙酯萃取三次,合并萃取液,用饱和NaHCO3和饱和NaCl各洗涤一次,无水硫酸钠干燥除水,过滤,旋蒸除溶剂,残留物溶于2mL色谱级无水乙醇,待HPLC检测。 The ee value of the target product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester was determined by chiral HPLC. Sample treatment: take 100 μL of the reaction solution at different time points, extract three times with ethyl acetate, combine the extracts, wash once with saturated NaHCO 3 and saturated NaCl, dry with anhydrous sodium sulfate to remove water, filter, spin evaporate to remove solvent, and dissolve the residue. In 2mL chromatographic grade absolute ethanol, to be detected by HPLC.
手性HPLC分析条件如下:色谱柱:Chiralpak ID(4.6×250mm);流动相:正己烷∶异丙醇∶三氟乙酸=80∶20∶0.1;流速:0.5ml/min;进样量:5μL;检测波长:254nm。四种构型产物的HPLC图谱如图9所示。(2S,3R)构型的保留时间为38.34min,(2R,3S)构型的保留时间为49.31min,(2R,3R)构型的保留时间为54.14min,(2S,3S)构型的保留时间为57.97min。 Chiral HPLC analysis conditions are as follows: chromatographic column: Chiralpak ID (4.6 × 250mm); mobile phase: n-hexane: isopropanol: trifluoroacetic acid = 80: 20: 0.1; flow rate: 0.5ml/min; injection volume: 5 μL ; Detection wavelength: 254nm. The HPLC profiles of the four configuration products are shown in Figure 9. The retention time of (2S, 3R) configuration is 38.34min, the retention time of (2R, 3S) configuration is 49.31min, the retention time of (2R, 3R) configuration is 54.14min, the retention time of (2S, 3S) configuration The retention time is 57.97min.
实施例7(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 7 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH6.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入0.1g干重/L的LbADH静息细胞和0.1g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯50mg,辅助底物葡萄糖100mg和终浓度为0.2mM的NADP+,然后置于37℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在6.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为90.3%,ee为86.9%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH 6.0. Add 0.1g dry weight /L of LbADH resting cells and 0.1g dry weight /L of GdhBM resting cells into a 50mL three-necked round bottom flask, add the above buffer to make up the total volume to 20mL, and add substrate Spin 50 mg of 2-benzoylaminomethyl-3-oxobutyric acid methyl ester, 100 mg of auxiliary substrate glucose and NADP + at a final concentration of 0.2 mM, and then place it in a constant temperature water bath at 37°C for 24 hours, stirring with 1M Sodium hydroxide aqueous solution adjusted the pH value of the reaction system to maintain at 6.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of the methyl ester was 90.3%, and the ee was 86.9%.
实施例8(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 8 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L的LbADH静息细胞和1g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物葡萄糖1g和终浓度为0.2mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维 持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为80.5%,ee为89.6%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH 7.0. Add 1g dry weight /L of LbADH resting cells and 1g dry weight /L of GdhBM resting cells into a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 500 mg of benzoylaminomethyl-3-oxobutyric acid methyl ester, 1 g of auxiliary substrate glucose and 0.2 mM NADP + at a final concentration of 0.2 mM, then placed in a constant temperature water bath at 30 ° C for 24 h, during which time 1 M hydrogen was used for oxidation Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of the methyl ester was 80.5%, and the ee was 89.6%.
实施例9(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 9 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH8.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入5g干重/L的LbADH静息细胞和5g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯2g,辅助底物葡萄糖4g和终浓度为0.2mM的NADP+,然后置于40℃恒温水浴槽中搅拌反应12h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在8.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为73.5%,ee为91.4%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution with pH 8.0. Add 5g dry weight /L of LbADH resting cells and 5g dry weight /L of GdhBM resting cells into a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 2 g of benzoylaminomethyl-3-oxobutyric acid methyl ester, 4 g of auxiliary substrate glucose and NADP + at a final concentration of 0.2 mM, and then placed in a constant temperature water bath at 40 ° C for 12 h, and oxidized with 1 M hydrogen during the reaction Sodium aqueous solution adjusted the pH value of the reaction system to maintain at 8.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of the methyl ester was 73.5%, and the ee was 91.4%.
实施例10(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 10 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入10g干重/L的LbADH静息细胞和10g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯5g,辅助底物葡萄糖10g和终浓度为0.5mM的NADP+,然后置于25℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为75.2%,ee为90.2%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH 7.0. Add 10g dry weight /L of LbADH resting cells and 10g dry weight /L of GdhBM resting cells into a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 5 g of benzoylaminomethyl-3-oxobutyric acid methyl ester, 10 g of auxiliary substrate glucose and NADP + at a final concentration of 0.5 mM, and then placed in a constant temperature water bath at 25 ° C for 24 h, during which time 1 M hydrogen was used for oxidation Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of methyl ester was 75.2%, and the ee was 90.2%.
实施例11(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 11 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入20g干重/L的LbADH静息细胞和20g干重/L的GDHBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯10g,辅助底物葡萄糖15g和终浓度为0.5mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为83.2%,ee为87.6%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH 7.0. Add 20g dry weight /L of LbADH resting cells and 20g dry weight /L of GDHBM resting cells into a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 10 g of benzoylaminomethyl-3-oxobutyric acid methyl ester, 15 g of auxiliary substrate glucose and NADP + with a final concentration of 0.5 mM, and then placed in a constant temperature water bath at 30 ° C for 24 h, during which 1 M hydrogen was used for oxidation Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of the methyl ester was 83.2%, and the ee was 87.6%.
实施例12(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 12 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入25g干重/L的LbADH静息细胞和25g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外 消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯10g,辅助底物葡萄糖15g和终浓度为0.5mM的NADP+,然后置于37℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为93.6%,ee为84.5%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH 7.0. Add 25g dry weight /L of LbADH resting cells and 25g dry weight /L of GdhBM resting cells into a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 10 g of benzoylaminomethyl-3-oxobutyric acid methyl ester, 15 g of auxiliary substrate glucose and NADP + with a final concentration of 0.5 mM, and then placed in a constant temperature water bath at 37 ° C for 24 h, during which time it was oxidized with 1 M hydrogen Sodium aqueous solution adjusted the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of the methyl ester was 93.6%, and the ee was 84.5%.
实施例13(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 13 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L的LbADH静息细胞和0.5g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物葡萄糖1g和终浓度为0.2mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为73.8%,ee为91.6%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH 7.0. Add 1g dry weight /L of LbADH resting cells and 0.5g dry weight /L of GdhBM resting cells into a 50mL three-necked round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 500 mg of methyl 2-benzamidomethyl-3-oxobutyrate, 1 g of auxiliary substrate glucose and NADP + at a final concentration of 0.2 mM, and then placed in a constant temperature water bath at 30 ° C for 24 h, with 1 M hydrogen Sodium oxide aqueous solution adjusts the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of methyl ester was 73.8%, and the ee was 91.6%.
实施例14(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的制备 The preparation of embodiment 14 (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid methyl ester
取一定量的实施例3工程菌EcoLbADH和EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L的LbADH静息细胞和2g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物葡萄糖1g和终浓度为0.2mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为83.5%,ee为87.3%。 A certain amount of resting cells of the engineering bacteria EcoLbADH and EcoGdhBM of Example 3 were taken and resuspended with 100 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH 7.0. Add 1g dry weight /L of LbADH resting cells and 2g dry weight /L of GdhBM resting cells into a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 500 mg of benzoylaminomethyl-3-oxobutyric acid methyl ester, 1 g of auxiliary substrate glucose and 0.2 mM NADP + at a final concentration of 0.2 mM, then placed in a constant temperature water bath at 30 ° C for 24 h, during which time 1 M hydrogen was used for oxidation Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of the methyl ester was 83.5%, and the ee was 87.3%.
对比例1 Comparative example 1
取一定量的工程菌EcoLkADH(该工程菌含有克隆自Lactobacillus kefiri DSM 20587的羰基还原酶基因,具体构建方法同实施例1、3)的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L LkADH的静息细胞,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物异丙醇1mL,加上述缓冲液补至总体积为20mL,最后加入终浓度为0.2mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为31.6%,ee为95.7%。 Get the quiescent cells of a certain amount of engineering bacteria EcoLkADH (this engineering bacteria contains the carbonyl reductase gene cloned from Lactobacillus kefiri DSM 20587, and the specific construction method is the same as in Examples 1 and 3), and use 100mM sodium dihydrogen phosphate of pH7.0 - Resuspend in disodium phosphate buffer. Add 1g dry weight /L LkADH resting cells to a 50mL three-necked round-bottom flask, add 500mg of racemic 2-benzamidomethyl-3-oxobutanoic acid methyl ester as the substrate, and 500mg of the auxiliary substrate isopropyl Alcohol 1mL, add the above buffer solution to make up to a total volume of 20mL, and finally add NADP + with a final concentration of 0.2mM, then place in a constant temperature water bath at 30°C and stir for 24h. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of methyl ester was 31.6%, and the ee was 95.7%.
对比例2 Comparative example 2
取一定量的工程菌EcoCR(该工程菌含有克隆自Candida magnoliae CGMCC 2.1919的羰基还原酶基因,具体构建方法同实施例1、3)和EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L CR的静息细胞和1g干重/L GdhBM的静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物葡萄糖1g和终浓度为0.2mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为0.13%,ee为0。 Get a certain amount of engineering bacteria EcoCR (this engineering bacteria contains the carbonyl reductase gene cloned from Candida magnoliae CGMCC 2.1919, and the specific construction method is the same as in Examples 1 and 3) and the quiescent cells of EcoGdhBM, and use 100mM phosphate diphosphate of pH7.0 Resuspend in sodium hydrogen phosphate-disodium hydrogen phosphate buffer. Add 1g dry weight/ L CR resting cells and 1g dry weight /L GdhBM resting cells to a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and add substrate racemization 2 - 500 mg of benzoylaminomethyl-3-oxobutyric acid methyl ester, 1 g of auxiliary substrate glucose and 0.2 mM NADP + at a final concentration of 0.2 mM, then placed in a constant temperature water bath at 30 ° C for 24 h, during which time 1 M hydrogen was used for oxidation Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of methyl ester was 0.13%, ee was 0.
对比例3 Comparative example 3
取一定量的工程菌EcoDkR(该工程菌含有克隆自Acinetobacter baylyi EU273886.1的羰基还原酶基因,具体构建方法同实施例1、3)和EGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L的DkR静息细胞和1g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物葡萄糖1g和终浓度为0.2mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为0.31%,ee为0。 Get a certain amount of engineering bacteria EcoDkR (this engineering bacteria contains the carbonyl reductase gene cloned from Acinetobacter baylyi EU273886.1, and the specific construction method is the same as that of Examples 1 and 3) and the quiescent cells of EGdhBM, and use 100mM phosphoric acid of pH7.0 Sodium dihydrogen-disodium hydrogen phosphate buffer for resuspension. Add 1g dry weight /L of DkR resting cells and 1g dry weight /L of GdhBM resting cells in a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 500 mg of benzoylaminomethyl-3-oxobutyric acid methyl ester, 1 g of auxiliary substrate glucose and 0.2 mM NADP + at a final concentration of 0.2 mM, then placed in a constant temperature water bath at 30 ° C for 24 h, during which time 1 M hydrogen was used for oxidation Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of methyl ester was 0.31%, ee was 0.
对比例4 Comparative example 4
取一定量的工程菌EcoXRADH(该工程菌含有克隆自Rubrobacter xylanophilus DSM9941的羰基还原酶基因,具体构建方法同实施例1、3)和GdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L的XRADH静息细胞和1g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物葡萄糖1g和终浓度为0.2mM的NADP+,然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为0,ee为0。 Get a certain amount of engineering bacteria EcoXRADH (this engineering bacteria contains the carbonyl reductase gene cloned from Rubrobacter xylanophilus DSM9941, and the specific construction method is the same as in Examples 1 and 3) and the quiescent cells of GdhBM, use 100mM dihydrogen phosphate of pH7.0 Sodium-sodium hydrogen phosphate buffer to resuspend. Add 1g dry weight /L of XRADH resting cells and 1g dry weight /L of GdhBM resting cells in a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 500 mg of benzoylaminomethyl-3-oxobutyric acid methyl ester, 1 g of auxiliary substrate glucose and 0.2 mM NADP + at a final concentration of 0.2 mM, then placed in a constant temperature water bath at 30 ° C for 24 h, during which time 1 M hydrogen was used for oxidation Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of methyl ester is 0, ee is 0.
对比例5 Comparative example 5
取一定量的工程菌EcoYDL326(该工程菌含有克隆自Saccharomyces cerevisiae的羰基还原酶基因,具体构建方法同实施例1、3)和工程菌EcoGdhBM的静息细胞,用pH7.0的100mM的磷酸二氢钠-磷酸氢二钠缓冲液重悬。在50mL的三口圆底烧瓶中加入1g干重/L的YDL326静息细胞和1g干重/L的GdhBM静息细胞,加上述缓冲液补至总体积为20mL,再加底物外消旋2-苯甲酰氨甲基-3-羰基丁酸甲酯500mg,辅助底物葡萄糖1g和终浓度为0.2mM的NADP+, 然后置于30℃恒温水浴槽中搅拌反应24h,期间用1M氢氧化钠水溶液调节反应体系pH值维持在7.0。反应结束后,反应液经离心分离去除菌体细胞,上清液用0.45μm微滤膜过滤,用HPLC分析,产物(2S,3R)-2-苯甲酰氨甲基-3-羟基丁酸甲酯的得率为1.72%,ee为0。 Get a certain amount of engineering bacteria EcoYDL326 (this engineering bacteria contains the carbonyl reductase gene cloned from Saccharomyces cerevisiae, and the specific construction method is the same as in Examples 1 and 3) and the quiescent cells of engineering bacteria EcoGdhBM, and use 100mM phosphate diphosphate of pH7.0 Resuspend in sodium hydrogen phosphate-disodium hydrogen phosphate buffer. Add 1g dry weight /L of YDL326 resting cells and 1g dry weight /L of GdhBM resting cells into a 50mL three-neck round bottom flask, add the above buffer to make up to a total volume of 20mL, and then add the substrate for racemization 2 - 500 mg of benzoylaminomethyl-3-oxobutyric acid methyl ester, 1 g of auxiliary substrate glucose and NADP + with a final concentration of 0.2 mM, and then placed in a constant temperature water bath at 30 ° C for 24 h, and oxidized with 1 M hydrogen during the reaction Sodium aqueous solution was used to adjust the pH value of the reaction system to maintain at 7.0. After the reaction, the reaction solution was centrifuged to remove bacterial cells, the supernatant was filtered with a 0.45 μm microfiltration membrane, and analyzed by HPLC, the product (2S, 3R)-2-benzamidomethyl-3-hydroxybutyric acid The yield of methyl ester was 1.72%, ee was 0.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510149171.5A CN104846025B (en) | 2015-03-31 | 2015-03-31 | A kind of method for preparing (2S, 3R) -2- benzoyl aminomethyls -3-hydroxybutyrate methyl esters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510149171.5A CN104846025B (en) | 2015-03-31 | 2015-03-31 | A kind of method for preparing (2S, 3R) -2- benzoyl aminomethyls -3-hydroxybutyrate methyl esters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104846025A true CN104846025A (en) | 2015-08-19 |
CN104846025B CN104846025B (en) | 2018-06-01 |
Family
ID=53846012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510149171.5A Active CN104846025B (en) | 2015-03-31 | 2015-03-31 | A kind of method for preparing (2S, 3R) -2- benzoyl aminomethyls -3-hydroxybutyrate methyl esters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104846025B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106811491A (en) * | 2015-12-01 | 2017-06-09 | 上海朴颐化学科技有限公司 | The Preparation Method And Their Intermediate of optically active beta-hydroxy ester type compound |
CN115433721A (en) * | 2022-06-24 | 2022-12-06 | 山东理工大学 | Carbonyl reductase mutant and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1940079A (en) * | 2006-09-08 | 2007-04-04 | 鲁南制药集团股份有限公司 | Synthesis of (2S,3S)-2-benzoyl aminometh-3-hydroxy-butyrate ester series compound by asymmetric yeast cell |
CN101855342A (en) * | 2007-09-13 | 2010-10-06 | 科德克希思公司 | The Ketoreductase polypeptides that is used for reduction of acetophenones |
CN101883846A (en) * | 2007-10-01 | 2010-11-10 | 科德克希思公司 | Ketoreductase polypeptides for the production of azetidinone |
CN104388373A (en) * | 2014-12-10 | 2015-03-04 | 江南大学 | Construction of escherichia coli system with coexpression of carbonyl reductase Sys1 and glucose dehydrogenase Sygdh |
-
2015
- 2015-03-31 CN CN201510149171.5A patent/CN104846025B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1940079A (en) * | 2006-09-08 | 2007-04-04 | 鲁南制药集团股份有限公司 | Synthesis of (2S,3S)-2-benzoyl aminometh-3-hydroxy-butyrate ester series compound by asymmetric yeast cell |
CN101855342A (en) * | 2007-09-13 | 2010-10-06 | 科德克希思公司 | The Ketoreductase polypeptides that is used for reduction of acetophenones |
CN101883846A (en) * | 2007-10-01 | 2010-11-10 | 科德克希思公司 | Ketoreductase polypeptides for the production of azetidinone |
CN104388373A (en) * | 2014-12-10 | 2015-03-04 | 江南大学 | Construction of escherichia coli system with coexpression of carbonyl reductase Sys1 and glucose dehydrogenase Sygdh |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106811491A (en) * | 2015-12-01 | 2017-06-09 | 上海朴颐化学科技有限公司 | The Preparation Method And Their Intermediate of optically active beta-hydroxy ester type compound |
CN106811491B (en) * | 2015-12-01 | 2022-07-19 | 焦作健康元生物制品有限公司 | Preparation method of optically active beta-hydroxy ester compound and intermediate thereof |
CN115433721A (en) * | 2022-06-24 | 2022-12-06 | 山东理工大学 | Carbonyl reductase mutant and application thereof |
CN115433721B (en) * | 2022-06-24 | 2024-01-23 | 山东理工大学 | A carbonyl reductase mutant and its application |
Also Published As
Publication number | Publication date |
---|---|
CN104846025B (en) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104087546B (en) | A kind of method of engineering bacteria and preparation chloro-3, the 5-dihydroxy hecanoic acid t-butyl esters of (3R, 5S) 6- | |
CN110396508B (en) | L-pantolactone dehydrogenase derived from Nocardia cyriacetigoorgica and application thereof | |
CN112143764B (en) | A kind of method for preparing brivaracetam intermediate compound catalyzed by biological enzyme | |
CN107653238A (en) | A kind of carbonyl reductase genetic engineering bacterium immobilized cell and its application | |
CN110396507A (en) | L-pantolactone dehydrogenase from Cnuibacter physcomitrellae | |
CN103898177B (en) | Prepare the method for high chiral purity (R)-3-piperidine alcohols and derivative thereof | |
CN104130967B (en) | One plant of coexpression L lactic dehydrogenase and the Escherichia coli of hydrogenlyase and its construction method and application | |
CN102250821B (en) | Method for producing 2-keto-L-gulonic acid vitamin C precursor by modifying Escherichia coli | |
CN107653259B (en) | A kind of method of external enzyme reaction production D- (-) -3-hydroxy-2-butanone | |
CN109679978B (en) | A kind of recombinant co-expression system for preparing L-2-aminobutyric acid and its application | |
CN104846025B (en) | A kind of method for preparing (2S, 3R) -2- benzoyl aminomethyls -3-hydroxybutyrate methyl esters | |
CN104630125B (en) | Engineering bacteria and its application in the dihydroxy hecanoic acid t-butyl ester of (3R, 5S) 6 chlorine 3,5 is prepared | |
CN102827850A (en) | Short-chain dehydrogenase CPE (Cytopathic Effect) gene, coding enzyme, carrier, recombination engineering bacteria and application | |
CN109371070B (en) | Method for high yield of alpha-ketoisovaleric acid | |
CN107858384A (en) | A kind of method that optical voidness L Terleus are prepared using inactive inclusion body | |
CN114752574B (en) | Enzyme catalysis system, catalase, preparation method and application | |
CN114672525B (en) | Biosynthesis method and application of N-acetyl-5-methoxy tryptamine | |
CN113355299B (en) | Ketoacid reductase, genes, engineered bacteria and their application in the synthesis of chiral aromatic 2-hydroxy acids | |
CN106399398A (en) | Bio-preparation method for (R)-3,5-bis(trifluoromethyl) phenyl ethanol | |
CN103898178B (en) | Enzyme process prepares high chiral pure (S)-3-piperidine alcohols and the method for derivant thereof | |
CN101368169B (en) | Recombinant Pseudomonas putida producing deoxyviolet violacein and its application | |
CN111411128B (en) | A kind of whole-cell biocatalysis method for producing α,ω-dicarboxylic acid and its application | |
CN110527671B (en) | L-pantolactone dehydrogenase derived from Nocardia farcina and application thereof | |
CN106520855A (en) | Method for preparing stereoscopic complementary N-heterocycle alcohol compounds by conducting biological catalysis through carbonyl reductase | |
CN105602913A (en) | Restructuring carbonyl reductase mutant ReCR-Mut, encoding gene, engineering bacteria and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |