[go: up one dir, main page]

CN104811680B - Image acquisition device and image deformation correction method thereof - Google Patents

Image acquisition device and image deformation correction method thereof Download PDF

Info

Publication number
CN104811680B
CN104811680B CN201410044039.3A CN201410044039A CN104811680B CN 104811680 B CN104811680 B CN 104811680B CN 201410044039 A CN201410044039 A CN 201410044039A CN 104811680 B CN104811680 B CN 104811680B
Authority
CN
China
Prior art keywords
image
feature point
depth
group
reference image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410044039.3A
Other languages
Chinese (zh)
Other versions
CN104811680A (en
Inventor
周宏隆
廖明俊
余依依
余奕德
王煜智
庄哲纶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altek Semiconductor Corp
Original Assignee
Altek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altek Semiconductor Corp filed Critical Altek Semiconductor Corp
Priority to CN201410044039.3A priority Critical patent/CN104811680B/en
Publication of CN104811680A publication Critical patent/CN104811680A/en
Application granted granted Critical
Publication of CN104811680B publication Critical patent/CN104811680B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

The invention provides an image acquisition device and an image deformation correction method thereof. The image acquisition device is provided with a first image sensor and a second image sensor. The image deformation correction method includes the following steps. A plurality of image groups are acquired through a first image sensor and a second image sensor. Each image group comprises a first image and a second image respectively, and the image groups comprise a reference image group. Whether the first reference image and the second reference image in the reference image group have image deformation or not is detected. And when the reference image group is detected to generate image deformation, updating the current correction parameters according to the comparison values of the plurality of characteristic points corresponding to the image groups. The current correction parameters are used for carrying out image correction on each first image and each corresponding second image.

Description

图像获取装置及其图像形变校正方法Image acquisition device and image deformation correction method thereof

技术领域technical field

本发明是有关于一种图像获取装置,且特别是有关于一种图像获取装置及其图像形变校正方法。The present invention relates to an image acquisition device, and in particular to an image acquisition device and an image deformation correction method thereof.

背景技术Background technique

对于当前的图像深度感测技术来说,使用具有双镜头的图像获取装置来获取对应至不同视角的图像是一种常见的方法,通过对应至不同视角的图像可计算出目标物的三维深度信息。因此,为了能够精确的从二维图像中取得目标物的三维深度信息,此两个镜头之间的空间设置关系是需要经过特别设计,且精密的参数校正是必要的步骤。进一步来说,当工厂制造具有双镜头的图像获取装置时,双镜头各自对应的空间位置与方向无法极其准确地设置在预设的设定值上。因此,在制造图像获取装置的过程中,工厂将事先针对设置好的双镜头模块进行校正,从而获取一组工厂预设的校正参数。日后,在使用者操作图像获取装置的过程中,图像获取装置可利用工厂预设的校正参数来校正通过双镜头所获取的图像,以克服制程不够精密的缺失。For the current image depth sensing technology, it is a common method to use an image acquisition device with dual lenses to acquire images corresponding to different viewing angles, and the 3D depth information of the target can be calculated through the images corresponding to different viewing angles . Therefore, in order to accurately obtain the three-dimensional depth information of the target object from the two-dimensional image, the spatial arrangement relationship between the two lenses needs to be specially designed, and precise parameter correction is a necessary step. Furthermore, when the factory manufactures an image acquisition device with dual lenses, the respective spatial positions and directions of the dual lenses cannot be set extremely accurately at preset settings. Therefore, in the process of manufacturing the image acquisition device, the factory will calibrate the set dual-lens module in advance, so as to obtain a set of factory-preset calibration parameters. In the future, when the user operates the image acquisition device, the image acquisition device can use the factory preset calibration parameters to correct the image acquired through the dual lenses, so as to overcome the lack of precision in the manufacturing process.

然而,在使用者操作或携带图像获取装置的过程中,当图像获取装置受到挤压、撞击或跌落的影响时,可能导致镜头产生位移或旋转等空间位置上的改变。一旦镜头产生位移或变形的状况,工厂内部所预设的校正参数已经不再符合当前的应用状况,图像获取装置也就无法获取正确的深度信息。举例来说,如果立体图像获取装置的双镜头间产生水平失衡的问题时,由于失衡之后拍摄出来的左右画面水平不匹配,将进一步导致三维立体拍摄效果不佳。However, when a user operates or carries the image acquisition device, when the image acquisition device is affected by extrusion, impact or drop, the lens may be displaced or rotated and other changes in spatial position may occur. Once the lens is displaced or deformed, the calibration parameters preset in the factory no longer meet the current application conditions, and the image acquisition device cannot acquire correct depth information. For example, if there is a problem of level imbalance between the two lenses of the stereoscopic image acquisition device, the level of the left and right images captured after the imbalance will not match, which will further lead to poor 3D stereoscopic shooting effect.

发明内容Contents of the invention

有鉴于此,本发明提供一种图像获取装置及其图像形变校正方法,可针对图像传感器的位移状态而适应性地调整用以进行图像纠正(image rectification)的校正参数。In view of this, the present invention provides an image acquisition device and an image distortion correction method thereof, which can adaptively adjust correction parameters for image rectification according to the displacement state of the image sensor.

本发明提出一种图像形变校正方法,适用于具有第一图像传感器与第二图像传感器的图像获取装置。图像获取装置具有关联于第一图像传感器与第二图像传感器的当前校正参数,且此图像形变校正方法包括下列步骤。通过第一图像传感器以及第二图像传感器获取多个图像群组,其中各图像群组分别包括第一图像以及第二图像,这些图像群组包括一参考图像群组。检测此参考图像群组中的第一参考图像与第二参考图像是否发生图像形变。当检测到参考图像群组发生图像形变时,根据这些图像群组对应的多个特征点比对值更新当前校正参数。此当前校正参数用以对各第一图像以及对应的各第二图像进行图像纠正。The invention proposes an image distortion correction method, which is suitable for an image acquisition device with a first image sensor and a second image sensor. The image acquisition device has current calibration parameters associated with the first image sensor and the second image sensor, and the image distortion correction method includes the following steps. A plurality of image groups are acquired by the first image sensor and the second image sensor, wherein each image group includes a first image and a second image respectively, and these image groups include a reference image group. Detecting whether image deformation occurs in the first reference image and the second reference image in the reference image group. When it is detected that image deformation occurs in the reference image groups, the current correction parameters are updated according to the comparison values of the plurality of feature points corresponding to these image groups. The current correction parameters are used to perform image correction on each first image and each corresponding second image.

在本发明的一实施例中,上述的检测参考图像群组是否发生图像形变的步骤包括下列步骤。检测第一参考图像的第一特征点与第二参考图像的第二特征点。判断第一特征点与第二特征点分别于第一参考图像与第二参考图像的图像座标之间的偏移量是否超过门限值。若判断为是,判定参考图像群组发生图像形变。In an embodiment of the present invention, the above-mentioned step of detecting whether image deformation occurs in the reference image group includes the following steps. The first feature point of the first reference image and the second feature point of the second reference image are detected. It is judged whether the offset between the first feature point and the second feature point and the image coordinates of the first reference image and the second reference image respectively exceeds a threshold value. If the determination is yes, it is determined that image deformation occurs in the reference image group.

在本发明的一实施例中,上述的检测参考图像群组是否发生图像形变的步骤包括下列步骤。根据第一参考图像与第二参考图像进行三维深度估测,以产生参考图像群组中的参考对焦目标物的参考深度信息,并根据参考深度信息取得关于参考目标物的深度对焦位置。通过自动对焦程序而获取得关于参考目标物的自动对焦位置。判断参考对焦目标物所对应的深度对焦位置是否符合自动对焦位置。若判断为否,判定参考图像群组发生图像形变。In an embodiment of the present invention, the above-mentioned step of detecting whether image deformation occurs in the reference image group includes the following steps. The 3D depth estimation is performed according to the first reference image and the second reference image to generate reference depth information of the reference focus object in the reference image group, and the depth focus position of the reference object is obtained according to the reference depth information. The auto-focus position with respect to the reference target is acquired through the auto-focus procedure. It is judged whether the depth focus position corresponding to the reference focus target conforms to the auto focus position. If the determination is negative, it is determined that image deformation occurs in the reference image group.

在本发明的一实施例中,上述的在根据这些图像群组对应的这些特征点比对值更新当前校正参数的步骤之前,此图像校正方法还包括下列步骤。针对这些图像群组进行三维深度估测,以产生各图像群组的深度信息。根据各图像群组的深度信息决定是否保留图像群组。In an embodiment of the present invention, before the above-mentioned step of updating the current correction parameters according to the comparison values of the feature points corresponding to the image groups, the image correction method further includes the following steps. 3D depth estimation is performed on these image groups to generate depth information of each image group. Whether to keep the image group is determined according to the depth information of each image group.

在本发明的一实施例中,上述的根据这些图像群组对应的这些特征点比对值更新当前校正参数的步骤还包括下列步骤。对这些第一图像与这些第二图像进行特征点检测,而获取这些第一图像的多个第一特征点与这些第二图像的多个第二特征点。比对这些第一特征点的座标位置以及分别与这些第一特征点相对应的多个第二特征点的座标位置,以获取这些第一特征点与这些第二特征点之间的多个特征点比对值。记录这些第一特征点与这些第二特征点之间的多个特征点比对值。In an embodiment of the present invention, the above-mentioned step of updating the current calibration parameters according to the comparison values of the feature points corresponding to the image groups further includes the following steps. Feature point detection is performed on the first images and the second images, and multiple first feature points of the first images and multiple second feature points of the second images are acquired. Comparing the coordinate positions of these first feature points and the coordinate positions of a plurality of second feature points respectively corresponding to these first feature points, so as to obtain multiple distances between these first feature points and these second feature points feature point comparison value. A plurality of feature point comparison values between the first feature points and the second feature points are recorded.

在本发明的一实施例中,上述的记录这些第一特征点与这些第二特征点之间的特征点比对值的步骤还包括下列步骤。根据这些第一特征点的座标位置或/及这些第二特征点的座标位置分类各个特征点比对值至多个统计槽。In an embodiment of the present invention, the above-mentioned step of recording the comparison values of the feature points between the first feature points and the second feature points further includes the following steps. The comparison values of each feature point are classified into a plurality of statistical slots according to the coordinate positions of the first feature points and/or the coordinate positions of the second feature points.

在本发明的一实施例中,上述的根据图像群组对应的这些特征点比对值更新当前校正参数的步骤包括下列步骤。根据这些统计槽中多个特征点比对值的数量与特征点比对值所对应的多个深度值,判断这些特征点比对值是否足够进行运算。若判断为是,根据这些特征点比对值更新当前校正参数。其中这些深度值是通过对第一特征点与对应的第二特征点进行三维深度估测而获取。In an embodiment of the present invention, the above-mentioned step of updating the current calibration parameters according to the comparison values of these feature points corresponding to the image group includes the following steps. According to the number of comparison values of multiple feature points in the statistical slots and the multiple depth values corresponding to the comparison values of feature points, it is judged whether the comparison values of these feature points are sufficient for operation. If the judgment is yes, the current calibration parameters are updated according to the comparison values of these feature points. These depth values are obtained by performing 3D depth estimation on the first feature point and the corresponding second feature point.

从另一观点来看,本发明提出一种图像获取装置,此图像获取装置具有第一图像传感器与第二图像传感器。此图像获取装置还包括存储单元以及处理单元。存储单元记录多个模块,并存储关联于第一图像传感器与第二图像传感器的当前校正参数。处理单元耦接第一图像传感器、第二图像传感器以及存储单元,以存取并执行存储单元中记录的所述模块。这些模块包括获取模块、形变检测模块以及参数更新模块。获取模块通过第一图像传感器与第二图像传感器获取多个图像群组。各个图像群组分别包括第一图像传感器的第一图像以及第二图像传感器的第二图像,且这些图像群组包括一参考图像群组。形变检测模块检测参考图像群组中的第一参考图像与第二参考图像是否发生图像形变。当参考图像群组发生图像形变时,参数更新模块根据这些图像群组对应的多个特征点比对值更新当前校正参数。当前校正参数用以对各第一图像以及对应的各第二图像进行图像纠正。From another point of view, the present invention provides an image acquisition device, the image acquisition device has a first image sensor and a second image sensor. The image acquisition device also includes a storage unit and a processing unit. The storage unit records a plurality of modules and stores current calibration parameters associated with the first image sensor and the second image sensor. The processing unit is coupled to the first image sensor, the second image sensor and the storage unit to access and execute the modules recorded in the storage unit. These modules include acquisition module, deformation detection module and parameter update module. The acquiring module acquires a plurality of image groups through the first image sensor and the second image sensor. Each image group includes a first image of the first image sensor and a second image of the second image sensor respectively, and these image groups include a reference image group. The deformation detection module detects whether image deformation occurs in the first reference image and the second reference image in the reference image group. When image deformation occurs in the reference image groups, the parameter update module updates the current correction parameters according to the comparison values of the plurality of feature points corresponding to these image groups. The current correction parameters are used to perform image correction on each first image and each corresponding second image.

基于上述,在本发明的图像形变校正方法的实施例中,当当前的校正参数已无法进行准确的图像纠正时,利用对不同场景与不同时间点所拍摄的图像群组上的特征点信息建立一数据库,以通过数据库内完整的信息来更新当前的校正信息。如此一来,即便左右图像传感器产生位移,图像获取装置也可以动态且适应性的产生新的校正参数,以避免利用不符现况的校正参数进行不准确的图像纠正。藉此,可在使用者无察觉的情况下自动地进行参数更新的动作,以确保图像获取装置的拍摄品质并且提升使用者经验。Based on the above, in the embodiment of the image distortion correction method of the present invention, when the current correction parameters cannot perform accurate image correction, the feature point information on the image groups captured at different scenes and at different time points is used to establish A database to update current calibration information with complete information in the database. In this way, even if the left and right image sensors are displaced, the image acquisition device can dynamically and adaptively generate new correction parameters, so as to avoid inaccurate image correction by using correction parameters that do not conform to the current situation. In this way, the parameter updating operation can be performed automatically without the user's awareness, so as to ensure the shooting quality of the image acquisition device and improve user experience.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.

附图说明Description of drawings

图1是本发明的一实施例所示出的图像获取装置的方块图;Fig. 1 is a block diagram of an image acquisition device shown in an embodiment of the present invention;

图2是本发明一实施例所示出的图像形变校正方法的流程图;Fig. 2 is a flowchart of an image distortion correction method shown in an embodiment of the present invention;

图3A至图3B是本发明一实施例所示出的步骤S202的详细流程图;3A to 3B are detailed flowcharts of step S202 shown in an embodiment of the present invention;

图4是本发明一实施例所示出的图像形变校正方法的流程图;Fig. 4 is a flowchart of an image distortion correction method shown in an embodiment of the present invention;

图5A至图5B是本发明一实施例所示出的分类特征点比对值至统计槽的实施例示意图。FIG. 5A to FIG. 5B are schematic diagrams of an embodiment of comparing values of classification feature points to statistical slots shown in an embodiment of the present invention.

附图标记说明:Explanation of reference signs:

100:图像获取装置;100: image acquisition device;

110:第一图像传感器;110: a first image sensor;

120:第二图像传感器;120: the second image sensor;

130:对焦单元;130: focusing unit;

140:处理单元;140: processing unit;

150:存储单元;150: storage unit;

151:获取模块;151: Obtain the module;

152:形变检测模块;152: deformation detection module;

153:参数更新模块;153: parameter update module;

154:深度选择模块;154: depth selection module;

TH:预设门限值;TH: preset threshold value;

A、B:第一特征点;A, B: the first feature point;

Z1~Z9:图像区块;Z1~Z9: image blocks;

S1~S9:统计槽;S1~S9: statistics slot;

ΔdA、ΔdB:特征点比对值;Δd A , Δd B : feature point comparison value;

S201~S203:本发明一实施例所述的图像形变校正方法的各步骤;S201-S203: each step of the image distortion correction method described in an embodiment of the present invention;

S2011~S2023:本发明一实施例的步骤S202的各子步骤;S2011-S2023: each sub-step of step S202 in an embodiment of the present invention;

S2024~S2027:本发明一实施例的步骤S202的各子步骤;S2024~S2027: each sub-step of step S202 in an embodiment of the present invention;

S401~S409:本发明一实施例所述的图像形变校正方法的各步骤。S401-S409: each step of the image distortion correction method according to an embodiment of the present invention.

具体实施方式detailed description

在图像获取装置出厂时,其双镜头的之间空间设置关系已经过精密的计算与调整,并依此产生一组工厂预设的校正参数。此工厂预设的校正参数用以将不同镜头所获取的图像校正至经设计且固定的座标参数关系。为了解决因双镜头产生位移或旋转而导致工厂预设的校正参数不再适用的情况,本发明根据图像的深度信息与像素点位置来产生记录多个特征点信息的数据库,并利用数据库中累积的信息适应性的更新校正参数。为了使本发明的内容更为明了,以下列举实施例作为本发明确实能够据此实施的实施例。When the image acquisition device leaves the factory, the spatial setting relationship between the two lenses has been precisely calculated and adjusted, and a set of factory preset correction parameters has been generated accordingly. The factory preset correction parameters are used to correct the images acquired by different lenses to a designed and fixed coordinate parameter relationship. In order to solve the situation that the factory preset correction parameters are no longer applicable due to the displacement or rotation of the dual lens, the present invention generates a database recording multiple feature point information according to the depth information and pixel position of the image, and uses the accumulated The information adaptive update correction parameters. In order to make the content of the present invention more clear, the following examples are listed as examples according to which the present invention can be implemented.

图1是本发明的一实施例所示出的图像获取装置的方块图。请参照图1,本实施例的图像获取装置100例如是数字相机、数字摄影机,或是其他具有图像获取功能的手持式电子装置,像是智能手机、平板电脑等等,不限于上述。图像获取装置100包括第一图像传感器110、第二图像传感器120、对焦单元130、处理单元140以及存储单元150。FIG. 1 is a block diagram of an image acquisition device according to an embodiment of the present invention. Please refer to FIG. 1 , the image acquisition device 100 of this embodiment is, for example, a digital camera, a digital video camera, or other handheld electronic devices with image acquisition functions, such as smart phones, tablet computers, etc., and is not limited to the above. The image acquisition device 100 includes a first image sensor 110 , a second image sensor 120 , a focusing unit 130 , a processing unit 140 and a storage unit 150 .

第一图像传感器110与第二图像传感器120可包括镜头以及感光元件。感光元件例如是电荷耦合元件(Charge Coupled Device,简称CCD)、互补性氧化金属半导体(Complementary Metal-Oxide Semiconductor,简称CMOS)元件或其他元件,第一图像传感器110与第二图像传感器120还可包括光圈等,在此皆不设限。此外,依照第一图像传感器110与第二图像传感器120的镜头设置位置,第一图像传感器110与第二图像传感器120的镜头可区分为左镜头与右镜头。The first image sensor 110 and the second image sensor 120 may include lenses and photosensitive elements. The photosensitive element is, for example, a Charge Coupled Device (CCD for short), a Complementary Metal-Oxide Semiconductor (CMOS for short) element or other elements, and the first image sensor 110 and the second image sensor 120 may also include Aperture, etc., are not limited here. In addition, according to the positions of the lenses of the first image sensor 110 and the second image sensor 120 , the lenses of the first image sensor 110 and the second image sensor 120 can be divided into a left lens and a right lens.

在本实施例中,对焦单元130耦接第一图像传感器110、第二图像传感器120以及处理单元140,用以控制第一图像传感器110与第二图像传感器120获取图像的焦距。换言之,对焦单元130控制第一图像传感器110的镜头与第二图像传感器120的镜头移动至对焦位置。对焦单元130例如通过音圈马达(Voice Coil Motor,简称VCM)或其他不同类型的马达来控制镜头的步数(step)位置,以改变第一图像传感器110与第二图像传感器120的焦距。In this embodiment, the focusing unit 130 is coupled to the first image sensor 110 , the second image sensor 120 and the processing unit 140 to control the focal length of the images captured by the first image sensor 110 and the second image sensor 120 . In other words, the focusing unit 130 controls the lens of the first image sensor 110 and the lens of the second image sensor 120 to move to the focusing position. The focusing unit 130 controls the step position of the lens through a Voice Coil Motor (VCM for short) or other different types of motors, so as to change the focal lengths of the first image sensor 110 and the second image sensor 120 .

处理单元140可以例如是中央处理单元(Central Processing Unit,简称CPU)、微处理器(Microprocessor)、特殊应用集成电路(Application Specific IntegratedCircuits,简称ASIC)、可编程逻辑装置(Programmable Logic Device,简称PLD)或其他具备运算能力的硬件装置。存储单元150例如是随机存取存储器(random access memory)、快速存储器(Flash)或其他的存储器,用以存储当前校正参数与多个模块,而处理单元140耦接存储单元150并用以执行这些模块。上述模块包括获取模块151、形变检测模块152、参数更新模块153以及深度选择模块154,这些模块例如是电脑程序,其可载入处理单元140,从而执行校正图像形变的功能。The processing unit 140 may be, for example, a central processing unit (Central Processing Unit, referred to as CPU), a microprocessor (Microprocessor), a specific application integrated circuit (Application Specific Integrated Circuits, referred to as ASIC), a programmable logic device (Programmable Logic Device, referred to as PLD) Or other hardware devices with computing capabilities. The storage unit 150 is, for example, a random access memory (random access memory), a fast memory (Flash) or other memories, and is used to store current calibration parameters and multiple modules, and the processing unit 140 is coupled to the storage unit 150 and used to execute these modules . The above-mentioned modules include an acquisition module 151 , a deformation detection module 152 , a parameter update module 153 and a depth selection module 154 . These modules are, for example, computer programs that can be loaded into the processing unit 140 to perform the function of correcting image deformation.

图2是本发明一实施例所示出的图像形变校正方法的流程图。本实施例的方法适用于图1的图像获取装置100,以下即搭配图像获取装置100中的各构件说明本实施例图像形变校正方法的详细步骤。FIG. 2 is a flow chart of an image distortion correction method shown in an embodiment of the present invention. The method of this embodiment is applicable to the image acquisition device 100 in FIG. 1 , and the detailed steps of the image distortion correction method of this embodiment will be described below in conjunction with each component in the image acquisition device 100 .

首先,在步骤S201,获取模块151通过第一图像传感器110以及第二图像传感器120获取多个图像群组。各图像群组分别包括第一图像以及第二图像,且图像群组至少包括一参考图像群组。也就是说,在本实施例中,单一图像群组具有两张照片,同一图像群组内的第一图像与第二图像是通过左镜头与右镜头在同一时间针对同一场景所获取的两张图像。换言之,第一图像例如是通过左镜头所获取的左图像,而第二图像相对为通过右镜头所获取的右图像。在本实施例中,第一图像与第二图像例如是预览状态下所获取的即时预览图像(live-view image)。First, in step S201 , the acquisition module 151 acquires a plurality of image groups through the first image sensor 110 and the second image sensor 120 . Each image group includes a first image and a second image, and the image group includes at least one reference image group. That is to say, in this embodiment, a single image group has two photos, and the first image and the second image in the same image group are two photos of the same scene captured by the left camera and the right camera at the same time image. In other words, the first image is, for example, a left image captured through a left lens, and the second image is relatively a right image captured through a right lens. In this embodiment, the first image and the second image are, for example, live-view images acquired in a preview state.

同样地,参考图像群组为图像获取装置100所获取的图像群组其中之一,因此参考图像群组同样具有对应至第一图像传感器110与第二图像传感器120的第一参考图像与第二参考图像。在步骤S202,形变检测模块152检测参考图像群组中的第一参考图像与第二参考图像是否发生图像形变。需说明的是,形变检测模块152可以定时检测的方式对部份图像群组进行图像形变的检测,也可以针对所有图像群组进行图像形变的检测,而参考图像群组于此代表形变检测模块152用以检测是否发生图像型变的对象之一。Similarly, the reference image group is one of the image groups acquired by the image acquisition device 100, so the reference image group also has the first reference image and the second image corresponding to the first image sensor 110 and the second image sensor 120. Reference image. In step S202 , the deformation detection module 152 detects whether image deformation occurs in the first reference image and the second reference image in the reference image group. It should be noted that the deformation detection module 152 can detect image deformations for some image groups in a timing detection manner, and can also detect image deformations for all image groups, and the reference image group here represents the deformation detection module 152 is one of the objects used to detect whether image deformation occurs.

需说明的是,工厂预设的校正参数适用于将两张左右图像再分别进行图像纠正(image rectification),让两张真实图像变成只有水平像差或只有垂直像差(因为镜头位置摆放的关系而造成的)。例如,双镜头间会有角度仰角的些微差异等等。通过工厂预设的校正参数执行图像纠正,可以将真实图像转换成左右镜头是摆放同一取像平面,只剩下水平或垂直位置有差异。也就是说,在左右镜头水平设置的前提下,经过图像纠正的左右图像上的各像素点应当只剩下水平位置有差异。此时,倘若左右镜头的拍摄方向产生改变,经过图像纠正的左右图像上的各像素点的垂直位置仍然具有差异,此现象在此称之为图像形变。在此,形变检测模块152可根据第一参考图像与第二参考图像上相互对应的特征点的偏移量或是针对第一参考图像与第二参考图像进行三维深度估测来判断参考图像群组是否发生图像形变。It should be noted that the factory preset correction parameters are suitable for image rectification of the two left and right images, so that the two real images only have horizontal aberration or only vertical aberration (because the lens position is placed caused by the relationship). For example, there will be a slight difference in the angle of elevation between the two lenses and so on. Image correction is performed by factory preset correction parameters, which can convert the real image into that the left and right lenses are placed on the same imaging plane, leaving only the difference in horizontal or vertical position. That is to say, on the premise that the left and right lenses are set horizontally, there should only be a difference in the horizontal position of each pixel on the left and right images after image correction. At this time, if the shooting directions of the left and right lenses change, the vertical positions of the pixels on the left and right images after image correction still have differences, and this phenomenon is called image distortion herein. Here, the deformation detection module 152 can determine the reference image group according to the offset of the corresponding feature points on the first reference image and the second reference image or perform 3D depth estimation on the first reference image and the second reference image Whether or not the group has image warping.

更清楚来说,图3A是本发明一实施例所示出的步骤S202的详细流程图。在图3A所示的实施例中,在步骤S2021,形变检测模块152检测第一参考图像上的第一特征点与第二参考图像上的第二特征点。之后,在步骤S2022,形变检测模块152判断第一特征点与第二特征点分别在第一参考图像与第二参考图像的图像座标之间的偏移量是否超过门限值。若第一特征点与第二特征点分别在第一参考图像与第二参考图像的图像座标之间的偏移量超过门限值,在步骤S2023,形变检测模块152判定此参考图像群组发生图像形变。也就是说,通过分析与统计第一特征点与第二特征点之间的位移信息,可据此得知是否第一参考图像与第二参考图像发生图像形变。To be more clear, FIG. 3A is a detailed flowchart of step S202 shown in an embodiment of the present invention. In the embodiment shown in FIG. 3A , in step S2021 , the deformation detection module 152 detects the first feature point on the first reference image and the second feature point on the second reference image. After that, in step S2022, the deformation detection module 152 judges whether the offset between the first feature point and the second feature point between the image coordinates of the first reference image and the second reference image exceeds a threshold value. If the offset between the first feature point and the second feature point between the image coordinates of the first reference image and the second reference image exceeds the threshold value, in step S2023, the deformation detection module 152 determines the reference image group Image distortion occurs. That is to say, by analyzing and counting the displacement information between the first feature point and the second feature point, it can be known whether image deformation occurs between the first reference image and the second reference image.

换句话说,形变检测模块152可根据现有的特征点检测的演算方法检测参考组图像的任一特征点。特征点检测的演算方法用以检测出图像中的多数个特征点,例如是边缘检测(edge detection)、角落检测(Conner detection)或其他特征点检测演算法,本发明对此并不限制。之后,形变检测模块152判断相互对应的第一特征点与第二特征点之间的座标位置偏移量是否超过上述门限值,据此检测参考组图像是否发生图像形变。举例来说,形变检测模块152可判断相互对应的第一特征点与第二特征点的垂直偏移量(垂直方向上的位移差距)是否超过上述门限值。当形变检测模块152判断上述垂直偏移量超过上述门限值时,代表参考图像群组发生图像形变。In other words, the deformation detection module 152 can detect any feature point of the reference set of images according to the existing algorithm method of feature point detection. The algorithm of feature point detection is used to detect multiple feature points in the image, such as edge detection, corner detection (conner detection) or other feature point detection algorithm, which is not limited in the present invention. Afterwards, the deformation detection module 152 judges whether the offset of the coordinate position between the corresponding first feature point and the second feature point exceeds the above-mentioned threshold value, and accordingly detects whether image deformation occurs in the reference group of images. For example, the deformation detection module 152 can determine whether the vertical offset (displacement difference in the vertical direction) of the first feature point and the second feature point corresponding to each other exceeds the above-mentioned threshold value. When the deformation detection module 152 determines that the above-mentioned vertical offset exceeds the above-mentioned threshold value, it means that image deformation occurs in the reference image group.

在另一实施例中,图3B是本发明一实施例所示出步骤S202的详细流程图。在图3B所示的实施例中,在步骤S2024,形变检测模块152根据第一参考图像与第二参考图像进行三维深度估测,以产生参考图像群组中的参考对焦目标物的参考深度信息,并根据参考深度信息取得关于参考目标物的深度对焦位置。接着,在步骤S2025,形变检测模块152通过自动对焦程序而获取得关于参考目标物的自动对焦位置。在步骤S2026,形变检测模块152判断参考对焦目标物所对应的深度对焦位置是否符合自动对焦位置。若判断为否,在步骤S2027,形变检测模块152判定参考图像群组发生图像形变。In another embodiment, FIG. 3B is a detailed flowchart of step S202 shown in an embodiment of the present invention. In the embodiment shown in FIG. 3B , in step S2024, the deformation detection module 152 performs 3D depth estimation according to the first reference image and the second reference image, so as to generate reference depth information of the reference focusing target in the reference image group , and obtain the depth focus position of the reference target object according to the reference depth information. Next, in step S2025 , the deformation detection module 152 obtains the auto-focus position of the reference target through the auto-focus procedure. In step S2026 , the deformation detection module 152 determines whether the depth focus position corresponding to the reference focus target conforms to the auto focus position. If the determination is negative, in step S2027, the deformation detection module 152 determines that image deformation occurs in the reference image group.

具体来说,形变检测模块152可通过立体视觉技术进行图像处理,以求得目标物在空间中的三维座标位置以及图像中各点的深度信息。再者,根据深度信息取得关于目标物的深度对焦位置的步骤例如是根据深度信息查询深度对照表来取得关于目标物的对焦位置。因此,通过事先求得步进马达的步数或音圈马达的电流值与目标物清晰度的对应关系,则可根据目前获得的目标物的深度信息查询到此深度信息所对应的步进马达的步数或音圈马达的电流值,并据此取得关于目标物的深度对焦位置。Specifically, the deformation detection module 152 may perform image processing through stereo vision technology to obtain the three-dimensional coordinate position of the object in space and the depth information of each point in the image. Furthermore, the step of obtaining the depth focus position of the target object according to the depth information is, for example, querying a depth comparison table according to the depth information to obtain the focus position of the target object. Therefore, by obtaining the corresponding relationship between the number of steps of the stepping motor or the current value of the voice coil motor and the sharpness of the target object in advance, the stepping motor corresponding to the depth information can be queried based on the currently obtained depth information of the target object The number of steps or the current value of the voice coil motor, and based on this, the depth focus position of the target object can be obtained.

另一方面,执行自动对焦程序的过程可以是通过对焦单元130自动控制镜头模块进行大范围的移动,以分别调整第一图像传感器110与第二图像传感器120的镜头至所需的对焦位置,以取得关于目标物的自动对焦位置。对焦单元130例如是利用自动对焦技术中所使用的爬山法(hill-climbing)来获取关于目标物的自动对焦位置,但本发明并不以此为限。因此,在第一参考图像与第二参考图像未发生图像形变的条件下,图像获取装置100可获取理想的深度信息,致使深度对焦位置会与自动对焦位置一致。倘若图像获取装置100无法根据当前校正参数而进一步获取理想的深度信息,也就无法通过深度信息与事先存储好的深度信息查询深度对照表估测出正确的深度对焦位置,因此深度对焦位置与通过自动对焦程序所获得的自动对焦位置将产生差异。据此,形变检测模块152根据深度对焦位置与自动对焦位置之间的差异来判断参考图像群组是否发生图像形变。On the other hand, the process of executing the auto-focus program can be to automatically control the lens module to move in a large range through the focus unit 130, so as to adjust the lenses of the first image sensor 110 and the second image sensor 120 to the required focus positions, respectively. Get the autofocus position about the target. For example, the focusing unit 130 acquires the auto-focus position of the target object by using the hill-climbing method used in the auto-focus technology, but the present invention is not limited thereto. Therefore, under the condition that no image deformation occurs in the first reference image and the second reference image, the image acquisition device 100 can acquire ideal depth information, so that the depth focus position is consistent with the auto focus position. If the image acquisition device 100 cannot further obtain the ideal depth information according to the current calibration parameters, it will not be able to estimate the correct depth focus position by querying the depth comparison table between the depth information and the pre-stored depth information. The AF position obtained by the AF routine will vary. Accordingly, the deformation detection module 152 determines whether image deformation occurs in the reference image group according to the difference between the depth focus position and the auto focus position.

再次参照图2,当形变检测模块152检测到参考图像群组发生图像形变时,在步骤S203,参数更新模块153根据多个图像群组对应的多个特征点比对值更新当前校正参数,其中当前校正参数用以对各第一图像以及对应的各第二图像进行图像纠正。也就是说,当图像获取装置100判定第一图像传感器110与第二图像传感器120产生变形或移位而致使第一参考图像与第二参考图像之间的参数座标改变时,代表当前校正参数已无法对图像进行准确的图像纠正。Referring to FIG. 2 again, when the deformation detection module 152 detects that the reference image group is deformed, in step S203, the parameter update module 153 updates the current correction parameters according to the comparison values of multiple feature points corresponding to the multiple image groups, wherein The current correction parameters are used to perform image correction on each first image and each corresponding second image. That is to say, when the image acquisition device 100 determines that the first image sensor 110 and the second image sensor 120 are deformed or displaced so that the parameter coordinates between the first reference image and the second reference image change, it represents the current correction parameter It is no longer possible to perform accurate image correction on the image.

因此,在一实施例中,参数更新模块153开始搜集在参考图像群组之后所拍摄的多个图像群组的特征点比对值,以通过在第一图像传感器110与第二图像传感器120产生变形或移位后所获取的图像进来产生理想的当前校正参数。需特别说明的是,参数更新模块153可通过比对第一特征点的座标位置以及分别与这些第一特征点相对应的第二特征点的座标位置来获取这些特征点比对值。再者,参数更新模块153还可根据图像的深度信息与像素点的座标位置来产生新的当前校正参数。以下将列举另一实施例以详细说明之。Therefore, in one embodiment, the parameter update module 153 starts to collect the feature point comparison values of multiple image groups captured after the reference image group, so as to generate The acquired image after warping or shifting yields ideal current correction parameters. It should be noted that the parameter update module 153 can obtain these feature point comparison values by comparing the coordinate positions of the first feature points with the coordinate positions of the second feature points respectively corresponding to the first feature points. Furthermore, the parameter updating module 153 can also generate new current correction parameters according to the depth information of the image and the coordinate positions of the pixels. Another embodiment will be listed below to describe in detail.

图4是本发明一实施例所示出的一种图像形变校正方法的流程图。请参照图4,本实施例的方法适用于图1的图像获取装置100,以下即搭配图像获取装置100中的各构件说明本实施例图像形变校正方法的详细步骤。FIG. 4 is a flow chart of an image distortion correction method shown in an embodiment of the present invention. Please refer to FIG. 4 , the method of this embodiment is applicable to the image acquisition device 100 of FIG. 1 , and the detailed steps of the image distortion correction method of this embodiment will be described below with each component in the image acquisition device 100 .

首先,在步骤S401,获取模块151通过第一图像传感器110以及第二图像传感器120获取多个图像群组。各图像群组分别包括第一图像以一第二图像,且图像群组包括参考图像群组。在步骤S402,形变检测模块152检测参考图像群组中的第一参考图像与第二参考图像是否发生图像形变。步骤S401以及步骤S402与前述实施例的步骤S201以及步骤S202相似或相同,在此不再赘述。First, in step S401 , the acquisition module 151 acquires a plurality of image groups through the first image sensor 110 and the second image sensor 120 . Each image group includes a first image and a second image respectively, and the image group includes a reference image group. In step S402 , the deformation detection module 152 detects whether image deformation occurs in the first reference image and the second reference image in the reference image group. Step S401 and step S402 are similar or identical to step S201 and step S202 of the foregoing embodiment, and are not repeated here.

若形变检测模块判定参考图像群组发生图像形变时,在步骤S403,深度选择模块154针对图像群组进行三维深度估测,以产生各图像群组的深度信息,并根据各图像群组的深度信息决定是否保留图像群组。进一步来说,深度选择模块154可通过立体视觉的图像处理技术而产生关联于第一参考图像与第二参考图像的三维深度图。基于三维深度图内的深度信息,深度选择模块154可获取上述三维深度图所对应的景深范围,并根据景深范围来决定保留或丢弃图像群组。If the deformation detection module determines that image deformation occurs in the reference image group, in step S403, the depth selection module 154 performs three-dimensional depth estimation on the image group to generate depth information of each image group, and according to the depth of each image group The message determines whether to keep the group of pictures. Further, the depth selection module 154 can generate a 3D depth map associated with the first reference image and the second reference image through stereo vision image processing technology. Based on the depth information in the 3D depth map, the depth selection module 154 can obtain the depth range corresponding to the 3D depth map, and decide to keep or discard the image group according to the depth range.

详细来说,假设深度值的最小值设定为0而最大值设定为128,即图像群组的深度值落于0~128的数值范围内。若深度选择模块154已搜集到景深范围为深度值100至深度值128的图像群组,深度选择模块154之后将不保留其他景深范围落于深度值100至深度值128内的图像群组。反之,若深度选择模块154判定当前的图像群组的景深范围落于深度值100至深度值128之外,例如是深度值0至深度值80的图像群组,深度选择模块154将保留此图像群组,以进一步利用此图像群组的特征点信息。In detail, assume that the minimum value of the depth value is set to 0 and the maximum value is set to 128, that is, the depth value of the image group falls within the range of 0-128. If the depth selection module 154 has collected image groups whose depth ranges from the depth value 100 to the depth value 128, the depth selection module 154 will not keep other image groups whose depth range falls within the depth value 100 to the depth value 128. On the contrary, if the depth selection module 154 determines that the depth of field range of the current image group falls outside the depth value 100 to the depth value 128, for example, the image group with the depth value 0 to the depth value 80, the depth selection module 154 will keep this image group, so as to further utilize the feature point information of this image group.

换句话说,深度选择模块154根据各图像群组的景深信息来判断各图像群组是否为有效的图像群组。倘若最新获取的图像模块的景深范围已经与先前的图像群组的景深范围有大部分的重叠,深度选择模块154将据此过滤之。基此,在一实施例中,除了通过判断景深范围是否重叠来进行图像群组的保留与过滤之外,深度选择模块154也可根据景深范围的重叠率来决定是否保留图像群组。基此,可确保深度选择模块154搜集到对应至所有或大部分景深范围的信息,并同时根据各图像群组所对应的景深范围来过滤多余的信息,以降低数据处理量并提升数据处理速度。In other words, the depth selection module 154 determines whether each image group is a valid image group according to the depth information of each image group. If the depth-of-field range of the newly acquired image module has mostly overlapped with the depth-of-field range of the previous image group, the depth selection module 154 will filter it accordingly. Based on this, in an embodiment, in addition to retaining and filtering the image groups by judging whether the depth ranges overlap, the depth selection module 154 may also determine whether to retain the image groups according to the overlapping ratio of the depth ranges. Based on this, it can ensure that the depth selection module 154 collects information corresponding to all or most of the depth of field ranges, and at the same time filters redundant information according to the depth of field ranges corresponding to each image group, so as to reduce the amount of data processing and increase the speed of data processing .

之后,在步骤S404,参数更新模块153对第一图像与第二图像进行特征点检测,而获取第一图像的多个第一特征点与第二图像的多个第二特征点。在步骤S405,参数更新模块153比对第一特征点的座标位置以及分别与第一特征点相对应的第二特征点的座标位置,以获取第一特征点与第二特征点之间的特征点比对值。在步骤S406,参数更新模块153记录第一特征点与第二特征点之间的特征点比对值。After that, in step S404, the parameter update module 153 performs feature point detection on the first image and the second image, and acquires a plurality of first feature points of the first image and a plurality of second feature points of the second image. In step S405, the parameter update module 153 compares the coordinate position of the first feature point with the coordinate position of the second feature point corresponding to the first feature point to obtain the distance between the first feature point and the second feature point. The feature point comparison value of . In step S406, the parameter update module 153 records the comparison value of the feature points between the first feature point and the second feature point.

进一步来说,参数更新模块153同样可根据现有的特征点检测的演算方法检测各图像群组中第一图像与第二图像的特征点,以取的第一图像上的第一特征点与第二图像上的第二特征点。接着,参数更新模块153判断相互匹配的第一特征点与第二特征点在同一座标系统下的偏移量(offset)并将偏移量作为特征点比对值。其中,相互匹配的第一特征点与第二特征点投影至被摄场景中的同一位置。换言之,特征点比对值也可视为第一特征点与第二特征点之间的像差。之后,参数更新模块153将第一特征点与第二特征点之间的特征点比对值记录至一数据库,以建立用以更新当前校正参数的校正数据库。值得一提的是,当判定参考图像群组发生形变时,获取模块151仍持续获取图像而获得多个图像群组,而参数更新模块153也持续将通过计算而产生的各图像群组的特征点比对值记录至校正数据库。Further, the parameter update module 153 can also detect the feature points of the first image and the second image in each image group according to the existing algorithm method of feature point detection, so as to obtain the first feature point and A second feature point on the second image. Next, the parameter update module 153 judges the offset (offset) of the matched first feature point and the second feature point in the same coordinate system and uses the offset as a feature point comparison value. Wherein, the matched first feature point and the second feature point are projected to the same position in the scene to be shot. In other words, the feature point comparison value can also be regarded as the aberration between the first feature point and the second feature point. Afterwards, the parameter update module 153 records the comparison value of the feature points between the first feature point and the second feature point in a database, so as to establish a correction database for updating the current correction parameters. It is worth mentioning that when it is determined that the reference image group is deformed, the acquisition module 151 continues to acquire images to obtain multiple image groups, and the parameter update module 153 also continues to calculate the characteristics of each image group generated by calculation. Point comparison values are recorded to the calibration database.

在步骤S407,参数更新模块153根据第一特征点的座标位置或/及第二特征点的座标位置分类各特征点比对值至多个统计槽。也就是说,参数更新模块153除了将特征点比对值记录至校正数据库之外,还根据特征点比对值对应于一座标系统下的座标位置而分类至不同统计槽。具体来说,在一实施例中,参数更新模块153可将第一图像传感器110所获取的第一图像区分为多个图像区块,且每一图像区块对应至一个统计槽。因此根据第一特征点的座标位置,参数更新模块153可将特征点比对值依序对应至这些图像区块其中之一,从而将上述特征点比对值分类至对应的统计槽。In step S407, the parameter update module 153 classifies the comparison values of each feature point into a plurality of statistical slots according to the coordinate position of the first feature point and/or the coordinate position of the second feature point. That is to say, the parameter updating module 153 not only records the comparison value of the feature points in the calibration database, but also classifies the comparison values of the feature points into different statistical slots according to the coordinate positions in the coordinate system. Specifically, in one embodiment, the parameter update module 153 can divide the first image acquired by the first image sensor 110 into a plurality of image blocks, and each image block corresponds to a statistical slot. Therefore, according to the coordinate position of the first feature point, the parameter updating module 153 may sequentially map the feature point comparison value to one of the image blocks, thereby classifying the feature point comparison value into the corresponding statistical slot.

举例来说,图5A与图5B是本发明一实施例所示出的分类特征点比对值至统计槽的实施例示意图。在本实施例中,首先参照图5A,参数更新模块153将第一图像Img1分割为三乘三的9个图像区块Z1~Z9。参数更新模块153更根据第一特征点的座标位置来决定第一特征点落在那一图像区块。如图5A所示,参数更新模块153可根据第一特征点A的座标位置而得知第一特征点A位于图像区块Z2内。同样地,参数更新模块153可根据第一特征点B的座标位置而得知第一特征点B位于图像区块Z6内。For example, FIG. 5A and FIG. 5B are schematic diagrams of an embodiment of comparing classification feature points to statistical slots according to an embodiment of the present invention. In this embodiment, first referring to FIG. 5A , the parameter updating module 153 divides the first image Img1 into nine image blocks Z1 - Z9 of three times three. The parameter updating module 153 further determines the image block where the first feature point falls according to the coordinate position of the first feature point. As shown in FIG. 5A , the parameter updating module 153 can know that the first feature point A is located in the image block Z2 according to the coordinate position of the first feature point A. Similarly, the parameter update module 153 can know that the first feature point B is located in the image block Z6 according to the coordinate position of the first feature point B.

请参照图5B,在本实施例中,第一图像Img1被分割为9个图像区块Z1~Z9,而图像区块Z1~Z9分别对应至统计槽S1~S9。其中,图像区块Z1对应至统计槽S1,而图像区块Z2对应至统计槽S2,依此类推。基此,由于第一特征点A位于图像区块Z2内,第一特征点A所对应的特征点比对值ΔdA被分类至统计槽S2。由于第一特征点B位于图像区块Z6内,而第一特征点B所对应的特征点比对值ΔdB被分类至统计槽S6。需说明的是,图5A与图5B仅为一种示范性实施方式,非以限定本发明。Please refer to FIG. 5B , in this embodiment, the first image Img1 is divided into nine image blocks Z1 - Z9 , and the image blocks Z1 - Z9 correspond to statistical slots S1 - S9 respectively. Wherein, the image block Z1 corresponds to the statistical slot S1, and the image block Z2 corresponds to the statistical slot S2, and so on. Based on this, since the first feature point A is located in the image block Z2, the feature point comparison value Δd A corresponding to the first feature point A is classified into the statistical slot S2. Since the first feature point B is located in the image block Z6, the feature point comparison value Δd B corresponding to the first feature point B is classified into the statistical slot S6. It should be noted that, FIG. 5A and FIG. 5B are only exemplary implementations, and are not intended to limit the present invention.

另外,在一实施例中,基于第一特征点与对应的第二特征点为被摄场景中的同一位置点,第一图像与第二图像上对应的特征点经由座标转换计算后将投影至三维座标系统下的相同座标点。因此,参数更新模块153可根据第一特征点与第二特征点的投影于三维座标系统下的座标位置来将特征点比对值分类至对应的统计槽。更进一步来说,基于立体视觉技术进行图像处理,参数更新模块153可求得图像中各点的深度信息以及对应的三维座标位置。参数更新模块153可将第一特征点与第二特征点所对应的三维投影点的水平分量与垂直分量来决定特征点比对值所对应的统计槽。In addition, in one embodiment, based on the fact that the first feature point and the corresponding second feature point are at the same position in the scene to be photographed, the corresponding feature points on the first image and the second image are calculated by coordinate conversion and projected to the same coordinate point in the 3D coordinate system. Therefore, the parameter update module 153 can classify the comparison values of the feature points into corresponding statistical slots according to the projected coordinate positions of the first feature point and the second feature point under the three-dimensional coordinate system. Furthermore, image processing is performed based on stereo vision technology, and the parameter updating module 153 can obtain depth information and corresponding three-dimensional coordinate positions of each point in the image. The parameter updating module 153 can use the horizontal component and the vertical component of the 3D projection points corresponding to the first feature point and the second feature point to determine the statistical slot corresponding to the comparison value of the feature point.

于是,在步骤S408,参数更新模块153根据各个统计槽中特征点比对值的数量与特征点比对值所对应的多个深度值,判断特征点比对值是否足够进行运算。其中深度值是通过对第一特征点与对应的第二特征点进行三维深度估测而获取。可以知道的是,随着图像群组的数量的上升,校正数据库内的所记录的信息量也越来越多。在此,参数更新模块153可根据各个统计槽中特征点比对值的数量与特征点比对值的深度值来判断当前记录于校正数据库的数据量是否足够。Therefore, in step S408, the parameter update module 153 judges whether the feature point comparison values are sufficient for calculation according to the number of feature point comparison values in each statistical slot and the multiple depth values corresponding to the feature point comparison values. The depth value is obtained by performing 3D depth estimation on the first feature point and the corresponding second feature point. It can be known that as the number of image groups increases, the amount of information recorded in the correction database also increases. Here, the parameter updating module 153 can determine whether the amount of data currently recorded in the calibration database is sufficient according to the number of comparison values of feature points in each statistical slot and the depth value of comparison values of feature points.

基于前述可知,这些特征点比对值已被参数更新模块153根据特征点信息而分类至对应的统计槽。因此,参数更新模块153可根据各统计槽中特征点比对值的总数目来判定校正数据库是否具备足够的数据量。详细来说,为了产生符合当下镜头设置状况以将左右图像转正至理想状态的当前校正参数,提供特征点信息的特征点最好是可以平均的分布于图像上。通过平均分布于图像上各区域的特征点所提供的特征点信息,可更精准的计算出整张图像的旋转量或歪斜状况。Based on the foregoing, it can be seen that these feature point comparison values have been classified into corresponding statistical slots by the parameter updating module 153 according to the feature point information. Therefore, the parameter update module 153 can determine whether the calibration database has sufficient data volume according to the total number of comparison values of feature points in each statistical slot. In detail, in order to generate the current correction parameters conforming to the current lens setting conditions to straighten the left and right images to an ideal state, the feature points providing feature point information should preferably be evenly distributed on the image. Through the feature point information provided by the feature points evenly distributed in each area of the image, the rotation amount or skew of the entire image can be calculated more accurately.

在本实施例中,这些特征点比对值被参数更新模块153根据特征点的座标位置而分类至对应的统计槽,因此各个统计槽所对应的特征点比对值的总数可表示出特征点的空间分布情况。因此,参数更新模块153判断每一统计槽内的特征点比对值的数量是否足够,来作为决定数据量是否足以计算出准确的当前校正参数的决定机制。In this embodiment, these feature point comparison values are classified into corresponding statistical slots by the parameter update module 153 according to the coordinate positions of the feature points, so the total number of feature point comparison values corresponding to each statistical slot can represent a feature The spatial distribution of points. Therefore, the parameter updating module 153 judges whether the number of feature point comparison values in each statistical slot is sufficient, as a decision mechanism for determining whether the amount of data is enough to calculate an accurate current calibration parameter.

以图5B为例进行说明,参数更新模块153将特征点比对值分类至9个统计槽S1~S9中,其中统计槽S1至少包括特征点比对值ΔdA,统计槽S6至少包括特征点比对值ΔdB。当参数更新模块153持续记录不同图像群组的各特征点比对值于各统计槽时,各个统计槽中的特征点比对值也持续累积(如图5B的虚线所示)。一旦各统计槽S1~S9中的特征点比对值足够,参数更新模块153可开始进行当前校正参数的更新动作。举例来说,参数更新模块153可判断每一统计槽S1~S9对应的数目是否超过预设门限值TH而决定校正数据库内的数据量是否足够。然,上述实施例仅为一种示范性实施方式,并非用以限定本发明。此技术领域中具有通常知识者当可根据实际需求来选择特征比对值的分类方式与根据统计槽判定数据量是否足够的判断条件,此处不再赘述。Taking Figure 5B as an example for illustration, the parameter update module 153 classifies the feature point comparison values into nine statistical slots S1-S9, wherein the statistical slot S1 includes at least the feature point comparison value ΔdA, and the statistical slot S6 includes at least the feature point ratio pair value ΔdB. When the parameter update module 153 keeps recording the comparison values of the feature points of different image groups in the statistics slots, the comparison values of the feature points in the statistics slots are also continuously accumulated (shown by the dotted line in FIG. 5B ). Once the comparison values of the feature points in the statistical slots S1 - S9 are sufficient, the parameter updating module 153 can start updating the current calibration parameters. For example, the parameter updating module 153 can determine whether the number corresponding to each statistical slot S1 - S9 exceeds a preset threshold TH to determine whether the amount of data in the calibration database is sufficient. However, the above-mentioned embodiment is only an exemplary implementation manner, and is not intended to limit the present invention. Those with ordinary knowledge in this technical field can select the classification method of the feature comparison value and the judgment condition for judging whether the amount of data is sufficient according to the statistical slot according to actual needs, and will not be repeated here.

另外,参数更新模块153也可通过深度信息来判定当前的校正数据库内的数据量是否足够。详细来说,通过对第一特征点与对应的第二特征点进行三维深度估测可获取这些特征点比对值各自对应的深度值(depth value)。基于前述可知,深度选择模块154已将景深范围重复性过大的图像群组过滤掉,而参数更新模块153将判定是否已针对大部分的深度值搜集到对应的特征点比对值。换言之,在一实施例中,参数更新模块153同样根据特征点比对值各自对应的深度值来分类各个特征点比对值,并判断每一深度值所对应的特征点比对值的数目是否足够,而判定校正数据库内的数据量是否足够。In addition, the parameter update module 153 can also determine whether the data volume in the current calibration database is sufficient through the depth information. In detail, the depth values (depth values) corresponding to the comparison values of these feature points can be obtained by performing three-dimensional depth estimation on the first feature point and the corresponding second feature point. Based on the foregoing, it can be known that the depth selection module 154 has filtered out image groups with excessive depth range repeatability, and the parameter update module 153 will determine whether corresponding feature point comparison values have been collected for most of the depth values. In other words, in one embodiment, the parameter update module 153 also classifies each feature point comparison value according to the depth value corresponding to each feature point comparison value, and judges whether the number of feature point comparison values corresponding to each depth value is enough, and determine whether the amount of data in the calibration database is sufficient.

值得一提的是,倘若在建立校正数据库的过程中,第一图像传感器110与第二图像传感器之间的空间设置关系又改变时,代表校正数据库内的所记录的数据已无法使用。在一实施例中,参数更新模块153还可在记录特征点比对值至校正数据库之前,判断此特征点比对值是否与校正数据库内的数据具有相当的差异。若是,参数更新模块153可将先前所记录的数据丢弃,并重新开始建立另一校正数据库,因此而获取最理想的当前校正参数。It is worth mentioning that if the spatial arrangement relationship between the first image sensor 110 and the second image sensor is changed during the establishment of the calibration database, it means that the recorded data in the calibration database is no longer available. In one embodiment, the parameter updating module 153 may also determine whether the comparison value of the feature point is significantly different from the data in the calibration database before recording the comparison value of the feature point into the calibration database. If so, the parameter updating module 153 may discard the previously recorded data and start building another calibration database, so as to obtain the most ideal current calibration parameters.

也就是说,一旦参数更新模块153判断校正数据库内的数据量足够,参数更新模块153便可停止记录并开始计算新的当前校正参数。反之,参数更新模块153持续记录新的特征点比对值至校正数据库。因此,若步骤S408判断为是,在步骤S409,参数更新模块153根据特征点比对值更新当前校正参数。参数更新模块153例如利用校正数据库内的特征比对值来进行最佳化演算法而寻找出最佳的当前校正参数,致使经当前校正参数校正后的两图像可对应至理想的参数座标关系。最佳化演算法例如是梯度下降法(gradient decentmethod)、莱文贝格-马夸特方法(Levenberg-Marquardt method,简称LM method)或高斯牛顿演算法(Gauss-Newton method)等,本发明对此不限制。That is to say, once the parameter update module 153 determines that the amount of data in the calibration database is sufficient, the parameter update module 153 can stop recording and start calculating new current calibration parameters. On the contrary, the parameter update module 153 keeps recording new comparison values of feature points to the calibration database. Therefore, if the determination in step S408 is yes, in step S409, the parameter updating module 153 updates the current calibration parameters according to the feature point comparison value. The parameter update module 153, for example, uses the feature comparison value in the correction database to perform an optimization algorithm to find the best current correction parameters, so that the two images corrected by the current correction parameters can correspond to the ideal parameter coordinate relationship . The optimization algorithm is, for example, gradient descent method (gradient decent method), Levenberg-Marquardt method (Levenberg-Marquardt method, LM method for short) or Gauss-Newton algorithm (Gauss-Newton method), etc. This is unlimited.

综上所述,在本发明的一实施例中,当图像获取装置及时的检测到图像发生形变时,通过校正数据库的建立来适应性地校正预存于图像获取装置的当前校正参数,以将左右图像校正至理想的参数座标关系。如此一来,可在使用者无察觉的情况下进行当前校正参数的调整,以确保图像获取装置的拍摄品质。再者,本发明的实施例可进一步根据深度信息与特征点位置来判断数据库中的特征点信息是否搜集完整。藉此,一旦搜集到足够的数据量,可立即的通过校正数据库内所记录的特征点比对值来产生新的当前校正参数,从而大幅缩短搜集数据与进行校正的所需时间。To sum up, in one embodiment of the present invention, when the image acquisition device detects that the image is deformed in time, the current correction parameters pre-stored in the image acquisition device are adaptively corrected through the establishment of the correction database, so that the left and right The image is corrected to the ideal parametric coordinate relationship. In this way, the adjustment of the current calibration parameters can be performed without the user's awareness, so as to ensure the shooting quality of the image acquisition device. Furthermore, the embodiment of the present invention can further judge whether the feature point information in the database is collected completely according to the depth information and the feature point position. In this way, once a sufficient amount of data is collected, new current calibration parameters can be generated immediately by correcting the comparison values of feature points recorded in the database, thereby greatly shortening the time required for data collection and calibration.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (14)

1.一种图像形变校正方法,适用于具有第一图像传感器与第二图像传感器的图像获取装置,其中该图像获取装置具有关联于该第一图像传感器与该第二图像传感器的当前校正参数,其特征在于,该图像形变校正方法包括:1. An image distortion correction method applicable to an image acquisition device having a first image sensor and a second image sensor, wherein the image acquisition device has current correction parameters associated with the first image sensor and the second image sensor, It is characterized in that the image distortion correction method includes: 通过该第一图像传感器以及该第二图像传感器获取不同时间点所拍摄的多个图像群组,其中各所述图像群组分别包括第一图像以及第二图像,所述图像群组包括参考图像群组;A plurality of image groups captured at different time points are acquired by the first image sensor and the second image sensor, wherein each of the image groups includes a first image and a second image, and the image groups include a reference image group; 检测该参考图像群组中的第一参考图像与第二参考图像是否发生图像形变;以及Detecting whether image deformation occurs in the first reference image and the second reference image in the reference image group; and 当检测到该参考图像群组发生该图像形变时,根据所述图像群组对应的多个特征点比对值更新该当前校正参数,其中该当前校正参数用以对各所述第一图像以及对应的各所述第二图像进行图像纠正。When it is detected that the image deformation occurs in the reference image group, the current correction parameter is updated according to a plurality of feature point comparison values corresponding to the image group, wherein the current correction parameter is used for each of the first image and Image correction is performed on each of the corresponding second images. 2.根据权利要求1所述的图像形变校正方法,其特征在于,检测该参考图像群组是否发生该图像形变的步骤包括:2. The image distortion correction method according to claim 1, wherein the step of detecting whether the image distortion occurs in the reference image group comprises: 检测该第一参考图像的第一特征点与该第二参考图像的第二特征点;以及detecting a first feature point of the first reference image and a second feature point of the second reference image; and 判断该第一特征点与该第二特征点分别在该第一参考图像与该第二参考图像的图像座标之间的偏移量是否超过门限值,若是,判定该参考图像群组发生该图像形变。judging whether the offset between the first feature point and the second feature point between the image coordinates of the first reference image and the second reference image exceeds a threshold value, and if so, determining that the reference image group occurs The image is distorted. 3.根据权利要求1所述的图像形变校正方法,其特征在于,检测该参考图像群组是否发生该图像形变的步骤包括:3. The image distortion correction method according to claim 1, wherein the step of detecting whether the image distortion occurs in the reference image group comprises: 根据该第一参考图像与该第二参考图像进行三维深度估测,以产生该参考图像群组中的参考对焦目标物的参考深度信息,并根据该参考深度信息取得关于该参考目标物的深度对焦位置;Performing 3D depth estimation according to the first reference image and the second reference image to generate reference depth information of a reference focus object in the reference image group, and obtaining the depth of the reference object according to the reference depth information focus position; 通过自动对焦程序而获取得关于该参考目标物的自动对焦位置;以及The auto-focus position of the reference object obtained through the auto-focus procedure; and 判断该参考对焦目标物所对应的深度对焦位置是否符合该自动对焦位置,若否,判定该参考图像群组发生该图像形变。It is determined whether the depth focus position corresponding to the reference focus target conforms to the auto focus position, and if not, it is determined that the image deformation occurs in the reference image group. 4.根据权利要求1所述的图像形变校正方法,其特征在于,在根据所述图像群组对应的所述特征点比对值更新该当前校正参数的步骤之前,该图像校正方法还包括:4. The image distortion correction method according to claim 1, wherein before the step of updating the current correction parameters according to the feature point comparison value corresponding to the image group, the image correction method further comprises: 针对所述图像群组进行三维深度估测,以产生各所述图像群组的深度信息;以及performing 3D depth estimation on the groups of images to generate depth information for each of the groups of images; and 根据各所述图像群组的该深度信息决定是否保留所述图像群组。It is determined whether to keep the image group according to the depth information of each image group. 5.根据权利要求1所述的图像形变校正方法,其特征在于,根据所述图像群组对应的所述特征点比对值更新该当前校正参数的步骤还包括:5. The image distortion correction method according to claim 1, wherein the step of updating the current correction parameters according to the comparison value of the feature points corresponding to the image group further comprises: 对所述第一图像与所述第二图像进行特征点检测,而获取所述第一图像的多个第一特征点与所述第二图像的多个第二特征点;performing feature point detection on the first image and the second image, and acquiring a plurality of first feature points of the first image and a plurality of second feature points of the second image; 比对所述第一特征点的座标位置以及分别与所述第一特征点相对应的所述第二特征点的座标位置,以获取所述第一特征点与所述第二特征点之间的所述特征点比对值;以及comparing the coordinate position of the first feature point with the coordinate position of the second feature point respectively corresponding to the first feature point to obtain the first feature point and the second feature point The comparison value of the feature points between; and 记录所述第一特征点与所述第二特征点之间的所述特征点比对值。Recording the feature point comparison value between the first feature point and the second feature point. 6.根据权利要求5所述的图像形变校正方法,其特征在于,记录所述第一特征点与所述第二特征点之间的所述特征点比对值的步骤还包括:6. The image distortion correction method according to claim 5, wherein the step of recording the comparison value of the feature point between the first feature point and the second feature point further comprises: 根据所述第一特征点的座标位置或/及所述第二特征点的座标位置分类各所述特征点比对值至多个统计槽。Classifying each feature point comparison value into a plurality of statistical slots according to the coordinate position of the first feature point and/or the coordinate position of the second feature point. 7.根据权利要求6所述的图像形变校正方法,其特征在于,根据所述图像群组对应的所述特征点比对值更新该当前校正参数的步骤包括:7. The image distortion correction method according to claim 6, wherein the step of updating the current correction parameters according to the comparison value of the feature points corresponding to the image group comprises: 根据所述统计槽中所述特征点比对值的数量与所述特征点比对值所对应的多个深度值,判断所述特征点比对值是否足够进行运算,若是,根据所述特征点比对值更新该当前校正参数,其中所述深度值是通过对所述第一特征点与对应的所述第二特征点进行三维深度估测而获取。According to the number of the feature point comparison values in the statistical slot and the multiple depth values corresponding to the feature point comparison values, it is judged whether the feature point comparison values are sufficient for operation, and if so, according to the feature The point comparison value updates the current correction parameter, wherein the depth value is obtained by performing three-dimensional depth estimation on the first feature point and the corresponding second feature point. 8.一种图像获取装置,具有第一图像传感器与第二图像传感器,其特征在于,该图像获取装置包括:8. An image acquisition device having a first image sensor and a second image sensor, characterized in that the image acquisition device comprises: 存储单元,记录多个模块,并存储关联于该第一图像传感器与该第二图像传感器的当前校正参数;以及a storage unit that records a plurality of modules and stores current calibration parameters associated with the first image sensor and the second image sensor; and 处理单元,耦接该第一图像传感器、该第二图像传感器以及存储单元,以存取并执行该存储单元中记录的所述模块,所述模块包括:A processing unit, coupled to the first image sensor, the second image sensor and the storage unit, to access and execute the modules recorded in the storage unit, the modules include: 获取模块,通过该第一图像传感器与该第二图像传感器获取不同时间点所拍摄的多个图像群组,各所述图像群组分别包括该第一图像传感器的第一图像以及该第二图像传感器的第二图像,而所述图像群组包括参考图像群组;The acquisition module acquires a plurality of image groups captured at different time points through the first image sensor and the second image sensor, and each of the image groups includes the first image and the second image of the first image sensor respectively a second image of the sensor, wherein the group of images includes a group of reference images; 形变检测模块,检测该参考图像群组中的第一参考图像与第二参考图像是否发生图像形变;The deformation detection module detects whether image deformation occurs in the first reference image and the second reference image in the reference image group; 参数更新模块,当该参考图像群组发生该图像形变时,该参数更新模块根据所述图像群组对应的多个特征点比对值更新该当前校正参数,其中该当前校正参数用以对各所述第一图像以及对应的各所述第二图像进行图像纠正。A parameter update module, when the image deformation occurs in the reference image group, the parameter update module updates the current correction parameter according to the comparison values of the plurality of feature points corresponding to the image group, wherein the current correction parameter is used for each Image correction is performed on the first image and the corresponding second images. 9.根据权利要求8所述的图像获取装置,其特征在于,该形变检测模块检测该第一参考图像的第一特征点与该第二参考图像的第二特征点,该形变检测模块判断该第一特征点与该第二特征点分别在该第一参考图像与该第二参考图像的图像座标之间的偏移量是否超过门限值,若是,该形变检测模块判定该参考图像群组发生该图像形变。9. The image acquisition device according to claim 8, wherein the deformation detection module detects the first feature point of the first reference image and the second feature point of the second reference image, and the deformation detection module judges the Whether the offset between the first feature point and the second feature point between the image coordinates of the first reference image and the second reference image exceeds a threshold value, if so, the deformation detection module determines the reference image group Group that image warping occurs. 10.根据权利要求8所述的图像获取装置,其特征在于,该形变检测模块根据该第一参考图像与该第二参考图像进行三维深度估测,以产生该参考图像群组中的参考对焦目标物的参考深度信息,并根据该参考深度信息取得关于该参考目标物的深度对焦位置,该形变检测模块通过自动对焦程序而获取得关于该参考目标物的自动对焦位置,且该形变检测模块判断该参考对焦目标物所对应的深度对焦位置是否符合该自动对焦位置,若否,该形变检测模块判定该参考图像群组发生该图像形变。10. The image acquisition device according to claim 8, wherein the deformation detection module performs three-dimensional depth estimation according to the first reference image and the second reference image, so as to generate a reference focus in the reference image group The reference depth information of the target object, and obtain the depth focus position of the reference target object according to the reference depth information, the deformation detection module obtains the auto focus position of the reference target object through the auto focus program, and the deformation detection module It is judged whether the depth focus position corresponding to the reference focus target conforms to the auto focus position, if not, the deformation detection module determines that the image deformation occurs in the reference image group. 11.根据权利要求8所述的图像获取装置,其特征在于,所述模块还包括:11. The image acquisition device according to claim 8, wherein the module further comprises: 深度选择模块,该深度选择模块针对所述图像群组进行三维深度估测,以产生各所述图像群组的深度信息,且该深度选择模块根据各所述图像群组的该深度信息决定是否保留所述图像群组。A depth selection module, the depth selection module performs three-dimensional depth estimation on the image groups to generate depth information of each of the image groups, and the depth selection module determines whether to The group of images is preserved. 12.根据权利要求8所述的图像获取装置,其特征在于,该参数更新模块对所述第一图像与所述第二图像进行特征点检测,而获取所述第一图像的多个第一特征点与所述第二图像的多个第二特征点,该参数更新模块对所述第一特征点的座标位置以及分别与所述第一特征点相对应的所述第二特征点的座标位置,以获取所述第一特征点与所述第二特征点之间的所述特征点比对值,该参数更新模块记录所述第一特征点与所述第二特征点之间的所述特征点比对值。12. The image acquisition device according to claim 8, wherein the parameter update module performs feature point detection on the first image and the second image, and acquires a plurality of first images of the first image. The feature point and the plurality of second feature points of the second image, the parameter update module for the coordinate position of the first feature point and the second feature point respectively corresponding to the first feature point Coordinate position, to obtain the feature point comparison value between the first feature point and the second feature point, the parameter update module records the difference between the first feature point and the second feature point The feature point comparison value of . 13.根据权利要求12所述的图像获取装置,其特征在于,该参数更新模块根据所述第一特征点的座标位置或/及所述第二特征点的座标位置分类各所述特征点比对值至多个统计槽。13. The image acquisition device according to claim 12, wherein the parameter updating module classifies each feature according to the coordinate position of the first feature point or/and the coordinate position of the second feature point Points compare values to multiple stat slots. 14.根据权利要求13所述的图像获取装置,其特征在于,该参数更新模块根据所述统计槽中所述特征点比对值的数量与所述特征点比对值所对应的多个深度值,判断所述特征点比对值是否足够进行运算,若是,该参数更新模块根据所述特征点比对值更新该当前校正参数,其中所述深度值是通过对所述第一特征点与对应的所述第二特征点进行三维深度估测而获取。14. The image acquisition device according to claim 13, wherein the parameter update module is based on the number of the feature point comparison values in the statistical slot and the multiple depths corresponding to the feature point comparison values value, to determine whether the comparison value of the feature point is sufficient for calculation, if so, the parameter update module updates the current correction parameter according to the comparison value of the feature point, wherein the depth value is obtained by comparing the first feature point with the The corresponding second feature points are obtained by performing three-dimensional depth estimation.
CN201410044039.3A 2014-01-28 2014-01-28 Image acquisition device and image deformation correction method thereof Active CN104811680B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410044039.3A CN104811680B (en) 2014-01-28 2014-01-28 Image acquisition device and image deformation correction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410044039.3A CN104811680B (en) 2014-01-28 2014-01-28 Image acquisition device and image deformation correction method thereof

Publications (2)

Publication Number Publication Date
CN104811680A CN104811680A (en) 2015-07-29
CN104811680B true CN104811680B (en) 2017-04-12

Family

ID=53696135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410044039.3A Active CN104811680B (en) 2014-01-28 2014-01-28 Image acquisition device and image deformation correction method thereof

Country Status (1)

Country Link
CN (1) CN104811680B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817575A (en) * 2015-11-30 2017-06-09 聚晶半导体股份有限公司 Image capture equipment and method for generating depth information and method for automatically correcting image capture equipment
US11582402B2 (en) * 2018-06-07 2023-02-14 Eys3D Microelectronics, Co. Image processing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423143B (en) * 2010-06-17 2014-01-11 Pixart Imaging Inc Image sensing module
CN102313515B (en) * 2010-07-08 2013-10-23 国立清华大学 Correction Method of 3D Digital Image Correlation Method
DE102010062496B4 (en) * 2010-12-07 2022-01-20 Robert Bosch Gmbh Method and device for processing image information from two sensors of a stereo sensor system suitable for image acquisition
TW201310004A (en) * 2011-08-18 2013-03-01 Nat Applied Res Laboratories Correlation arrangement device of digital images

Also Published As

Publication number Publication date
CN104811680A (en) 2015-07-29

Similar Documents

Publication Publication Date Title
TWI511081B (en) Image capturing device and method for calibrating image deformation thereof
US9697604B2 (en) Image capturing device and method for detecting image deformation thereof
CN109922251B (en) Method, device and system for rapid capture
US9706189B2 (en) Image capturing device and method for calibrating image defection thereof
US20160295097A1 (en) Dual camera autofocus
KR102032882B1 (en) Autofocus method, device and electronic apparatus
CN105453136B (en) The three-dimensional system for rolling correction, method and apparatus are carried out using automatic focus feedback
CN109712192B (en) Camera module calibration method and device, electronic equipment and computer readable storage medium
TWI432870B (en) Image processing system and automatic focusing method
CN107888819A (en) A kind of auto focusing method and device
CN114494013B (en) Image stitching method, device, equipment and medium
CN103763458B (en) Method and device for scene change detection
JP5968379B2 (en) Image processing apparatus and control method thereof
TWI595444B (en) Image capturing device, depth information generation method and auto-calibration method thereof
TWI460523B (en) Auto focus method and auto focus apparatus
CN104811688B (en) Image acquisition device and image deformation detection method thereof
CN104811680B (en) Image acquisition device and image deformation correction method thereof
TWI621831B (en) Image capturing device and method for correcting phase focusing thereof
CN104460184B (en) Method and facility for focusing in shooting device
US9723189B2 (en) Portable electronic-devices and methods for image extraction
CN104811604B (en) Image acquisition device and image deformation correction method thereof
CN117934631A (en) Binocular camera calibration method, device, equipment and storage medium
CN105025220B (en) Multi-lens image adjusting system and method thereof
TW201616168A (en) Auto-focus method and electronic apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant