CN104821350A - Manufacturing method of inversion structure of III semiconductor light-emitting device - Google Patents
Manufacturing method of inversion structure of III semiconductor light-emitting device Download PDFInfo
- Publication number
- CN104821350A CN104821350A CN201510222434.0A CN201510222434A CN104821350A CN 104821350 A CN104821350 A CN 104821350A CN 201510222434 A CN201510222434 A CN 201510222434A CN 104821350 A CN104821350 A CN 104821350A
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- contact metal
- insulating layer
- flip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/032—Manufacture or treatment of electrodes
Landscapes
- Led Devices (AREA)
Abstract
本申请公开了一种III族半导体发光器件倒装结构的制作方法,包括步骤:自下而上依次生长衬底、缓冲层、n型氮化物半导体层、有源层和p型氮化物半导体层形成外延结构,所述外延结构的上表面为p型氮化物半导体层的上表面;沉积透明导电层;黄光蚀刻制程定义隔离槽;沉积第一绝缘层结构;沉积P型接触金属与N型接触金属;沉积第二绝缘层结构;沉积倒装P型电极与倒装N型电极,得到圆片;将圆片进行减薄、划片、裂片、测试、分选。本发明一律采用线凸形台面技术取代现有技术中的多个孔洞vias技术。本发明的第一步骤可将透明导电层与线凸形台面图案一起制作,不但简化了一道制程,也解决了透明导电层与线凸形台面图案对准的问题。
The present application discloses a method for manufacturing a flip-chip structure of a III-group semiconductor light-emitting device, including the steps of: growing a substrate, a buffer layer, an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer sequentially from bottom to top Forming an epitaxial structure, the upper surface of the epitaxial structure is the upper surface of the p-type nitride semiconductor layer; depositing a transparent conductive layer; yellow photoetching process defines isolation grooves; depositing the first insulating layer structure; depositing P-type contact metal and N-type Contact the metal; deposit the second insulating layer structure; deposit flip-chip P-type electrodes and flip-chip N-type electrodes to obtain wafers; perform thinning, scribing, splitting, testing, and sorting of the wafers. The present invention all adopts the line convex mesa technology to replace the multiple hole vias technology in the prior art. In the first step of the present invention, the transparent conductive layer and the linear convex mesa pattern can be produced together, which not only simplifies a manufacturing process, but also solves the problem of alignment between the transparent conductive layer and the linear convex mesa pattern.
Description
技术领域technical field
本申请涉及半导体照明技术领域,具体地说,是涉及一种III族半导体发光器件倒装结构的制作方法。The present application relates to the technical field of semiconductor lighting, in particular, to a method for fabricating a flip-chip structure of a Group III semiconductor light-emitting device.
背景技术Background technique
传统发光二极管采用正装结构,一般透明导电层采用高穿透率的材料,如ITO、AZO…等,而电极一般采用Cr/Pt/Au等,然而在倒装结构中,有源层激发的光直接从电极的另一面衬底发出,所以对P型电极的要求変成覆盖在整面p型氮化物半导体层的高反射材料来当反射镜结构,第一种是在p型氮化物半导体层上镀高穿透率的透明电极再加上高反射金属,例如ITO/Ag等,另一种是在p型氮化物半导体层上直接镀上高反射率的金属同时作为欧姆接触层和反射镜,例如Ag、Al等,不管选用哪一种方法,后面必须使用金属保护层(guard metal),覆盖高反射材料,以避免不稳定,再蚀刻多个孔洞(vias),结构示意图如图1,整面覆盖第一绝缘层,开孔存取n型氮化物半导体层及金属保护层,再镀P型接触金属与N型接触金属,整面再覆盖第二绝缘层,开孔存取P型接触金属与N型接触金属,最后镀倒装P型电极和N型电极,由于蚀刻孔洞的精度要求比较高,所以工艺复杂,生产成本也较高。Traditional light-emitting diodes adopt a front-mount structure. Generally, the transparent conductive layer is made of high-transmittance materials, such as ITO, AZO, etc., and the electrodes are generally made of Cr/Pt/Au, etc. However, in the flip-chip structure, the light excited by the active layer It is directly emitted from the substrate on the other side of the electrode, so the requirement for the P-type electrode is changed to a highly reflective material covering the entire p-type nitride semiconductor layer as a mirror structure. The first is on the p-type nitride semiconductor layer Plating a transparent electrode with high transmittance plus high reflective metal, such as ITO/Ag, etc., the other is to directly coat a high reflective metal on the p-type nitride semiconductor layer as an ohmic contact layer and a mirror, For example, Ag, Al, etc., no matter which method is used, a metal protective layer (guard metal) must be used later to cover the highly reflective material to avoid instability, and then etch multiple holes (vias). The schematic diagram of the structure is shown in Figure 1. The surface is covered with the first insulating layer, with openings to access the n-type nitride semiconductor layer and metal protection layer, and then P-type contact metal and N-type contact metal are plated, and the entire surface is covered with the second insulating layer, with openings to access the P-type contact Metal and N-type contact metal, and finally flip-chip P-type electrodes and N-type electrodes are plated. Due to the relatively high precision of etching holes, the process is complicated and the production cost is also high.
发明内容Contents of the invention
为了解决在上述现有技术中出现的问题,本发明的目的是提供一种III族半导体发光器件倒装结构的制作方法,包括步骤:In order to solve the problems in the above-mentioned prior art, the object of the present invention is to provide a method for fabricating a flip-chip structure of a Group III semiconductor light-emitting device, comprising the steps of:
自下而上依次生长衬底、缓冲层、n型氮化物半导体层、有源层和p型氮化物半导体层形成外延结构,所述外延结构的上表面为p型氮化物半导体层的上表面;Growing the substrate, the buffer layer, the n-type nitride semiconductor layer, the active layer and the p-type nitride semiconductor layer sequentially from bottom to top to form an epitaxial structure, and the upper surface of the epitaxial structure is the upper surface of the p-type nitride semiconductor layer ;
沉积透明导电层在所述p型氮化物半导体上表面,并利用黄光蚀刻制程定义线凸形台面图案,再蚀刻透明导电层、p型氮化物半导体层和有源层,暴露n型氮化物半导体层,再用蚀刻溶液将透明导电层内缩,最后去除光阻,得到线凸形台面,且所述线凸形台面的上表面有透明导电层,其中,所述线凸形台面包括:第一上表面、侧表面和第二上表面,所述第一上表面和第二上表面分别与所述侧表面形成L形结构,所述线凸形台面的第一上表面为p型氮化物半导体层的上表面,所述线凸形台面的第二上表面为所述n型氮化物半导体层的上表面;Deposit a transparent conductive layer on the upper surface of the p-type nitride semiconductor, and use a yellow photolithography process to define a line convex mesa pattern, and then etch the transparent conductive layer, p-type nitride semiconductor layer and active layer to expose the n-type nitride semiconductor layer, and then shrink the transparent conductive layer with an etching solution, and finally remove the photoresist to obtain a line convex mesa, and the upper surface of the line convex mesa has a transparent conductive layer, wherein the line convex mesa includes: The first upper surface, the side surface and the second upper surface, the first upper surface and the second upper surface respectively form an L-shaped structure with the side surface, and the first upper surface of the linear convex mesa is p-type nitrogen The upper surface of the compound semiconductor layer, the second upper surface of the linear convex mesa is the upper surface of the n-type nitride semiconductor layer;
黄光蚀刻制程定义隔离槽,再蚀刻n型氮化物半导体层和缓冲层、而暴露衬底,最后去除光阻;The yellow photoetching process defines the isolation groove, then etches the n-type nitride semiconductor layer and the buffer layer to expose the substrate, and finally removes the photoresist;
利用黄光蚀刻制程定义P型接触金属与透明导电层及N型接触金属与所述线凸形台面的第二上表面的连接图案,再蚀刻第一绝缘层结构的连接图案,最后去除光阻,得到第一绝缘层结构;Define the connection pattern between the P-type contact metal and the transparent conductive layer and the N-type contact metal and the second upper surface of the line convex mesa by using a yellow photolithography process, then etch the connection pattern of the first insulating layer structure, and finally remove the photoresist , to obtain the first insulating layer structure;
黄光剥离制程定义P型接触金属与N型接触金属的图案,同时沉积P型接触金属与N型接触金属,然后利用剥离制程,再去除光阻,得到P型接触金属、N型接触金属;The yellow light stripping process defines the pattern of P-type contact metal and N-type contact metal, deposits P-type contact metal and N-type contact metal at the same time, and then uses the stripping process to remove the photoresist to obtain P-type contact metal and N-type contact metal;
沉积第二绝缘层结构,利用黄光蚀刻制程定义开孔存取P型接触金属与N型接触金属的图案,再蚀刻第二绝缘层结构的开孔图案,最后去除光阻;Deposit the second insulating layer structure, use the photolithography process to define the opening access pattern of the P-type contact metal and N-type contact metal, etch the opening pattern of the second insulating layer structure, and finally remove the photoresist;
黄光剥离制程定义倒装P型电极与倒装N型电极的图案,沉积倒装P型电极与倒装N型电极,后利用剥离制程,再去除光阻,得到圆片;The yellow light lift-off process defines the pattern of flip-chip P-type electrodes and flip-chip N-type electrodes, deposits flip-chip P-type electrodes and flip-chip N-type electrodes, and then uses the lift-off process to remove the photoresist to obtain wafers;
将圆片进行减薄、划片、裂片、测试、分选。Thinning, scribing, splitting, testing and sorting of the wafer.
优选地,所述第一绝缘层结构,位于所述第一上表面、侧表面、第二上表面、透明导电层以及隔离槽上。Preferably, the first insulating layer structure is located on the first upper surface, the side surface, the second upper surface, the transparent conductive layer and the isolation groove.
优选地,所述第一绝缘层结构为单层氧化物绝缘层,所述单层氧化物绝缘层的材料为三氧化二铝、二氧化硅、二氧化钛、五氧化二钽、五氧化二铌、氮氧化硅以及氮化硅中的一种。Preferably, the structure of the first insulating layer is a single-layer oxide insulating layer, and the material of the single-layer oxide insulating layer is aluminum oxide, silicon dioxide, titanium dioxide, tantalum pentoxide, niobium pentoxide, One of silicon oxynitride and silicon nitride.
优选地,所述单层氧化物绝缘层的厚度为30-2000nm。Preferably, the single-layer oxide insulating layer has a thickness of 30-2000 nm.
优选地,所述P型接触金属为整面金属,该P型接触金属的下端设置在所述第一绝缘层结构表面上及透明导电层上;Preferably, the P-type contact metal is a full-surface metal, and the lower end of the P-type contact metal is arranged on the surface of the first insulating layer structure and on the transparent conductive layer;
所述N型接触金属为整面金属,该N型接触金属的下端设置在所述第一绝缘层结构表面上及所述第二上表面上。The N-type contact metal is a full-surface metal, and the lower end of the N-type contact metal is arranged on the surface of the first insulating layer structure and the second upper surface.
优选地,所述P型接触金属,包括:P型线电极和正装P型焊盘,所述正装P型焊盘的下端设置在所述第一绝缘层结构表面上,所述P型线电极的下端设置在所述第一绝缘层结构表面及透明导电层上;Preferably, the P-type contact metal includes: a P-type wire electrode and a positive P-type pad, the lower end of the positive P-type pad is arranged on the surface of the first insulating layer structure, and the P-type wire electrode The lower end is arranged on the surface of the first insulating layer structure and the transparent conductive layer;
所述N型接触金属,包括:N型线电极和正装N型焊盘,所述正装N型焊盘的下端设置在所述第一绝缘层结构表面上,所述N型线电极的下端设置在所述第一绝缘层结构以及第二上表面上。The N-type contact metal includes: an N-type wire electrode and a positive N-type pad, the lower end of the positive N-type pad is arranged on the surface of the first insulating layer structure, and the lower end of the N-type wire electrode is set on the first insulating layer structure and the second upper surface.
优选地,所述P型接触金属和N型接触金属结构相同,且均为由内向外依次排列的第一Ni层、Al层、第二Ni层、Au层以及第三Ni层组成,或由内向外依次排列的Ti层、Al层、第二Ni层、Au层以及第三Ni层组成,或由内向外依次排列的Ti层、Al层以及第三Ni层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Pt层、Au层以及第三Ni层组成,或由内向外依次排列的Cr层、Pt层、Au层以及第三Ni层组成,或由内向外依次排列的第一Ni层、Al层、以及第三Ni层组成,或由Rh层组成,其中,Rh层的厚度为50-3000nm,第一Ni层的厚度为0.3-300nm,Al层的厚度为50-3000nm,第二Ni层的厚度为10-300nm,Pt层的厚度为10-300nm,Au层的厚度为10-3000nm,第三Ni层的厚度为0.3-300nm。Preferably, the P-type contact metal and the N-type contact metal have the same structure, and both are composed of a first Ni layer, an Al layer, a second Ni layer, an Au layer and a third Ni layer arranged in sequence from inside to outside, or consist of Composed of Ti layer, Al layer, second Ni layer, Au layer and third Ni layer arranged in sequence from inside to outside, or composed of Ti layer, Al layer and third Ni layer arranged in sequence from inside to outside, or arranged in sequence from inside to outside The first Ni layer, the Al layer, the second Ni layer, the Pt layer, the Au layer and the third Ni layer, or the Cr layer, the Pt layer, the Au layer and the third Ni layer arranged in sequence from the inside to the outside, or the The first Ni layer, the Al layer, and the third Ni layer arranged in sequence from the inside to the outside are composed of a Rh layer, wherein the thickness of the Rh layer is 50-3000nm, the thickness of the first Ni layer is 0.3-300nm, and the Al layer The thickness of the second Ni layer is 10-300nm, the thickness of the Pt layer is 10-300nm, the thickness of the Au layer is 10-3000nm, and the thickness of the third Ni layer is 0.3-300nm.
优选地,所述第二绝缘层结构位于所述第一绝缘层结构的上表面、P型接触金属的上表面以及N型接触金属的上表面。Preferably, the second insulating layer structure is located on the upper surface of the first insulating layer structure, the upper surface of the P-type contact metal, and the upper surface of the N-type contact metal.
优选地,所述第二绝缘层结构的结构为单层氧化物绝缘层,所述单层氧化物绝缘层的材料为三氧化二铝、二氧化硅、二氧化钛、五氧化二钽、五氧化二铌、氮氧化硅以及氮化硅中的一种,所述单层氧化物绝缘层的厚度为30-2000nm。Preferably, the structure of the second insulating layer structure is a single-layer oxide insulating layer, and the material of the single-layer oxide insulating layer is aluminum oxide, silicon dioxide, titanium dioxide, tantalum pentoxide, di One of niobium, silicon oxynitride and silicon nitride, the thickness of the single-layer oxide insulating layer is 30-2000nm.
优选地,所述倒装P型电极的下端设置在所述P型接触金属以及第二绝缘层结构的表面上;Preferably, the lower end of the inverted P-type electrode is disposed on the surface of the P-type contact metal and the second insulating layer structure;
所述倒装N型电极的下端设置在所述N型接触金属以及第二绝缘层结构表面上。The lower end of the flip-chip N-type electrode is arranged on the surface of the N-type contact metal and the second insulating layer structure.
优选地,所述倒装P型电极与倒装N型电极结构相同,进一步为,由内向外依次排列的Ti层、第二Ni层、Au层组成,或由内向外依次排列的中间Cr层、Pt层、Au层、第二Ni层、Pt层、第二Ni层、AuSn层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Au层组成,或由内向外依次排列的中间Cr层、Pt层、Au层组成,或由内向外依次排列的第一Ni层、Al层、中间Cr层、第二Ni层以及Au层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Pt层、Au层组成,其中,所述第一Ni层的厚度为0.4-3nm,第二Ni层的厚度为10-300nm,Ti层的厚度为10-300nm,Al层的厚度为50-300nm,Au层的厚度为20-3000nm,中间Cr层的厚度为10-300nm,Pt层的厚度为10-300nm,AuSn层的厚度为1000-5000nm。Preferably, the flip-chip P-type electrode has the same structure as the flip-chip N-type electrode, and is further composed of a Ti layer, a second Ni layer, and an Au layer arranged in sequence from the inside to the outside, or an intermediate Cr layer arranged in sequence from the inside to the outside , Pt layer, Au layer, second Ni layer, Pt layer, second Ni layer, AuSn layer, or consist of first Ni layer, Al layer, second Ni layer, Au layer arranged in sequence from inside to outside, or consist of Composed of middle Cr layer, Pt layer and Au layer arranged in sequence from inside to outside, or composed of first Ni layer, Al layer, middle Cr layer, second Ni layer and Au layer arranged in sequence from inside to outside, or arranged in sequence from inside to outside The composition of the first Ni layer, Al layer, second Ni layer, Pt layer, Au layer, wherein, the thickness of the first Ni layer is 0.4-3nm, the thickness of the second Ni layer is 10-300nm, the Ti layer The thickness of the Al layer is 50-300nm, the thickness of the Au layer is 20-3000nm, the thickness of the middle Cr layer is 10-300nm, the thickness of the Pt layer is 10-300nm, and the thickness of the AuSn layer is 1000- 5000nm.
与现有技术相比,本申请所述的III族半导体发光器件倒装结构的制作方法,具有以下优点:Compared with the prior art, the manufacturing method of the flip-chip structure of the Group III semiconductor light-emitting device described in the present application has the following advantages:
(1)本发明一律采用线凸形台面技术取代现有技术中的多个孔洞(vias)技术。(1) The present invention uniformly adopts the linear convex mesa technology to replace the multiple vias technology in the prior art.
(2)本发明的第一步骤可将透明导电层与线凸形台面图案一起制作,不但简化了一道制程,也解决了透明导电层与线凸形台面图案对准的问题。(2) In the first step of the present invention, the transparent conductive layer and the linear convex mesa pattern can be fabricated together, which not only simplifies a manufacturing process, but also solves the problem of alignment between the transparent conductive layer and the linear convex mesa pattern.
(3)本发明新结构假如使用第一绝缘层结构8-1为单层氧化物绝缘层,然后镀P型接触金属9、N型接触金属10,所述P型接触金属9、N型接触金属10包括P型线电极15、N型线电极17以及正装P型焊盘16与正装N型焊盘18,此结构图2e就是正装结构,可在此步骤可测出正装的光电特性,可利用此步骤推测倒装的光电特性,假如推测没有达到倒装的光电特性,可以在此步骤可以以正装出货。(3) If the new structure of the present invention uses the first insulating layer structure 8-1 as a single-layer oxide insulating layer, then plate P-type contact metal 9 and N-type contact metal 10, and the P-type contact metal 9 and N-type contact The metal 10 includes a P-type wire electrode 15, an N-type wire electrode 17, a positively mounted P-type pad 16, and a positively mounted N-type pad 18. The structure shown in FIG. Use this step to estimate the photoelectric characteristics of the flip chip. If the guess does not reach the photoelectric characteristics of the flip chip, you can ship it in the normal package at this step.
当然,实施本申请的任一产品必不一定需要同时达到以上所述的所有技术效果。Of course, implementing any product of the present application does not necessarily need to achieve all the technical effects described above at the same time.
附图说明Description of drawings
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation to the application. In the attached picture:
图1是现有的Ⅲ族氮化物半导体发光器件的倒装结构示意图;FIG. 1 is a schematic diagram of a flip-chip structure of an existing Group III nitride semiconductor light emitting device;
图2a-图2g实施例1中倒装LED芯片的制作流程各步骤对应的结构示意图;Fig. 2a-Fig. 2g are structural schematic diagrams corresponding to each step of the manufacturing process of the flip-chip LED chip in Example 1;
图3a-图3b现有技术中多个孔洞(vias)的俯视图以及剖面图;Figure 3a-Figure 3b is a top view and a cross-sectional view of a plurality of holes (vias) in the prior art;
图4a-图4b线凸形台面的俯视图以及剖面图;The top view and cross-sectional view of the line convex mesa of Fig. 4a-Fig. 4b;
图5为P型线电极的剖面图;Figure 5 is a cross-sectional view of a P-type wire electrode;
图6为N型线电极的剖面图;Figure 6 is a cross-sectional view of an N-type wire electrode;
图7为实施例5的倒装LED芯片的结构示意图;Fig. 7 is the structural representation of the flip-chip LED chip of embodiment 5;
图8为实施例7的倒装LED芯片的亮度-电流-电压特性;Fig. 8 is the brightness-current-voltage characteristic of the flip-chip LED chip of embodiment 7;
图9为实施例7的倒装LED芯片的峰值波长-电流特性图;Fig. 9 is the peak wavelength-current characteristic diagram of the flip-chip LED chip of embodiment 7;
具体实施方式Detailed ways
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。此外,“耦接”一词在此包含任何直接及间接的电性耦接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电性耦接于所述第二装置,或通过其他装置或耦接手段间接地电性耦接至所述第二装置。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。Certain terms are used, for example, in the description and claims to refer to particular components. Those skilled in the art should understand that hardware manufacturers may use different terms to refer to the same component. The specification and claims do not use the difference in name as a way to distinguish components, but use the difference in function of components as a criterion for distinguishing. As mentioned throughout the specification and claims, "comprising" is an open term, so it should be interpreted as "including but not limited to". "Approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and basically achieve the technical effect. In addition, the term "coupled" herein includes any direct and indirect electrical coupling means. Therefore, if it is described that a first device is coupled to a second device, it means that the first device may be directly electrically coupled to the second device, or indirectly electrically coupled through other devices or coupling means. connected to the second device. The subsequent description of the specification is a preferred implementation mode for implementing the application, but the description is for the purpose of illustrating the general principle of the application, and is not intended to limit the scope of the application. The scope of protection of the present application should be defined by the appended claims.
以下结合附图对本申请作进一步详细说明,但不作为对本申请的限定。The present application will be described in further detail below in conjunction with the accompanying drawings, but it is not intended to limit the present application.
实施例1:Example 1:
本实施例提供一种III族半导体发光器件倒装结构的制作方法,详见图2a-图2g,包括以下步骤:This embodiment provides a method for fabricating a flip-chip structure of a Group III semiconductor light-emitting device, as shown in Fig. 2a-Fig. 2g for details, including the following steps:
第一步:结构图如图2a所示,在衬底1、缓冲层2、n型氮化物半导体层3、有源层4和所述p型氮化物半导体层5自下而上依次生长形成外延结构,所述外延结构的上表面为p型氮化物半导体层5的上表面,此结构为外延结构,其为通过现有技术中的制作工艺得到的,在所述外延结构上制作倒装芯片的方法包括以下步骤:Step 1: The structural diagram is shown in Figure 2a, where the substrate 1, the buffer layer 2, the n-type nitride semiconductor layer 3, the active layer 4 and the p-type nitride semiconductor layer 5 are grown sequentially from bottom to top An epitaxial structure, the upper surface of the epitaxial structure is the upper surface of the p-type nitride semiconductor layer 5, this structure is an epitaxial structure, which is obtained through the manufacturing process in the prior art, and a flip chip is fabricated on the epitaxial structure The chip method includes the following steps:
第二步:结构图如图2b所示,沉积透明导电层14在p型氮化物半导体5上表面,并利用黄光蚀刻制程定义线凸形台面19图案,再蚀刻透明导电层14、p型氮化物半导体层5和有源层4,而暴露n型氮化物半导体层3,再用蚀刻溶液将透明导电层14内缩,最后去除光阻,得到线凸形台面19,且所述线凸形台面19的上表面有透明导电层14,需要说明的是此步骤也可以将透明导电层14与线凸形台面19分开做;The second step: the structural diagram is shown in Figure 2b, depositing a transparent conductive layer 14 on the upper surface of the p-type nitride semiconductor 5, and using a yellow photolithography process to define the line convex mesa 19 pattern, and then etching the transparent conductive layer 14, p-type Nitride semiconductor layer 5 and active layer 4, and expose n-type nitride semiconductor layer 3, then use etching solution to shrink transparent conductive layer 14, finally remove photoresist, obtain line convex mesa 19, and the line convex There is a transparent conductive layer 14 on the upper surface of the shaped mesa 19. It should be noted that this step can also be done separately from the transparent conductive layer 14 and the line convex mesa 19;
第三步:结构图如图2c所示,方法为黄光蚀刻制程定义隔离槽20图案,再蚀刻n型氮化物半导体层3和缓冲层2、而暴露衬底1,最后去除光阻,此步骤可以放在任何步骤;The third step: the structural diagram is shown in FIG. 2c. The method is to define the pattern of the isolation groove 20 in the yellow photoetching process, then etch the n-type nitride semiconductor layer 3 and the buffer layer 2 to expose the substrate 1, and finally remove the photoresist. Steps can be placed in any step;
第四步:第一绝缘层结构8-1的结构为单层氧化物绝缘层,结构图如图2d所示,方法为沉积第一绝缘层结构8-1的结构为单层氧化物绝缘层,利用黄光蚀刻制程定义P型接触金属9与透明导电层14及N型接触金属10与线凸形台面的第二上表面19-3的连接图案,再蚀刻第一绝缘层结构8-1的连接图案,最后去除光阻,得到第一绝缘层结构8-1;Step 4: The structure of the first insulating layer structure 8-1 is a single-layer oxide insulating layer. The structure diagram is shown in Figure 2d. The method is to deposit the first insulating layer. The structure of the structure 8-1 is a single-layer oxide insulating layer , define the connection patterns between the P-type contact metal 9 and the transparent conductive layer 14 and the N-type contact metal 10 and the second upper surface 19-3 of the line convex mesa by using a yellow photolithography process, and then etch the first insulating layer structure 8-1 connection pattern, and finally remove the photoresist to obtain the first insulating layer structure 8-1;
第五步:结构图如图2e所示,方法为黄光剥离制程定义P型接触金属9与N型接触金属10图案,同时沉积P型接触金属9与N型接触金属10,后利用剥离制程,再去除光阻,得到P型接触金属9与N型接触金属10;Step 5: The structure diagram is shown in Figure 2e. The method is to define the patterns of the P-type contact metal 9 and the N-type contact metal 10 through the yellow light lift-off process, deposit the P-type contact metal 9 and the N-type contact metal 10 at the same time, and then use the lift-off process , and then remove the photoresist to obtain the P-type contact metal 9 and the N-type contact metal 10;
第六步:结构图如图2f所示,方法为沉积第二绝缘层结构11-1,利用黄光蚀刻制程定义开孔存取P型接触金属9与N型接触金属10图案,再蚀刻第二绝缘层结构11-1的开孔图案,最后去除光阻;Step 6: The structure diagram is shown in FIG. 2f. The method is to deposit the second insulating layer structure 11-1, use the photolithography process to define openings to access the patterns of the P-type contact metal 9 and the N-type contact metal 10, and then etch the second insulating layer structure 11-1. The opening pattern of the two insulating layer structure 11-1, and finally remove the photoresist;
第七步:结构图如图2g所示,方法为黄光剥离制程定义倒装P/N型电极12、13图案,沉积倒装P型焊盘12与N型焊盘13,后利用剥离制程,再去除光阻;Step 7: The structure diagram is shown in Figure 2g. The method is to define the flip-chip P/N-type electrode 12 and 13 patterns through the yellow light stripping process, deposit the flip-chip P-type pad 12 and N-type pad 13, and then use the stripping process , and then remove the photoresist;
第八步:最后将圆片进行减薄、划片、裂片、测试、分选,其步骤为通过现有技术中的制作工艺得到的。Step 8: Finally, the wafer is thinned, diced, split, tested, and sorted, and the steps are obtained through the manufacturing process in the prior art.
通过上述方法,得到了一种III族半导体发光器件的倒装结构,结构包括:衬底1、缓冲层2、n型氮化物半导体层3、有源层4、p型氮化物半导体层5、第一绝缘层结构8-1、P型接触金属9、N型接触金属10、第二绝缘层结构11-1、倒装P型电极12、倒装N型电极13以及透明导电层14;Through the above method, a flip-chip structure of a Group III semiconductor light emitting device is obtained, the structure comprising: a substrate 1, a buffer layer 2, an n-type nitride semiconductor layer 3, an active layer 4, a p-type nitride semiconductor layer 5, The first insulating layer structure 8-1, the P-type contact metal 9, the N-type contact metal 10, the second insulating layer structure 11-1, the flip-chip P-type electrode 12, the flip-chip N-type electrode 13 and the transparent conductive layer 14;
所述衬底1、缓冲层2、n型氮化物半导体层3、有源层4以及p型氮化物半导体层5形成具有线凸形台面19的氮化物半导体结构;The substrate 1, the buffer layer 2, the n-type nitride semiconductor layer 3, the active layer 4 and the p-type nitride semiconductor layer 5 form a nitride semiconductor structure with a line convex mesa 19;
所述线凸形台面19包括线凸形台面的第一上表面19-1、线凸形台面的侧表面19-2以及线凸形台面的第二上表面19-3,所述第一上表面的两端分别设有所述侧表面以及所述第二上表面形成的L形表面;The line convex mesa 19 includes a first upper surface 19-1 of the line convex mesa, a side surface 19-2 of the line convex mesa and a second upper surface 19-3 of the line convex mesa. Both ends of the surface are respectively provided with an L-shaped surface formed by the side surface and the second upper surface;
所述线凸形台面的第一上表面19-1为p型氮化物半导体层5的上表面,所述线凸形台面的第二上表面19-3为n型氮化物半导体层3的上表面;The first upper surface 19-1 of the linear convex mesa is the upper surface of the p-type nitride semiconductor layer 5, and the second upper surface 19-3 of the linear convex mesa is the upper surface of the n-type nitride semiconductor layer 3. surface;
所述线凸形台面19被蚀刻掉的区域为单一或多个线条;The etched area of the line convex mesa 19 is single or multiple lines;
所述线凸形台面的第一上表面19-1上均设有透明导电层14;A transparent conductive layer 14 is provided on the first upper surface 19-1 of the linear convex mesa;
所述透明导电层14的材料可为氧化铟锡、氧化镉锡、氧化锌、氧化铟、氧化锡、氧化铜铝、氧化铜镓以及氧化锶铜所组成之一族群。The material of the transparent conductive layer 14 can be a group consisting of indium tin oxide, cadmium tin oxide, zinc oxide, indium oxide, tin oxide, copper aluminum oxide, copper gallium oxide and strontium copper oxide.
所述线凸形台面的第一上表面19-1、侧表面19-2、第二上表面19-3以及透明导电层14的上表面以及隔离槽20表面均设有第一绝缘层结构8-1;The first upper surface 19-1, the side surface 19-2, the second upper surface 19-3 of the linear convex mesa, the upper surface of the transparent conductive layer 14 and the surface of the isolation groove 20 are all provided with a first insulating layer structure 8 -1;
所述第一绝缘层结构8-1的结构为单层氧化物绝缘层;The structure of the first insulating layer structure 8-1 is a single-layer oxide insulating layer;
所述单层氧化物绝缘层的材料为三氧化二铝、二氧化硅、二氧化钛、五氧化二钽、五氧化二铌、氮氧化硅以及氮化硅中的一种;The material of the single-layer oxide insulating layer is one of aluminum oxide, silicon dioxide, titanium dioxide, tantalum pentoxide, niobium pentoxide, silicon oxynitride, and silicon nitride;
所述单层氧化物绝缘层的每层厚度为30-2000nm。The thickness of each layer of the single-layer oxide insulating layer is 30-2000nm.
所述P型接触金属9与N型接触金属10可分为下列二种情况:The P-type contact metal 9 and the N-type contact metal 10 can be divided into the following two situations:
(1)所述P型接触金属9为整面金属,所述整面金属的下端设置在所述第一绝缘层结构8-1表面上及透明导电层14上;(1) The P-type contact metal 9 is an entire surface metal, and the lower end of the entire surface metal is arranged on the surface of the first insulating layer structure 8-1 and on the transparent conductive layer 14;
所述N型接触金属10为整面金属,所述整面金属的下端设置在所述第一绝缘层结构8-1表面上以及凸形台面的第二上表面19-3上;The N-type contact metal 10 is a solid metal, and the lower end of the solid metal is set on the surface of the first insulating layer structure 8-1 and the second upper surface 19-3 of the convex mesa;
(2)所述P型接触金属9包括P型线电极15以及正装P型焊盘16,所述正装P型焊盘16的下端设置在所述第一绝缘层结构8-1表面上,所述P型线电极15的下端设置在所述第一绝缘层结构8-1表面上及透明导电层14上;(2) The P-type contact metal 9 includes a P-type wire electrode 15 and a positive P-type pad 16, and the lower end of the positive P-type pad 16 is arranged on the surface of the first insulating layer structure 8-1, so The lower end of the P-type wire electrode 15 is disposed on the surface of the first insulating layer structure 8-1 and on the transparent conductive layer 14;
所述N型接触金属10包括N型线电极17以及正装N型焊盘18,所述正装N型焊盘18的下端设置在所述第一绝缘层结构8-1表面上,所述N型线电极17的下端设置在所述第一绝缘层结构8-1以及线凸形台面的第二上表面19-3上。The N-type contact metal 10 includes an N-type wire electrode 17 and a positive N-type pad 18, the lower end of the positive N-type pad 18 is arranged on the surface of the first insulating layer structure 8-1, and the N-type The lower end of the wire electrode 17 is disposed on the first insulating layer structure 8-1 and the second upper surface 19-3 of the wire convex mesa.
所述P型接触金属9和N型接触金属10结构相同,且均为由内向外依次排列的第一Ni层、Al层、第二Ni层、Au层以及第三Ni层组成,或由内向外依次排列的Ti层、Al层、第二Ni层、Au层以及第三Ni层组成,或由内向外依次排列的Ti层、Al层以及第三Ni层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Pt层、Au层以及第三Ni层组成,或由内向外依次排列的Cr层、Pt层、Au层以及第三Ni层组成,或由内向外依次排列的第一Ni层、Al层、以及第三Ni层组成,或由Rh层组成,其中Rh层的厚度为50-3000nm,第一Ni层的厚度为0.3-300nm,Al层的厚度为50-3000nm,第二Ni层的厚度为10-300nm,Pt层的厚度为10-300nm,Au层的厚度为10-3000nm,第三Ni层的厚度为0.3-300nm。The P-type contact metal 9 and the N-type contact metal 10 have the same structure, and are composed of a first Ni layer, an Al layer, a second Ni layer, an Au layer and a third Ni layer arranged in sequence from inside to outside, or from inside to outside Ti layer, Al layer, second Ni layer, Au layer and third Ni layer arranged in sequence from outside, or Ti layer, Al layer and third Ni layer arranged in sequence from inside to outside, or arranged in sequence from inside to outside The first Ni layer, the Al layer, the second Ni layer, the Pt layer, the Au layer and the third Ni layer, or the Cr layer, the Pt layer, the Au layer and the third Ni layer arranged in order from the inside to the outside, or the inside to the outside. The first Ni layer, the Al layer, and the third Ni layer arranged in sequence, or the Rh layer, wherein the thickness of the Rh layer is 50-3000nm, the thickness of the first Ni layer is 0.3-300nm, and the thickness of the Al layer The thickness of the second Ni layer is 10-300nm, the thickness of the Pt layer is 10-300nm, the thickness of the Au layer is 10-3000nm, and the thickness of the third Ni layer is 0.3-300nm.
所述第一绝缘层结构8-1、P型接触金属9以及N型接触金属10的上表面设有第二绝缘层结构11-1;The upper surfaces of the first insulating layer structure 8-1, the P-type contact metal 9 and the N-type contact metal 10 are provided with a second insulating layer structure 11-1;
所述第二绝缘层结构11-1的结构为单层氧化物绝缘层The structure of the second insulating layer structure 11-1 is a single-layer oxide insulating layer
上述单层氧化物绝缘层的材料为三氧化二铝、二氧化硅、二氧化钛、五氧化二钽、五氧化二铌、氮氧化硅以及氮化硅中的一种。The material of the single-layer oxide insulating layer is one of aluminum oxide, silicon dioxide, titanium dioxide, tantalum pentoxide, niobium pentoxide, silicon oxynitride and silicon nitride.
所述单层氧化物绝缘层的厚度为30-2000nm。The thickness of the single-layer oxide insulating layer is 30-2000nm.
所述倒装P型电极12的下端设置在所述P型接触金属9以及第二绝缘层结构11-1表面上;The lower end of the flip-chip P-type electrode 12 is disposed on the surface of the P-type contact metal 9 and the second insulating layer structure 11-1;
所述倒装N型电极13的下端设置在所述N型接触金属10以及第二绝缘层结构11-1表面上;The lower end of the flip-chip N-type electrode 13 is disposed on the surface of the N-type contact metal 10 and the second insulating layer structure 11-1;
上述倒装P型电极12、倒装N型电极13的结构为由内向外依次排列的Ti层、第二Ni层、Au层组成,或由内向外依次排列的中间Cr层、Pt层、Au层、第二Ni层、Pt层、第二Ni层、AuSn层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Au层组成,或由内向外依次排列的中间Cr层、Pt层、Au层组成,或由内向外依次排列的第一Ni层、Al层、中间Cr层、第二Ni层以及Au层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Pt层、Au层组成,其中所述第一Ni层的厚度为0.4~3nm,第二Ni层的厚度为10~300nm,Ti层的厚度为10~300nm,Al层的厚度为50~300nm,Au层的厚度为20~3000nm,中间Cr层的厚度为10~300nm,Pt层的厚度为10~300nm,AuSn层的厚度为1000~5000nm。The structure of the above-mentioned flip-chip P-type electrode 12 and flip-chip N-type electrode 13 is composed of a Ti layer, a second Ni layer, and an Au layer arranged in sequence from the inside to the outside, or an intermediate Cr layer, a Pt layer, and an Au layer arranged in sequence from the inside to the outside. layer, the second Ni layer, the Pt layer, the second Ni layer, and the AuSn layer, or the first Ni layer, the Al layer, the second Ni layer, and the Au layer arranged in sequence from the inside to the outside, or the The middle Cr layer, Pt layer, Au layer, or the first Ni layer, Al layer, middle Cr layer, second Ni layer and Au layer arranged in sequence from inside to outside, or the first Ni layer arranged in sequence from inside to outside , an Al layer, a second Ni layer, a Pt layer, and an Au layer, wherein the first Ni layer has a thickness of 0.4 to 3 nm, the second Ni layer has a thickness of 10 to 300 nm, and the Ti layer has a thickness of 10 to 300 nm, The thickness of the Al layer is 50-300nm, the thickness of the Au layer is 20-3000nm, the thickness of the intermediate Cr layer is 10-300nm, the thickness of the Pt layer is 10-300nm, and the thickness of the AuSn layer is 1000-5000nm.
实施例2:Example 2:
本发明新结构一律采用线凸形台面19技术取代多个孔洞(vias)技术。The new structure of the present invention adopts the technology of linear convex mesa 19 to replace the technology of multiple vias.
如图3a所示为现有技术中多个孔洞(vias)的俯视图,图3b为图3a沿A-B方向的剖面图。FIG. 3a is a top view of a plurality of vias in the prior art, and FIG. 3b is a cross-sectional view of FIG. 3a along the direction A-B.
如图4a所示为线凸形台面的俯视图,图4b为图4a沿A-B方向的剖面图。FIG. 4a is a top view of the linear convex mesa, and FIG. 4b is a cross-sectional view along the A-B direction of FIG. 4a.
所述线凸形台面19被蚀刻掉的区域为单一或多个线条;The etched area of the line convex mesa 19 is single or multiple lines;
所述衬底1、缓冲层2、n型氮化物半导体层3、有源层4以及p型氮化物半导体层5形成具有线凸形台面19的氮化物半导体结构;The substrate 1, the buffer layer 2, the n-type nitride semiconductor layer 3, the active layer 4 and the p-type nitride semiconductor layer 5 form a nitride semiconductor structure with a line convex mesa 19;
所述线凸形台面包括第一上表面19-1、侧表面19-2以及第二上表面19-3,所述第一上表面的两端分别设有由所述侧表面以及所述第二上表面形成的L形表面;The linear convex mesa includes a first upper surface 19-1, a side surface 19-2 and a second upper surface 19-3, and the two ends of the first upper surface are respectively provided with the side surface and the second upper surface. 2. an L-shaped surface formed by the upper surface;
所述线凸形台面的第一上表面19-1为p型氮化物半导体层的上表面,所述线凸形台面的第二上表面19-3为n型氮化物半导体层的上表面。The first upper surface 19-1 of the linear convex mesa is the upper surface of the p-type nitride semiconductor layer, and the second upper surface 19-3 of the linear convex mesa is the upper surface of the n-type nitride semiconductor layer.
实施例3:Example 3:
在实施例1的基础上,本实施例得到的倒装结构中所述P型线电极15的下端设置在所述第一绝缘层结构8-1表面上及透明导电层14上(如图5所示)。On the basis of Embodiment 1, the lower end of the P-type wire electrode 15 in the flip-chip structure obtained in this embodiment is arranged on the surface of the first insulating layer structure 8-1 and on the transparent conductive layer 14 (as shown in Figure 5 shown).
实施例4:Example 4:
在实施例1的基础上,本实施例得到倒装结构中所述N型线电极17填满线凸形台面19的凹槽,位于所述第一绝缘层结构8-1以及线凸形台面的第二上表面19-3上(如图6所示)。On the basis of Example 1, this embodiment obtains that the N-type line electrode 17 in the flip-chip structure fills the groove of the line convex mesa 19, and is located on the first insulating layer structure 8-1 and the line convex mesa On the second upper surface 19-3 of (as shown in Figure 6).
实施例5:Example 5:
在制作芯片的第四步,如图2d所示,本实施例提供第一绝缘层结构8-1为单层氧化物绝缘层。In the fourth step of making the chip, as shown in FIG. 2d , this embodiment provides that the first insulating layer structure 8 - 1 is a single-layer oxide insulating layer.
上述单层氧化物绝缘层的材料为三氧化二铝、二氧化硅、二氧化钛、五氧化二钽、五氧化二铌、氮氧化硅以及氮化硅中的一种,其中所述单层氧化物绝缘层的每层厚度为30-2000nm。The material of the above-mentioned single-layer oxide insulating layer is one of aluminum oxide, silicon dioxide, titanium dioxide, tantalum pentoxide, niobium pentoxide, silicon oxynitride and silicon nitride, wherein the single-layer oxide The thickness of each insulating layer is 30-2000nm.
以上技术方案中,所述第一绝缘层结构8-1为单层氧化物绝缘层的制作方法如下,使用化学气相沉积或光学镀膜机沉积等方法来制造单层氧化物绝缘层,再利用黄光蚀刻制程定义第一绝缘层结构8-1的图案,再用干法或湿法蚀刻第一绝缘层结构8-1的图案,最后去除光阻,得到第一绝缘层结构8-1,其中干法蚀刻的刻蚀气体为SF6/O2或CF4/CHF3/O2;In the above technical solution, the method for making the first insulating layer structure 8-1 is a single-layer oxide insulating layer is as follows, using chemical vapor deposition or optical coating machine deposition to manufacture a single-layer oxide insulating layer, and then using yellow The photoetching process defines the pattern of the first insulating layer structure 8-1, and then etches the pattern of the first insulating layer structure 8-1 by dry method or wet method, and finally removes the photoresist to obtain the first insulating layer structure 8-1, wherein The etching gas for dry etching is SF 6 /O 2 or CF 4 /CHF 3 /O 2 ;
实施例5:Example 5:
在制作芯片的第五步骤,结构图如图2e或图7所示,方法为黄光剥离制程定义P型接触金属9、N型接触金属10图案,同时沉积P型接触金属9、N型接触金属10,后利用剥离制程,再去除光阻,得到P型接触金属9、N型接触金属10;In the fifth step of making the chip, the structural diagram is shown in Figure 2e or Figure 7. The method is to define the patterns of P-type contact metal 9 and N-type contact metal 10 in the yellow light stripping process, and deposit P-type contact metal 9 and N-type contact metal at the same time. Metal 10, and then use the stripping process to remove the photoresist to obtain P-type contact metal 9 and N-type contact metal 10;
图2e为所述P型接触金属9、N型接触金属10包括:P型线电极15、N型线电极17以及正装P型焊盘16、正装N型焊盘18,所述正装P型焊盘16的下端设置在所述第一绝缘层结构8-1表面上,所述P型线电极15的下端设置在所述第一绝缘层结构8-1表面上及透明导电层14上;所述N型接触金属10包括N型线电极17以及正装N型焊盘18,所述正装N型焊盘18的下端设置在所述第一绝缘层结构8-1表面上,所述N型线电极17的下端设置在所述第一绝缘层结构8-1以及线凸形台面的第二上表面19-3上;Figure 2e shows that the P-type contact metal 9 and the N-type contact metal 10 include: P-type wire electrodes 15, N-type wire electrodes 17, positively installed P-type pads 16, and positively installed N-type pads 18. The lower end of the disk 16 is arranged on the surface of the first insulating layer structure 8-1, and the lower end of the P-type wire electrode 15 is arranged on the surface of the first insulating layer structure 8-1 and on the transparent conductive layer 14; The N-type contact metal 10 includes an N-type wire electrode 17 and a positive N-type pad 18, the lower end of the positive N-type pad 18 is arranged on the surface of the first insulating layer structure 8-1, and the N-type wire The lower end of the electrode 17 is disposed on the first insulating layer structure 8-1 and the second upper surface 19-3 of the line convex mesa;
图7为所述P型接触金属9、N型接触金属10为整面金属,所述P型接触金属9的整面金属的下端设置在所述第一绝缘层结构8-1表面上及透明导电层14上;所述N型接触金属10的整面金属下端设置在所述第一绝缘层结构8-1表面上以及凸形台面的第二上表面19-3上;7 shows that the P-type contact metal 9 and the N-type contact metal 10 are full-surface metals, and the lower end of the entire-surface metal of the P-type contact metal 9 is arranged on the surface of the first insulating layer structure 8-1 and is transparent. On the conductive layer 14; the entire metal lower end of the N-type contact metal 10 is disposed on the surface of the first insulating layer structure 8-1 and on the second upper surface 19-3 of the convex mesa;
实施例7:Embodiment 7:
在实施例1、实施例2、实施例3、实施例4、实施例5和实施例6的基础上,制作Ⅲ族氮化物半导体倒装发光器件,规格为760um×250um,该Ⅲ族氮化物半导体倒装器件其制作方法包括以下步骤:On the basis of Example 1, Example 2, Example 3, Example 4, Example 5, and Example 6, a group III nitride semiconductor flip-chip light-emitting device was fabricated, with a specification of 760um×250um. The manufacturing method of the semiconductor flip-chip device comprises the following steps:
第一步:结构图如图2a所示,方法为在衬底1、缓冲层2、n型氮化物半导体层3、有源层4和所述p型氮化物半导体层5自下而上依次生长形成外延结构,所述外延结构的上表面为p型氮化物半导体层5的上表面,此结构为外延结构,其为通过现有技术中的制作工艺得到的,在所述外延结构上制作芯片的方法包括以下步骤:The first step: the structural diagram is shown in Figure 2a, the method is to sequentially form the substrate 1, the buffer layer 2, the n-type nitride semiconductor layer 3, the active layer 4 and the p-type nitride semiconductor layer 5 from bottom to top grow to form an epitaxial structure, the upper surface of the epitaxial structure is the upper surface of the p-type nitride semiconductor layer 5, this structure is an epitaxial structure, which is obtained by the manufacturing process in the prior art, and is fabricated on the epitaxial structure The chip method includes the following steps:
第二步:结构图如图2b所示,使用电子束蒸镀法、或溅镀法、或反应等离子体(reactive plasma deposition,RPD)沉积ITO(氧化铟锡)当透明导电层14在p型氮化物半导体5上表面,ITO厚度为10-400nm,并利用黄光蚀刻制程定义线凸形台面19图案,再利用ICP蚀刻透明导电层14、p型氮化物半导体层5和有源层4,而暴露n型氮化物半导体层3,再用蚀刻溶液将透明导电层14内缩,最后去除光阻,得到线凸形台面19,且所述线凸形台面19的上表面有透明导电层14(此步骤也可以将透明导电层14与线凸形台面19分开做);再将Wafer进行高温退火,使透明导电层14与p型氮化物半导体层5之间形成良好的欧姆接触和穿透率。退火方式用快速退火炉(RTA)快速退火,温度为560℃,时间为3分钟。The second step: the structural diagram is as shown in Figure 2b, using electron beam evaporation, or sputtering, or reactive plasma (reactive plasma deposition, RPD) to deposit ITO (indium tin oxide) when the transparent conductive layer 14 is in the p-type On the upper surface of the nitride semiconductor 5, the ITO thickness is 10-400nm, and the pattern of the line convex mesa 19 is defined by a yellow photolithography process, and then the transparent conductive layer 14, the p-type nitride semiconductor layer 5 and the active layer 4 are etched by ICP, The n-type nitride semiconductor layer 3 is exposed, and then the transparent conductive layer 14 is retracted with an etching solution, and finally the photoresist is removed to obtain a line convex mesa 19, and the upper surface of the line convex mesa 19 has a transparent conductive layer 14 (This step can also be done separately with the transparent conductive layer 14 and the line convex mesa 19); then Wafer is subjected to high-temperature annealing to form good ohmic contact and penetration between the transparent conductive layer 14 and the p-type nitride semiconductor layer 5 Rate. The annealing method uses a rapid annealing furnace (RTA) for rapid annealing at a temperature of 560° C. for 3 minutes.
第三步:结构图如图2c所示,方法为黄光蚀刻制程定义隔离槽20图案,再蚀刻n型氮化物半导体层3和缓冲层2、而暴露衬底1,最后去除光阻,此步骤可以放在任何步骤;The third step: the structural diagram is shown in FIG. 2c. The method is to define the pattern of the isolation groove 20 in the yellow photoetching process, then etch the n-type nitride semiconductor layer 3 and the buffer layer 2 to expose the substrate 1, and finally remove the photoresist. Steps can be placed in any step;
第四步:第一绝缘层结构8-1的结构为单层氧化物绝缘层,结构图如图2d所示,使用PECVD(等离子体增强化学气相沉积法)沉积SiO2当第一绝缘层结构8-1,SiO2厚度为30-2000nm,其中功率为50W,压力为850mTorr,温度为200~400℃,N2O为1000sccm,N2为400sccm,5%SiH4/N2为400sccm;利用黄光蚀刻制程定义P型接触金属9与透明导电层14及N型接触金属10与线凸形台面的第二上表面19-3的连接图案,再利用干法或湿法蚀刻第一绝缘层结构8-1的连接图案,最后去除光阻,得到第一绝缘层结构8-1;Step 4: The structure of the first insulating layer structure 8-1 is a single-layer oxide insulating layer, as shown in Figure 2d, using PECVD (Plasma Enhanced Chemical Vapor Deposition) to deposit SiO2 as the first insulating layer structure 8-1, the thickness of SiO 2 is 30-2000nm, the power is 50W, the pressure is 850mTorr, the temperature is 200-400°C, the N 2 O is 1000sccm, the N 2 is 400sccm, and the 5% SiH 4 /N 2 is 400sccm; use The photoetching process defines the connection pattern between the P-type contact metal 9 and the transparent conductive layer 14 and the N-type contact metal 10 and the second upper surface 19-3 of the line convex mesa, and then etches the first insulating layer by dry or wet method The connection pattern of structure 8-1, and finally remove the photoresist to obtain the first insulating layer structure 8-1;
第五步:结构图如图2e所示,方法为黄光剥离制程定义P型接触金属9、N型接触金属10图案(包括P型线电极15、N型线电极17以及正装P型焊盘16、正装N型焊盘18),使用电子束蒸镀法同时沉积P型接触金属9、N型接触金属10,后利用剥离制程,再去除光阻,得到P型接触金属9、N型接触金属10;Step 5: The structure diagram is shown in Figure 2e. The method is to define the patterns of P-type contact metal 9 and N-type contact metal 10 (including P-type line electrodes 15, N-type line electrodes 17 and positively mounted P-type pads) for the yellow light stripping process. 16. Formally install N-type pads 18), use electron beam evaporation to simultaneously deposit P-type contact metal 9 and N-type contact metal 10, and then use the stripping process to remove the photoresist to obtain P-type contact metal 9 and N-type contact metal 10;
本实施例中P型接触金属9和N型接触金属10结构相同,且均为由内向外依次排列第一Ni层、Al层、第二Ni层、Au层以及第三Ni层,其中第一Ni层的厚度为0.4-3nm,Al层的厚度为50-300nm,第二Ni层的厚度为10-300nm,Au层的厚度为10-3000nm,第三Ni层的厚度为0.4-3nm。In this embodiment, the P-type contact metal 9 and the N-type contact metal 10 have the same structure, and they are all arranged in sequence from the inside to the outside with a first Ni layer, an Al layer, a second Ni layer, an Au layer and a third Ni layer, wherein the first The thickness of the Ni layer is 0.4-3nm, the thickness of the Al layer is 50-300nm, the thickness of the second Ni layer is 10-300nm, the thickness of the Au layer is 10-3000nm, and the thickness of the third Ni layer is 0.4-3nm.
此结构图2e就是正装结构,可在此步骤可测出正装的光电特性,可利用此步骤推测倒装的光电特性,假如推测没有达到倒装的光电特性,可以在此步骤可以以正装出货。Figure 2e of this structure is the front-mount structure. The photoelectric characteristics of the front-mount can be measured in this step, and the photoelectric characteristics of the flip-chip can be estimated by using this step. If the photoelectric characteristics of the flip-chip are not estimated, the photoelectric characteristics of the flip-chip can be shipped in this step. .
第六步:第二绝缘层结构11-1的结构为单层氧化物绝缘层,结构图如图2f所示,使用PECVD(等离子体增强化学气相沉积法)沉积SiO2当第二绝缘层结构11-1,SiO2厚度为30-2000nm,其中功率为50W,压力为850mTorr,温度为200~400℃,N2O为1000sccm,N2为400sccm,5%SiH4/N2为400sccm;利用黄光蚀刻制程定义开孔存取P型接触金属9、N型接触金属10图案,再利用干法或湿法蚀刻第二绝缘层结构11-1的开孔图案,最后去除光阻;Step 6: The structure of the second insulating layer structure 11-1 is a single-layer oxide insulating layer, as shown in Figure 2f, using PECVD (Plasma Enhanced Chemical Vapor Deposition) to deposit SiO2 as the second insulating layer structure 11-1, the thickness of SiO 2 is 30-2000nm, the power is 50W, the pressure is 850mTorr, the temperature is 200-400°C, the N 2 O is 1000sccm, the N 2 is 400sccm, and the 5% SiH 4 /N 2 is 400sccm; use The yellow photoetching process defines openings to access the P-type contact metal 9 and N-type contact metal 10 patterns, and then dry or wet etch the opening patterns of the second insulating layer structure 11-1, and finally remove the photoresist;
第七步:结构图如图2g所示,方法为黄光剥离制程定义倒装P型电极12、倒装N型电极13图案,使用电子束蒸镀法同时沉积倒装P型电极12、倒装N型电极13,后利用剥离制程,再去除光阻;Step 7: The structure diagram is shown in Figure 2g. The method is to define the patterns of flip-chip P-type electrodes 12 and flip-chip N-type electrodes 13 in the yellow light stripping process, and simultaneously deposit flip-chip P-type electrodes 12 and flip-chip N-type electrodes 13 using electron beam evaporation. Install the N-type electrode 13, and then use the stripping process to remove the photoresist;
本实施例中倒装P型电极12和倒装N型电极13结构相同,且均为由内向外依次排列Ti层、第二Ni层、以及Au层,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Au层组成,其中Ti层的厚度为10-300nm,第一Ni层的厚度为0.4~3nm,第二Ni层的厚度为10-300nm,Al层的厚度为50~300nm,Au层的厚度为20-3000nm。In this embodiment, the flip-chip P-type electrode 12 and the flip-chip N-type electrode 13 have the same structure, and they are all arranged in sequence from the inside to the outside Ti layer, the second Ni layer, and the Au layer, or the first Ni layer arranged in sequence from the inside to the outside. layer, Al layer, second Ni layer, and Au layer, wherein the thickness of the Ti layer is 10-300nm, the thickness of the first Ni layer is 0.4-3nm, the thickness of the second Ni layer is 10-300nm, and the thickness of the Al layer 50-300nm, and the thickness of the Au layer is 20-3000nm.
第八步:最后将圆片进行减薄、划片、裂片、测试、分选,其步骤为通过现有技术中的制作工艺得到的。Step 8: Finally, the wafer is thinned, diced, split, tested, and sorted, and the steps are obtained through the manufacturing process in the prior art.
第九步:将倒装芯片封装,测量光电特性。Step 9: Package the flip chip and measure the photoelectric characteristics.
按照实施例7提供的方法制作的产品,特性测试结果如图8和图9所示:According to the product made by the method provided in Example 7, the characteristic test results are as shown in Figure 8 and Figure 9:
从图8和图9中可知产品的光电特性,在输入电流为60mA时,产品电压为2.82V,产品亮度为23.4lm(色温6807K),峰值波长为449.5nm;在输入电流为150mA时,产品电压为3.02V,产品亮度为50.3lm(色温7095K),峰值波长为447.3nm;在输入电流为620mA时,产品电压为3.56V,产品亮度为116.3lm(色温7832K),峰值波长为447.3nm;由图8和图9可知此产品可以比正装的操作电流更高且电压更低,亮度更高,波长位移更少。From Figure 8 and Figure 9, we can see the photoelectric characteristics of the product. When the input current is 60mA, the product voltage is 2.82V, the product brightness is 23.4lm (color temperature 6807K), and the peak wavelength is 449.5nm; when the input current is 150mA, the product The voltage is 3.02V, the product brightness is 50.3lm (color temperature 7095K), and the peak wavelength is 447.3nm; when the input current is 620mA, the product voltage is 3.56V, the product brightness is 116.3lm (color temperature 7832K), and the peak wavelength is 447.3nm; It can be seen from Figure 8 and Figure 9 that this product can operate at a higher current and lower voltage than the standard device, with higher brightness and less wavelength shift.
实施例8:Embodiment 8:
本实施例和实施例7的制作方法是一样的,区别在于第五步,本实施例中的P型接触金属9、N型接触金属10为整面金属,其他步骤一样,实施例7的倒装结构图如图7所示。The manufacturing method of this embodiment is the same as that of Embodiment 7, the difference is that in the fifth step, the P-type contact metal 9 and the N-type contact metal 10 in this embodiment are full-surface metals, and other steps are the same, and the reverse of Embodiment 7 The installation structure diagram is shown in Figure 7.
试验条件与实施例7相同,将实施例7的技术产品标号为S1,按照实施例7提供的方法制作的产品标号S2,在同一条件下进行检测,测试结果如表1:从表1中可知,S1与S2的光电特性差不多。Test condition is identical with embodiment 7, the technical product label of embodiment 7 is S1, the product label S2 that makes according to the method that embodiment 7 provides, detects under the same condition, test result is as table 1: as can be seen from table 1 , The photoelectric characteristics of S1 and S2 are almost the same.
表1产品检测结果比对Table 1 Comparison of product test results
与现有技术相比,本申请所述的III族半导体发光器件倒装结构的制作方法,具有以下优点:Compared with the prior art, the manufacturing method of the flip-chip structure of the Group III semiconductor light-emitting device described in the present application has the following advantages:
(1)本发明的新结构一律采用线凸形台面技术取代现有技术中的多个孔洞(vias)技术。(1) The new structures of the present invention all adopt the linear convex mesa technology to replace the multiple vias technology in the prior art.
(2)本发明的第一步骤可将透明导电层与线凸形台面图案一起制作,不但简化了一道制程,也解决了透明导电层与线凸形台面图案对准的问题。(2) In the first step of the present invention, the transparent conductive layer and the linear convex mesa pattern can be fabricated together, which not only simplifies a manufacturing process, but also solves the problem of alignment between the transparent conductive layer and the linear convex mesa pattern.
(3)本发明新结构假如使用第一绝缘层结构8-1为单层氧化物绝缘层,然后镀P型接触金属9、N型接触金属10,所述P型接触金属9、N型接触金属10包括P型线电极15、N型线电极17以及正装P型焊盘16与正装N型焊盘18,此结构图2e就是正装结构,可在此步骤可测出正装的光电特性,可利用此步骤推测倒装的光电特性,假如推测没有达到倒装的光电特性,可以在此步骤可以以正装出货。(3) If the new structure of the present invention uses the first insulating layer structure 8-1 as a single-layer oxide insulating layer, then plate P-type contact metal 9 and N-type contact metal 10, and the P-type contact metal 9 and N-type contact The metal 10 includes a P-type wire electrode 15, an N-type wire electrode 17, a positively mounted P-type pad 16, and a positively mounted N-type pad 18. The structure shown in FIG. Use this step to estimate the photoelectric characteristics of the flip chip. If the guess does not reach the photoelectric characteristics of the flip chip, you can ship it in the normal package at this step.
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。The above description shows and describes several preferred embodiments of the present application, but as mentioned above, it should be understood that the present application is not limited to the form disclosed herein, and should not be regarded as excluding other embodiments, but can be used in various Various other combinations, modifications and environments, and can be modified by the above teachings or the technology or knowledge in the related field within the scope of the application concept described herein. However, modifications and changes made by those skilled in the art do not depart from the spirit and scope of the present application, and should all be within the protection scope of the appended claims of the present application.
A1、一种III族半导体发光器件倒装结构的制作方法,其特征在于,包括步骤:A1, a method for manufacturing a flip-chip structure of a Group III semiconductor light emitting device, characterized in that it comprises the steps of:
自下而上依次生长衬底、缓冲层、n型氮化物半导体层、有源层和p型氮化物半导体层形成外延结构,所述外延结构的上表面为p型氮化物半导体层的上表面;Growing the substrate, the buffer layer, the n-type nitride semiconductor layer, the active layer and the p-type nitride semiconductor layer sequentially from bottom to top to form an epitaxial structure, and the upper surface of the epitaxial structure is the upper surface of the p-type nitride semiconductor layer ;
沉积透明导电层在所述p型氮化物半导体上表面,并利用黄光蚀刻制程定义线凸形台面图案,再蚀刻透明导电层、p型氮化物半导体层和有源层,暴露n型氮化物半导体层,再用蚀刻溶液将透明导电层内缩,最后去除光阻,得到线凸形台面,且所述线凸形台面的上表面有透明导电层,其中,所述线凸形台面包括:第一上表面、侧表面和第二上表面,所述第一上表面和第二上表面分别与所述侧表面形成L形结构,所述线凸形台面的第一上表面为p型氮化物半导体层的上表面,所述线凸形台面的第二上表面为所述n型氮化物半导体层的上表面;Deposit a transparent conductive layer on the upper surface of the p-type nitride semiconductor, and use a yellow photolithography process to define a line convex mesa pattern, and then etch the transparent conductive layer, p-type nitride semiconductor layer and active layer to expose the n-type nitride semiconductor layer, and then shrink the transparent conductive layer with an etching solution, and finally remove the photoresist to obtain a line convex mesa, and the upper surface of the line convex mesa has a transparent conductive layer, wherein the line convex mesa includes: The first upper surface, the side surface and the second upper surface, the first upper surface and the second upper surface respectively form an L-shaped structure with the side surface, and the first upper surface of the linear convex mesa is p-type nitrogen The upper surface of the compound semiconductor layer, the second upper surface of the linear convex mesa is the upper surface of the n-type nitride semiconductor layer;
黄光蚀刻制程定义隔离槽,再蚀刻n型氮化物半导体层和缓冲层、而暴露衬底,最后去除光阻;The yellow photoetching process defines the isolation groove, then etches the n-type nitride semiconductor layer and the buffer layer to expose the substrate, and finally removes the photoresist;
利用黄光蚀刻制程定义P型接触金属与透明导电层及N型接触金属与所述线凸形台面的第二上表面的连接图案,再蚀刻第一绝缘层结构的连接图案,最后去除光阻,得到第一绝缘层结构;Define the connection pattern between the P-type contact metal and the transparent conductive layer and the N-type contact metal and the second upper surface of the line convex mesa by using a yellow photolithography process, then etch the connection pattern of the first insulating layer structure, and finally remove the photoresist , to obtain the first insulating layer structure;
黄光剥离制程定义P型接触金属与N型接触金属的图案,同时沉积P型接触金属与N型接触金属,然后利用剥离制程,再去除光阻,得到P型接触金属、N型接触金属;The yellow light stripping process defines the pattern of P-type contact metal and N-type contact metal, deposits P-type contact metal and N-type contact metal at the same time, and then uses the stripping process to remove the photoresist to obtain P-type contact metal and N-type contact metal;
沉积第二绝缘层结构,利用黄光蚀刻制程定义开孔存取P型接触金属与N型接触金属的图案,再蚀刻第二绝缘层结构的开孔图案,最后去除光阻;Deposit the second insulating layer structure, use the photolithography process to define the opening access pattern of the P-type contact metal and N-type contact metal, etch the opening pattern of the second insulating layer structure, and finally remove the photoresist;
黄光剥离制程定义倒装P型电极与倒装N型电极的图案,沉积倒装P型电极与倒装N型电极,后利用剥离制程,再去除光阻,得到圆片;The yellow light lift-off process defines the pattern of flip-chip P-type electrodes and flip-chip N-type electrodes, deposits flip-chip P-type electrodes and flip-chip N-type electrodes, and then uses the lift-off process to remove the photoresist to obtain wafers;
将圆片进行减薄、划片、裂片、测试、分选。Thinning, scribing, splitting, testing and sorting of the wafer.
A2、根据A1所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述第一绝缘层结构,位于所述第一上表面、侧表面、第二上表面、透明导电层以及隔离槽上。A2. The method for manufacturing the flip-chip structure of the Group III semiconductor light emitting device according to A1, wherein the first insulating layer structure is located on the first upper surface, the side surface, the second upper surface, and the transparent conductive layer. and isolation tanks.
A3、根据A2所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述第一绝缘层结构为单层氧化物绝缘层,所述单层氧化物绝缘层的材料为三氧化二铝、二氧化硅、二氧化钛、五氧化二钽、五氧化二铌、氮氧化硅以及氮化硅中的一种。A3. The method for manufacturing the flip-chip structure of the Group III semiconductor light-emitting device according to A2, wherein the structure of the first insulating layer is a single-layer oxide insulating layer, and the material of the single-layer oxide insulating layer is three One of aluminum oxide, silicon dioxide, titanium dioxide, tantalum pentoxide, niobium pentoxide, silicon oxynitride and silicon nitride.
A4、根据A3所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述单层氧化物绝缘层的厚度为30-2000nm。A4. The method for manufacturing the flip-chip structure of the Group III semiconductor light-emitting device according to A3, wherein the thickness of the single-layer oxide insulating layer is 30-2000 nm.
A5、根据A1所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述P型接触金属为整面金属,该P型接触金属的下端设置在所述第一绝缘层结构表面上及透明导电层上;A5. The method for manufacturing the flip-chip structure of the Group III semiconductor light-emitting device according to A1, wherein the P-type contact metal is a full-surface metal, and the lower end of the P-type contact metal is arranged on the first insulating layer structure on the surface and on the transparent conductive layer;
所述N型接触金属为整面金属,该N型接触金属的下端设置在所述第一绝缘层结构表面上及所述第二上表面上。The N-type contact metal is a full-surface metal, and the lower end of the N-type contact metal is arranged on the surface of the first insulating layer structure and the second upper surface.
A6、根据A1所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述P型接触金属,包括:P型线电极和正装P型焊盘,所述正装P型焊盘的下端设置在所述第一绝缘层结构表面上,所述P型线电极的下端设置在所述第一绝缘层结构表面及透明导电层上;A6, according to the method for manufacturing the flip-chip structure of the Group III semiconductor light-emitting device described in A1, it is characterized in that the P-type contact metal includes: P-type wire electrodes and positive P-type pads, and the positive P-type pads The lower end of the P-type wire electrode is arranged on the surface of the first insulating layer structure, and the lower end of the P-type wire electrode is arranged on the surface of the first insulating layer structure and the transparent conductive layer;
所述N型接触金属,包括:N型线电极和正装N型焊盘,所述正装N型焊盘的下端设置在所述第一绝缘层结构表面上,所述N型线电极的下端设置在所述第一绝缘层结构以及第二上表面上。The N-type contact metal includes: an N-type wire electrode and a positive N-type pad, the lower end of the positive N-type pad is arranged on the surface of the first insulating layer structure, and the lower end of the N-type wire electrode is set on the first insulating layer structure and the second upper surface.
A7、根据A5或A6所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述P型接触金属和N型接触金属结构相同,且均为由内向外依次排列的第一Ni层、Al层、第二Ni层、Au层以及第三Ni层组成,或由内向外依次排列的Ti层、Al层、第二Ni层、Au层以及第三Ni层组成,或由内向外依次排列的Ti层、Al层以及第三Ni层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Pt层、Au层以及第三Ni层组成,或由内向外依次排列的Cr层、Pt层、Au层以及第三Ni层组成,或由内向外依次排列的第一Ni层、Al层、以及第三Ni层组成,或由Rh层组成,其中,Rh层的厚度为50-3000nm,第一Ni层的厚度为0.3-300nm,Al层的厚度为50-3000nm,第二Ni层的厚度为10-300nm,Pt层的厚度为10-300nm,Au层的厚度为10-3000nm,第三Ni层的厚度为0.3-300nm。A7. The method for manufacturing the flip-chip structure of the Group III semiconductor light-emitting device according to A5 or A6, wherein the P-type contact metal and the N-type contact metal have the same structure, and both are the first ones arranged in sequence from inside to outside. Ni layer, Al layer, second Ni layer, Au layer and third Ni layer, or Ti layer, Al layer, second Ni layer, Au layer and third Ni layer arranged in order from inside to outside, or from inside to outside The Ti layer, the Al layer and the third Ni layer arranged in sequence from the outside, or the first Ni layer, the Al layer, the second Ni layer, the Pt layer, the Au layer and the third Ni layer arranged in order from the inside to the outside, or the It consists of a Cr layer, a Pt layer, an Au layer and a third Ni layer arranged in sequence from inside to outside, or consists of a first Ni layer, an Al layer, and a third Ni layer arranged in sequence from inside to outside, or consists of a Rh layer, wherein, The thickness of the Rh layer is 50-3000nm, the thickness of the first Ni layer is 0.3-300nm, the thickness of the Al layer is 50-3000nm, the thickness of the second Ni layer is 10-300nm, the thickness of the Pt layer is 10-300nm, Au The thickness of the layer is 10-3000nm, and the thickness of the third Ni layer is 0.3-300nm.
A8、根据A1所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述第二绝缘层结构位于所述第一绝缘层结构的上表面、P型接触金属的上表面以及N型接触金属的上表面。A8. The method for manufacturing the flip-chip structure of the Group III semiconductor light emitting device according to A1, wherein the second insulating layer structure is located on the upper surface of the first insulating layer structure, the upper surface of the P-type contact metal, and The N type contacts the upper surface of the metal.
A9、根据A8所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述第二绝缘层结构的结构为单层氧化物绝缘层,所述单层氧化物绝缘层的材料为三氧化二铝、二氧化硅、二氧化钛、五氧化二钽、五氧化二铌、氮氧化硅以及氮化硅中的一种,所述单层氧化物绝缘层的厚度为30-2000nm。A9, according to the method for manufacturing the flip-chip structure of the Group III semiconductor light-emitting device described in A8, it is characterized in that the structure of the second insulating layer structure is a single-layer oxide insulating layer, and the material of the single-layer oxide insulating layer It is one of aluminum oxide, silicon dioxide, titanium dioxide, tantalum pentoxide, niobium pentoxide, silicon oxynitride and silicon nitride, and the thickness of the single-layer oxide insulating layer is 30-2000nm.
A10、根据A1所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述倒装P型电极的下端设置在所述P型接触金属以及第二绝缘层结构的表面上;A10. The method for fabricating a flip-chip structure of a Group III semiconductor light-emitting device according to A1, wherein the lower end of the flip-chip P-type electrode is arranged on the surface of the P-type contact metal and the second insulating layer structure;
所述倒装N型电极的下端设置在所述N型接触金属以及第二绝缘层结构表面上。The lower end of the flip-chip N-type electrode is arranged on the surface of the N-type contact metal and the second insulating layer structure.
A11、根据A10所述的III族半导体发光器件倒装结构的制作方法,其特征在于,所述倒装P型电极与倒装N型电极结构相同,进一步为,由内向外依次排列的Ti层、第二Ni层、Au层组成,或由内向外依次排列的中间Cr层、Pt层、Au层、第二Ni层、Pt层、第二Ni层、AuSn层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Au层组成,或由内向外依次排列的中间Cr层、Pt层、Au层组成,或由内向外依次排列的第一Ni层、Al层、中间Cr层、第二Ni层以及Au层组成,或由内向外依次排列的第一Ni层、Al层、第二Ni层、Pt层、Au层组成,其中,所述第一Ni层的厚度为0.4-3nm,第二Ni层的厚度为10-300nm,Ti层的厚度为10-300nm,Al层的厚度为50-300nm,Au层的厚度为20-3000nm,中间Cr层的厚度为10-300nm,Pt层的厚度为10-300nm,AuSn层的厚度为1000-5000nm。A11, according to the manufacturing method of the flip-chip structure of the Group III semiconductor light-emitting device described in A10, it is characterized in that the flip-chip P-type electrode has the same structure as the flip-chip N-type electrode, and further comprises Ti layers arranged in sequence from the inside to the outside , the second Ni layer, and the Au layer, or the middle Cr layer, the Pt layer, the Au layer, the second Ni layer, the Pt layer, the second Ni layer, and the AuSn layer arranged in sequence from the inside to the outside, or arranged in sequence from the inside to the outside The first Ni layer, Al layer, second Ni layer, Au layer, or the middle Cr layer, Pt layer, Au layer arranged in order from inside to outside, or the first Ni layer, Al layer arranged in order from inside to outside , the middle Cr layer, the second Ni layer and the Au layer, or the first Ni layer, the Al layer, the second Ni layer, the Pt layer, and the Au layer arranged in sequence from inside to outside, wherein the first Ni layer The thickness is 0.4-3nm, the thickness of the second Ni layer is 10-300nm, the thickness of the Ti layer is 10-300nm, the thickness of the Al layer is 50-300nm, the thickness of the Au layer is 20-3000nm, and the thickness of the middle Cr layer is 10-300nm, the thickness of the Pt layer is 10-300nm, and the thickness of the AuSn layer is 1000-5000nm.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510222434.0A CN104821350A (en) | 2015-05-05 | 2015-05-05 | Manufacturing method of inversion structure of III semiconductor light-emitting device |
PCT/CN2016/081116 WO2016177334A1 (en) | 2015-05-05 | 2016-05-05 | Manufacturing method for group iii semiconductor light emitting device flip-chip structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510222434.0A CN104821350A (en) | 2015-05-05 | 2015-05-05 | Manufacturing method of inversion structure of III semiconductor light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104821350A true CN104821350A (en) | 2015-08-05 |
Family
ID=53731591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510222434.0A Pending CN104821350A (en) | 2015-05-05 | 2015-05-05 | Manufacturing method of inversion structure of III semiconductor light-emitting device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104821350A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105932143A (en) * | 2016-06-16 | 2016-09-07 | 佛山市国星半导体技术有限公司 | A method of manufacturing a flip-chip LED chip |
WO2016177335A1 (en) * | 2015-05-05 | 2016-11-10 | 湘能华磊光电股份有限公司 | Group iii semiconductor light emitting device flip-chip structure |
WO2016177334A1 (en) * | 2015-05-05 | 2016-11-10 | 湘能华磊光电股份有限公司 | Manufacturing method for group iii semiconductor light emitting device flip-chip structure |
CN107134470A (en) * | 2017-05-08 | 2017-09-05 | 深圳市尚来特科技有限公司 | Inverted structure of lighting device and preparation method thereof |
CN108110115A (en) * | 2017-10-20 | 2018-06-01 | 华灿光电(浙江)有限公司 | Light emitting diode chip and manufacturing method thereof |
CN109545937A (en) * | 2018-12-29 | 2019-03-29 | 佛山市国星半导体技术有限公司 | A kind of high brightness side plating flip LED chips and preparation method thereof |
CN111129256A (en) * | 2019-12-30 | 2020-05-08 | 广东德力光电有限公司 | A kind of flip-chip high-voltage chip based on silver mirror and its manufacturing method |
CN111129244A (en) * | 2019-12-30 | 2020-05-08 | 广东德力光电有限公司 | A kind of silver mirror high-power flip chip and preparation method thereof |
CN113659048A (en) * | 2021-07-22 | 2021-11-16 | 厦门三安光电有限公司 | Flip-chip light-emitting diode and method of making the same |
CN114256389A (en) * | 2021-12-13 | 2022-03-29 | 广东省科学院半导体研究所 | High-density micro LED array and manufacturing method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203521454U (en) * | 2013-09-05 | 2014-04-02 | 深圳市智讯达光电科技有限公司 | Ohmic contact electrode structure of flip-chip LED chip and flip-chip LED chip |
CN104538513A (en) * | 2015-01-20 | 2015-04-22 | 湘能华磊光电股份有限公司 | Manufacturing method of III semiconductor light-emitting device |
-
2015
- 2015-05-05 CN CN201510222434.0A patent/CN104821350A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203521454U (en) * | 2013-09-05 | 2014-04-02 | 深圳市智讯达光电科技有限公司 | Ohmic contact electrode structure of flip-chip LED chip and flip-chip LED chip |
CN104538513A (en) * | 2015-01-20 | 2015-04-22 | 湘能华磊光电股份有限公司 | Manufacturing method of III semiconductor light-emitting device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016177335A1 (en) * | 2015-05-05 | 2016-11-10 | 湘能华磊光电股份有限公司 | Group iii semiconductor light emitting device flip-chip structure |
WO2016177334A1 (en) * | 2015-05-05 | 2016-11-10 | 湘能华磊光电股份有限公司 | Manufacturing method for group iii semiconductor light emitting device flip-chip structure |
US9893040B2 (en) | 2015-05-05 | 2018-02-13 | Xiangneng Hualei Optoelectronic Co., Ltd | Flip-chip structure of group III semiconductor light emitting device |
CN105932143B (en) * | 2016-06-16 | 2018-06-22 | 佛山市国星半导体技术有限公司 | A kind of manufacturing method of flip LED chips |
CN105932143A (en) * | 2016-06-16 | 2016-09-07 | 佛山市国星半导体技术有限公司 | A method of manufacturing a flip-chip LED chip |
CN107134470A (en) * | 2017-05-08 | 2017-09-05 | 深圳市尚来特科技有限公司 | Inverted structure of lighting device and preparation method thereof |
CN108110115A (en) * | 2017-10-20 | 2018-06-01 | 华灿光电(浙江)有限公司 | Light emitting diode chip and manufacturing method thereof |
CN109545937A (en) * | 2018-12-29 | 2019-03-29 | 佛山市国星半导体技术有限公司 | A kind of high brightness side plating flip LED chips and preparation method thereof |
CN109545937B (en) * | 2018-12-29 | 2024-07-30 | 佛山市国星半导体技术有限公司 | A high-brightness side-plated flip-chip LED chip and its manufacturing method |
CN111129256A (en) * | 2019-12-30 | 2020-05-08 | 广东德力光电有限公司 | A kind of flip-chip high-voltage chip based on silver mirror and its manufacturing method |
CN111129244A (en) * | 2019-12-30 | 2020-05-08 | 广东德力光电有限公司 | A kind of silver mirror high-power flip chip and preparation method thereof |
CN113659048A (en) * | 2021-07-22 | 2021-11-16 | 厦门三安光电有限公司 | Flip-chip light-emitting diode and method of making the same |
CN113659048B (en) * | 2021-07-22 | 2023-10-20 | 厦门三安光电有限公司 | Flip-chip light emitting diode and preparation method thereof |
CN114256389A (en) * | 2021-12-13 | 2022-03-29 | 广东省科学院半导体研究所 | High-density micro LED array and manufacturing method and application thereof |
CN114256389B (en) * | 2021-12-13 | 2024-05-17 | 广东省科学院半导体研究所 | A high-density micro LED array and its manufacturing method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104952995B (en) | A kind of inverted structure of III light emitting semiconductor device | |
CN104821351B (en) | The preparation method of III light emitting semiconductor device inverted structure | |
CN104821350A (en) | Manufacturing method of inversion structure of III semiconductor light-emitting device | |
US10147849B2 (en) | Manufacturing method of flip-chip structure of group III semiconductor light emitting device | |
CN104538513B (en) | A kind of preparation method of III races light emitting semiconductor device | |
CN104810439A (en) | Method for manufacturing III-group semiconductor light-emitting devices | |
CN109216515B (en) | Flip LED chip and manufacturing method thereof | |
CN104393139B (en) | Reflection electrode structure, LED device and preparation method | |
CN105070799B (en) | An LED chip manufacture method | |
CN104091869B (en) | Light emitting diode chip and manufacturing method thereof | |
CN109659414A (en) | A kind of flip LED chips and preparation method thereof | |
CN104659177A (en) | Group III semiconductor luminescent device | |
CN105374909B (en) | A kind of manufacturing method of high-voltage LED | |
CN114361310B (en) | Ultraviolet light-emitting diode chip and preparation method thereof | |
CN106784192A (en) | A kind of light-emitting diode chip for backlight unit and preparation method thereof | |
CN215377431U (en) | Light emitting diode chip structure and light emitting diode | |
CN107464868A (en) | A kind of preparation method of high voltage LED chip | |
TW201505202A (en) | Light-emitting diode structure | |
CN108878600A (en) | The flip-chip and its manufacturing method of light emitting diode | |
CN104576868B (en) | A kind of preparation method of III races light emitting semiconductor device | |
CN104576851B (en) | A kind of preparation method of III races light emitting semiconductor device | |
WO2016177334A1 (en) | Manufacturing method for group iii semiconductor light emitting device flip-chip structure | |
CN105280777B (en) | LED chip and preparation method | |
CN108807626B (en) | light-emitting element | |
CN104576867B (en) | A kind of preparation method of III races light emitting semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150805 |
|
RJ01 | Rejection of invention patent application after publication |