CN104817619B - Antimicrobial compound and its application - Google Patents
Antimicrobial compound and its application Download PDFInfo
- Publication number
- CN104817619B CN104817619B CN201510198097.6A CN201510198097A CN104817619B CN 104817619 B CN104817619 B CN 104817619B CN 201510198097 A CN201510198097 A CN 201510198097A CN 104817619 B CN104817619 B CN 104817619B
- Authority
- CN
- China
- Prior art keywords
- compound
- chlorotetaine
- candida
- lead compound
- small molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004599 antimicrobial Substances 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 44
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims abstract description 11
- 241000228245 Aspergillus niger Species 0.000 claims abstract description 7
- 241000228212 Aspergillus Species 0.000 claims abstract description 6
- 241000222122 Candida albicans Species 0.000 claims description 9
- 241000233866 Fungi Species 0.000 claims description 9
- 229940095731 candida albicans Drugs 0.000 claims description 9
- 241000222173 Candida parapsilosis Species 0.000 claims description 5
- 229940055022 candida parapsilosis Drugs 0.000 claims description 5
- 241000235645 Pichia kudriavzevii Species 0.000 claims description 4
- 239000003429 antifungal agent Substances 0.000 claims 1
- CDXAUQAPYPMADZ-UHFFFAOYSA-N Chlorotetaine Natural products CC(N)NC(=O)C(CC1CCC(=O)C(=C1)Cl)C(=O)O CDXAUQAPYPMADZ-UHFFFAOYSA-N 0.000 abstract description 36
- 108700029774 chlorotetaine Proteins 0.000 abstract description 36
- 150000002611 lead compounds Chemical class 0.000 abstract description 34
- 230000000843 anti-fungal effect Effects 0.000 abstract description 22
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 21
- 150000003384 small molecules Chemical class 0.000 abstract description 19
- 108010082406 peptide permease Proteins 0.000 abstract description 18
- 244000063299 Bacillus subtilis Species 0.000 abstract description 16
- 235000014469 Bacillus subtilis Nutrition 0.000 abstract description 16
- 229940121375 antifungal agent Drugs 0.000 abstract description 15
- 230000002401 inhibitory effect Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 238000012377 drug delivery Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 241001414983 Trichoptera Species 0.000 abstract 1
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 26
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 26
- 238000000855 fermentation Methods 0.000 description 16
- 230000004151 fermentation Effects 0.000 description 16
- 239000003814 drug Substances 0.000 description 12
- 241000894006 Bacteria Species 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000003242 anti bacterial agent Substances 0.000 description 9
- 229940088710 antibiotic agent Drugs 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 238000003032 molecular docking Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 244000005700 microbiome Species 0.000 description 6
- 108010078791 Carrier Proteins Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004321 preservation Methods 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000003041 virtual screening Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 244000052616 bacterial pathogen Species 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 244000053095 fungal pathogen Species 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000001819 mass spectrum Methods 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 244000000010 microbial pathogen Species 0.000 description 3
- 229960000988 nystatin Drugs 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229940124350 antibacterial drug Drugs 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 2
- 229960004884 fluconazole Drugs 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 210000005007 innate immune system Anatomy 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 235000018977 lysine Nutrition 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 108010050820 Antimicrobial Cationic Peptides Proteins 0.000 description 1
- 102000014133 Antimicrobial Cationic Peptides Human genes 0.000 description 1
- 208000035404 Autolysis Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101800003223 Cecropin-A Proteins 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 102000004894 Glutamine-fructose-6-phosphate transaminase (isomerizing) Human genes 0.000 description 1
- 108090001031 Glutamine-fructose-6-phosphate transaminase (isomerizing) Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 101500023040 Loxosceles gaucho U1-sicaritoxin-Lg1a Proteins 0.000 description 1
- 108060003100 Magainin Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000012265 beta-defensin Human genes 0.000 description 1
- 108050002883 beta-defensin Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- HCQPHKMLKXOJSR-IRCPFGJUSA-N cecropin-a Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(N)=O)[C@@H](C)CC)C(C)C)[C@@H](C)CC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](N)CCCCN)C1=CC=CC=C1 HCQPHKMLKXOJSR-IRCPFGJUSA-N 0.000 description 1
- 210000002390 cell membrane structure Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012539 chromatography resin Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 150000002309 glutamines Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- -1 indocidin Proteins 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 102000028703 oxygen binding proteins Human genes 0.000 description 1
- 108091009355 oxygen binding proteins Proteins 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 230000032895 transmembrane transport Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了一种抗菌化合物及其应用,该化合物结构式如式(I)所示。本发明利用枯草芽孢杆菌(Bacillus subtilis)ZJU007 CGMCC NO.4140获得先导化合物Chlorotetaine,并以药物输送过程为理论依据,进行同源建模构建小分子肽转运蛋白的虚拟结构,通过小分子肽转运蛋白的虚拟结构对先导化合物Chlorotetaine的结构进行优化,获得了新的具有抗真菌能力的三肽化合物,该化合物不仅能抗白色念珠菌、近平滑念珠菌、克鲁氏假丝酵母和拟多形假丝酵母等假丝酵母类真菌,最低抑菌浓度(MIC)达0.81μg/mL;还能抗黑曲霉等曲霉属真菌,最低抑菌浓度达1.63μg/mL。
The invention discloses an antibacterial compound and its application. The structural formula of the compound is shown in formula (I). The present invention utilizes Bacillus subtilis (Bacillus subtilis) ZJU007 CGMCC NO.4140 to obtain the lead compound Chlorotetaine, and takes the drug delivery process as a theoretical basis to carry out homology modeling to construct the virtual structure of the small molecule peptide transporter, and through the small molecule peptide transporter The virtual structure of the lead compound Chlorotetaine was optimized, and a new tripeptide compound with antifungal ability was obtained. The minimum inhibitory concentration (MIC) of Candida fungi such as Trichoptera is 0.81 μg/mL; it can also resist Aspergillus such as Aspergillus niger, and the minimum inhibitory concentration is 1.63 μg/mL.
Description
技术领域technical field
本发明涉及药物化学技术领域,尤其涉及一种抗菌化合物及其应用。The invention relates to the technical field of medicinal chemistry, in particular to an antibacterial compound and its application.
背景技术Background technique
抗生素的发明与使用是20世纪最伟大的发明之一,其在抗菌领域的广泛应用曾为人类解除了相当多的痛苦,带来了巨大福音。但是,近几十年间,不论在农业、养殖业还是人类医疗领域,抗生素的滥用对生态系统及全球的医疗卫生问题带来了巨大的挑战。同时,随着耐药菌株的不断爆发,以及公众对于公共医疗卫生的要求不断提高,人们对新型的抗生素,特别是新型抗真菌药物的要求变得越来越迫切。The invention and use of antibiotics is one of the greatest inventions in the 20th century. Its wide application in the field of antibacterial has relieved a lot of human suffering and brought great blessings. However, in recent decades, whether in the field of agriculture, breeding or human medicine, the abuse of antibiotics has brought huge challenges to the ecosystem and global medical and health issues. At the same time, with the continuous outbreak of drug-resistant strains and the continuous improvement of the public's requirements for public health, people's requirements for new antibiotics, especially new antifungal drugs, are becoming more and more urgent.
抗菌肽(AMPs)是一类带正电的两亲性(同时具有疏水性部位和亲水性部位)小分子肽类物质,抗菌肽之间的主要差异在于氨基酸组成和肽链的长度(6~100个氨基酸)。抗菌肽是大多数生物包括人类在内的先天免疫系统不可缺少的一部分。从生物合成角度分析,抗菌肽主要分为两类:非核糖体途径合成的抗菌肽和核糖体途径合成的抗菌肽。从生化性质和结构特点的角度分析,抗菌肽通常分为阳离子抗菌肽、阴离子抗菌肽、芳香族抗菌肽以及来源于氧结合蛋白的肽类。Antimicrobial peptides (AMPs) are a class of positively charged amphiphilic (having both hydrophobic and hydrophilic parts) small molecule peptides. The main difference between antimicrobial peptides lies in the amino acid composition and the length of the peptide chain (6 ~100 amino acids). Antimicrobial peptides are an integral part of the innate immune system of most organisms, including humans. From the perspective of biosynthesis, antimicrobial peptides are mainly divided into two categories: antimicrobial peptides synthesized by non-ribosomal pathways and antimicrobial peptides synthesized by ribosomal pathways. From the perspective of biochemical properties and structural characteristics, antimicrobial peptides are usually divided into cationic antimicrobial peptides, anionic antimicrobial peptides, aromatic antimicrobial peptides, and peptides derived from oxygen-binding proteins.
与合成和半合成抗生素相比,抗菌肽具有更佳的杀菌活性,这使得抗菌肽在科学上引起了广泛的兴趣。例如,抗菌肽具有非常广的抗菌谱,如同β-defensins,indolicidin, cecropin A 和 magainins,可有效的杀死细菌、真菌、寄生虫甚至病毒。抗菌肽也表现出迅速的杀菌活性或者杀真菌活性、有限的免疫原性、一些抗菌肽甚至不易被酶降解,使得他们成为稳定的抗菌涂层材料。更重要的是,抗菌肽对具有抗药性的超级细菌表现出较强的抑制活性,例如:耐甲氧西林的金黄色葡萄球菌、绿脓杆菌以及耐喹诺酮的肠杆菌,说明抗菌肽可能是通过与现有抗生素不同的机制,达到杀死病原菌的效果。由于抗菌肽引起病原菌抗性的可能性较小,所以其在医用植入涂料方面的应用显得很有吸引力。Compared with synthetic and semi-synthetic antibiotics, antimicrobial peptides have better bactericidal activity, which makes antimicrobial peptides attract a lot of scientific interest. For example, antimicrobial peptides have a very broad antibacterial spectrum, such as β-defensins, indocidin, cecropin A and magainins, which can effectively kill bacteria, fungi, parasites and even viruses. Antimicrobial peptides also exhibit rapid bactericidal or fungicidal activity, limited immunogenicity, and some antimicrobial peptides are not even easily degraded by enzymes, making them stable antimicrobial coating materials. More importantly, antimicrobial peptides showed strong inhibitory activity against drug-resistant superbugs, such as methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and quinolone-resistant Enterobacteriaceae, indicating that antimicrobial peptides may be through The mechanism is different from the existing antibiotics to achieve the effect of killing pathogenic bacteria. Since antimicrobial peptides are less likely to cause resistance in pathogenic bacteria, their use in medical implant coatings appears attractive.
与传统的抗真菌药物相比,抗菌肽具有明显的优势:1)抗菌肽对微生物靶点具有选择性的毒性,这对于任何一种抗菌药物都是一个必要条件。由于微生物细胞与哺乳动物细胞在膜结构组成、跨膜势、偏振化以及其他结构特性上的不同,导致AMPs几乎对哺乳动物没有毒性。2)广谱的生物活性。大量的研究表明,AMPs不仅能作为抗菌、抗病毒药物起作用,而且是一种重要的先天免疫系统的效应物和调节器。除此之外,抗菌肽还能够抑制生物膜的形成,引起已成型生物膜的溶解,趋化性地吸引吞噬细胞及调节非调理吞噬作用。3)AMPs能够中和内毒素,但是不受常规抗生素抑制机制的影响。4)到目前为止,抗菌肽最具前途的潜在应用在于其协同治疗作用,通过促进抗菌药物进入生物细胞,提高现有药物的活力。与常规抗生素不同,AMPs因易引起微生物细胞膜结构的改变,而不容易使微生物对其产生抗性。Compared with traditional antifungal drugs, antimicrobial peptides have obvious advantages: 1) Antimicrobial peptides have selective toxicity to microbial targets, which is a necessary condition for any antibacterial drug. Due to the differences in membrane structure composition, transmembrane potential, polarization, and other structural properties between microbial cells and mammalian cells, AMPs are almost non-toxic to mammals. 2) Broad-spectrum biological activity. A large number of studies have shown that AMPs can not only act as antibacterial and antiviral drugs, but also be an important effector and regulator of the innate immune system. In addition, antimicrobial peptides can also inhibit the formation of biofilms, cause the dissolution of formed biofilms, attract phagocytes chemotactically and regulate non-opsonized phagocytosis. 3) AMPs can neutralize endotoxin, but are not affected by conventional antibiotic inhibition mechanisms. 4) So far, the most promising potential application of antimicrobial peptides lies in their synergistic therapeutic effect, which improves the activity of existing drugs by promoting the entry of antibacterial drugs into biological cells. Different from conventional antibiotics, AMPs are easy to cause changes in the structure of microbial cell membranes, and it is not easy for microorganisms to develop resistance to them.
因此,有必要提供更多的抗菌肽类药物,解决传统抗真菌药物使用过程中所带来的问题。Therefore, it is necessary to provide more antimicrobial peptide drugs to solve the problems caused by the use of traditional antifungal drugs.
发明内容Contents of the invention
本发明提供了一种抗菌化合物及其应用,该抗菌化合物抗真菌活性高,可用于制备抗真菌药物。The invention provides an antibacterial compound and application thereof. The antibacterial compound has high antifungal activity and can be used to prepare antifungal drugs.
一种化合物,其结构式如式(I)所示:A compound whose structural formula is shown in formula (I):
(I)(I)
上述化合物为三肽化合物,该化合物是在先导化合物的末端氨基上通过肽键接上赖氨酸后获得,其先导化合物为Chlorotetaine,化学结构式如(II)所示:The above-mentioned compound is a tripeptide compound, which is obtained by connecting lysine to the terminal amino group of the lead compound through a peptide bond. The lead compound is Chlorotetaine, and its chemical structure is shown in (II):
(II)(II)
本发明首先将枯草芽孢杆菌(Bacillus subtilis)ZJU007 CGMCC NO.4140接种至发酵培养基中培养,分离、纯化后,获得先导化合物Chlorotetaine;然后,利用同源建模构建小分子肽转运蛋白的虚拟结构,并根据拉氏图信息确认小分子肽转运蛋白虚拟结构的合理性;再通过软件在先导化合物Chlorotetaine的末端氨基处模拟接上20种常见氨基酸形成新的化合物;并将上述新化合物与同源建模构建小分子肽转运蛋白的虚拟结构进行模拟对接,以氢键数量和对接自由能作为参照标准,进行结合度的筛选,获得5个结合度较高的化合物;最后,通过抗真菌活性的检测,得知具有最佳抗真菌效果的化合物,即:三肽化合物Chlorotetaine-Lys。The present invention first inoculates Bacillus subtilis ( Bacillus subtilis ) ZJU007 CGMCC NO.4140 into the fermentation medium and cultivates it. After separation and purification, the lead compound Chlorotetaine is obtained; then, the virtual structure of the small molecule peptide transporter is constructed by using homology modeling , and confirm the rationality of the virtual structure of the small molecule peptide transporter according to the information of the Lagren diagram; then use the software to simulate the connection of 20 common amino acids to the terminal amino group of the lead compound Chlorotetaine to form a new compound; Modeling and construction of the virtual structure of the small molecule peptide transporter was carried out for simulated docking, and the number of hydrogen bonds and docking free energy were used as reference standards to screen the degree of binding, and 5 compounds with high binding degrees were obtained; finally, through the antifungal activity Detecting, it is known that the compound with the best antifungal effect is: the tripeptide compound Chlorotetaine-Lys.
本发明将该三肽化合物Chlorotetaine-Lys进行多种真菌的抗性实验,证明了该三肽化合物Chlorotetaine-Lys具有抗真菌性,且抗真菌效果好。In the present invention, the tripeptide compound Chlorotetaine-Lys is subjected to various fungal resistance experiments, which proves that the tripeptide compound Chlorotetaine-Lys has antifungal property and good antifungal effect.
所以,本发明还提供了所述化合物在抗真菌中的应用,尤其是在制备抗真菌药物中的应用,该化合物与常规的辅料混合可制成针剂、膏剂以及喷雾剂等。Therefore, the present invention also provides the application of the compound in antifungal, especially in the preparation of antifungal drugs. The compound can be mixed with conventional adjuvants to make injections, ointments, sprays and the like.
所述的真菌为酵母类真菌或曲霉属真菌,作为优选,所述的酵母类真菌为白色念珠菌、近平滑念珠菌、克鲁氏假丝酵母或拟多形假丝酵母。The fungus is a yeast fungus or a fungus of the genus Aspergillus, and preferably, the yeast fungus is Candida albicans, Candida parapsilosis, Candida krusei or Candida pseudopolymorpha.
所述的曲霉属真菌为黑曲霉。The fungus of the genus Aspergillus is Aspergillus niger.
本发明利用枯草芽孢杆菌(Bacillus subtilis)ZJU007 CGMCC NO.4140获得先导化合物Chlorotetaine,并以药物输送过程为理论依据,进行同源建模构建小分子肽转运蛋白的虚拟结构,通过小分子肽转运蛋白的虚拟结构,对先导化合物Chlorotetaine的结构进行分析,通过设计合成新型的抗真菌化合物,获得了新的具有抗真菌能力的三肽化合物,该化合物不仅能够抑制白色念珠菌、近平滑念珠菌、克鲁氏假丝酵母和拟多形假丝酵母等假丝酵母类真菌,最低抑菌浓度(MIC)达0.81µg/mL;还能够抑制黑曲霉等曲霉属真菌,最低抑菌浓度(MIC)达1.63µg/mL。The present invention uses Bacillus subtilis ( Bacillus subtilis ) ZJU007 CGMCC NO.4140 to obtain the lead compound Chlorotetaine, and takes the drug delivery process as the theoretical basis to carry out homology modeling to construct the virtual structure of the small molecule peptide transporter, through the small molecule peptide transporter The virtual structure of the lead compound Chlorotetaine was analyzed, and a new tripeptide compound with antifungal ability was obtained by designing and synthesizing a new type of antifungal compound. This compound can not only inhibit Candida albicans, Candida parapsilosis, Gram Candida fungi such as Candida ruckeri and Candida pseudopolymorpha have a minimum inhibitory concentration (MIC) of 0.81 µg/mL; they can also inhibit Aspergillus fungi such as Aspergillus niger with a minimum inhibitory concentration (MIC) of up to 1.63 µg/mL.
附图说明Description of drawings
图1为先导化合物Chlorotetaine的抗菌机理示意图。Figure 1 is a schematic diagram of the antibacterial mechanism of the lead compound Chlorotetaine.
图2为枯草芽孢杆菌(Bacillus subtilis)ZJU007发酵过程中还原性糖,细胞干重,总糖和抗生素效价的变化曲线图。Figure 2 is a graph showing the changes in reducing sugar, dry cell weight, total sugar and antibiotic titer during the fermentation of Bacillus subtilis ZJU007.
图3为先导化合物Chlorotetaine的质谱图和化学结构式;Fig. 3 is the mass spectrogram and chemical structural formula of lead compound Chlorotetaine;
A: Chlorotetaine的正离子质谱图; B: Chlorotetaine的负离子质谱图 C:先导化合物Chlorotetaine的化学结构式。A: The positive ion mass spectrum of Chlorotetaine; B: The negative ion mass spectrum of Chlorotetaine C: The chemical structure of the lead compound Chlorotetaine.
图4为小分子肽转运蛋白的同源建模结构图和结构鉴定结果示意图;Figure 4 is a schematic diagram of the homology modeling structure and structural identification results of small molecule peptide transporters;
A:同源建模后小分子肽转运蛋白的结构示意图;B:采用PROCHECK软件鉴定的分子肽转运蛋白的拉氏图;C:WHATCHECK鉴定结果;D:WHATCHECK鉴定结果。A: Schematic diagram of the structure of small molecule peptide transporters after homology modeling; B: Lag diagram of molecular peptide transporters identified by PROCHECK software; C: WHATCHECK identification results; D: WHATCHECK identification results.
图5为先导化合物Chlorotetaine与氨基酸连接示意图(R为氨基酸)。Figure 5 is a schematic diagram of the connection between the lead compound Chlorotetaine and an amino acid (R is an amino acid).
图6为通过虚拟筛选得到的五个新化合物与转运蛋白对接后的相互作用示意图;其中,先导化合物Chlorotetaine连接的氨基酸分别为:1:Lys;2:Gln;3:Asn;4:Thr;5:Glu。Figure 6 is a schematic diagram of the interaction between five new compounds obtained through virtual screening and transporter docking; among them, the amino acids connected to the lead compound Chlorotetaine are: 1: Lys; 2: Gln; 3: Asn; 4: Thr; 5 : Glu.
图7为合成的先导化合物Chlorotetaine-Lys的新型化合物的抗真菌实验;Fig. 7 is the antifungal experiment of the novel compound of the synthetic lead compound Chlorotetaine-Lys;
其中,1为Chlorotetaine-Gln;2为Chlorotetaine- Asn;3为Chlorotetaine-Lys;4为Chlorotetaine; 5为Chlorotetaine- Thr;6为Chlorotetaine-Glu。Wherein, 1 is Chlorotetaine-Gln; 2 is Chlorotetaine-Asn; 3 is Chlorotetaine-Lys; 4 is Chlorotetaine; 5 is Chlorotetaine-Thr; 6 is Chlorotetaine-Glu.
图8为新化合物Chlorotetaine-Lys的化学结构式。Figure 8 is the chemical structural formula of the new compound Chlorotetaine-Lys.
图9为新化合物Chlorotetaine-Lys的质谱数据图。Fig. 9 is a mass spectrum data diagram of the new compound Chlorotetaine-Lys.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步解释和说明。The present invention will be further explained and illustrated below in conjunction with the accompanying drawings and specific embodiments.
下列实施例中涉及的菌株有:用于发酵、分离纯化先导化合物Chlorotetaine的枯草芽孢杆菌(Bacillus subtilis)ZJU007 CGMCC NO.4140以及购买的五株常见真菌致病菌,具体如下:The strains involved in the following examples are: Bacillus subtilis (Bacillus subtilis ) ZJU007 CGMCC NO.4140 used for fermentation, isolation and purification of the lead compound Chlorotetaine and five purchased common fungal pathogens, specifically as follows:
(1)枯草芽孢杆菌(Bacillus subtilis)ZJU007 CGMCC NO.4140,保藏于位于北京市朝阳区北辰西路1号院3号中科院微生物研究所的中国普通微生物菌种保藏管理中心(CGMCC),保藏号为CGMCC No.4140,保藏时间2010年9月03日;该菌株也已在申请号为201010521030.9,名为“一种枯草芽孢杆菌菌株及其应用”中公开。(1) Bacillus subtilis ( Bacillus subtilis ) ZJU007 CGMCC NO.4140, preserved in the China General Microorganism Culture Collection Management Center (CGMCC), located at No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing It is CGMCC No.4140, and the preservation time was September 03, 2010; the strain has also been disclosed in the application number 201010521030.9, entitled "A strain of Bacillus subtilis and its application".
(2)白色念珠菌,保藏于位于北京市朝阳区北辰西路1号院3号中科院微生物研究所的中国普通微生物菌种保藏管理中心(CGMCC),保藏号为ATCC10231-3147。(2) Candida albicans, preserved in the China General Microorganism Culture Collection Management Center (CGMCC), located at No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing, the Institute of Microbiology, Chinese Academy of Sciences, with the preservation number ATCC10231-3147.
(3)黑曲霉,实验室保存。(3) Aspergillus niger, kept in the laboratory.
(4)近平滑念珠菌,保藏于位于北京市朝阳区北辰西路1号院3号中科院微生物研究所的中国普通微生物菌种保藏管理中心(CGMCC),保藏号为JCM1785。(4) Candida parapsilosis, preserved in the China General Microorganism Culture Collection Center (CGMCC), located at No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing, China, Institute of Microbiology, Beijing, with the preservation number JCM1785.
(5)克鲁氏假丝酵母,保藏于位于北京市朝阳区北辰西路1号院3号中科院微生物研究所的中国普通微生物菌种保藏管理中心(CGMCC),保藏号为CBS573。(5) Candida cruzii, preserved in the China General Microorganism Culture Collection Center (CGMCC), located at No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing, China, Institute of Microbiology, Beijing, with the preservation number CBS573.
(6)拟多形假丝酵母,保藏于位于北京市朝阳区北辰西路1号院3号中科院微生物研究所的中国普通微生物菌种保藏管理中心(CGMCC),保藏号为ATCC 26012。(6) Candida pseudopolymorpha, preserved at the China General Microorganism Culture Collection Center (CGMCC), located at No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing, China, Institute of Microbiology, Chinese Academy of Sciences, with the preservation number ATCC 26012.
实施例1Example 1
1、先导化合物的发酵1. Fermentation of lead compound
取枯草芽孢杆菌(Bacillus subtilis)ZJU007 CGMCC NO.4140进行发酵、分离、纯化,获得先导化合物Chlorotetaine,具体如下:Bacillus subtilis ( Bacillus subtilis ) ZJU007 CGMCC NO.4140 was fermented, separated and purified to obtain the lead compound Chlorotetaine, as follows:
i培养基i medium
(1)斜面培养基:LB培养基。(1) Incline medium: LB medium.
(2)种子培养基(g·L-1):葡萄糖15,酵母粉10,K2HPO4 1,MgSO4 0.5,FeSO4 0.01,NaCl 10,调pH7.0后加CaCO3 0.4。(2) Seed medium (g·L -1 ): glucose 15, yeast powder 10, K 2 HPO 4 1, MgSO 4 0.5, FeSO 4 0.01, NaCl 10, adjust pH to 7.0 and add CaCO 3 0.4.
(3)发酵培养基(g·L-1):酵母粉 2.72,可溶性淀粉 26.67,(NH4)2SO4 3.95,K2HPO4 2.4,NaCl 10,MgSO4 0.5,CaCO3 0.72,CuSO4 0.02,FeSO4 0.02,MnSO4 0.02,pH6.5。(3) Fermentation medium (g·L -1 ): yeast powder 2.72, soluble starch 26.67, (NH 4 ) 2 SO 4 3.95, K 2 HPO 4 2.4, NaCl 10, MgSO 4 0.5, CaCO 3 0.72, CuSO 4 0.02, FeSO 4 0.02, MnSO 4 0.02, pH 6.5.
(4)白色念珠菌培养基(g·L-1):葡萄糖20,蛋白胨10,琼脂20。(4) Candida albicans culture medium (g·L -1 ): glucose 20, peptone 10, agar 20.
ii方法 ii method
菌种培养条件 取1环经活化的菌种,接入到种子瓶中,500 mL锥形瓶中装100 mL培养基,初始pH值7.0,30 °C下200 r/min培养24 h。再将种子液以10%(v/v) 的接种量接入到5 L发酵罐(装液量为60%)中,发酵罐通气量400 L·h-1,转速200 r·min-1,28°C发酵50h,每隔4 h取样一次。Strain culture conditions Take 1 loop of activated strains and put them into a seed bottle, fill 500 mL Erlenmeyer flask with 100 mL medium, the initial pH value is 7.0, and culture at 200 r/min at 30 °C for 24 h. Then, the seed liquid was introduced into a 5 L fermenter (60% of the liquid content) with an inoculum volume of 10% (v/v), the ventilation volume of the fermenter was 400 L·h -1 , and the rotation speed was 200 r·min -1 , fermented at 28 ° C for 50 h, and took samples every 4 h.
iii抗生素生物效价测定iii Determination of biological potency of antibiotics
采用管碟法,将37°C恒温培养2天的白色念珠菌斜面,用30 mL无菌生理盐水洗下制成菌悬液,取2 mL至100 mL于50 °C左右的固体培养基中,混匀后吸取20 mL至直径9 cm的培养皿中,冷却后放置牛津杯于培养基表面,取150 µL待测液加入牛津杯中,37 °C培养18 h,测量透明抑菌圈直径,换算成相应的活性:Using the tube-and-disk method, wash the slant of Candida albicans cultured at 37°C for 2 days with 30 mL of sterile saline to make a bacterial suspension, and put 2 mL to 100 mL in a solid medium at about 50°C After mixing, draw 20 mL into a petri dish with a diameter of 9 cm. After cooling, place an Oxford cup on the surface of the culture medium. Take 150 µL of the solution to be tested and add it to the Oxford cup. Incubate at 37 °C for 18 h, and measure the diameter of the transparent zone of inhibition , converted into the corresponding activity:
制霉菌素标准曲线:y = 1.2297x -1.58778,R2=0.9998Nystatin standard curve: y = 1.2297x -1.58778, R 2 =0.9998
(其中U—制霉菌素效价(U/mL),r—抑菌圈半径(cm),制霉菌素(效价6593 U/mL)。(where U—Nystatin potency (U/mL), r—Inhibition zone radius (cm), Nystatin (potency 6593 U/mL).
根据以上关系式可以计算抗生素相应的效价。)The corresponding potency of antibiotics can be calculated according to the above relational formula. )
从图2可以看到,在0~28 h阶段pH值一直下降,这主要是因为菌体处于生长期,菌体利用发酵液中的营养物质,呼吸作用释放出CO2以及分解作用产生有机酸。28~48 h阶段pH趋于稳定,此阶段,菌体也处于稳定期。菌体接入发酵罐后,发酵液中的总糖浓度随菌体生长的进行而逐渐下降,在8~28 h 阶段总糖消耗速度较快,而此时菌体也处于对数生长期,菌体浓度在第28 h 达到最大,并维持在一个较稳定的水平,直到发酵44 h 以后才开始下降,可能与菌体在这期间开始发生自溶有关。当菌体快速增长时,发酵液效价也提高很快,说明此菌株产生抗生素过程与菌体生长偶联。发酵过程中发酵液效价在第28 h 达到最高,确定该菌株的发酵周期为24h。与产抗生素的丝状菌相比,该细菌菌株产抗生素周期较短。It can be seen from Figure 2 that the pH value has been decreasing from 0 to 28 h, which is mainly because the bacteria are in the growth period, and the bacteria use the nutrients in the fermentation broth, respiration releases CO 2 and decomposes to produce organic acids . The pH tends to be stable in the 28-48 h stage, and at this stage, the bacteria are also in a stable stage. After the bacteria were introduced into the fermenter, the total sugar concentration in the fermentation broth gradually decreased with the growth of the bacteria, and the total sugar consumption was faster in the 8-28 h stage, and the bacteria were also in the logarithmic growth phase at this time. The bacterial concentration reached the maximum at 28 h, and maintained at a relatively stable level, and did not begin to decrease until 44 h after fermentation, which may be related to the autolysis of the bacterial cells during this period. When the bacteria grew rapidly, the titer of the fermentation broth also increased rapidly, indicating that the antibiotic production process of this strain was coupled with the growth of the bacteria. During the fermentation process, the titer of the fermentation broth reached the highest at the 28th hour, and the fermentation period of the strain was determined to be 24 hours. Compared with antibiotic-producing filamentous bacteria, this bacterial strain produces antibiotics with a shorter cycle.
2、先导化合物的分离提纯2. Separation and purification of lead compounds
通过发酵获得的发酵液,首先经过陶瓷膜过滤器过滤,除掉菌体和部分发酵产生的大分子的杂蛋白。然后将过滤后的发酵液,利用旋转蒸发仪,低压浓缩10 倍。按照1:4(v/v,发酵液:乙醇)的浓度对浓缩液进行醇沉,500rpm/min 离心去除沉淀,低压浓缩回收上清液。回收的上清液通过XAD1600 大孔树脂(400 mm x Φ 55 mm),以去离子水做流动相,流速为5mL/min 进行大孔吸附层析,去除大部分的色素和脂溶性杂质。将该洗脱液低压浓缩回收,然后利用MCI 反相层析树脂(400 mm x Φ 100 mm),进行反相梯度层析。首先利用0.1%的三氟乙酸溶液作为流动相,22 mL/min,洗脱2.5 个柱体积。然后利用0.1%的三氟乙酸溶液+10%的甲醇溶液作为流动相,22 mL/min,洗脱3 个柱体积.收集甲醇洗脱液,浓缩回收。将甲醇洗脱液在进行反相C18 层析(400 mm x Φ 40 mm),流速为12 mL/min,利用自动收集器每50s,收集一管,然后每管进行抗菌实验,收集具有抗菌活性的洗脱液。将第二个抗菌峰,再进行第两次反相C18 层析以后,即可获得纯度>95%的Chlorotetaine。The fermented liquid obtained by fermentation is firstly filtered through a ceramic membrane filter to remove bacteria and macromolecular foreign proteins produced by partial fermentation. Then, the filtered fermented liquid was concentrated 10 times under low pressure using a rotary evaporator. According to the concentration of 1:4 (v/v, fermentation broth: ethanol), the concentrated solution was subjected to alcohol precipitation, centrifuged at 500rpm/min to remove the precipitate, and concentrated under low pressure to recover the supernatant. The recovered supernatant was passed through XAD1600 macroporous resin (400 mm x Φ 55 mm), deionized water was used as mobile phase, and the flow rate was 5mL/min for macroporous adsorption chromatography to remove most of the pigment and fat-soluble impurities. The eluate was concentrated and recovered under low pressure, and then reversed-phase gradient chromatography was performed using MCI reversed-phase chromatography resin (400 mm x Φ 100 mm). First, use 0.1% trifluoroacetic acid solution as the mobile phase, 22 mL/min, and elute for 2.5 column volumes. Then use 0.1% trifluoroacetic acid solution + 10% methanol solution as the mobile phase, 22 mL/min, and elute for 3 column volumes. Collect the methanol eluate, concentrate and recover. The methanol eluate was subjected to reverse-phase C18 chromatography (400 mm x Φ 40 mm) at a flow rate of 12 mL/min, and an automatic collector was used to collect one tube every 50 s, and then antibacterial experiments were performed on each tube to collect samples with antibacterial activity. eluent. Chlorotetaine with a purity of >95% can be obtained after the second antibacterial peak is subjected to reversed-phase C18 chromatography for the second time.
2、先导化合物Chlorotetaine 的结构鉴定2. Structural identification of lead compound Chlorotetaine
通过质谱与核磁共振技术进行先导化合物Chlorotetaine 结构的分析。The structure analysis of the lead compound Chlorotetaine was carried out by mass spectrometry and nuclear magnetic resonance techniques.
结果如下:The result is as follows:
如图3(A、B)所示的质谱图中可以看出,图3 A 中化合物的相对分子质量为M+1=289,As can be seen from the mass spectrograms shown in Figure 3 (A, B), the relative molecular mass of the compound in Figure 3 A is M+1=289,
图3 B 中化合物的相对分子质量为2M-1=575,计算得到先导化合物Chlorotetaine 的相对分子质量为M=288,综合表1 中先导化合物Chlorotetaine 的核磁共振数据可以得到图3 C 中的化学结构式,即为:先导化合物Chlorotetaine。The relative molecular mass of the compound in Figure 3 B is 2M-1=575, and the calculated relative molecular mass of the lead compound Chlorotetaine is M=288, and the chemical structural formula in Figure 3 C can be obtained by synthesizing the NMR data of the lead compound Chlorotetaine in Table 1 , namely: the lead compound Chlorotetaine.
表1 Chlorotetaine 的核磁共振数据。Chlorotetaine 溶解于D2O 中的13C (600MHz) and 1HTable 1 Chlorotetaine NMR data. Chlorotetaine 13 C (600MHz) and 1 H in D 2 O
(600 MHz) NMR 数据. P.: 位置; qua. : 季碳.(600 MHz) NMR data. P.: position; qua. : quaternary carbon.
3、小分子肽转运蛋白(PTR22( Accession: XP_712738))的同源建模 3. Homology modeling of small molecule peptide transporter (PTR22 (Accession: XP_712738))
图1 所示为先导化合物Chlorotetaine 的抗菌机理示意图,从图1 中可以看出,先导化合物Chlorotetaine 由枯草芽孢杆菌(Bacillus subtilis)ZJU007 CGMCC NO.4140产生后,在特定的转运蛋白作用下,从胞内转运到胞外;当先导化合物Chlorotetaine 接触到病原微生物时,在病原微生物体内转运蛋白的作用下,先导化合物Chlorotetaine 从胞外被转运到病原微生物的胞内;当先导化合物Chlorotetaine 进入到胞内时,在肽酶的作用下,二肽的先导化合物Chlorotetaine 被分解成丙氨酸和一个非常见氨基酸(如图1 所示)。该非常见氨基酸为谷氨酰胺的结构类似物,可以竞争性抑制葡萄糖胺-6-磷酸合成酶的活性,从而导致相应的如葡聚糖、肽聚糖等大分子物质的合成受阻,进而破坏病原菌的细胞膜和细胞壁的结构,达到杀菌的目的。Figure 1 shows the schematic diagram of the antibacterial mechanism of the lead compound Chlorotetaine. It can be seen from Figure 1 that after the lead compound Chlorotetaine is produced by Bacillus subtilis ( Bacillus subtilis ) ZJU007 CGMCC NO.4140, under the action of a specific transporter, it is transported from the cell to Transport from inside to outside the cell; when the lead compound Chlorotetaine comes into contact with pathogenic microorganisms, under the action of the transporter in the pathogenic microorganisms, the lead compound Chlorotetaine is transported from outside the cell to the inside of the pathogenic microorganism; when the lead compound Chlorotetaine enters the cell , under the action of peptidase, the lead compound Chlorotetaine of the dipeptide is decomposed into alanine and an uncommon amino acid (as shown in Figure 1). This uncommon amino acid is a structural analogue of glutamine, which can competitively inhibit the activity of glucosamine-6-phosphate synthase, thereby hindering the synthesis of corresponding macromolecular substances such as dextran and peptidoglycan, thereby destroying The structure of the cell membrane and cell wall of pathogenic bacteria achieves the purpose of sterilization.
由此可知,先导化合物Chlorotetaine必须通过小分子肽的转运蛋白,转运到胞内后才能发挥其杀菌效果,并且转运效率的高低,决定了该杀菌化合物的杀菌效果。因此,本发明通过对白色念球菌(ATCC 10731)体内的小分子肽转运蛋白(Gene ID: 3645634)进行同源建模,来优化先导化合物Chlorotetaine的结构,提高其与小分子肽转运蛋白的结合度。 It can be seen that the lead compound Chlorotetaine must be transported into the cell through the small molecule peptide transporter to exert its bactericidal effect, and the transport efficiency determines the bactericidal effect of the bactericidal compound. Therefore, the present invention optimizes the structure of the lead compound Chlorotetaine and improves its binding to the small molecule peptide transporter by performing homology modeling on the small molecule peptide transporter (Gene ID: 3645634) in Candida albicans (ATCC 10731) Spend.
本发明采用Discovery Studio软件中的膜蛋白同源建模模块,并以序列相似度最高的三种转运蛋白结构GKPOT(Accession: Q5KYD1), Pep Tst( Accession: Q5M4H8),Pep Tso( Accession: Q8EKT7)为模板,进行同源建模。The present invention adopts the membrane protein homology modeling module in the Discovery Studio software, and uses three transporter structures GKPOT (Accession: Q5KYD1), Pep Tst (Accession: Q5M4H8), Pep Tso (Accession: Q8EKT7) with the highest sequence similarity As a template, perform homology modeling.
得到的膜蛋白结构如图4 A,图中,球棍模型代表其活性中心,为了更好的体现跨膜蛋白的功能,以明确蛋白质在隐性溶剂模型中的溶剂化性质,本发明中为该模型添加了模拟的细胞膜结构。球形区域代表小分子肽转运蛋白的结合区域。然后,通过PROCHECK软件,获得拉氏图(如图4 B),发现95%的氨基酸残基都位于合理区域内,只有0.2%的氨基酸残基位于不合理区间内,这表明该模型具有较好的立体化学稳定性;而通过WHATCHECK软件获得的鉴定结果表明,Z-score都位于合理的区间范围内(如图4D),这说明了小分子肽转运蛋白模拟结构的氨基酸局部环境的合理性。 The obtained membrane protein structure is shown in Figure 4 A. In the figure, the ball-and-stick model represents its active center. In order to better reflect the function of the transmembrane protein and clarify the solvation properties of the protein in the implicit solvent model, the present invention is The model adds simulated cell membrane structures. The spherical region represents the binding region of the small molecule peptide transporter. Then, by using the PROCHECK software to obtain the Laplace diagram (as shown in Figure 4 B), it is found that 95% of the amino acid residues are located in the reasonable range, and only 0.2% of the amino acid residues are located in the unreasonable range, which shows that the model has a good Stereochemical stability; and the identification results obtained by WHATCHECK software show that the Z-scores are all within a reasonable range (as shown in Figure 4D), which illustrates the rationality of the local environment of amino acids in the simulated structure of small molecule peptide transporters.
4、新型抗真菌药物的设计、筛选与化学合成 4. Design, screening and chemical synthesis of new antifungal drugs
通过在图5化学结构式中R部位将20种常见的不同氨基酸接到先导化合物Chlorotetaine上,形成新的化合物,然后,利用步骤(3)中构建的模型作为靶酶,上述新化合物作为小分子底物,进行虚拟筛选。 By connecting 20 common different amino acids to the lead compound Chlorotetaine at the R site in the chemical structural formula in Figure 5, a new compound is formed, and then, using the model constructed in step (3) as the target enzyme, the above-mentioned new compound is used as a small molecule substrate for virtual screening.
通过Discovery Studio中的CDOCKER模块将新的化合物与构建的小分子肽转运蛋白进行分子对接,达到虚拟筛选的目的。CDOCKER是一种精确的分子对接技术,将配体分子置于受体分子活性位点的位置,然后按照几何互补、能量互补以及化学环境互补的原则来实时评价配体与受体相互作用的好坏,并找到两个分子之间最佳的结合模式。结果如表2所示。 Through the CDOCKER module in Discovery Studio, the new compound is molecularly docked with the constructed small molecule peptide transporter to achieve the purpose of virtual screening. CDOCKER is an accurate molecular docking technology, which places the ligand molecule at the active site of the receptor molecule, and then evaluates the interaction between the ligand and the receptor in real time according to the principles of geometric complementarity, energy complementarity and chemical environment complementarity. bad, and find the optimal binding mode between the two molecules. The results are shown in Table 2.
由于H键对于肽类物质在跨膜输送过程中,起到重要的固定化合物的作用,所以,以氢键数量与对接自由能作为参照标准,进行虚拟筛选。通过参考对接自由能大小,以及对比对接产生的最优构象,确定其合理的相互作用关系。从表2结果可以看出,先导化合物Chlorotetaine接上赖氨酸、谷氨酰胺、天冬氨酸、苏氨酸和谷氨酸后的新化合物更为适宜。图6为上述五种新化合物与小分子肽转运蛋白的相互作用关系。由图6可知,这5个化合物可以充分填充在转运蛋白的活性区域,并且能够与附近的关键氨基酸残基发生作用,形成稳定的复合物结构。故,将上述新化合物委托中肽生化有限公司进行化学合成。Since H bonds play an important role in immobilizing compounds during the transmembrane transport of peptides, virtual screening was performed using the number of hydrogen bonds and docking free energy as reference standards. By referring to the free energy of docking and comparing the optimal conformation generated by docking, the reasonable interaction relationship is determined. As can be seen from the results in Table 2, the lead compound Chlorotetaine connected to the new compound of lysine, glutamine, aspartic acid, threonine and glutamic acid is more suitable. Figure 6 shows the interaction relationship between the above five new compounds and the small molecule peptide transporter. It can be seen from Figure 6 that these five compounds can fully fill the active region of the transporter, and can interact with nearby key amino acid residues to form a stable complex structure. Therefore, the above new compounds were entrusted to China Peptide Biochemical Co., Ltd. for chemical synthesis.
表2 利用分子对接进行虚拟筛选结果。 Table 2 Results of virtual screening using molecular docking.
5、新型抗真菌化合物的活性检测与结构鉴定。 5. Activity detection and structure identification of new antifungal compounds.
以实验室保藏的白色念珠菌(ATCC 10731)作为试验菌株,以先导化合物Chlorotetaine作为阳性对照进行活性检测。如图7所示(4号为阳性对照,1、2、3、5、6号为合成的新型抗真菌药物),仅有两个新化合物具有抗真菌活性,即:Chlorotetaine-Lys(3号)和Chlorotetaine-Gln(1号),且其中仅有一个新化合物(Chlorotetaine-Lys)的抗真菌效果显著提升。 Candida albicans (ATCC 10731) preserved in the laboratory was used as the test strain, and the lead compound Chlorotetaine was used as the positive control for activity detection. As shown in Figure 7 (No. 4 is the positive control, No. 1, 2, 3, 5, and 6 are new synthetic antifungal drugs), only two new compounds have antifungal activity, namely: Chlorotetaine-Lys (No. 3 ) and Chlorotetaine-Gln (No. 1), and only one new compound (Chlorotetaine-Lys) had significantly improved antifungal effect.
通过傅里叶红外变换质谱确定Chlorotetaine-Lys的结构,确定Chlorotetaine-Lys的相对分子量为416.2118,结构式如式(I)和图8所示. The structure of Chlorotetaine-Lys was determined by Fourier transform infrared transform mass spectrometry, and the relative molecular weight of Chlorotetaine-Lys was determined to be 416.2118. The structural formula is shown in formula (I) and Figure 8.
实施例2 Example 2
利用实施例1获得的新型抗菌化合物Chlorotetaine-Lys进行体外抗真菌实验,具体步骤如下: Utilize the novel antibacterial compound Chlorotetaine-Lys that embodiment 1 obtains to carry out in vitro antifungal experiment, concrete steps are as follows:
(1)将从中国微生物菌种保藏中心购买的五株常见真菌致病菌进行体外活化培养;上述五株常见真菌致病菌分别为白色念珠菌(ATCC10231)、黑曲霉(实验室保存)、近平滑念珠菌(JCM1785)、克鲁氏假丝酵母(CBS573)、拟多形假丝酵母(ATCC 26012) (1) Five strains of common fungal pathogens purchased from the China Microbial Culture Collection Center were activated and cultured in vitro; the above five strains of common fungal pathogens were Candida albicans (ATCC10231), Aspergillus niger (preserved in the laboratory), Candida parapsilosis (JCM1785), Candida krusei (CBS573), Candida pseudopolymorpha (ATCC 26012)
假丝酵母与黑曲霉的发酵培养基的配方为:4%葡萄糖和1.0%蛋白胨。将上述五种常见真菌致病菌置于上述培养基中于28°C下,培养18-24h。The formula of the fermentation medium of Candida and Aspergillus niger is: 4% glucose and 1.0% peptone. Place the above-mentioned five common fungal pathogenic bacteria in the above-mentioned culture medium at 28°C, and cultivate them for 18-24h.
(2)利用96孔板,采取二倍稀释法即将新型抗菌化合物配置成终浓度分别为100µg/mL 到0.2 µg/mL之间; (2) Using a 96-well plate, adopt the double dilution method to prepare the new antibacterial compounds to a final concentration between 100 µg/mL and 0.2 µg/mL;
(3)将5 µL试验菌株(~2.03×105 cells/mL),接种至96孔板中,于28℃下培养24h,通过酶标仪检测该化合物对不同真菌的最低抑菌浓度,以水溶性较好的氟康唑作为阳性对照,结果见表3。(3) Inoculate 5 µL of the test strain (~2.03×10 5 cells/mL) into a 96-well plate, culture it at 28°C for 24 hours, and detect the minimum inhibitory concentration of the compound against different fungi by a microplate reader, to determine Fluconazole with better water solubility was used as a positive control, and the results are shown in Table 3.
由表3可见,Chlorotetaine-Lys 对试验菌株均具有良好的抑菌效果,特别是对克鲁斯假丝酵母(CBS573)其抑菌效果甚至超过氟康唑的水平,具有良好的应用前景。 It can be seen from Table 3 that Chlorotetaine-Lys has a good antibacterial effect on the tested strains, especially on Candida krusei (CBS573), its antibacterial effect even exceeds the level of fluconazole, and has a good application prospect.
表3 新型抗真菌化合物对不同真菌的最低抑菌浓度结果。Table 3 The minimum inhibitory concentration results of new antifungal compounds against different fungi.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510198097.6A CN104817619B (en) | 2015-04-23 | 2015-04-23 | Antimicrobial compound and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510198097.6A CN104817619B (en) | 2015-04-23 | 2015-04-23 | Antimicrobial compound and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104817619A CN104817619A (en) | 2015-08-05 |
CN104817619B true CN104817619B (en) | 2018-07-17 |
Family
ID=53728115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510198097.6A Active CN104817619B (en) | 2015-04-23 | 2015-04-23 | Antimicrobial compound and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104817619B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107132360A (en) * | 2017-05-08 | 2017-09-05 | 南京中医药大学 | A high-throughput screening method for active peptides based on tandem mass spectrometry and molecular docking |
GB201911925D0 (en) * | 2019-08-20 | 2019-10-02 | Sporegen Ltd | Formulations for prevention or reduction of c. difficile infections |
CN111493141A (en) * | 2020-04-28 | 2020-08-07 | 西南大学 | A kind of recycling method and application of fruit and vegetable by-products |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1839150A (en) * | 2003-07-17 | 2006-09-27 | 麦根克斯有限公司 | Compositions of lipopeptide antibiotic derivatives and methods of use thereof |
-
2015
- 2015-04-23 CN CN201510198097.6A patent/CN104817619B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1839150A (en) * | 2003-07-17 | 2006-09-27 | 麦根克斯有限公司 | Compositions of lipopeptide antibiotic derivatives and methods of use thereof |
Non-Patent Citations (2)
Title |
---|
Identification of bacilysin,chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from pozol, a mexican fermented maize dough,;Phister T G, et al;《Applied and Environmental Microbiology》;20041231;第70卷(第1期);摘要,第631页右栏第2段 * |
抗真菌药物的研究Ⅱ.C-端含氧代赖氨酸二肽的合成及抗白念珠菌活性;黄嘉鑫等;《药学学报》;19961231;第31卷(第1期);第24页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104817619A (en) | 2015-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108060100A (en) | A kind of multi-functional Siam bacillus and its preparation and application of bioactive substance | |
CN104817619B (en) | Antimicrobial compound and its application | |
CN109553657B (en) | A kind of imperfect amphiphilic peptide W4 and its preparation method and application | |
CN104292301A (en) | Micromolecule synthesized anti-microbial peptide, as well as preparation method and application thereof | |
CN110790820A (en) | A kind of lipopeptide produced by Bacillus strain FJAT-52631 and preparation method thereof | |
CN104370984B (en) | Pimaricin derivatives with high efficiency and low toxicity, their preparation methods and applications | |
CN101962401A (en) | Polypeptin and preparation and application thereof | |
CN118291343B (en) | Bacillus pierce and its metabolite and preparation method | |
CN105504021A (en) | Peptaibol antibacterial peptide compounds and preparation method and application thereof | |
CN106632606B (en) | Antibacterial lipopeptide bacaucin derivatives and their application in inhibiting bacterial infection | |
CN106674331B (en) | Antibacterial lipopeptide bacaucin and its preparation method and application | |
CN105441504B (en) | A kind of preparation method of CYCLIC DIPEPTIDES compounds | |
CN1683399A (en) | Wasp antibacterial peptide and preparation method and application thereof | |
CN113583090B (en) | Anoprin modified peptide with antibacterial activity and its synthesis method and application | |
CN110386972B (en) | Antibacterial polypeptide Pb2-1 or PCL-1 and its preparation method and application | |
CN106047751B (en) | Separation method and the application of one plant of quasi- promise Cattell actinomyces and its active metabolite | |
CN104447917A (en) | Low-toxicity pimaricin derivative as well as preparation method and application thereof | |
CN111533788B (en) | Cell-penetrating antibacterial peptide targeting streptococcus agalactiae and preparation method and application thereof | |
Ebrahimi et al. | Pseudomonas aeruginosa growth inhibitor, PAGI264: a natural product from a newly isolated marine bacterium, Bacillus sp. strain REB264 | |
CN113999297A (en) | Antibacterial peptide hrNCM and preparation method and application thereof | |
CN114149483A (en) | Antibacterial peptide composition and application thereof | |
CN101280333A (en) | A method for preparing penicillium-derived antimicrobial peptides using Penicillium roseosa | |
CN118667696B (en) | A strain of Bacillus Velezii FS-3 and the bacteriocin produced thereby and its application | |
CN115433263B (en) | Defensins derived from human oral actinomycetes, their encoding genes and uses | |
CN113004379B (en) | Norfluxan and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |