CN104844696A - Design, synthesis and application of transcription activator like effector function protein - Google Patents
Design, synthesis and application of transcription activator like effector function protein Download PDFInfo
- Publication number
- CN104844696A CN104844696A CN201410056380.0A CN201410056380A CN104844696A CN 104844696 A CN104844696 A CN 104844696A CN 201410056380 A CN201410056380 A CN 201410056380A CN 104844696 A CN104844696 A CN 104844696A
- Authority
- CN
- China
- Prior art keywords
- rvd
- functional protein
- residues
- transcription activator
- effector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 58
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 title claims abstract description 56
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 40
- 238000013461 design Methods 0.000 title description 4
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 238000003786 synthesis reaction Methods 0.000 title description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims abstract description 42
- 235000018102 proteins Nutrition 0.000 claims abstract description 39
- 239000004471 Glycine Substances 0.000 claims abstract description 21
- 239000004475 Arginine Substances 0.000 claims abstract description 12
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 235000018417 cysteine Nutrition 0.000 claims abstract description 12
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims abstract description 12
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims abstract description 11
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000004474 valine Substances 0.000 claims abstract description 11
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 10
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims abstract description 8
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims abstract description 8
- 235000003704 aspartic acid Nutrition 0.000 claims abstract description 8
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229960000310 isoleucine Drugs 0.000 claims abstract description 8
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims abstract description 8
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000004473 Threonine Substances 0.000 claims abstract description 7
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims abstract description 6
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims abstract description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 235000013922 glutamic acid Nutrition 0.000 claims abstract description 5
- 239000004220 glutamic acid Substances 0.000 claims abstract description 5
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 46
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 24
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 claims description 24
- 229940104302 cytosine Drugs 0.000 claims description 23
- 108020004414 DNA Proteins 0.000 claims description 17
- 229940113082 thymine Drugs 0.000 claims description 12
- 229940024606 amino acid Drugs 0.000 claims description 10
- 235000001014 amino acid Nutrition 0.000 claims description 10
- 229930024421 Adenine Natural products 0.000 claims description 8
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 229960000643 adenine Drugs 0.000 claims description 8
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 claims 1
- -1 cysteine Amino acid Chemical class 0.000 claims 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims 1
- 239000013641 positive control Substances 0.000 description 18
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 17
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 17
- 235000009582 asparagine Nutrition 0.000 description 17
- 229960001230 asparagine Drugs 0.000 description 17
- 150000001413 amino acids Chemical class 0.000 description 16
- 238000010459 TALEN Methods 0.000 description 15
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 15
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 108060001084 Luciferase Proteins 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000006801 homologous recombination Effects 0.000 description 8
- 238000002744 homologous recombination Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 239000005089 Luciferase Substances 0.000 description 5
- 230000032965 negative regulation of cell volume Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000005782 double-strand break Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 230000006780 non-homologous end joining Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003198 gene knock in Methods 0.000 description 2
- 238000003209 gene knockout Methods 0.000 description 2
- 230000030279 gene silencing Effects 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 244000000003 plant pathogen Species 0.000 description 1
- 230000008263 repair mechanism Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000003007 single stranded DNA break Effects 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
Abstract
一种“转录激活子样效应因子(Transcription Activator Like Effectors,TALE)”功能蛋白,所述“转录激活子样效应因子”功能蛋白的重复可变的双氨基酸残基RVD(repeat variable di-residues)分别为精氨酸R和缬氨酸V、或者分别为缬氨酸V和异亮氨酸I、或者分别为甘氨酸G和天冬氨酸D、或者分别为精氨酸R和色氨酸W、或者分别为苏氨酸T和甘氨酸G、或者分别为半胱氨酸C和甘氨酸G、或者分别为谷氨酸E和半胱氨酸C。
A "transcription activator like effector (TALE)" functional protein, the repeat variable double amino acid residue RVD (repeat variable di-residues) of the "transcription activator like effector" functional protein Arginine R and valine V respectively, or valine V and isoleucine I respectively, or glycine G and aspartic acid D respectively, or arginine R and tryptophan W respectively , or respectively threonine T and glycine G, or respectively cysteine C and glycine G, or respectively glutamic acid E and cysteine C.
Description
技术领域 technical field
本发明涉及一种“转录激活子样效应因子(TranscriptionActivator Like Effectors,TALE)”功能蛋白设计、合成以及上述功能蛋白的应用,特别涉及上述功能蛋白。 The present invention relates to the design and synthesis of a "transcription activator like effector (TALE)" functional protein and the application of the above functional protein, in particular to the above functional protein. the
背景技术 Background technique
在后基因组时代,我们迫切需要高效的基因操纵、合成等新型的生物工程技术。比如,我们常常需要抑制或沉默一个基因的表达。传统的基因敲除(Gene Knockout)技术依赖于细胞内自然发生的同源重组,其效率非常低,通常为10-6级;RNAi技术虽然简单易行,但是又很难获得百分之百的抑制效果。除了抑制或沉默特定的基因,我们常常还需要针对特定基因,进行某几个碱基,甚至某一段序列的修改。同样只依赖于同源重组技术,很难获得理想的效果。 In the post-genome era, we urgently need new bioengineering technologies such as efficient gene manipulation and synthesis. For example, we often need to suppress or silence the expression of a gene. Traditional gene knockout (Gene Knockout) technology relies on homologous recombination naturally occurring in cells, and its efficiency is very low, usually at the level of 10 -6 ; RNAi technology is simple and easy to implement, but it is difficult to obtain 100% inhibition effect. In addition to suppressing or silencing specific genes, we often need to modify a few bases or even a certain sequence of specific genes. Also only relying on homologous recombination technology, it is difficult to obtain the desired effect.
TALE(Transcription Activator Like Effectors)首先是植物病原菌黄单胞菌(Xanthomonas)上发现的,特异性地结合到DNA,在该病原菌感染过程中对植物基因进行调控。TALE蛋白可以穿过核膜进入细胞核内与特定的DNA结合域结合,调控植物基因组中与疾病和抵抗力相关基因的表达。简单讲,TALE是由4个或以上特异性识别DNA的串联“蛋白模块”和两侧的N-末端及C-末端序列组成,而每个“蛋白模块”包含34个氨基酸,其中第12和13位氨基酸是靶向识别的关键位点,被称作重复可变的双氨基酸残基(repeat variable diresidue,或者RVDs)。TALE识别DNA的机制在于DNA靶点上的一个核苷酸被一个重复序列上的RVD识别。 TALE (Transcription Activator Like Effectors) was first discovered on the plant pathogen Xanthomonas, which specifically binds to DNA and regulates plant genes during the pathogen infection process. TALE proteins can pass through the nuclear membrane into the nucleus and bind to specific DNA binding domains to regulate the expression of genes related to disease and resistance in the plant genome. Simply put, TALE is composed of 4 or more tandem "protein modules" that specifically recognize DNA and the N-terminal and C-terminal sequences on both sides, and each "protein module" contains 34 amino acids, of which the 12th and The 13th amino acid is the key site for target recognition, which is called repeat variable diresidue (or RVDs). The mechanism of TALE recognition of DNA is that a nucleotide on the DNA target is recognized by an RVD on a repeat sequence. the
理论上,针对A、T、G、C任何一个碱基,都能找到与之特定结合的RVDs。因此,对任何一段DNA序列,我们可以方便的设计、合成出对应蛋白模块组成的TALE。需要指出的问题是,1)虽然针对A、T、G、C都可以设计出对应的RVD,但是,它们之间的对应关系还有待于进一步优化;2)设计合成的TALE能否高效地靶向结合基因组上的预期位置,还决定于很多其它因素;3)蛋白模块的组成也有进一步优化的空间。 Theoretically, for any of the bases A, T, G, and C, RVDs that specifically bind to it can be found. Therefore, for any DNA sequence, we can easily design and synthesize TALEs composed of corresponding protein modules. The problems that need to be pointed out are: 1) Although the corresponding RVD can be designed for A, T, G, and C, the corresponding relationship between them needs to be further optimized; 2) Can the designed and synthesized TALE effectively target The expected location on the genome is also determined by many other factors; 3) The composition of the protein module also has room for further optimization. the
虽然TALE还有很多问题有待于深入研究加以解决,但是这并不妨碍它的应用。一个最大的应用前景是TALEN。TALEN是一个融合蛋白,由与某段DNA序列特异性识别TALE与能在DNA序列上产生双链断裂(double strand break,DSB)的内切核酸酶(Nuclease)融合而成。TALEN是异源二聚体分子(即两单位的TALE-Nuclease共同作用),能够在两个相隔较近的特异识别序列间切割DNA。 Although TALE still has many problems to be studied and solved, this does not hinder its application. One of the biggest application prospects is TALEN. TALEN is a fusion protein, which is fused with a DNA sequence that specifically recognizes TALE and an endonuclease (Nuclease) that can generate a double strand break (DSB) on the DNA sequence. TALEN is a heterodimeric molecule (that is, two units of TALE-Nuclease act together), which can cut DNA between two specific recognition sequences that are relatively close together. the
TALEN产生的DSB能够通过以下两种途径进行修复:1)非同源末端连接(Non Homologous EndJoining,NHEJ):NHEJ是以自然修复机制,能被用来引入核苷酸缺失以便失活或敲除一个特异性的靶基因;2)同源重组(Homologous Recombination,HR):DSB促进同源重组,在一个DNA模版存在下,能够产生特异性DNA序列改变,也能够将转基因整合到DNA序列上。NHEJ途径可以用于基因沉默,而HR可用于修改基因(Gene Editing),或者基因敲入(Gene Knock-in)。无论是哪种途径,TALEN产生的修复与单纯依赖于同源重组相比,基因发生重组的效率大大提高,这为我们从事基因组订制化(genome customization)提供方便的技术手段,为开发出更简易的新型基因组靶向修饰技术带来了新希望。 The DSB produced by TALEN can be repaired in the following two ways: 1) Non Homologous End Joining (NHEJ): NHEJ is a natural repair mechanism that can be used to introduce nucleotide deletions for inactivation or knockout A specific target gene; 2) Homologous recombination (Homologous Recombination, HR): DSB promotes homologous recombination, in the presence of a DNA template, can produce specific DNA sequence changes, and can also integrate transgenes into the DNA sequence. The NHEJ pathway can be used for gene silencing, while HR can be used for gene editing (Gene Editing), or gene knock-in (Gene Knock-in). Regardless of the approach, compared with purely relying on homologous recombination, the repair produced by TALEN can greatly improve the efficiency of gene recombination, which provides a convenient technical means for us to engage in genome customization and develop more Facile novel genome-targeted modification technology offers new hope. the
TALE另外一个大的应用前景是TALEA(transcription activator-like(TAL)effector activator)。TALEA是一个融合蛋白,将识别特异DNA序列的TALE与转录因子激活区域VP64(VP64Activation Domain)融合,可构建成识别启动子上特异DNA序列的转录激活因子TALEA。该融合蛋白将结合基因启动子附近的特异DNA序列,并通过VP64激活区域与Polymerase II结合,从而激活基因的转录,提高了内源目标基因的表达。在实际操作中,需在目标基因的启动子上游选取靶序列(一般12-18个碱基),构建TALE识别模块。 Another big application prospect of TALE is TALEA (transcription activator-like (TAL) effector activator). TALEA is a fusion protein that fuses TALE that recognizes a specific DNA sequence with the transcription factor activation domain VP64 (VP64 Activation Domain) to construct a transcriptional activator TALEA that recognizes a specific DNA sequence on the promoter. The fusion protein will bind to the specific DNA sequence near the gene promoter, and bind to Polymerase II through the VP64 activation region, thereby activating the transcription of the gene and increasing the expression of the endogenous target gene. In practice, it is necessary to select a target sequence (generally 12-18 bases) upstream of the promoter of the target gene to construct a TALE recognition module. the
TALE技术已经开始在生命科学领域崭露头角。2011年,法国和美国两个小组合作,利用TALEN技术,在大鼠中敲除失活IgM功能,效率高达60%。2011年,包括中国在内的几个小组,利用TALEN技术,在斑马鱼中,敲除失活hey2等基因,效率也达到了30%以上。 TALE technology has begun to emerge in the field of life sciences. In 2011, two groups from France and the United States cooperated to use TALEN technology to knock out and inactivate IgM function in rats, with an efficiency as high as 60%. In 2011, several groups, including China, used TALEN technology to knock out and inactivate genes such as hey2 in zebrafish, and the efficiency reached more than 30%. the
TALE具有特殊的结构特征,包括氮端(N端)分泌信号、中央的DNA结合域、和核定位序列(Nuclear localization signal,NLS)和碳端(C端)的激活域。DNA结合域中,几乎所有已经发现的TALE蛋白都是有数量不同(12~30)、高度保守的重复单元组成,这些重复单元(一般含有33~35个氨基酸)中,除了第12和13位氨基酸不尽相同之外,其他组成部分都十分保守。其中第12和13位可变的氨基酸被称为重复序列可变的双氨基酸残基RVD(repeat variable di-residues)。TALE主要是通过重复单元中的RVD识别DNA序列。目前已经报道的RVD共有14种。NI(天冬酰胺和异亮氨酸)特异性识别A,HD(组氨酸和天冬氨酸)特异性识别C,NN(天冬酰胺和天冬酰胺)可以识别G和A,NK(天冬酰胺和赖氨酸)特异性识别G,NS(天冬酰胺和丝氨酸)可以识别G、A、C和T,NG(天冬酰胺和甘氨酸)特异性识别T,NH(天冬酰胺和组氨酸)特异性识别G,N*(天冬酰胺,第13位空缺)可以识别T、C、G和A,NP(天冬酰胺和脯氨酸)可以识别T、A和C,HN(组氨酸和天冬酰胺)可以识别G和A,NT(天冬酰胺和苏氨酸)可以识别G和A,SN(丝氨酸和天冬酰胺)特异性识别G,SH(丝氨酸和组氨酸)特异性识别G。 TALEs have special structural features, including a nitrogen-terminal (N-terminal) secretion signal, a central DNA-binding domain, a nuclear localization signal (NLS) and a carbon-terminal (C-terminal) activation domain. In the DNA binding domain, almost all TALE proteins that have been discovered are composed of highly conserved repeating units with different numbers (12-30). Among these repeating units (generally containing 33-35 amino acids), except for the 12th and 13th Amino acids are not the same, other components are very conservative. The variable amino acids at the 12th and 13th positions are called repeat variable di-residues RVD (repeat variable di-residues). TALE mainly recognizes DNA sequences through the RVD in the repeat unit. A total of 14 types of RVD have been reported so far. NI (asparagine and isoleucine) specifically recognizes A, HD (histidine and aspartic acid) specifically recognizes C, NN (asparagine and asparagine) can recognize G and A, NK ( Asparagine and lysine) specifically recognize G, NS (asparagine and serine) can recognize G, A, C and T, NG (asparagine and glycine) specifically recognize T, NH (asparagine and Histidine) specifically recognizes G, N* (asparagine, 13th vacancy) can recognize T, C, G and A, NP (asparagine and proline) can recognize T, A and C, HN (histidine and asparagine) can recognize G and A, NT (asparagine and threonine) can recognize G and A, SN (serine and asparagine) can specifically recognize G, SH (serine and histamine) Acid) specifically recognizes G. the
现有技术存在的问题:有的TALE特异性不够强,有的TALE识别效率不够高。因此, 开发新的高效TALE序列(即新的RVD),就成为本领域迫切需要解决的一个技术问题。 Problems existing in the prior art: some TALEs are not specific enough, and some TALEs are not efficient enough in recognition. Therefore, the development of new high-efficiency TALE sequences (ie, new RVDs) has become a technical problem that needs to be solved urgently in this field. the
发明内容 Contents of the invention
本发明的目的正是为了解决上述技术问题,希望通过设计对TALE蛋白进行一些改进,实现TALE蛋白的RVD序列上的优化,以达到针对A、T、G、C任何一个碱基都有与之特定结合的RVD序列。 The purpose of the present invention is to solve the above-mentioned technical problems. It is hoped that some improvements can be made to the TALE protein by design to realize the optimization of the RVD sequence of the TALE protein, so as to achieve a target for any base of A, T, G, and C. Specific binding RVD sequence. the
RV特异性识别A碱基;VI特异性识别C碱基;GD特异性识别C碱基;RW特异性识别C碱基;TG识别T碱基,亦可以较弱识别C和G碱基;CG可以识别G碱基,亦可以较弱识别T和C碱基;EC可以较强识别A、G和C碱基,亦可以较弱识别T碱基。 RV specifically recognizes A bases; VI specifically recognizes C bases; GD specifically recognizes C bases; RW specifically recognizes C bases; TG recognizes T bases, and can also weakly recognize C and G bases; CG It can recognize G bases, and can also weakly recognize T and C bases; EC can strongly recognize A, G, and C bases, and can also weakly recognize T bases. the
本发明采用的技术方案如下。 The technical scheme adopted in the present invention is as follows. the
本发明中设计针对HHB基因序列设计合成TALEN,采用的实验方法是国际上比较常用的荧光素酶单链重组退火实验(luciferase single-strand annealing recombination assay,SSA),和用来检测内源基因非同源重组检测效率的方法——SURVEYOR实验。实验原理如附图1、2所示。 In the present invention, TALEN is designed and synthesized for the HHB gene sequence, and the experimental method adopted is the luciferase single-strand annealing recombination assay (luciferase single-strand annealing recombination assay, SSA), which is commonly used in the world, and is used to detect endogenous gene Homologous recombination detection efficiency method - SURVEYOR experiment. The experimental principle is shown in Figures 1 and 2. the
虽然对于识别特异性更好、识别效率更高的新TALE存在普遍的需求,现有技术中也存在测试TALE识别效率的方法(SSA、SURVEYOR,详见下文),但是自从TALE被发现以来,新结构的TALE却很少见报导,在诸多原因中,筛选工作量太大以至于超出忍受范围,是最主要的原因之一。 Although there is a general demand for new TALEs with better recognition specificity and higher recognition efficiency, there are also methods for testing the recognition efficiency of TALEs in the prior art (SSA, SURVEYOR, see below for details), but since TALEs were discovered, new Structural TALE is rarely reported. Among many reasons, the screening workload is too large to be tolerated, which is one of the most important reasons. the
总所周知,由于基本氨基酸即有20种,因此含有两个氨基酸的RVD存在202即400种排列组合情况,筛选实验量相当大。本发明中利用质粒在大肠杆菌中的质粒不相容性这一性质,在大肠杆菌里大量的排列组合中筛选出有用的RVD。具体步骤如图1所示。该方法首先建立筛选体系,然后按照20种基本氨基酸两两排列组合的400种情况建立TALEN库,将TALEN库中的TALEN与报告质粒一起共转化进大肠杆菌,在其中挑选阳性克隆扩增,最后与报告质粒再次共转化进行验证。我们设计的上述新方法使得筛选实验的实验量大大减小,从而使得从大量可能的组合中挑选出有效的新型TALE变得可行。 As we all know, since there are 20 kinds of basic amino acids, there are 20 2 or 400 permutations and combinations of RVDs containing two amino acids, and the amount of screening experiments is quite large. In the present invention, the property of plasmid incompatibility in Escherichia coli is used to screen useful RVDs from a large number of permutations and combinations in Escherichia coli. The specific steps are shown in Figure 1. In this method, a screening system is first established, and then a TALEN library is established according to 400 situations in which 20 basic amino acids are arranged in pairs. The TALEN in the TALEN library and the reporter plasmid are co-transformed into E. coli, and positive clones are selected and amplified. Co-transform again with the reporter plasmid for verification. The above-mentioned new method we designed greatly reduces the amount of screening experiments, making it feasible to select effective new TALEs from a large number of possible combinations.
使用上述方法,我们从几百种氨基酸组合中挑选出了有效的TALE,分别如下:“转录激活子样效应因子(TALE)”功能蛋白中的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为精氨酸R和缬氨酸V、或者分别为缬氨酸V和异亮氨酸I、或者分别为甘氨酸G和天冬氨酸D、或者分别为精氨酸R和色氨酸W、或者分别为苏氨酸T和甘氨酸G、或者分别为半胱氨酸C和甘氨酸G、或者分别为谷氨酸E和半胱氨酸C。并且,我们还确认了上述新型TALE特异识别的碱基,可以将这些新型的TALE应用于这些碱基的特异识别上, 分别如下: Using the above method, we selected effective TALEs from hundreds of amino acid combinations, which are as follows: The repeat variable diamino acid residue RVD (repeat variable di- residues) are arginine R and valine V respectively, or valine V and isoleucine I respectively, or glycine G and aspartic acid D respectively, or arginine R and tryptophan respectively Acid W, or threonine T and glycine G, respectively, or cysteine C and glycine G, respectively, or glutamic acid E and cysteine C, respectively. Moreover, we have also confirmed the bases specifically recognized by the above-mentioned new TALEs, and these new TALEs can be applied to the specific recognition of these bases, respectively as follows:
所述“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为精氨酸R和缬氨酸V,用于对腺嘌呤(A)的特异性识别;所述“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为缬氨酸V和异亮氨酸I,用于对胞嘧啶(C)的特异性识别;所述“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为甘氨酸G和天冬氨酸D,用于对胞嘧啶(C)的特异性识别;所述“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为精氨酸R和色氨酸W,用于对胞嘧啶(C)的特异性识别;所述“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为苏氨酸T和甘氨酸G,用于对胸腺嘧啶(T)的进行较强识别,亦可以对胞嘧啶(C)和鸟嘌呤(G)碱基较弱识别;所述“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为半胱氨酸C和甘氨酸G,用于对鸟嘌呤(G)的进行较强识别,亦可以对胸腺嘧啶(T)和胞嘧啶(C)进行较弱识别;所述“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为谷氨酸E和半胱氨酸C,用于对腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)的进行较强识别,亦可以对胸腺嘧啶(T)进行较弱识别。 The repeat variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively arginine R and valine V, which are used for the specificity of adenine (A). sex recognition; the repeat variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively valine V and isoleucine I, which are used for cytosine ( C) specific recognition; the repeated variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are glycine G and aspartic acid D, respectively, for the The specific recognition of pyrimidine (C); the repeat variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively arginine R and tryptophan W, with For the specific recognition of cytosine (C); the repeat variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively threonine T and glycine G, It is used for strong recognition of thymine (T), and weak recognition of cytosine (C) and guanine (G) bases; the repeat of the "transcription activator-like effector" functional protein is variable The double amino acid residues RVD (repeat variable di-residues) are cysteine C and glycine G, which are used for strong recognition of guanine (G), and can also recognize thymine (T) and cytosine (C ) for weak recognition; the repeat variable di-amino acid residue RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein is glutamic acid E and cysteine C, respectively, for the Stronger recognition of adenine (A), guanine (G) and cytosine (C) and weaker recognition of thymine (T). the
附图说明 Description of drawings
图1筛选实验流程示意图 Figure 1 Schematic diagram of the screening experiment process
图2荧光素酶单链重组退火实验(luciferase single-strand annealing recombination assay,SSA)原理图:首先,把荧光素酶基因进行改造。在荧光素酶基因中间加入终止密码子和靶基因序列;随后通过分子生物学手段再紧接上另外一段荧光素酶基因序列,途中浅灰色区域的序列(约800bp)相同。当TALEN有效果时,TALEN会在靶序列位置把双链DNA剪切形成一个双链的DNA断裂,由于两个浅灰色区域序列(即图1中“终止密码子”左侧的一段基因和“靶序列”右侧的一段基因)相同,此时会发生同源重组,就形成了一个有活性的荧光素酶报告基因,实验中可以测量荧光素酶的表达来检测TALEN的效果的强弱。 Figure 2 Schematic diagram of luciferase single-strand annealing recombination assay (SSA): first, the luciferase gene was modified. A stop codon and target gene sequence were added in the middle of the luciferase gene; then another piece of luciferase gene sequence was followed by molecular biological means, and the sequence in the light gray area (about 800bp) on the way was the same. When TALEN is effective, TALEN will cut the double-stranded DNA at the target sequence position to form a double-stranded DNA break, due to the two light gray region sequences (that is, a gene on the left side of "stop codon" in Figure 1 and " The gene on the right side of "target sequence" is the same, homologous recombination will occur at this time, and an active luciferase reporter gene will be formed. In the experiment, the expression of luciferase can be measured to detect the strength of the effect of TALEN. the
图3SURVEYOR原理图:首先用PCR的方法把目的基因片段从基因组上扩增出来。其中包括发生缺失和没有产生变化的序列。然后把扩增出来的片段在体外进行重新退火,此时发生缺失的片段和没有产生变化的序列会退火形成有部分不配对的双链结构。接下来用SURVEYOR酶进行酶切实验,这种酶可以识别不配对的区域进行酶切。我们可以通过跑胶检测图中a、b、c 的含量来检测发生缺失的效率,从而得出TALEN的作用效果。 Figure 3 SURVEYOR principle diagram: Firstly, PCR method is used to amplify the target gene fragment from the genome. These include deletions and sequences that do not produce changes. Then, the amplified fragments are re-annealed in vitro, and at this time, the missing fragments and the unchanged sequences will anneal to form a partially unpaired double-stranded structure. Next, use SURVEYOR enzyme to carry out enzyme digestion experiments, this enzyme can recognize unpaired regions for digestion. We can detect the efficiency of the deletion by the content of a, b, and c in the gel detection graph, so as to obtain the effect of TALEN. the
图4RVD-RV的SSA实验结果 Figure 4 SSA experimental results of RVD-RV
图5RVD-VI的SSA实验结果 Figure 5 SSA experimental results of RVD-VI
图6RVD-GD的SSA实验结果 Figure 6 SSA experimental results of RVD-GD
图7RVD-RW的SSA实验结果 Figure 7 SSA experimental results of RVD-RW
图8RVD-TG的SSA实验结果 Figure 8 SSA experimental results of RVD-TG
图9RVD-CG的SSA实验结果 Figure 9 SSA experimental results of RVD-CG
图10RVD-EC的SSA实验结果 Figure 10 SSA experimental results of RVD-EC
图11SURVEYOR实验结果 Figure 11 SURVEYOR experimental results
具体实施方式 Detailed ways
实施例1 Example 1
“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为精氨酸R和缬氨酸V,简称RVD-RV。对应的SSA实验结果见图4,其中阳性对照是根据领域中现有的规则设计合成的TALE:NI(天冬酰胺和异亮氨酸)识别A,HD(组氨酸和天冬氨酸)识别C,NN(天冬酰胺和天冬酰胺)识别G,NG(天冬酰胺和甘氨酸)识别T。与阳性对照相比,RVD-RV对于腺嘌呤(A)的识别率较高,与阳性对照相比,相对效率达到了150%。因此可将该TALE用于对腺嘌呤(A)的特异性识别。 The repeat variable di-residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively arginine R and valine V, referred to as RVD-RV. The corresponding SSA experimental results are shown in Figure 4, where the positive control is a TALE designed and synthesized according to existing rules in the field: NI (asparagine and isoleucine) recognizes A, HD (histidine and aspartic acid) C is recognized by NN (asparagine and asparagine), G is recognized by NG (asparagine and glycine), and T is recognized by NG (asparagine and glycine). Compared with the positive control, the recognition rate of RVD-RV for adenine (A) is higher, and compared with the positive control, the relative efficiency reaches 150%. Therefore, this TALE can be used for the specific recognition of adenine (A). the
实施例2 Example 2
“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为缬氨酸V和异亮氨酸I,简称RVD-VI。对应的SSA实验结果见图5。与阳性对照相比,RVD-VI对于胞嘧啶(C)的识别率很高,与阳性对照相比,相对效率达到了198%。因此可将该TALE用于对胞嘧啶(C)的特异性识别。 The repeat variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively valine V and isoleucine I, referred to as RVD-VI. The corresponding SSA experimental results are shown in Figure 5. Compared with the positive control, RVD-VI has a high recognition rate for cytosine (C), and compared with the positive control, the relative efficiency reaches 198%. Therefore, this TALE can be used for the specific recognition of cytosine (C). the
实施例3 Example 3
“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为甘氨酸G和天冬氨酸D,简称RVD-GD。对应的SSA实验结果见图6。与 阳性对照相比,RVD-GD对于胞嘧啶(C)的识别率很高,与阳性对照相比,相对效率达到了103%。因此可将该TALE用于对胞嘧啶(C)的特异性识别。 The repeat variable di-residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively glycine G and aspartic acid D, referred to as RVD-GD. The corresponding SSA experimental results are shown in Figure 6. Compared with the positive control, RVD-GD has a high recognition rate for cytosine (C), and compared with the positive control, the relative efficiency reaches 103%. Therefore, this TALE can be used for the specific recognition of cytosine (C). the
实施例4 Example 4
“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为精氨酸R和色氨酸W,简称RVD-RW。对应的SSA实验结果见图7。与阳性对照相比,RVD-RW对于胞嘧啶(C)的识别率较高,与阳性对照相比,相对效率达到了68.5%。因此可将该TALE用于对胞嘧啶(C)的特异性识别。 The repeat variable di-residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively arginine R and tryptophan W, referred to as RVD-RW. The corresponding SSA experimental results are shown in Figure 7. Compared with the positive control, the recognition rate of cytosine (C) by RVD-RW is higher, and compared with the positive control, the relative efficiency reaches 68.5%. Therefore, this TALE can be used for the specific recognition of cytosine (C). the
实施例5 Example 5
“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为苏氨酸T和甘氨酸G,简称RVD-TG。对应的SSA实验结果见图8。与阳性对照相比,RVD-TG对于胸腺嘧啶(T)的识别率较高,与阳性对照相比,相对效率达到了132%;对于对胞嘧啶(C)和鸟嘌呤(G)碱基进行较弱识别,与阳性对照相比,相对效率分别为61%和36%。因此可将该TALE用于对胸腺嘧啶(T)的进行较强识别,亦可以对胞嘧啶(C)和鸟嘌呤(G)碱基较弱识别。 The repeat variable di-residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively threonine T and glycine G, referred to as RVD-TG. The corresponding SSA experimental results are shown in Figure 8. Compared with the positive control, RVD-TG has a higher recognition rate for thymine (T), and compared with the positive control, the relative efficiency has reached 132%; for cytosine (C) and guanine (G) bases Weaker recognition, with relative efficiencies of 61% and 36%, respectively, compared to the positive control. Therefore, the TALE can be used for stronger recognition of thymine (T), and weaker recognition of cytosine (C) and guanine (G) bases. the
实施例6 Example 6
“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为半胱氨酸C和甘氨酸G,简称RVD-CG。对应的SSA实验结果见图9。与阳性对照相比,RVD-CG对于鸟嘌呤(G)的识别率较高,与阳性对照相比,相对效率达到了88.8%;对于胸腺嘧啶(T)和胞嘧啶(C)进行较弱识别,与阳性对照相比,相对效率分别为1%和34%。因此可将该TALE用于对鸟嘌呤(G)的进行较强识别,亦可以对胸腺嘧啶(T)和胞嘧啶(C)进行较弱识别。 The repeat variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are respectively cysteine C and glycine G, referred to as RVD-CG. The corresponding SSA experimental results are shown in Figure 9. Compared with the positive control, RVD-CG has a higher recognition rate for guanine (G), and the relative efficiency reaches 88.8% compared with the positive control; it has a weaker recognition for thymine (T) and cytosine (C) , compared with the positive control, the relative efficiencies were 1% and 34%, respectively. Therefore, the TALE can be used for stronger recognition of guanine (G), and weaker recognition of thymine (T) and cytosine (C). the
实施例7 Example 7
“转录激活子样效应因子”功能蛋白的重复可变双氨基酸残基RVD(repeat variable di-residues)分别为谷氨酸E和半胱氨酸C,简称RVD-EC。对应的SSA实验结果见图10。与阳性对照相比,RVD-EC对于腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)的识别率较高,与阳 性对照相比,相对效率分别为211%、421和200%;对胸腺嘧啶(T)进行较弱识别,与阳性对照相比,相对效率为13%。因此可将该TALE用于对腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)的进行较强识别,亦可以对胸腺嘧啶(T)进行较弱识别。 The repeat variable di-amino acid residues RVD (repeat variable di-residues) of the "transcription activator-like effector" functional protein are glutamic acid E and cysteine C, respectively, referred to as RVD-EC. The corresponding SSA experimental results are shown in Figure 10. Compared with the positive control, RVD-EC has a higher recognition rate for adenine (A), guanine (G) and cytosine (C), and the relative efficiencies are 211%, 421 and 200% respectively compared with the positive control %; Thymine (T) was weakly recognized, compared with the positive control, the relative efficiency was 13%. Therefore, the TALE can be used for strong recognition of adenine (A), guanine (G) and cytosine (C), and weak recognition of thymine (T). the
附录: Appendix:
(1) (1)
实施例1中,RVD-RV氨基酸序列: In Example 1, the RVD-RV amino acid sequence:
MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEKI MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEKI
KPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVG KPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVG
KQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNL KQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNL
TPEQVVAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLP TPEQVVAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLP
VLCQAHGLTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASRVGGKQAL VLCQAHGLTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASRVGGKQAL
ETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASH ETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASH
DGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPD DGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPD
QVVAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASRVGGKQALETVQRLLPVLC QVVAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASRVGGKQALETVQRLLPVLC
QAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETV QAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASNGGGKQALETV
QRLLPVLCQAHGLTPAQVVAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDG QRLLPVLCQAHGLTPAQVVAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASRVGG
GKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQV GKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQV
VAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQA VAIASRVGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQA
HGLTPAQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGL HGLTPAQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGL
PHAPALIKRTNRRIPERTSHRVA PHAPALIKRTNRRIPERTSHRVA
(2) (2)
实施例2中,RVD-VI氨基酸序列: In embodiment 2, RVD-VI amino acid sequence:
MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEKI MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEKI
KPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVG KPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVG
KQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNL KQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNL
TPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPV TPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPV
LCQAHGLTPAQVVAIASVIGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETV LCQAHGLTPAQVVAIAASVIGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASNIGGKQALETV
QRLLPVLCQAHGLTPDQVVAIASVIGGKQALETVQRLLPVLCQAHGLTPAQVVAIASVIGGK QRLLPVLCQAHGLTPDQVVAIAASVIGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASVIGGK
QALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVAI QALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVAI
ASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLT ASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIAASNIGGKQALETVQRLLPVLCQAHGLT
PDQVVAIASVIGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVL PDQVVAIAASVIGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVL
CQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASVIGGKQALETV CQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIAASVIGGKQALETV
QRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGG QRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGG
KQALETVQRLLPVLCQAHGLTPDQVVAIASVIGGKQALETVQRLLPVLCQAHGLTPAQVVA KQALETVQRLLPVLCQAHGLTPDQVVAIAASVIGGKQALETVQRLLPVLCQAHGLTPAQVVA
IASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLPHAPALIKRT IASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLPHAPALIKRT
NRRIPERTSHRVA NRRIPERTS HRVA
(3) (3)
实施例3中,RVD-GD氨基酸序列: In embodiment 3, RVD-GD amino acid sequence:
MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK
IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV
GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL
NLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNNGGKQALETVQRL NLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNNGGKQALETVQRL
LPVLCQAHGLTPDQVVAIASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGK LPVLCQAHGLTPDQVVAIASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGK
QALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVA QALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVA
IASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAH IASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAH
GLTPAQVVAIASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASGDGGKQALETVQRL GLTPAQVVAIASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASGDGGKQALETVQRL
LPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASGDGGK LPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASGDGGK
QALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVA QALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVA
IASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHG IASGDGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASNIGGKQALETVQRLLPVLCQAHG
LTPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGRPALESIVAQLS LTPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGRPALESIVAQLS
RPDPALAALTNDHLVALACLGGRPALDAVKKGLPHAPALIKRTNRRIPERTSHRVA RPDPALAALTNDHLVALACLGGRPALDAVKKGLPHAPALIKRTNRRIPERTSHRVA
(4) (4)
实施例4中,RVD-RW氨基酸序列: In embodiment 4, RVD-RW amino acid sequence:
MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK
IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV
GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL
NLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASRWGGKQALETVQRL NLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASRWGGKQALETVQRL
LPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASRWGGK LPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASRWGGK
QALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVA QALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVA
IASRWGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAH IASRWGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAH
GLTPAQVVAIASRWGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRL GLTPAQVVAIASRWGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRL
LPVLCQAHGLTPDQVVAIASRWGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQ LPVLCQAHGLTPDQVVAIASRWGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASNIGGKQ
ALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAI ALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAI
ASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHG ASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHG
LTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGKQALETVQRLLP LTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIAASNIGGKQALETVQRLLP
VLCQAHGLTPDQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPAL VLCQAHGLTPDQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPAL
DAVKKGLPHAPALIKRTNRRIPERTSHRVA DAVKKGLPHAPALIKRTNRRIPERTSHRVA
(5) (5)
实施例5中,RVD-TG氨基酸序列: In Example 5, the RVD-TG amino acid sequence:
MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEKI MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEKI
KPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVG KPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVG
KQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNL KQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNL
TPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASTGGGKQALETVQRLLPV TPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASTGGGKQALETVQRLLPV
LCQAHGLTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALET LCQAHGLTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALET
VQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASHD VQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASHD
GGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQ GGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQ
VVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGKQALETVQRLLPVLCQA VVAIAASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIAASNIGGKQALETVQRLLPVLCQA
HGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASTGGGKQALETVQR HGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASTGGGKQALETVQR
LLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQ LLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQ
ALETVQRLLPVLCQAHGLTPAQVVAIASTGGGKQALETVQRLLPVLCQAHGLTPAQVVAIA ALETVQRLLPVLCQAHGLTPAQVVAIASTGGGKQALETVQRLLPVLCQAHGLTPAQVVAIA
SNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLT SNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLT
PAQVVAIASTGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLPHAP PAQVVAIASTGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLPHAP
ALIKRTNRRIPERTSHRVA ALIKRTNRRIPERTSHRVA
(6) (6)
实施例6中,RVD-CG氨基酸序列: In Example 6, the RVD-CG amino acid sequence:
MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK
IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV
GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL
NLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLL NLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLL
PVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGKQ PVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASHDGGKQ
ALETVQRLLPVLCQAHGLTPAQVVAIASCGGGKQALETVQRLLPVLCQAHGLTPDQVVAI ALETVQRLLPVLCQAHGLTPAQVVAIASCGGGKQALETVQRLLPVLCQAHGLTPDQVVAI
ASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHG ASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHG
LTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLP LTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLP
VLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQAL VLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQAL
ETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIAS ETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIAS
NGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLT NGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLT
PAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGKQALETVQRLLPVL PAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIAASNIGGKQALETVQRLLPVL
CQAHGLTPDQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDA CQAHGLTPDQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDA
VKKGLPHAPALIKRTNRRIPERTSHRVA VKKGLPHAPALIKRTNRRIPERTSHRVA
(7) (7)
实施例7中,RVD-EC氨基酸序列: In Example 7, the amino acid sequence of RVD-EC:
MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK MAPKKKRKVYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHGTVDLRTLGYSQQQQEK
IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV IKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGV
GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL GKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPL
NLTPEQVVAIASECGGKQALETVQRLLPVLCQAHGLTPDQVVAIASECGGKQALETVQRL NLTPEQVVAIASECGGKQALETVQRLLPVLCQAHGLTPDQVVAIASECGGKQALETVQRL
LPVLCQAHGLTPDQVVAIASH DGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGK LPVLCQAHGLTPDQVVAIASH DGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGK
QALETVQRLLPVLCQAHGLTPAQVVAIASECGGKQALETVQRLLPVLCQAHGLTPDQVVA QALETVQRLLPVLCQAHGLTPAQVVAIASECGGKQALETVQRLLPVLCQAHGLTPDQVVA
IASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHG IASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHG
LTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGKQALETVQRLL LTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGKQALETVQRLL
PVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGKQ PVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASHDGGKQ
ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAI ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAI
ASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGL ASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIAASNIGGKQALETVQRLLPVLCQAHGL
TPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGRPALESIVAQLSR TPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGRPALESIVAQLSR
PDPALAALTNDHLVALACLGGRPALDAVKKGLPHAPALIKRTNRRIPERTSHRVA PDPALAALTNDHLVALACLGGRPALDAVKKGLPHAPALIKRTNRRIPERTSHRVA
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410056380.0A CN104844696A (en) | 2014-02-19 | 2014-02-19 | Design, synthesis and application of transcription activator like effector function protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410056380.0A CN104844696A (en) | 2014-02-19 | 2014-02-19 | Design, synthesis and application of transcription activator like effector function protein |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104844696A true CN104844696A (en) | 2015-08-19 |
Family
ID=53844721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410056380.0A Pending CN104844696A (en) | 2014-02-19 | 2014-02-19 | Design, synthesis and application of transcription activator like effector function protein |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104844696A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796040A (en) * | 2018-06-27 | 2018-11-13 | 中南民族大学 | A kind of bioluminescent detection probe and its construction method and application based on transcriptional activation increment effector |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102770539A (en) * | 2009-12-10 | 2012-11-07 | 明尼苏达大学董事会 | TAL effector-mediated DNA modification |
CN102787125A (en) * | 2011-08-05 | 2012-11-21 | 北京大学 | Method for building TALE (transcription activator-like effector) repeated sequences |
CN103025344A (en) * | 2010-05-17 | 2013-04-03 | 桑格摩生物科学股份有限公司 | Novel DNA-binding proteins and uses thereof |
WO2013082519A2 (en) * | 2011-11-30 | 2013-06-06 | The Broad Institute Inc. | Nucleotide-specific recognition sequences for designer tal effectors |
CN103146735A (en) * | 2012-12-28 | 2013-06-12 | 西北农林科技大学 | Construction method of TALE repeat unit tetramer library, construction method of TALEN expression vector and application thereof |
CN103435691A (en) * | 2013-08-13 | 2013-12-11 | 北京大学 | TALE (Transcription Activator Like Effectors) protein and application thereof |
-
2014
- 2014-02-19 CN CN201410056380.0A patent/CN104844696A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102770539A (en) * | 2009-12-10 | 2012-11-07 | 明尼苏达大学董事会 | TAL effector-mediated DNA modification |
CN103025344A (en) * | 2010-05-17 | 2013-04-03 | 桑格摩生物科学股份有限公司 | Novel DNA-binding proteins and uses thereof |
CN102787125A (en) * | 2011-08-05 | 2012-11-21 | 北京大学 | Method for building TALE (transcription activator-like effector) repeated sequences |
WO2013082519A2 (en) * | 2011-11-30 | 2013-06-06 | The Broad Institute Inc. | Nucleotide-specific recognition sequences for designer tal effectors |
CN103146735A (en) * | 2012-12-28 | 2013-06-12 | 西北农林科技大学 | Construction method of TALE repeat unit tetramer library, construction method of TALEN expression vector and application thereof |
CN103435691A (en) * | 2013-08-13 | 2013-12-11 | 北京大学 | TALE (Transcription Activator Like Effectors) protein and application thereof |
Non-Patent Citations (2)
Title |
---|
ERNST WEBER: "Assem bly of Designer TAL Effectors by Golden Gate Cloning", 《PLOS ONE》 * |
JENS BOCH: "Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors", 《SCIENCE》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796040A (en) * | 2018-06-27 | 2018-11-13 | 中南民族大学 | A kind of bioluminescent detection probe and its construction method and application based on transcriptional activation increment effector |
CN108796040B (en) * | 2018-06-27 | 2021-09-24 | 中南民族大学 | Bioluminescence detection probe based on transcription activator-like effector and construction method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6740325B2 (en) | TALE transcription activator | |
WO2015165274A1 (en) | Taler protein having a transcription inhibiting effect by means of steric hindrance, and application thereof | |
US20160369268A1 (en) | Transcription activator-like effector (tale) libraries and methods of synthesis and use | |
WO2019139645A3 (en) | High efficiency base editors comprising gam | |
CN102558309B (en) | Transcription activator-like effector nucleases, and encoding genes and application thereof | |
WO2017070632A3 (en) | Nucleobase editors and uses thereof | |
Zhang et al. | TALE: a tale of genome editing | |
Calderini et al. | Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice | |
JP2013513389A5 (en) | ||
RU2018112325A (en) | 3'-UTR SEQUENCES FOR RNA STABILIZATION | |
JP2016534727A5 (en) | ||
WO2010057203A3 (en) | Hdl particles for delivery of nucleic acids | |
Denisenko et al. | Transcriptionally induced enhancers in the macrophage immune response to Mycobacterium tuberculosis infection | |
CN103435691A (en) | TALE (Transcription Activator Like Effectors) protein and application thereof | |
WO2015158031A1 (en) | Dna molecule used for pichia pastoris recombinant plasmid and pichia pastoris recombinant bacterium expressing ppri protein of deinococcus radiodurans | |
CN104844696A (en) | Design, synthesis and application of transcription activator like effector function protein | |
JP2015533372A5 (en) | ||
CN102964431A (en) | Polypeptide pair for specifically recognizing muscle myostatin gene as well as encoding gene and application of gene | |
CN105713885B (en) | A chimeric nuclease that specifically recognizes and repairs the beta-globin gene of β-thalassemia | |
CN104531633A (en) | Cas9-scForkI fusion protein and application thereof | |
CN104073496B (en) | The sequence of escherichia coli outer membrane protein TolC aptamer and purposes | |
Rajendran et al. | Artificial Restriction DNA Cutter Using Nuclease S1 for Site‐Selective Scission of Genomic DNA | |
CN104450784A (en) | Method for establishing SAMHD1 gene knockout cell line | |
CN104628828B (en) | The polypeptide of a pair of of specific recognition I κ B α genes and its encoding gene and application | |
Pilsl | Reconstitution of the RNA polymerase I initiation complex from recombinant initiation factors and regulation of its activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150819 |
|
WD01 | Invention patent application deemed withdrawn after publication |