CN104799852B - 基于超限学习机自编码的运动想象脑电信号特征的提取方法 - Google Patents
基于超限学习机自编码的运动想象脑电信号特征的提取方法 Download PDFInfo
- Publication number
- CN104799852B CN104799852B CN201510256463.9A CN201510256463A CN104799852B CN 104799852 B CN104799852 B CN 104799852B CN 201510256463 A CN201510256463 A CN 201510256463A CN 104799852 B CN104799852 B CN 104799852B
- Authority
- CN
- China
- Prior art keywords
- mrow
- mtd
- msub
- msup
- mtr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Evolutionary Computation (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Psychology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510256463.9A CN104799852B (zh) | 2015-05-19 | 2015-05-19 | 基于超限学习机自编码的运动想象脑电信号特征的提取方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510256463.9A CN104799852B (zh) | 2015-05-19 | 2015-05-19 | 基于超限学习机自编码的运动想象脑电信号特征的提取方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104799852A CN104799852A (zh) | 2015-07-29 |
CN104799852B true CN104799852B (zh) | 2018-05-08 |
Family
ID=53685373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510256463.9A Active CN104799852B (zh) | 2015-05-19 | 2015-05-19 | 基于超限学习机自编码的运动想象脑电信号特征的提取方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104799852B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106779091B (zh) * | 2016-12-23 | 2019-02-12 | 杭州电子科技大学 | 一种基于超限学习机及到达距离的周期振动信号定位方法 |
CN106951844A (zh) * | 2017-03-10 | 2017-07-14 | 中国矿业大学 | 一种基于深度极速学习机的脑电信号分类方法及系统 |
CN107085704A (zh) * | 2017-03-27 | 2017-08-22 | 杭州电子科技大学 | 基于elm自编码算法的快速人脸表情识别方法 |
CN106821376B (zh) * | 2017-03-28 | 2019-12-06 | 南京医科大学 | 一种基于深度学习算法的癫痫发作预警系统 |
CN108181995A (zh) * | 2018-01-31 | 2018-06-19 | 京东方科技集团股份有限公司 | 交互系统、方法及装置 |
CN110646203B (zh) * | 2019-08-23 | 2021-06-04 | 中国地质大学(武汉) | 基于奇异值分解和自编码器的轴承故障特征提取方法 |
CN112244877B (zh) * | 2020-10-15 | 2021-09-07 | 燕山大学 | 一种基于脑机接口的大脑意图识别方法及系统 |
CN113951898B (zh) * | 2021-10-15 | 2023-03-10 | 浙江大学 | 数据迁移的p300脑电信号检测方法及装置、电子设备、介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG183435A1 (en) * | 2010-03-15 | 2012-09-27 | Singapore Health Serv Pte Ltd | Method of predicting the survivability of a patient |
KR101910576B1 (ko) * | 2011-11-08 | 2018-12-31 | 삼성전자주식회사 | 인공신경망을 이용하여 신속하게 입력 패턴을 분류하는 방법 및 장치 |
CN104361345A (zh) * | 2014-10-10 | 2015-02-18 | 北京工业大学 | 基于约束极速学习机的脑电信号分类方法 |
CN104598920B (zh) * | 2014-12-30 | 2016-05-18 | 中国人民解放军国防科学技术大学 | 基于Gist特征与极限学习机的场景分类方法 |
CN104523268B (zh) * | 2015-01-15 | 2017-02-22 | 江南大学 | 一种具备迁移学习能力的脑电信号识别模糊系统方法 |
-
2015
- 2015-05-19 CN CN201510256463.9A patent/CN104799852B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN104799852A (zh) | 2015-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104799852B (zh) | 基于超限学习机自编码的运动想象脑电信号特征的提取方法 | |
Yang et al. | A recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEG | |
CN106886792B (zh) | 一种基于分层机制构建多分类器融合模型的脑电情感识别方法 | |
Zamanian et al. | A new feature extraction method to improve emotion detection using EEG signals | |
Yao et al. | Deep feature learning and visualization for EEG recording using autoencoders | |
CN113191225B (zh) | 一种基于图注意力网络的情绪脑电识别方法及系统 | |
CN106529476A (zh) | 一种基于深层堆叠网络的脑电信号特征提取及分类方法 | |
CN112766355B (zh) | 一种标签噪声下的脑电信号情绪识别方法 | |
Luo et al. | A GAN-based data augmentation method for multimodal emotion recognition | |
CN104299225A (zh) | 一种表情识别在大数据分析的应用方法及系统 | |
CN111920420A (zh) | 一种基于统计学习的患者行为多模态分析与预测系统 | |
CN106503616A (zh) | 一种基于分层超限学习机的运动想象脑电信号分类方法 | |
Bai et al. | Emotional monitoring of learners based on EEG signal recognition | |
CN113158984A (zh) | 基于复Morlet小波和轻量级卷积网络的轴承故障诊断方法 | |
Huang et al. | Classify motor imagery by a novel CNN with data augmentation | |
Liu et al. | P300 event-related potential detection using one-dimensional convolutional capsule networks | |
Zainuddin et al. | Machine learning and deep learning performance in classifying dyslexic children’s electroencephalogram during writing | |
Li et al. | STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition | |
CN104850225B (zh) | 一种基于多层次融合的活动识别方法 | |
CN112274154A (zh) | 基于脑电样本权重调整的跨被试疲劳驾驶分类方法 | |
Wang et al. | Multi-channel EEG classification based on Fast convolutional feature extraction | |
Guo et al. | Brain visual image signal classification via hybrid dilation residual shrinkage network with spatio-temporal feature fusion | |
Xuan et al. | Emotion recognition from EEG using all-convolution residual neural network | |
Yashaswini et al. | Stress detection using deep learning and IoT | |
Regin et al. | Use of a fatigue framework to adopt a new normalization strategy for deep learning-based augmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20150729 Assignee: Luoyang Lexiang Network Technology Co.,Ltd. Assignor: Beijing University of Technology Contract record no.: X2024980000083 Denomination of invention: A Method for Extracting Features of Motion Imagination EEG Signals Based on Overlimit Learning Machine Self encoding Granted publication date: 20180508 License type: Common License Record date: 20240104 Application publication date: 20150729 Assignee: Luoyang Jingrui Industrial Technology Co.,Ltd. Assignor: Beijing University of Technology Contract record no.: X2024980000079 Denomination of invention: A Method for Extracting Features of Motion Imagination EEG Signals Based on Overlimit Learning Machine Self encoding Granted publication date: 20180508 License type: Common License Record date: 20240104 |
|
EE01 | Entry into force of recordation of patent licensing contract |