CN104796694B - Optimization intraframe video coding method based on video texture information - Google Patents
Optimization intraframe video coding method based on video texture information Download PDFInfo
- Publication number
- CN104796694B CN104796694B CN201510216023.0A CN201510216023A CN104796694B CN 104796694 B CN104796694 B CN 104796694B CN 201510216023 A CN201510216023 A CN 201510216023A CN 104796694 B CN104796694 B CN 104796694B
- Authority
- CN
- China
- Prior art keywords
- coding
- video
- unit
- coding unit
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
一种视频编码领域的基于视频纹理信息的优化帧内视频编码方法,通过I帧梯度信息计算与映射,利用视频图像梯度信息及其实际含义对帧内编码帧所有像素进行计算,并针对高效视频帧内预测模式进行映射;编码单元划分,根据当前编码单元中像素的梯度信息判定编码单元属性,并结合较大编码单元所包含四个较小编码单元的属性及方向一致性由下至上地判定划分方式,跳过不必要的划分遍历;快速模式选择,采用线下训练方式,对不同编码单元属性条件下的预测模式选择进行预测与优化。本发明结合视频纹理特性,对帧内视频编码的模式选择与编码单元划分进行了优化,在保证编码质量前提下提高了编码速度,并且保证了算法对不同视频序列编码的稳定性。
An optimized intra-frame video coding method based on video texture information in the field of video coding. Through the calculation and mapping of I-frame gradient information, the video image gradient information and its actual meaning are used to calculate all pixels of the intra-frame coding frame, and for high-efficiency video The intra prediction mode is used for mapping; the coding unit is divided, and the attribute of the coding unit is determined according to the gradient information of the pixels in the current coding unit, and the attribute and direction consistency of the four smaller coding units included in the larger coding unit are determined from bottom to top The division method skips unnecessary division traversal; the fast mode selection adopts the offline training method to predict and optimize the prediction mode selection under different coding unit attribute conditions. The invention optimizes the mode selection and coding unit division of the intra-frame video coding in combination with the texture characteristics of the video, improves the coding speed under the premise of ensuring the coding quality, and ensures the stability of the algorithm for coding different video sequences.
Description
技术领域technical field
本发明涉及的是一种视频编码技术领域的帧内视频编码的方法,具体是一种基于视频纹理信息的优化帧内视频编码方法。The present invention relates to an intra-frame video coding method in the technical field of video coding, in particular to an optimized intra-frame video coding method based on video texture information.
背景技术Background technique
视频编码技术,是将视频根据压缩标准通过一定技术压缩转换成为视频码流。目前,针对不同视频应用领域以及技术发展,存在着多种视频编码标准,主要有MPEG-x系列和H.26x系列,如MPEG-2、MPEG-4标准,H.263、H.264标准等,此外,还有国内数字音视频编解码技术标准工作组制定的音视频编码标准AVS。随着多媒体的发展,人们对于3D、高清、超高清等视频的需求增强。随之而来的是对视频编码效率的更高要求,于是诞生了HEVC(highefficiency video coding,高效视频编码),实现了相比于H.264近50%的编码效率提升。AVS工作组也制定出了新一代高效视频编码标准,AVS2。达到了与HEVC相近,甚至于在某些视频场景应用方面更加高效的视频编码标准。为了追求编码质量的提升,高效视频编码引入了大量新的编码技术,在提升质量的同时也大大增加了编码的计算复杂度,尤其集中在视频编码中的帧内编码模块,使得编码速度降低。对高效视频编码标准进行优化,是视频编码研究的一个研究热点。Video coding technology is to compress and convert video into video code stream through certain technology according to compression standard. At present, for different video application fields and technology development, there are many video coding standards, mainly MPEG-x series and H.26x series, such as MPEG-2, MPEG-4 standards, H.263, H.264 standards, etc. , In addition, there is the audio and video coding standard AVS formulated by the domestic digital audio and video coding and decoding technology standard working group. With the development of multimedia, people's demand for 3D, high-definition, ultra-high-definition and other videos has increased. Followed by higher requirements for video coding efficiency, HEVC (high efficiency video coding, high-efficiency video coding) was born, which achieved a nearly 50% improvement in coding efficiency compared to H.264. The AVS working group has also formulated a new generation of high-efficiency video coding standard, AVS2. It has reached a video coding standard that is similar to HEVC, and even more efficient in some video scene applications. In pursuit of the improvement of coding quality, high-efficiency video coding introduces a large number of new coding technologies, which greatly increases the computational complexity of coding while improving the quality, especially the intra-frame coding module in video coding, which reduces the coding speed. Optimizing high-efficiency video coding standards is a research hotspot in video coding research.
空间相关性与时间相关性是视频压缩的重要依据。在帧内编码中,空间相关性往往能在编码过程中发挥重要作用。视频纹理信息正是空间相关性的体现,在图像处理与视频编码中均被广泛应用。根据对现有技术的检索了解,边缘信息、空间相关性统计、梯度信息等方式均为对空间相关性的重要应用。在视频编码过程中,利用视频纹理信息对编码方式进行预测,能够合理减少编码过程中需要遍历的预测及分割模式,在准确预测的前提下,大量减少高效视频编码的计算复杂度,从而实现高效视频编码器的合理优化。对编码过程的简化与替代往往会带来视频编码质量的下降,不合理的编码框架修改也会造成编码器的不稳定。如何准确应用视频纹理信息,与视频编码合理结合,实现准确预测,降低视频编码复杂度是当前编码研究的一个重要课题。Spatial correlation and temporal correlation are important basis for video compression. In intra coding, spatial correlation can often play an important role in the coding process. Video texture information is the embodiment of spatial correlation, and is widely used in image processing and video coding. According to the search and understanding of the prior art, methods such as edge information, spatial correlation statistics, and gradient information are all important applications of spatial correlation. In the video coding process, using video texture information to predict the coding method can reasonably reduce the prediction and segmentation modes that need to be traversed in the coding process. Under the premise of accurate prediction, the computational complexity of high-efficiency video coding is greatly reduced, so as to achieve high efficiency. Reasonable optimization of video encoders. The simplification and replacement of the encoding process will often lead to a decrease in the quality of video encoding, and unreasonable modification of the encoding framework will also cause the instability of the encoder. How to accurately apply video texture information and rationally combine with video coding to achieve accurate prediction and reduce the complexity of video coding is an important topic in current coding research.
经过对现有技术的检索发现,中国专利文献号CN103517069A,公开(公告)日2014.01.15,公开了一种基于纹理分析的HEVC帧内预测快速模式选择方法,该方法在对编码树单元进行帧内预测之前,根据水平、垂直、左下、右下等四个方向上的梯度绝对值和确定编码树单元中每一个4×4单元的主纹理方向和纹理复杂度,并根据纹理平滑区域采用较大编码单元,纹理复杂区域采用较小编码单元的原则确定当前编码树单元的划分。在预测时,根据预测单元的主纹理方向,排除掉最不可能的若干预测模式,然后按照HEVC编码标准进行粗略模式选择和率失真优化模式选择。该技术所提出的基于纹理分析的HEVC帧内预测快速模式选择方法能够在保证编码质量的前提下,显著提高编码速度。但该现有技术与本发明相比,其无法解决的技术问题包括直接而准确的预测方向估计,精简的模式选择列表以及针对不同视频序列特征处理的预测模式选择调整和编码单元划分。在对不同视频序列帧内编码稳定性方面,本发明具有更强的稳定性与准确性。After searching the prior art, it was found that Chinese Patent Document No. CN103517069A, public (announcement) date 2014.01.15, discloses a fast mode selection method for HEVC intra-frame prediction based on texture analysis. Before the intra-prediction, determine the main texture direction and texture complexity of each 4×4 unit in the coding tree unit according to the absolute value of the gradient in the four directions of horizontal, vertical, lower left, and lower right, and use a relatively smooth area according to the texture Large coding units and areas with complex textures use the principle of smaller coding units to determine the division of the current coding tree unit. When predicting, according to the main texture direction of the prediction unit, several least likely prediction modes are excluded, and then rough mode selection and rate-distortion optimization mode selection are performed according to the HEVC coding standard. The HEVC intra prediction fast mode selection method based on texture analysis proposed by this technology can significantly improve the encoding speed while ensuring the encoding quality. However, compared with the present invention, this prior art cannot solve technical problems including direct and accurate prediction direction estimation, simplified mode selection list, prediction mode selection adjustment and coding unit division for different video sequence feature processing. In terms of intra-frame coding stability for different video sequences, the present invention has stronger stability and accuracy.
中国专利文献号CN103096090A,公开(公告)日2013.05.08,公开了一种用于视频压缩中的编码块划分的方法,其特征在于,包括以下步骤:读取整个LCU中的像素值,完成块合并搜索表;进入每个深度的CU,根据深度和位置信息,获取搜索表对应位置的结合块的深度和位置信息;若当前CU深度与结合块深度一致,进行由下至上的块划分方法的判断流程;否则,进行由上至下的块划分快速算法的判断流程。采用该技术结合两个方面提出的块划分快速算法在保证HEVC编码器的视频质量和输出码率基本不变的前提下,大大加快了编码速度,提高编码效率。但该现有技术与本发明相比,其无法解决的技术问题包括快捷直观的视频空间相关性与纹理信息应用。搜索表方法计算复杂且优化性较低,该现有技术更是仅对深度划分进行修正。本发明采用更加简明直观的计算方法将预测与深度划分相结合,优化速度与性能都大大提升。Chinese Patent Document No. CN103096090A, Publication (Announcement) Day 2013.05.08, discloses a method for encoding block division in video compression, which is characterized in that it includes the following steps: read the pixel values in the entire LCU, and complete the block Merge the search table; enter the CU of each depth, and obtain the depth and position information of the combined block corresponding to the search table according to the depth and position information; if the current CU depth is consistent with the combined block depth, perform a bottom-up block division method Judgment process; otherwise, perform the judgment process of the block division fast algorithm from top to bottom. Using this technology combined with two aspects, the block division fast algorithm proposed greatly speeds up the encoding speed and improves the encoding efficiency under the premise of ensuring that the video quality and output bit rate of the HEVC encoder are basically unchanged. However, compared with the present invention, this prior art has unsolvable technical problems including fast and intuitive application of video spatial correlation and texture information. The search table method is computationally complex and has low optimization, and this prior art only corrects the depth division. The present invention uses a more concise and intuitive calculation method to combine prediction and depth division, and the optimization speed and performance are greatly improved.
发明内容Contents of the invention
本发明针对现有技术存在的上述不足,提出一种基于视频纹理信息的优化帧内视频编码方法,采用了视频序列的梯度信息来对帧内编码的预测模式进行筛选,减少了需要进行大量复杂运算的率失真判定候选量。并采用了针对高效视频编码中递归编码单元划分框架的由下至上划分优化。根据视频纹理复杂度将编码单元划分为平滑与粗糙两种属性,再针对性的判定编码单元的合并和划分。同时为了保证编码框架对不同视频序列编码效率的稳定性,基于实验,对不同属性编码单元选用不同数量的预测模式候选,从而在保证编码质量的稳定与优良条件下,大大提升了视频编码的速度。Aiming at the above-mentioned deficiencies in the prior art, the present invention proposes an optimized intra-frame video coding method based on video texture information, which uses the gradient information of the video sequence to screen the prediction modes of intra-frame coding, reducing the need for a large number of complex Calculated rate-distortion decision candidates. A bottom-up partition optimization for the recursive coding unit partition framework in high-efficiency video coding is adopted. According to the video texture complexity, the coding unit is divided into smooth and rough two attributes, and then the combination and division of the coding unit are determined in a targeted manner. At the same time, in order to ensure the stability of the encoding framework for encoding efficiency of different video sequences, based on experiments, different numbers of prediction mode candidates are selected for encoding units with different attributes, thereby greatly improving the speed of video encoding while ensuring stable and excellent encoding quality. .
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明包括以下步骤:The present invention comprises the following steps:
第一步,对帧内编码帧,即I帧的所有像素进行梯度计算,得到代表像素运动方向的梯度值;通过对比帧内预测方向图与梯度的关系得出梯度与预测模式映射关系图,从而在编码过程中得出各像素的最优预测模式;The first step is to calculate the gradient of all pixels in the intra-frame coding frame, that is, the I frame, to obtain the gradient value representing the direction of pixel motion; by comparing the relationship between the intra-frame prediction direction map and the gradient, the gradient and prediction mode mapping relationship diagram is obtained, Thus, the optimal prediction mode of each pixel is obtained during the encoding process;
第二步,根据视频纹理信息对编码块进行属性分类,然后就相同属性的编码单元进行合并,再对优化后的编码单元进行可调整的编码单元划分;The second step is to classify the attributes of the coding blocks according to the video texture information, and then merge the coding units with the same attributes, and then divide the optimized coding units into adjustable coding units;
所述的属性分类是指:对当前编码单元的各像素的最优预测模式进行统计,当统计结果中存在一种模式选择率超过80%,则判断在当前编码单元中,像素具有统一的运行方向,图像纹理较为简单,将该编码单元的属性设定为平滑单元;否则将该单元的属性设定为粗糙单元。The attribute classification refers to: making statistics on the optimal prediction modes of each pixel in the current coding unit, and when there is a mode selection rate exceeding 80% in the statistical results, it is judged that in the current coding unit, the pixel has a uniform operation direction, the image texture is relatively simple, set the attribute of the coding unit as a smooth unit; otherwise, set the attribute of this unit as a rough unit.
所述的合并是指:从最小的编码单元8x8模块进行分析判定,当连续的四个相同大小编码单元均为平滑属性且其主要梯度方向具有一致性,则这四个单元可以合为一个较大单元,且该较大编码单元也设定为平滑单元,梯度方向与之一致;否则选择当前编码单元大小,不对其进行合并操作。The merging refers to: analyzing and judging from the smallest coding unit 8x8 module, when four consecutive coding units of the same size are all smooth and their main gradient directions are consistent, then these four units can be combined into one relatively A large unit, and the larger coding unit is also set as a smooth unit, and the gradient direction is consistent with it; otherwise, the size of the current coding unit is selected, and the merge operation is not performed on it.
第三步,根据编码单元的不同属性设定不同的模式候选值进行预测,然后在梯度映射统计出的梯度方向中根据模式出现频率从大到小选择出对应数量的模式进行RDcost计算,选择RDcost最小的模式,即为最佳预测模式。The third step is to set different mode candidate values according to the different attributes of the coding unit for prediction, and then select the corresponding number of modes in the gradient direction calculated by the gradient mapping statistics according to the mode frequency from large to small for RDcost calculation, and select RDcost The smallest mode is the best predictive mode.
所述的预测,首先通过线下训练的方式,选择不同分辨率的不同序列分别进行测试,根据编码结果选择编码速度与质量的最佳平衡点,然后围绕平衡点进行分组对比测试,实验选择出平滑单元与粗糙单元分别应选择的最佳模式候选数量。For the above prediction, firstly, through offline training, different sequences with different resolutions are selected for testing respectively, and the best balance point between encoding speed and quality is selected according to the encoding result, and then group comparison tests are carried out around the balance point, and the experimentally selected The number of best mode candidates that should be selected by the smooth unit and the rough unit respectively.
技术效果technical effect
与现有技术相比,本发明结合视频纹理信息对帧内编码的预测模式选择以及编码单元划分进行优化,从而降低编码复杂度,提高编码速度。整个编码过程分为两个主要部分,快速模式选择与快速编码单元划分。通过视频纹理的梯度信息,以及其与预测方向和编码单元划分的关系,对预测模式选择的计算过程进行简化,并对编码单元的划分进行预测,避免不必要的编码预测计算,从而提高转码速度,节省了时间。Compared with the prior art, the present invention combines video texture information to optimize prediction mode selection and coding unit division of intra-frame coding, thereby reducing coding complexity and improving coding speed. The whole coding process is divided into two main parts, fast mode selection and fast coding unit division. Through the gradient information of the video texture, and its relationship with the prediction direction and the division of the coding unit, the calculation process of the prediction mode selection is simplified, and the division of the coding unit is predicted to avoid unnecessary coding prediction calculations, thereby improving transcoding Speed saves time.
附图说明Description of drawings
图1为本发明流程示意图。Fig. 1 is a schematic flow chart of the present invention.
图2为序列BQ Square性能曲线比较图;Figure 2 is a comparison chart of the serial BQ Square performance curve;
图中:QP分别为27、32、38、45。In the picture: QP are 27, 32, 38, 45 respectively.
具体实施方式detailed description
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
实施例1Example 1
如图1所示,本实施例包括以下步骤:As shown in Figure 1, this embodiment includes the following steps:
步骤一、对帧内编码帧,即I帧的所有像素进行梯度计算,得到代表像素运动方向的梯度值;通过对比帧内预测方向图与梯度的关系得出梯度与预测模式映射关系图,从而在编码过程中得出各像素的最优预测模式。Step 1. Gradient calculation is performed on all pixels of the intra-frame coding frame, that is, the I frame, to obtain a gradient value representing the direction of motion of the pixel; by comparing the relationship between the intra-frame prediction direction map and the gradient, the gradient and the prediction mode mapping relationship diagram are obtained, thereby The optimal prediction mode for each pixel is obtained during the encoding process.
HEVC为了保证预测的准确性,引入了大量的帧内预测方向,例如HEVC中的亮度模块采用了33个方向性预测模式及两个特殊预测模式(DC、planar),AVS2中采用了30个方向性预测模式与三个特殊预测模式(DC、plane、双线性),上述梯度值与HEVC中的帧内预测方向性模式有一一对应的映射关系。In order to ensure the accuracy of prediction, HEVC introduces a large number of intra-frame prediction directions. For example, the brightness module in HEVC uses 33 directional prediction modes and two special prediction modes (DC, planar), and AVS2 uses 30 directions. The directional prediction mode and three special prediction modes (DC, plane, bilinear), the above gradient value and the intra prediction directional mode in HEVC have a one-to-one mapping relationship.
步骤二、根据视频纹理信息对编码块进行分析判定,从而做出快速划分方式选择,具体为:Step 2: Analyze and judge the coding block according to the video texture information, so as to make a fast division method selection, specifically:
2.1)对当前编码单元的各像素的最优预测模式进行统计,当统计结果中存在一种模式选择率超过80%,则判断在当前编码单元中,像素具有统一的运行方向,图像纹理较为简单,将该编码单元的属性设定为平滑单元;否则将该单元的属性设定为粗糙单元。2.1) Make statistics on the optimal prediction mode of each pixel in the current coding unit, and when there is a mode selection rate exceeding 80% in the statistical results, it is judged that in the current coding unit, the pixels have a unified running direction, and the image texture is relatively simple , set the property of the coding unit as a smooth unit; otherwise, set the property of the unit as a rough unit.
2.2)从最小的编码单元8x8模块进行分析判定,当连续的四个相同大小编码单元均为平滑属性且其主要梯度方向具有一致性,则这四个单元可以合为一个较大单元,且该较大编码单元也设定为平滑单元,梯度方向与之一致;否则选择当前编码单元大小,不对其进行合并。2.2) Analyze and judge from the smallest coding unit 8x8 module. When four consecutive coding units of the same size are smooth and their main gradient directions are consistent, these four units can be combined into a larger unit, and the The larger coding unit is also set as a smoothing unit, and the gradient direction is consistent with it; otherwise, the size of the current coding unit is selected and not merged.
2.3)对优化后的编码单元进行可调整的编码单元划分;基于HEVC中的递归计算方式,主要的计算复杂度始于最内部的最小编码单元,即8x8编码单元,因此本发明中设计的由下至上的划分判定模式能够最大程度的减少计算量。2.3) The optimized coding unit is divided into adjustable coding units; based on the recursive calculation method in HEVC, the main computational complexity starts from the innermost minimum coding unit, that is, the 8x8 coding unit, so the design in the present invention consists of The bottom-up division judgment mode can minimize the amount of calculation.
步骤三、快速模式选择,具体步骤包括:Step 3. Quick mode selection, the specific steps include:
3.1)采用线下训练的方式,选择不同分辨率的不同序列分别进行测试,根据编码结果选择编码速度与质量的最佳平衡点,再围绕平衡点进行分组对比测试,实验选择出平滑单元与粗糙单元分别应选择的最佳模式候选数量。3.1) Using offline training, select different sequences with different resolutions to test separately, select the best balance point between encoding speed and quality according to the encoding results, and then conduct group comparison tests around the balance point, and choose smooth units and rough units in the experiment. The number of best pattern candidates that the unit should choose respectively.
3.2)在梯度映射统计出的梯度方向中根据模式出现频率从大到小选择出对应数量的模式进行RDcost(Rate Distortion,率失真代价)计算,选择RDcost最小的模式,即为最佳预测模式。3.2) In the gradient direction calculated by the gradient mapping statistics, select the corresponding number of modes according to the mode occurrence frequency from large to small for RDcost (Rate Distortion, rate distortion cost) calculation, and select the mode with the smallest RDcost, which is the best prediction mode.
所述的RDcost计算是指:率失真值计算,即在对应一种码率情况下图像失真值。The RDcost calculation refers to the calculation of the rate-distortion value, that is, the image distortion value corresponding to a code rate.
综上所述,本发明的优点在于:In summary, the advantages of the present invention are:
1)结合了视频纹理特性,利用视频图像的空间相关性,对优化帧内视频编码器的预测模式选择进行了优化,减少了预测模块计算复杂度,在保证预测准确率的情况下节省了时间。1) Combining the characteristics of video texture and using the spatial correlation of video images, the prediction mode selection of the optimized intra-frame video encoder is optimized, which reduces the computational complexity of the prediction module and saves time while ensuring the prediction accuracy .
2)结合递归框架对编码单元划分进行了优化,减少了不必要的遍历,提高编码速度。2) Combined with the recursive framework, the coding unit division is optimized to reduce unnecessary traversal and improve the coding speed.
3)根据不同视频序列线下训练实验确定最佳预测模式数量选择,保证了算法对不同视频序列的编码效率稳定性。3) According to the offline training experiments of different video sequences, the selection of the optimal number of prediction modes is determined, which ensures the stability of the coding efficiency of the algorithm for different video sequences.
本发明提出的算法在AVS2参考代码RD_9.0上进行测试,采用全帧内参数配置。具体视频序列选用及参数均符合其平台要求设置:The algorithm proposed by the present invention is tested on the AVS2 reference code RD_9.0, and adopts full intra-frame parameter configuration. The selection and parameters of the specific video sequence are in line with the requirements of the platform:
为了评估算法性能,采用以下三个参数进行分析:In order to evaluate the algorithm performance, the following three parameters are used for analysis:
PSNR(dB)=PSNRYpro-PSNRYAVS2 PSNR(dB)=PSNRY pro -PSNRY AVS2
BR、ET、PSNR分别为码率增加百分比、编码减少时间百分比、Y信道峰值信噪比下降值。BR, ET, and PSNR are respectively the increase percentage of the code rate, the percentage reduction of the encoding time, and the decrease value of the peak signal-to-noise ratio of the Y channel.
实验结果如表1、图2所示。The experimental results are shown in Table 1 and Figure 2.
表1,QP=43的算法实验结果Table 1, algorithm experiment results of QP=43
由表1可以看出,本发明提出的算法对现有最新AVS2编码器算法减少了48%的编码时间,且在码率与信噪比方面影响较小,对不同视频序列编码质量十分稳定。As can be seen from Table 1, the algorithm proposed by the present invention reduces the encoding time by 48% to the existing latest AVS2 encoder algorithm, and has little impact on bit rate and signal-to-noise ratio, and the encoding quality of different video sequences is very stable.
另外,本发明不仅限于上述举例应用,对于所有基于编码单元的视频编码方法均可实现。对于其它编码标准下的根据本发明说明加以引用或变换的均应属于本发明所附权利要求的保护范围。In addition, the present invention is not limited to the above example applications, and can be implemented for all coding unit-based video coding methods. All references or transformations of the descriptions of the present invention under other coding standards shall belong to the protection scope of the appended claims of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510216023.0A CN104796694B (en) | 2015-04-30 | 2015-04-30 | Optimization intraframe video coding method based on video texture information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510216023.0A CN104796694B (en) | 2015-04-30 | 2015-04-30 | Optimization intraframe video coding method based on video texture information |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104796694A CN104796694A (en) | 2015-07-22 |
CN104796694B true CN104796694B (en) | 2017-08-15 |
Family
ID=53561172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510216023.0A Expired - Fee Related CN104796694B (en) | 2015-04-30 | 2015-04-30 | Optimization intraframe video coding method based on video texture information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104796694B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106101711B (en) * | 2016-08-26 | 2019-03-01 | 成都杰华科技有限公司 | A kind of quick real-time video codec compression algorithm |
CN108259897B (en) * | 2018-01-23 | 2021-08-27 | 北京易智能科技有限公司 | Intra-frame coding optimization method based on deep learning |
CN109587481B (en) * | 2018-10-26 | 2020-07-10 | 江苏怀业信息技术股份有限公司 | Video encoding method and apparatus |
CN109510983B (en) * | 2018-10-26 | 2020-08-11 | 苏州龙盈软件开发有限公司 | Multi-mode selection prediction method for complex texture in bandwidth compression |
CN109660793B (en) * | 2018-10-26 | 2021-03-16 | 西安科锐盛创新科技有限公司 | Prediction method for bandwidth compression |
CN109413421B (en) * | 2018-10-26 | 2021-01-19 | 张豪 | Video encoding method, video encoding apparatus, video decoding method, and video decoding apparatus |
CN109982079B (en) * | 2019-04-03 | 2021-04-02 | 北京电子工程总体研究所 | Intra-frame prediction mode selection method combined with texture space correlation |
CN110213584A (en) * | 2019-07-03 | 2019-09-06 | 北京电子工程总体研究所 | Coding unit classification method and coding unit sorting device based on Texture complication |
CN110708551B (en) * | 2019-10-22 | 2024-07-02 | 腾讯科技(深圳)有限公司 | Video encoding method, apparatus, computer-readable storage medium, and computer device |
CN111953987B (en) * | 2020-07-15 | 2022-08-09 | 广州柯维新数码科技有限公司 | Video transcoding method, computer device and storage medium |
CN111953988B (en) * | 2020-07-15 | 2022-08-09 | 广州柯维新数码科技有限公司 | Video transcoding method, computer device and storage medium |
CN114449273B (en) * | 2020-11-06 | 2023-07-21 | 北京大学 | HEVC-based enhanced block partition search method and device |
CN113194311B (en) * | 2021-04-27 | 2022-12-27 | 北京京东方技术开发有限公司 | Image processing method, image processor, and storage medium |
CN114040211B (en) * | 2021-10-27 | 2024-10-11 | 中山大学 | AVS 3-based intra-frame prediction fast decision method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010132977A1 (en) * | 2009-05-21 | 2010-11-25 | Ecole De Technologie Superieure | Method and system for efficient video transcoding |
JP2011525094A (en) * | 2008-06-16 | 2011-09-08 | ドルビー・ラボラトリーズ・ライセンシング・コーポレーション | Rate control model adaptation based on slice dependency for video coding |
CN102984521A (en) * | 2012-12-12 | 2013-03-20 | 四川大学 | High-efficiency video coding inter-frame mode judging method based on temporal relativity |
CN103096090A (en) * | 2013-02-20 | 2013-05-08 | 广州柯维新数码科技有限公司 | Method of dividing code blocks in video compression |
CN103888762A (en) * | 2014-02-24 | 2014-06-25 | 西南交通大学 | Video coding framework based on HEVC standard |
CN104378643A (en) * | 2014-12-04 | 2015-02-25 | 南京理工大学 | Intra-frame prediction mode selection method and system of 3D (3-dimension) video plus depth image |
-
2015
- 2015-04-30 CN CN201510216023.0A patent/CN104796694B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011525094A (en) * | 2008-06-16 | 2011-09-08 | ドルビー・ラボラトリーズ・ライセンシング・コーポレーション | Rate control model adaptation based on slice dependency for video coding |
WO2010132977A1 (en) * | 2009-05-21 | 2010-11-25 | Ecole De Technologie Superieure | Method and system for efficient video transcoding |
CN102984521A (en) * | 2012-12-12 | 2013-03-20 | 四川大学 | High-efficiency video coding inter-frame mode judging method based on temporal relativity |
CN103096090A (en) * | 2013-02-20 | 2013-05-08 | 广州柯维新数码科技有限公司 | Method of dividing code blocks in video compression |
CN103888762A (en) * | 2014-02-24 | 2014-06-25 | 西南交通大学 | Video coding framework based on HEVC standard |
CN104378643A (en) * | 2014-12-04 | 2015-02-25 | 南京理工大学 | Intra-frame prediction mode selection method and system of 3D (3-dimension) video plus depth image |
Also Published As
Publication number | Publication date |
---|---|
CN104796694A (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104796694B (en) | Optimization intraframe video coding method based on video texture information | |
CN107147911B (en) | Method and device for fast inter-frame coding mode selection based on local luminance compensation LIC | |
CN111147867B (en) | Multifunctional video coding CU partition rapid decision-making method and storage medium | |
CN105120292B (en) | A kind of coding intra-frame prediction method based on image texture characteristic | |
CN103248893B (en) | From H.264/AVC standard to code-transferring method and transcoder thereof the fast frame of HEVC standard | |
CN104539962B (en) | It is a kind of merge visually-perceptible feature can scalable video coding method | |
CN102186070B (en) | Method for realizing rapid video coding by adopting hierarchical structure anticipation | |
CN103491334B (en) | Video transcode method from H264 to HEVC based on region feature analysis | |
CN106131554B (en) | Fast sample adaptive compensation method for HEVC based on dominant edge direction | |
CN105791824B (en) | Screen content coding prediction mode fast selecting method based on edge dot density | |
CN104333756B (en) | HEVC predictive mode fast selecting methods based on relativity of time domain | |
CN103517069A (en) | HEVC intra-frame prediction quick mode selection method based on texture analysis | |
CN107404648B (en) | A kind of multi-channel video code-transferring method based on HEVC | |
US9883200B2 (en) | Method of acquiring neighboring disparity vectors for multi-texture and multi-depth video | |
CN105898332B (en) | For the fast deep figure frame mode decision method of 3D-HEVC coding standards | |
Chen et al. | A novel fast intra mode decision for versatile video coding | |
CN105187826B (en) | For the fast intra mode decision method of high efficiency video encoding standard | |
CN104639940A (en) | Quick HEVC (High Efficiency Video Coding) inter-frame prediction mode selection method | |
CN101304529A (en) | Method and device for selecting macroblock mode | |
CN105791862B (en) | 3 d video encoding depth map internal schema selection method based on fringe complexity | |
CN102075757B (en) | Video foreground object coding method by taking boundary detection as motion estimation reference | |
CN107018412A (en) | A kind of DVC HEVC video transcoding methods based on key frame coding unit partition mode | |
CN106791828A (en) | High performance video code-transferring method and its transcoder based on machine learning | |
CN101867818B (en) | Selection method and device of macroblock mode | |
WO2020227911A1 (en) | Method for accelerating coding/decoding of hevc video sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170815 Termination date: 20200430 |