CN104795499B - Perovskite-based solar cell of organic inorganic hybridization and preparation method thereof - Google Patents
Perovskite-based solar cell of organic inorganic hybridization and preparation method thereof Download PDFInfo
- Publication number
- CN104795499B CN104795499B CN201510166048.4A CN201510166048A CN104795499B CN 104795499 B CN104795499 B CN 104795499B CN 201510166048 A CN201510166048 A CN 201510166048A CN 104795499 B CN104795499 B CN 104795499B
- Authority
- CN
- China
- Prior art keywords
- layer
- perovskite
- ultra
- transport layer
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 238000009396 hybridization Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 51
- 230000005525 hole transport Effects 0.000 claims abstract description 37
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 46
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 24
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 15
- 238000004528 spin coating Methods 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 14
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 11
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 11
- 125000004122 cyclic group Chemical group 0.000 claims description 11
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 claims description 10
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- GQPLZGRPYWLBPW-UHFFFAOYSA-N calix[4]arene Chemical compound C1C(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC2=CC=CC1=C2 GQPLZGRPYWLBPW-UHFFFAOYSA-N 0.000 claims description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- 229920000858 Cyclodextrin Polymers 0.000 claims description 8
- 239000001116 FEMA 4028 Substances 0.000 claims description 8
- 235000011175 beta-cyclodextrine Nutrition 0.000 claims description 8
- 229960004853 betadex Drugs 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical compound C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- FNEPSTUXZLEUCK-UHFFFAOYSA-N benzo-15-crown-5 Chemical compound O1CCOCCOCCOCCOC2=CC=CC=C21 FNEPSTUXZLEUCK-UHFFFAOYSA-N 0.000 claims description 6
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 claims description 6
- YSSSPARMOAYJTE-UHFFFAOYSA-N dibenzo-18-crown-6 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOCCOC2=CC=CC=C21 YSSSPARMOAYJTE-UHFFFAOYSA-N 0.000 claims description 6
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000011147 inorganic material Substances 0.000 claims description 6
- 239000011368 organic material Substances 0.000 claims description 6
- 239000003495 polar organic solvent Substances 0.000 claims description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 6
- 238000007641 inkjet printing Methods 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- -1 styryl 15-crown-5 Chemical compound 0.000 claims description 5
- PRDAVOJWDHXPPG-UHFFFAOYSA-N 1-[10,15,20-tris(2-hydroxynaphthalen-1-yl)-21,23-dihydroporphyrin-5-yl]naphthalen-2-ol Chemical compound OC1=C(C2=CC=CC=C2C=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C1=C(C=CC5=CC=CC=C15)O)N=4)C1=C(C=CC4=CC=CC=C14)O)N3)C1=C(C=CC3=CC=CC=C13)O)=N2 PRDAVOJWDHXPPG-UHFFFAOYSA-N 0.000 claims description 4
- RYGPOZNONIIJSV-UHFFFAOYSA-N COC1=C(C2=CC=CC=C2C=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C1=C(C=CC5=CC=CC=C15)OC)N=4)C1=C(C=CC4=CC=CC=C14)OC)N3)C1=C(C=CC3=CC=CC=C13)OC)=N2 Chemical compound COC1=C(C2=CC=CC=C2C=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C1=C(C=CC5=CC=CC=C15)OC)N=4)C1=C(C=CC4=CC=CC=C14)OC)N3)C1=C(C=CC3=CC=CC=C13)OC)=N2 RYGPOZNONIIJSV-UHFFFAOYSA-N 0.000 claims description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical compound COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 claims description 2
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 claims 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims 1
- 235000010290 biphenyl Nutrition 0.000 claims 1
- 239000004305 biphenyl Substances 0.000 claims 1
- 125000006267 biphenyl group Chemical group 0.000 claims 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 abstract description 18
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 230000007547 defect Effects 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 3
- 239000002086 nanomaterial Substances 0.000 abstract description 3
- 230000006798 recombination Effects 0.000 abstract description 2
- 238000005215 recombination Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 27
- 239000002904 solvent Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- QSBFECWPKSRWNM-UHFFFAOYSA-N dibenzo-15-crown-5 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOC2=CC=CC=C21 QSBFECWPKSRWNM-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种有机无机杂化钙钛矿基太阳能电池及其制备方法,本发明的电池包括衬底和依次层叠于该衬底上的透明电极、电子传输层、超薄定向层、钙钛矿吸光层、空穴传输层和对电极。在使用液相法制备钙钛矿吸光层前,通过对电子传输层或空穴传输层表面进行微纳结构修饰,形成超薄定向层。通过超薄定向层中分子的大环结构效应,控制钙钛矿晶体的定向生长,提高结晶规整度、降低内部缺陷。有效提高钙钛矿层内部载流子扩散长度,防止电子‑空穴对在钙钛矿层内部及界面的复合,进而显著提高电池的光电转换效率和稳定性。同时,超薄定向层的定向模板作用,使钙钛矿吸光层结晶质量不易受到成膜条件影响,提高器件制备的可重复性,使低温溶液法更适合大面积钙钛矿太阳能电池的工业化生产。
The invention relates to an organic-inorganic hybrid perovskite-based solar cell and a preparation method thereof. The cell of the invention includes a substrate and a transparent electrode stacked on the substrate in sequence, an electron transport layer, an ultra-thin alignment layer, a perovskite Ore absorbing layer, hole transport layer and counter electrode. Before the perovskite light-absorbing layer is prepared by the liquid phase method, the ultra-thin alignment layer is formed by modifying the surface of the electron transport layer or the hole transport layer with a micro-nano structure. Through the macrocyclic structure effect of molecules in the ultra-thin oriented layer, the directional growth of perovskite crystals is controlled, crystal regularity is improved, and internal defects are reduced. Effectively increase the carrier diffusion length inside the perovskite layer and prevent the recombination of electron-hole pairs inside and at the interface of the perovskite layer, thereby significantly improving the photoelectric conversion efficiency and stability of the battery. At the same time, the directional template effect of the ultra-thin oriented layer makes the crystal quality of the perovskite light-absorbing layer not easily affected by the film-forming conditions, improves the repeatability of device preparation, and makes the low-temperature solution method more suitable for the industrial production of large-area perovskite solar cells .
Description
技术领域technical field
本发明涉及钙钛矿基薄膜太阳能电池技术领域,特别是一种有机无机杂化钙钛矿基太阳能电池及其制备方法。The invention relates to the technical field of perovskite-based thin-film solar cells, in particular to an organic-inorganic hybrid perovskite-based solar cell and a preparation method thereof.
背景技术Background technique
有机无机杂化钙钛矿基太阳能电池近年来展现出优异的光电性能和巨大的潜力。随着钙钛矿太阳电池技术的发展,基于这种吸光材料的电池器件光电转换效率高达19.3%。Organic-inorganic hybrid perovskite-based solar cells have shown excellent optoelectronic performance and great potential in recent years. With the development of perovskite solar cell technology, the photoelectric conversion efficiency of cell devices based on this light-absorbing material is as high as 19.3%.
钙钛矿吸光层结晶质量及其与电极修饰层间的界面控制对电池的光电性能至关重要,直接影响着电池的转换效率和稳定性。钙钛矿吸光层制备方法主要有液相法、气相辅助液相法、气相共蒸发沉积法等。液相法无需高温高真空制程、工艺简单、适合大面积工业化生产,是目前制备钙钛矿吸光层的主要方法。The crystallization quality of the perovskite light-absorbing layer and its interface control with the electrode modification layer are crucial to the photoelectric performance of the battery, directly affecting the conversion efficiency and stability of the battery. The preparation methods of perovskite light-absorbing layer mainly include liquid phase method, gas phase assisted liquid phase method, gas phase co-evaporation deposition method, etc. The liquid-phase method does not require high-temperature and high-vacuum processes, has a simple process, and is suitable for large-scale industrial production. It is currently the main method for preparing perovskite light-absorbing layers.
现有钙钛矿基太阳能电池结构中,钙钛矿吸光层一般通过液相法直接沉积在电极修饰层表面(如TiO2、ZnO、PEDOT:PSS等表面),由于PbI2和CH3NH3I在涂布过程中快速自组装成纳米级钙钛矿微小晶粒,钙钛矿晶粒成核和膜层生长方向难以控制,成膜后晶体中缺陷较多、规整度差,难以形成均匀致密的钙钛矿薄膜,降低了载流子的扩散长度,电子-空穴对复合严重。液相法受到前驱体溶液组份配比、浓度、溶剂以及旋涂转速等多种因素影响,结晶质量难以控制,结晶后薄膜形貌各异,高效电池器件制备可重现性较差,极大的限制了钙钛矿基太阳能电池产业化过程。In the existing perovskite-based solar cell structure, the perovskite light-absorbing layer is generally deposited directly on the surface of the electrode modification layer (such as the surface of TiO 2 , ZnO, PEDOT:PSS, etc.) by a liquid phase method. I rapidly self-assemble into nano-scale perovskite tiny grains during the coating process. It is difficult to control the nucleation of perovskite grains and the growth direction of the film layer. The dense perovskite film reduces the diffusion length of carriers, and the recombination of electron-hole pairs is serious. The liquid phase method is affected by various factors such as the composition ratio, concentration, solvent, and spin coating speed of the precursor solution. It is difficult to control the crystallization quality, and the morphology of the film after crystallization is different. It greatly limits the industrialization process of perovskite-based solar cells.
发明内容Contents of the invention
本发明要求解决的技术问题是针对上述存在的问题和不足,提供设置超薄定向层的有机无机杂化钙钛矿基太阳能电池。The technical problem to be solved by the present invention is to provide an organic-inorganic hybrid perovskite-based solar cell with an ultra-thin alignment layer for the above-mentioned existing problems and deficiencies.
本发明解决的另一技术问题是提供这种有机无机杂化钙钛矿基太阳能电池的制备方法。Another technical problem solved by the present invention is to provide a preparation method for this organic-inorganic hybrid perovskite-based solar cell.
为解决上述技术问题,本发明采用的技术方案为:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
一种有机无机杂化钙钛矿基太阳能电池,包括衬底和依次层叠于该衬底上的透明电极、电子传输层、超薄定向层、钙钛矿吸光层、空穴传输层和对电极。An organic-inorganic hybrid perovskite-based solar cell, including a substrate, a transparent electrode, an electron transport layer, an ultrathin alignment layer, a perovskite light-absorbing layer, a hole transport layer and a counter electrode sequentially stacked on the substrate .
一种有机无机杂化钙钛矿基太阳能电池,包括衬底和依次层叠于该衬底上的透明电极、空穴传输层、超薄定向层、钙钛矿吸光层、电子传输层和对电极。An organic-inorganic hybrid perovskite-based solar cell, including a substrate, a transparent electrode, a hole transport layer, an ultra-thin alignment layer, a perovskite light-absorbing layer, an electron transport layer and a counter electrode sequentially stacked on the substrate .
上述有机无机杂化钙钛矿基太阳能电池,所述超薄定向层由空腔内径能与铅离子络合的环状分子构成,所述环状分子选自单苯并15-冠-5、苯乙烯基15-冠-5、二苯并15-冠-5、二苯并18-冠-6、N,N-二甲基腈乙基二氮杂-18-冠-6、四苯基卟啉、四(2-羟基-1-萘基)卟啉、四(2-甲氧基-1-萘基)卟啉、四-对叔丁基杯[4]芳烃、四-对叔丁基[6]杯芳烃、四偶氮苯甲酸基杯[4]芳烃、四酰胺基取代杯[4]芳烃、二溴二丙氧基杯[4]芳烃、β-环糊精及其衍生物中的一种。In the above-mentioned organic-inorganic hybrid perovskite-based solar cell, the ultra-thin alignment layer is composed of ring-shaped molecules whose cavity inner diameter can complex with lead ions, and the ring-shaped molecules are selected from monobenzo 15-crown-5, Styryl 15-crown-5, dibenzo-15-crown-5, dibenzo-18-crown-6, N,N-dimethylnitrile ethyldiaza-18-crown-6, tetraphenyl Porphyrin, tetrakis(2-hydroxy-1-naphthyl)porphyrin, tetrakis(2-methoxy-1-naphthyl)porphyrin, tetra-p-tert-butylcalix[4]arene, tetra-p-tert-butyl Calix[6]arene, tetraazobenzoic acid calix[4]arene, tetraamido-substituted calix[4]arene, dibromodipropoxycalix[4]arene, β-cyclodextrin and its derivatives One of.
上述有机无机杂化钙钛矿基太阳能电池,所述超薄定向层厚度为0.5-15nm,优选0.6-10nm。In the above-mentioned organic-inorganic hybrid perovskite-based solar cell, the thickness of the ultra-thin alignment layer is 0.5-15 nm, preferably 0.6-10 nm.
上述有机无机杂化钙钛矿基太阳能电池,所述钙钛矿吸光层由化学通式为ABXmY3-m型晶体结构的一种或多种材料形成,其中A为CH3NH3、C4H9NH3或NH2=CHNH2;B为Pb、Sn;X,Y为Cl、Br、I;m为1、2或3,所述的钙钛矿吸光层的厚度为100-1000nm,优选150-550nm。In the above-mentioned organic-inorganic hybrid perovskite-based solar cell, the perovskite light-absorbing layer is formed of one or more materials with a general chemical formula of ABX m Y 3-m crystal structure, wherein A is CH 3 NH 3 , C 4 H 9 NH 3 or NH 2 =CHNH 2 ; B is Pb, Sn; X, Y are Cl, Br, I; m is 1, 2 or 3, and the thickness of the perovskite light-absorbing layer is 100- 1000nm, preferably 150-550nm.
上述有机无机杂化钙钛矿基太阳能电池,所述电子传输层采用TiO2、SnO2、ZnO、PC61BM、PC71BM、TIPD、ICBA或C60-bis中的任意一种半导体材料形成;所述的电子传输层的厚度为5-150nm,优选10-50nm。In the above-mentioned organic-inorganic hybrid perovskite-based solar cell, the electron transport layer is formed of any semiconductor material among TiO 2 , SnO 2 , ZnO, PC 61 BM, PC 71 BM, TIPD, ICBA or C60-bis; The thickness of the electron transport layer is 5-150nm, preferably 10-50nm.
上述有机无机杂化钙钛矿基太阳能电池,所述空穴传输层可以采用有机材料或无机材料形成,所述有机材料选自Spiro-OMeTAD、P3HT、PCPDTBT、PEDOT:PSS、NPB和TPD中的任意一种;所述无机材料选自CuI、CuSCN、NiO、V2O5和MoO3中的任意一种;所述的空穴传输层的厚度为5-500nm,优选10-150nm。In the above-mentioned organic-inorganic hybrid perovskite-based solar cell, the hole transport layer can be formed by using an organic material or an inorganic material, and the organic material is selected from Spiro-OMeTAD, P3HT, PCPDTBT, PEDOT:PSS, NPB and TPD Any one; the inorganic material is selected from any one of CuI, CuSCN, NiO, V 2 O 5 and MoO 3 ; the thickness of the hole transport layer is 5-500nm, preferably 10-150nm.
上述有机无机杂化钙钛矿基太阳能电池,所述超薄定向层的涂布液的组成及质量份数为:For the above-mentioned organic-inorganic hybrid perovskite-based solar cell, the composition and mass parts of the coating solution of the ultra-thin alignment layer are:
环状分子 0.05-5%;Cyclic molecules 0.05-5%;
强极性有机溶剂 95-99.95%。Strong polar organic solvents 95-99.95%.
所述环状分子为单苯并15-冠-5、苯乙烯基15-冠-5、二苯并15-冠-5、二苯并18-冠-6、N,N-二甲基腈乙基二氮杂-18-冠-6、四苯基卟啉、四(2-羟基-1-萘基)卟啉、四(2-甲氧基-1-萘基)卟啉、四-对叔丁基杯[4]芳烃、四-对叔丁基[6]杯芳烃、四偶氮苯甲酸基杯[4]芳烃、四酰胺基取代杯[4]芳烃、二溴二丙氧基杯[4]芳烃、β-环糊精及其衍生物中的一种;The cyclic molecules are monobenzo 15-crown-5, styryl 15-crown-5, dibenzo 15-crown-5, dibenzo 18-crown-6, N,N-dimethylnitrile Ethyldiaza-18-crown-6, tetraphenylporphyrin, tetrakis(2-hydroxy-1-naphthyl)porphyrin, tetrakis(2-methoxy-1-naphthyl)porphyrin, tetra- p-tert-butylcalix[4]arene, tetra-p-tert-butyl[6]calix[4]arene, tetraazobenzoylcalix[4]arene, tetraamido-substituted calix[4]arene, dibromodipropoxy One of calix[4]arene, β-cyclodextrin and its derivatives;
强极性有机溶剂为二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、氯仿、二氯甲烷、乙腈、吡啶、四氢呋喃、乙二醇中的一种或多种,优选为二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)。Strong polar organic solvent is one or more in dimethylformamide (DMF), dimethyl sulfoxide (DMSO), chloroform, dichloromethane, acetonitrile, pyridine, tetrahydrofuran, ethylene glycol, preferably di Methylformamide (DMF), Dimethylsulfoxide (DMSO).
一种有机无机杂化钙钛矿基太阳能电池的制备方法,包括:A method for preparing an organic-inorganic hybrid perovskite-based solar cell, comprising:
将所述的环状分子材料均匀分散于有机溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing the cyclic molecular material in an organic solvent to prepare a transparent and uniform ultra-thin alignment layer solution;
将所述溶液通过刮涂法、旋涂法、喷涂法、喷墨打印法或提拉法沉积在电子传输层或空穴传输层的表面形成一薄膜层;Depositing the solution on the surface of the electron transport layer or the hole transport layer to form a thin film layer by scrape coating, spin coating, spray coating, inkjet printing or pulling method;
将所述薄膜层在30-150℃下,空气中进行干燥10-120min,形成超薄定向层。The thin film layer is dried in the air at 30-150° C. for 10-120 minutes to form an ultra-thin alignment layer.
一种有机无机杂化钙钛矿基太阳能电池的制备方法,包括:将所述的环状分子材料均匀分散于有机溶剂中,配制成透明均匀的超薄定向层溶液;A method for preparing an organic-inorganic hybrid perovskite-based solar cell, comprising: uniformly dispersing the ring-shaped molecular material in an organic solvent, and preparing a transparent and uniform ultra-thin alignment layer solution;
将所述溶液通过刮涂法、旋涂法或喷涂法沉积在电子传输层或空穴传输层的表面形成一薄膜层;Depositing the solution on the surface of the electron transport layer or the hole transport layer by scrape coating, spin coating or spray coating to form a thin film layer;
将所述薄膜层在45-120℃下,空气中进行干燥20-90min,形成超薄定向层。The thin film layer is dried in the air at 45-120° C. for 20-90 minutes to form an ultra-thin alignment layer.
与现有直接溶液法制备钙钛矿技术相比,本发明的有益效果表现在:Compared with the existing direct solution method for preparing perovskite technology, the beneficial effects of the present invention are as follows:
(1)本发明通过增设超薄定向层,超薄定向层中环状分子的空腔与铅离子络合作用,可以使钙钛矿晶体在自组装时定向生长,提高结晶规整度,降低钙钛矿晶体内部缺陷,形成高结晶性均匀钙钛矿层;有效提高钙钛矿层内部载流子扩散长度,防止电子-空穴对在钙钛矿层内部及界面的复合,进而显著提高电池的光电转换效率和稳定性。(1) In the present invention, by adding an ultra-thin orientation layer, the cavity of the ring molecule in the ultra-thin orientation layer and the complexation of lead ions can make the perovskite crystal grow directionally during self-assembly, improve crystal regularity, and reduce calcium Defects inside the titanium crystal form a highly crystalline and uniform perovskite layer; effectively increase the carrier diffusion length inside the perovskite layer, prevent electron-hole pairs from recombining inside and at the interface of the perovskite layer, and significantly improve the photoelectric conversion of the battery efficiency and stability.
(2)本发明的超薄定向层中环状分子可以起到定向模板作用,使钙钛矿吸光层结晶质量不易受到成膜条件影响,提高器件制备的可重复性。(2) The cyclic molecules in the ultra-thin alignment layer of the present invention can act as an alignment template, so that the crystal quality of the perovskite light-absorbing layer is not easily affected by the film-forming conditions, and the repeatability of device preparation is improved.
(3)本发明适用于各种结构的钙钛矿基太阳能电池制备,使低温溶液法更适合大面积钙钛矿太阳能电池的工业化生产。(3) The present invention is applicable to the preparation of perovskite-based solar cells with various structures, making the low-temperature solution method more suitable for the industrial production of large-area perovskite solar cells.
附图说明Description of drawings
图1是本发明一种有机无机杂化钙钛矿基太阳电池的结构示意图。FIG. 1 is a schematic structural view of an organic-inorganic hybrid perovskite-based solar cell according to the present invention.
图2是本发明另一种太阳电池的结构示意图。Fig. 2 is a schematic structural diagram of another solar cell of the present invention.
图中各标号表示为:1-衬底、2-透明电极、3-电子传输层、4-超薄定向层、5-钙钛矿吸光层;6-空穴传输层;7-对电极。The symbols in the figure are represented as: 1-substrate, 2-transparent electrode, 3-electron transport layer, 4-ultra-thin alignment layer, 5-perovskite light-absorbing layer; 6-hole transport layer; 7-counter electrode.
具体实施方式detailed description
为了使本发明的技术方案及优点更加清楚明白,以下结合附图,对本发明作进一步详细说明。此处说明仅限于解释本发明,并不是为了限定本发明的保护范围。In order to make the technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings. The description here is only limited to explaining the present invention, and is not intended to limit the protection scope of the present invention.
图1的结构示意图,包括衬底1,设置在衬底1上的透明电极2,在透明电极2上形成半导体材料的电子传输层3,在电子传输层3上形成超薄定向层4,在超薄定向层4上形成的钙钛矿吸光层5,在钙钛矿吸光层5上形成的空穴传输层6,在空穴传输层6上形成的对电极7。The schematic diagram of the structure of Fig. 1 includes a substrate 1, a transparent electrode 2 arranged on the substrate 1, an electron transport layer 3 of semiconductor material is formed on the transparent electrode 2, an ultra-thin alignment layer 4 is formed on the electron transport layer 3, and A perovskite light-absorbing layer 5 formed on the ultra-thin alignment layer 4 , a hole transport layer 6 formed on the perovskite light-absorber layer 5 , and a counter electrode 7 formed on the hole transport layer 6 .
图2的另一种结构示意图,它包括衬底1,设置在衬底1上的透明电极2,在透明电极2上形成空穴传输层6,在空穴传输层6上形成超薄定向层4,在超薄定向层4上形成的钙钛矿吸光层5,在钙钛矿吸光层5上形成的电子传输层3,在电子传输层3上形成的对电极7。Another structural schematic diagram of Fig. 2, which includes a substrate 1, a transparent electrode 2 arranged on the substrate 1, a hole transport layer 6 is formed on the transparent electrode 2, and an ultra-thin alignment layer is formed on the hole transport layer 6 4. A perovskite light-absorbing layer 5 formed on the ultra-thin alignment layer 4 , an electron transport layer 3 formed on the perovskite light-absorbing layer 5 , and a counter electrode 7 formed on the electron transport layer 3 .
图1所示的有机无机杂化钙钛矿基太阳能电池,在使用液相法制备钙钛矿吸光层前,对电子传输层表面进行微纳结构修饰,形成超薄定向层,其制备方法包括以下步骤:In the organic-inorganic hybrid perovskite-based solar cell shown in Figure 1, before the perovskite light-absorbing layer is prepared by the liquid phase method, the surface of the electron transport layer is modified with a micro-nano structure to form an ultra-thin alignment layer. The preparation method includes The following steps:
1)清洗透明电极,蚀刻电极图案后清洗、烘干、紫外/臭氧处理;1) Clean the transparent electrode, etch the electrode pattern and then clean, dry, and UV/ozone treatment;
2)在透明电极上制备电子传输层;2) preparing an electron transport layer on the transparent electrode;
3)在电子传输层表面进行界面修饰,形成超薄定向层;3) Perform interface modification on the surface of the electron transport layer to form an ultra-thin alignment layer;
4)在超薄定向层表面上,生长钙钛矿吸光层;4) On the surface of the ultra-thin alignment layer, grow a perovskite light-absorbing layer;
5)在钙钛矿吸光层的表面沉积空穴传输层;5) Depositing a hole transport layer on the surface of the perovskite light-absorbing layer;
6)在空穴传输层上制备对电极。6) Prepare a counter electrode on the hole transport layer.
图2所示的有机无机杂化钙钛矿基太阳能电池,在使用液相法制备钙钛矿吸光层前,对空穴传输层表面进行微纳结构修饰,形成超薄定向层,其制备方法包括以下步骤:In the organic-inorganic hybrid perovskite-based solar cell shown in Figure 2, before using the liquid phase method to prepare the perovskite light-absorbing layer, the surface of the hole transport layer is modified with a micro-nano structure to form an ultra-thin alignment layer. The preparation method Include the following steps:
1)清洗透明电极,蚀刻电极图案后清洗、烘干、紫外/臭氧处理;1) Clean the transparent electrode, etch the electrode pattern and then clean, dry, and UV/ozone treatment;
2)在透明电极上制备空穴传输层;2) preparing a hole transport layer on the transparent electrode;
3)在空穴传输层表面进行界面修饰,形成超薄定向层;3) Carry out interface modification on the surface of the hole transport layer to form an ultra-thin alignment layer;
4)在超薄定向层表面上,生长钙钛矿吸光层;4) On the surface of the ultra-thin alignment layer, grow a perovskite light-absorbing layer;
5)在钙钛矿吸光层的表面沉积电子传输层;5) Depositing an electron transport layer on the surface of the perovskite light-absorbing layer;
6)在电子传输层上制备对电极。6) Prepare a counter electrode on the electron transport layer.
以图1所示的有机无机杂化钙钛矿基太阳能电池的结构为例。Take the structure of organic-inorganic hybrid perovskite-based solar cells shown in Figure 1 as an example.
在使用液相法制备钙钛矿吸光层5之前,对电子传输层3进行界面修饰,形成超薄定向层4。超薄定向层4由空腔内径能与铅离子络合的环状分子构成,通过环状分子的大环结构效应使其空腔与PbI2分子中铅离子络合,快速形成一层均匀排布的PbI2晶核,控制PbI2晶体生长方向,从而使钙钛矿晶体在自组装时定向生长,提高结晶规整度,降低钙钛矿晶体内部缺陷。超薄定向层溶液的组成及质量份数为:环状分子0.05-5%;强极性有机溶剂95-99.95%。Before preparing the perovskite light-absorbing layer 5 by using the liquid phase method, the electron transport layer 3 is interface-modified to form an ultra-thin alignment layer 4 . The ultra-thin alignment layer 4 is composed of ring-shaped molecules whose cavity inner diameter can complex with lead ions. Through the macrocyclic structure effect of the ring-shaped molecules, the cavity is complexed with the lead ions in PbI2 molecules, and a layer of uniform arrangement is rapidly formed. The PbI 2 crystal nucleus clothed controls the growth direction of the PbI 2 crystal, so that the perovskite crystal grows directional during self-assembly, improves the crystal regularity, and reduces the internal defects of the perovskite crystal. The composition and mass fraction of the ultra-thin alignment layer solution are: 0.05-5% of cyclic molecules; 95-99.95% of strong polar organic solvents.
环状分子选自:单苯并15-冠-5、苯乙烯基15-冠-5、二苯并15-冠-5、二苯并18-冠-6、N,N-二甲基腈乙基二氮杂-18-冠-6、四苯基卟啉、四(2-羟基-1-萘基)卟啉、四(2-甲氧基-1-萘基)卟啉、四-对叔丁基杯[4]芳烃、四-对叔丁基[6]杯芳烃、四偶氮苯甲酸基杯[4]芳烃、四酰胺基取代杯[4]芳烃、二溴二丙氧基杯[4]芳烃、β-环糊精及其衍生物等材料任意一种。Cyclic molecules selected from the group consisting of: monobenzo 15-crown-5, styryl 15-crown-5, dibenzo 15-crown-5, dibenzo 18-crown-6, N,N-dimethylnitrile Ethyldiaza-18-crown-6, tetraphenylporphyrin, tetrakis(2-hydroxy-1-naphthyl)porphyrin, tetrakis(2-methoxy-1-naphthyl)porphyrin, tetra- p-tert-butylcalix[4]arene, tetra-p-tert-butyl[6]calix[4]arene, tetraazobenzoylcalix[4]arene, tetraamido-substituted calix[4]arene, dibromodipropoxy Any material such as calix[4]arene, β-cyclodextrin and its derivatives.
超薄定向层的厚度为0.5-15nm,优选0.6-10nm;厚度>15nm,阻碍空穴从钙钛矿吸光层5到空穴传输层6的传输;厚度<0.5nm,薄膜不能完整、均匀的覆盖在电子传输层3表面,不能充分起到结晶定向作用。The thickness of the ultra-thin alignment layer is 0.5-15nm, preferably 0.6-10nm; the thickness>15nm hinders the transmission of holes from the perovskite light-absorbing layer 5 to the hole-transporting layer 6; the thickness<0.5nm, the film cannot be complete and uniform Covering the surface of the electron transport layer 3, it cannot fully play the role of crystal orientation.
超薄定向层4的制备方法为:将所述的环状分子材料均匀分散于有机溶剂中,配制成透明均匀的超薄定向层溶液;将所述溶液通过刮涂法、旋涂法、喷涂法、喷墨打印法或提拉法沉积在电子传输层的表面形成一薄膜层;将所述薄膜层在30-150℃下,空气中进行干燥10-120min,形成超薄定向层。The preparation method of the ultra-thin alignment layer 4 is: uniformly dispersing the ring-shaped molecular material in an organic solvent to prepare a transparent and uniform ultra-thin alignment layer solution; Deposit on the surface of the electron transport layer to form a thin film layer by using method, inkjet printing method or pulling method; dry the thin film layer in air at 30-150°C for 10-120min to form an ultra-thin alignment layer.
采用强极性有机溶剂,可包括:二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、氯仿、二氯甲烷、乙腈、吡啶、四氢呋喃、乙二醇中的一种或多种,优选为DMF、DMSO。Use strong polar organic solvents, including one or more of dimethylformamide (DMF), dimethyl sulfoxide (DMSO), chloroform, dichloromethane, acetonitrile, pyridine, tetrahydrofuran, and ethylene glycol , preferably DMF, DMSO.
钙钛矿吸光层5沉积于超薄定向层4表面,用于吸收太阳光。钙钛矿吸光层5选自化学通式为ABXmY3-m型晶体结构的一种或多种材料形成,其中A=CH3NH3、C4H9NH3、NH2=CHNH2;B=Pb、Sn;X,Y=Cl、Br、I;m=1、2、3。钙钛矿吸光层薄膜的厚度可为100-1000nm,优选150-550nm;厚度>1000nm,电子和空穴不能及时传输到外电路而在内部复合;厚度<100nm,不能充分吸收太阳光。The perovskite light-absorbing layer 5 is deposited on the surface of the ultra-thin alignment layer 4 for absorbing sunlight. The perovskite light-absorbing layer 5 is formed from one or more materials whose general chemical formula is ABX m Y 3-m crystal structure, where A=CH 3 NH 3 , C 4 H 9 NH 3 , NH 2 =CHNH 2 ; B=Pb, Sn; X, Y=Cl, Br, I; m=1,2,3. The thickness of the perovskite light-absorbing layer film can be 100-1000nm, preferably 150-550nm; if the thickness is greater than 1000nm, electrons and holes cannot be transported to the external circuit in time and recombine inside; if the thickness is less than 100nm, sunlight cannot be fully absorbed.
钙钛矿吸光层5可通过液相一步法、液相两步法和气相辅助液相法中的任意一种方式实现。液相一步法:将等摩尔量的PbX2(X=Cl,Br,I)与有机碘化胺(CH3NH3I)共同溶解在γ-丁内酯或DMF中制成前驱体溶液,旋涂于超薄定向层表面,形成钙钛矿吸光层。液相两步法可以为先旋涂再浸渍:将PbI2溶解在DMF溶剂中,旋涂于超薄定向层表面,再干燥的PbI2层薄膜浸泡在一定浓度的CH3NH3X(X=Cl,Br,I)溶液中,经一定温度退火后形成钙钛矿吸光层。液相两步法还可以为两步旋涂,先将PbI2溶解在DMF或DMSO溶剂中,旋涂于超薄定向层表面,再将CH3NH3X(X=Cl,Br,I)异丙醇溶液中旋涂于PbI2层表面,经一定温度退火后形成钙钛矿吸光层。气相辅助液相法为先旋涂PbI2薄膜后,将其置于CH3NH3I蒸气中,缓慢生成钙钛矿吸光层。The perovskite light-absorbing layer 5 can be realized by any one of liquid-phase one-step method, liquid-phase two-step method and gas-assisted liquid-phase method. Liquid-phase one-step method: Dissolve equimolar amounts of PbX 2 (X=Cl, Br, I) and organic ammonium iodide (CH 3 NH 3 I) in γ-butyrolactone or DMF to make a precursor solution, Spin coating on the surface of the ultra-thin alignment layer to form a perovskite light-absorbing layer. The liquid-phase two-step method can be spin-coating and then dipping: dissolve PbI 2 in DMF solvent, spin-coat on the surface of the ultra-thin alignment layer, and then soak the dried PbI 2 -layer film in a certain concentration of CH 3 NH 3 X(X =Cl, Br, I) solution, after annealing at a certain temperature, a perovskite light-absorbing layer is formed. The liquid-phase two-step method can also be two-step spin coating. First, PbI2 is dissolved in DMF or DMSO solvent, and then spin-coated on the surface of the ultra-thin alignment layer, and then CH3NH3X (X= Cl , Br, I) The perovskite light-absorbing layer is formed by spin-coating on the surface of PbI2 layer in isopropanol solution and annealed at a certain temperature. The gas-assisted liquid-phase method is to spin-coat the PbI 2 film first, and then place it in CH 3 NH 3 I vapor to slowly form a perovskite light-absorbing layer.
电子传输层3可以采用TiO2、SnO2、ZnO、PC61BM、PC71BM、TIPD、ICBA或C60-bis中的任意一种半导体材料形成;所述的电子传输层的厚度为5-150nm,优选10-50nm。The electron transport layer 3 can be formed by any semiconductor material in TiO 2 , SnO 2 , ZnO, PC 61 BM, PC 71 BM, TIPD, ICBA or C 60 -bis; the thickness of the electron transport layer is 5- 150nm, preferably 10-50nm.
空穴传输层6可以采用有机材料或无机材料形成,所述有机材料选自Spiro-OMeTAD、P3HT、PCPDTBT、PEDOT:PSS、NPB和TPD中的任意一种;所述无机材料选自CuI、CuSCN、NiO、V2O5和MoO3中的任意一种;所述的空穴传输层的厚度为5-500nm,优选10-150nm。Hole transport layer 6 can adopt organic material or inorganic material to form, described organic material is selected from any one in Spiro-OMeTAD, P3HT, PCPDTBT, PEDOT:PSS, NPB and TPD; Described inorganic material is selected from CuI, CuSCN Any one of , NiO, V 2 O 5 and MoO 3 ; the thickness of the hole transport layer is 5-500nm, preferably 10-150nm.
对电极一般采用具有较高功函数的材料,如金、银、铜、铝等金属,可以采用真空蒸镀等制作方法。The counter electrode is generally made of materials with higher work function, such as gold, silver, copper, aluminum and other metals, which can be produced by vacuum evaporation and other manufacturing methods.
另一种结构的有机无机杂化钙钛矿基太阳能电池,是在空穴传输层6上形成超薄定向层4,在超薄定向层4上形成钙钛矿吸光层5,在钙钛矿吸光层上形成电子传输层3;其余相同。Another structure of organic-inorganic hybrid perovskite-based solar cells is to form an ultra-thin alignment layer 4 on the hole transport layer 6, and a perovskite light-absorbing layer 5 is formed on the ultra-thin alignment layer 4, and the perovskite An electron transport layer 3 is formed on the light absorbing layer; the rest are the same.
下面结合具体实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with specific examples.
实施例1Example 1
第一步,制备透明电极:The first step is to prepare a transparent electrode:
将ITO导电玻璃用浓盐酸刻蚀成电极图案,依次用洗涤剂、去离子水、无水乙醇、丙酮、异丙醇中分别超声清洗10min,然后氮气吹干,紫外/臭氧处理20min。The ITO conductive glass was etched with concentrated hydrochloric acid to form an electrode pattern, and then ultrasonically cleaned with detergent, deionized water, absolute ethanol, acetone, and isopropanol for 10 minutes, then dried with nitrogen, and treated with UV/ozone for 20 minutes.
第二步,制备电子传输层:The second step is to prepare the electron transport layer:
采用丝网印刷法在透明电极表面涂布纳米TiO2颗粒胶体的前驱体溶液,然后放入马弗炉450℃高温烧结30min,形成厚度为45nm的电子传输层。The precursor solution of nano-TiO 2 particle colloid was coated on the surface of the transparent electrode by screen printing method, and then placed in a muffle furnace for high temperature sintering at 450 °C for 30 min to form an electron transport layer with a thickness of 45 nm.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为1%的单苯并15-冠-5环状分子材料均匀分散于占有质量份数为99%氯仿溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing the monobenzo-15-crown-5 cyclic molecular material with a mass fraction of 1% in a chloroform solvent with a mass fraction of 99% to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过刮涂法在电子传输层表面形成厚度为6nm的一层薄膜;The above prepared solution was scraped to form a film with a thickness of 6 nm on the surface of the electron transport layer;
将上述制备的薄膜在30℃下,空气中进行干燥120min,形成超薄定向层。The film prepared above was dried in air at 30° C. for 120 min to form an ultra-thin alignment layer.
第四步,制备钙钛矿吸光层:The fourth step is to prepare the perovskite light-absorbing layer:
氮气保护下,在界面修饰层表面通过液相一步法制备钙钛矿吸光层,将等物质量PbI2和CH3NH3I共同溶解在DMF溶液中,制成浓度为40wt%的前驱体溶液;取一定溶液将其旋涂于界面修饰层表面,转速3000rpm、时间30s,然后在100℃加热退火45min,形成210nm厚的CH3NH3PbI3钙钛矿吸光层。Under the protection of nitrogen, the perovskite light-absorbing layer was prepared on the surface of the interface modification layer by a liquid-phase one-step method, and equal amounts of PbI 2 and CH 3 NH 3 I were dissolved in DMF solution to make a precursor solution with a concentration of 40wt%. Take a certain solution and spin-coat it on the surface of the interface modification layer at a speed of 3000rpm for 30s, then heat and anneal at 100°C for 45min to form a 210nm thick CH 3 NH 3 PbI 3 perovskite light-absorbing layer.
第五步,制备空穴传输层:The fifth step is to prepare the hole transport layer:
氮气保护下,在钙钛矿吸光层上采用旋涂法制备空穴传输层,将80mg spiro-OMeTAD、28.5ml的t-BP、17.5ml Li-TFSI加入到1ml的氯苯中,溶解配制成溶液旋涂于钙钛矿吸光层表面,转速4000rpm,时间30s,得到厚度为100nm的空穴传输层。Under the protection of nitrogen, the hole transport layer was prepared on the perovskite light-absorbing layer by spin coating method, 80mg spiro-OMeTAD, 28.5ml t-BP, 17.5ml Li-TFSI were added to 1ml chlorobenzene, and dissolved to prepare The solution was spin-coated on the surface of the perovskite light-absorbing layer at a rotational speed of 4000 rpm for 30 s to obtain a hole transport layer with a thickness of 100 nm.
第六步,制备对电级:The sixth step is to prepare the counter electrode:
在空穴传输层表面采用热蒸发方式制备金电极,在5×10-4Pa真空度下,真空蒸镀厚度为100nm的金膜形成对电极。A gold electrode was prepared by thermal evaporation on the surface of the hole transport layer, and a gold film with a thickness of 100 nm was vacuum evaporated to form a counter electrode under a vacuum degree of 5×10 -4 Pa.
上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图1所示:G/ITO/TiO2/单苯并15-冠-5/CH3NH3PbI3/spiro-OMeTAD/Au,有效面积为0.09cm2,光电转换效率数据见表1,测试条件:光谱分布AM1.5G,光照强度1000W/m2,AAA太阳光模拟器(日本SAN-EI公司XES-502S+ELS155型),I-V曲线用Keithly2400型数字源表进行测量,所有测试均在大气环境(25℃、45RH%)下进行。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 1: G/ITO/TiO 2 /monobenzo15-crown-5/CH 3 NH 3 PbI 3 /spiro-OMeTAD/ Au, the effective area is 0.09cm 2 , the photoelectric conversion efficiency data is shown in Table 1, the test conditions: spectral distribution AM1.5G, light intensity 1000W/m 2 , AAA solar simulator (Japan SAN-EI company XES-502S+ELS155 type ), the IV curve was measured with a Keithly2400 digital source meter, and all tests were carried out in an atmospheric environment (25°C, 45RH%).
实施例2Example 2
除第三步外,其它步骤制备方法同实施例1。Except for the third step, the preparation method of other steps is the same as that of Example 1.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为0.5%的四苯基卟啉环状分子材料均匀分散于占有质量份数为99.5%二氯甲烷溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing the tetraphenylporphyrin ring molecular material with a mass fraction of 0.5% in a dichloromethane solvent with a mass fraction of 99.5% to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过旋涂法在电子传输层表面形成厚度为2nm的一层薄膜;Form the above prepared solution on the surface of the electron transport layer by spin-coating to form a film with a thickness of 2nm;
将上述制备的薄膜在60℃下,空气中进行干燥90min,形成超薄定向层。The film prepared above was dried in air at 60° C. for 90 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图1所示:G/ITO/TiO2/四苯基卟啉/CH3NH3PbI3/spiro-OMeTAD/Au,有效面积为0.09cm2,光电转换效率数据见表1,测试条件同实施例1。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 1: G/ITO/TiO 2 /tetraphenylporphyrin/CH 3 NH 3 PbI 3 /spiro-OMeTAD/Au, The effective area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 1, and the test conditions are the same as in Example 1.
实施例3Example 3
除第三步外,其它步骤制备方法同实施例1。Except for the third step, the preparation method of other steps is the same as that of Example 1.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为0.05%的二苯并18-冠-6环状分子材料均匀分散于占有质量份数为99.95%二甲基甲酰胺溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing 0.05% by mass of dibenzo-18-crown-6 cyclic molecular material in 99.95% by mass of dimethylformamide solvent to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过喷涂法在电子传输层表面形成厚度为0.6nm的一层薄膜;The above prepared solution is sprayed to form a film with a thickness of 0.6 nm on the surface of the electron transport layer;
将上述制备的薄膜在120℃下,空气中进行干燥30min,形成超薄定向层。The film prepared above was dried in air at 120° C. for 30 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图1所示:G/ITO/TiO2/二苯并18-冠-6/CH3NH3PbI3/spiro-OMeTAD/Au,有效面积为0.09cm2,光电转换效率数据见表1,测试条件同实施例1。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 1: G/ITO/TiO 2 /dibenzo18-crown-6/CH 3 NH 3 PbI 3 /spiro-OMeTAD /Au, the effective area is 0.09 cm 2 , the photoelectric conversion efficiency data are shown in Table 1, and the test conditions are the same as in Example 1.
实施例4Example 4
除第三步外,其它步骤制备方法同实施例1。Except for the third step, the preparation method of other steps is the same as that of Example 1.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为2.5%的β-环糊精环状分子材料均匀分散于占有质量份数为97.5%乙二醇溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing the β-cyclodextrin cyclic molecular material with a mass fraction of 2.5% in an ethylene glycol solvent with a mass fraction of 97.5% to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过喷墨打印法在电子传输层表面形成厚度为9nm的一层薄膜;Form the above prepared solution on the surface of the electron transport layer by inkjet printing to form a thin film with a thickness of 9 nm;
将上述制备的薄膜在,90℃下,空气中进行干燥60min,形成超薄定向层。The film prepared above was dried in air at 90° C. for 60 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图1所示:G/ITO/TiO2/β-环糊精/CH3NH3PbI3/spiro-OMeTAD/Au,有效面积为0.09cm2,光电转换效率数据见表1,测试条件同实施例1。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 1: G/ITO/TiO 2 /β-cyclodextrin/CH 3 NH 3 PbI 3 /spiro-OMeTAD/Au, The effective area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 1, and the test conditions are the same as in Example 1.
实施例5Example 5
除第三步外,其它步骤制备方法同实施例1。Except for the third step, the preparation method of other steps is the same as that of Example 1.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为5%的四-对叔丁基[4]杯芳烃环状分子材料均匀分散于占有质量份数为95%二甲基亚砜溶剂中,配制成透明均匀的超薄定向层溶液;The four-p-tert-butyl[4]calixarene cyclic molecular material with a mass fraction of 5% is uniformly dispersed in a dimethyl sulfoxide solvent with a mass fraction of 95%, and a transparent and uniform ultra-thin oriented layer solution;
将上述配制好的溶液通过提拉法电子传输层表面形成厚度为15nm的一层薄膜;The above-mentioned prepared solution is passed through the surface of the electron transport layer by the pulling method to form a film with a thickness of 15nm;
将上述制备的薄膜在150℃下,空气中进行干燥10min,形成超薄定向层。The film prepared above was dried in air at 150° C. for 10 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图1所示:G/ITO/TiO2/二四-对叔丁基[4]杯芳烃/CH3NH3PbI3/spiro-OMeTAD/Au,有效面积为0.09cm2,光电转换效率数据见表1,测试条件同实施例1。The device structure of the organic-inorganic hybrid perovskite-based solar cell prepared by the above method is shown in Figure 1: G/ITO/TiO 2 /Tetrakis-p-tert-butyl[4]calixarene/CH 3 NH 3 PbI 3 /spiro-OMeTAD/Au, the effective area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 1, and the test conditions are the same as in Example 1.
实施例6Example 6
第一步,制备透明电极:The first step is to prepare a transparent electrode:
将ITO导电玻璃用浓盐酸刻蚀成电极图案,依次用洗涤剂、去离子水、无水乙醇、丙酮、异丙醇中分别超声清洗10min,然后氮气吹干,紫外/臭氧处理20min。The ITO conductive glass was etched with concentrated hydrochloric acid to form an electrode pattern, and then ultrasonically cleaned with detergent, deionized water, absolute ethanol, acetone, and isopropanol for 10 minutes, then dried with nitrogen, and treated with UV/ozone for 20 minutes.
第二步,制备空穴传输层:The second step is to prepare the hole transport layer:
PEDOT:PSS涂布液通过旋涂进行涂覆,匀胶机转速5000rpm,旋涂30s,然后在150℃下干燥10min成膜,形成厚度为40nm空穴传输层。The PEDOT:PSS coating solution was coated by spin coating, the speed of the homogenizer was 5000rpm, spin coating was performed for 30s, and then dried at 150°C for 10min to form a film to form a hole transport layer with a thickness of 40nm.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为1%的单苯并15-冠-5环状分子材料均匀分散于占有质量份数为99%氯仿溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing the monobenzo-15-crown-5 cyclic molecular material with a mass fraction of 1% in a chloroform solvent with a mass fraction of 99% to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过刮涂法在空穴传输层表面形成厚度为6nm的一层薄膜;The above prepared solution was scraped to form a film with a thickness of 6 nm on the surface of the hole transport layer;
将上述制备的薄膜在30℃下,空气中进行干燥120min,形成超薄定向层。The film prepared above was dried in air at 30° C. for 120 min to form an ultra-thin alignment layer.
第四步,制备钙钛矿吸光层:The fourth step is to prepare the perovskite light-absorbing layer:
氮气保护下,在超薄定向层表面通过液相两步法制备钙钛矿吸光层,将适量PbI2粉末溶解在DMF溶剂中,浓度为1mol/L,将PbI2溶液旋涂于超薄定向层表面,转速6000rpm、时间30s,旋涂后空气中干燥得PbI2层。将浓度为40mg/ml CH3NH3I异丙醇溶液旋涂在PbI2层表面,转速6000rpm、时间30s,然后100℃加热退火30min,形成300nm厚的CH3NH3PbI3钙钛矿吸光层。Under the protection of nitrogen, the perovskite light-absorbing layer was prepared on the surface of the ultra-thin alignment layer by a liquid-phase two-step method. An appropriate amount of PbI 2 powder was dissolved in DMF solvent at a concentration of 1mol/L, and the PbI 2 solution was spin-coated on the ultra-thin alignment layer. The surface of the layer was spin-coated at 6000rpm for 30s and dried in the air to obtain a PbI 2 layer. Spin-coat the CH 3 NH 3 I isopropanol solution with a concentration of 40mg/ml on the surface of the PbI 2 layer at a speed of 6000rpm for 30s, then heat and anneal at 100°C for 30min to form a 300nm-thick CH 3 NH 3 PbI 3 perovskite absorbing light Floor.
第五步,制备电子传输层:The fifth step is to prepare the electron transport layer:
在钙钛矿吸光层表面制备电子传输层,浓度为20mg/ml PCBM氯苯溶液旋涂于钙钛矿层表面,转速1000rpm、时间40s,旋涂后空气中干燥,形成厚度为45nm电子传输层。An electron transport layer was prepared on the surface of the perovskite light-absorbing layer. The PCBM chlorobenzene solution with a concentration of 20 mg/ml was spin-coated on the surface of the perovskite layer at a speed of 1000 rpm for 40 s. After spin coating, it was dried in the air to form an electron transport layer with a thickness of 45 nm.
第六步,制备对电级:The sixth step is to prepare the counter electrode:
在电子传输层表面采用热蒸发方式制备金电极,在5×10-4Pa真空度下,真空蒸镀厚度为100nm的铝膜形成对电极。A gold electrode was prepared by thermal evaporation on the surface of the electron transport layer, and an aluminum film with a thickness of 100 nm was vacuum evaporated to form a counter electrode under a vacuum degree of 5×10 -4 Pa.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图2所示::G/ITO/PEDOT:PSS/单苯并15-冠-5/CH3NH3PbI3/PCBM/Al,有效面积为0.09cm2,光电转换效率数据见表2,测试条件:光谱分布AM1.5G,光照强度1000W/m2,AAA太阳光模拟器(日本SAN-EI公司XES-502S+ELS155型),I-V曲线用Keithly2400型数字源表进行测量,所有测试均在大气环境(25℃、45RH%)下进行。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 2: G/ITO/PEDOT:PSS/monobenzo15-crown-5/CH 3 NH 3 PbI 3 /PCBM /Al, the effective area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 2, the test conditions: spectral distribution AM1.5G, light intensity 1000W/m 2 , AAA solar simulator (Japan SAN-EI company XES-502S+ELS155 type), the IV curve was measured with a Keithly2400 digital source meter, and all tests were carried out in an atmospheric environment (25°C, 45RH%).
实施例7Example 7
除第三步外,其它步骤制备方法同实施例6。Except for the third step, the preparation method of other steps is the same as in Example 6.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为0.5%的四苯基卟啉环状分子材料均匀分散于占有质量份数为99.5%二氯甲烷溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing the tetraphenylporphyrin ring molecular material with a mass fraction of 0.5% in a dichloromethane solvent with a mass fraction of 99.5% to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过旋涂法在空穴传输层表面形成厚度为2nm的一层薄膜;The above prepared solution was spin-coated to form a film with a thickness of 2 nm on the surface of the hole transport layer;
将上述制备的薄膜在60℃下,空气中进行干燥90min,形成超薄定向层。The film prepared above was dried in air at 60° C. for 90 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图2所示:G/ITO/PEDOT:PSS/四苯基卟啉/CH3NH3PbI3/PCBM/Al,有效面积为0.09cm2,光电转换效率数据见表2,测试条件同实施例6。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 2: G/ITO/PEDOT:PSS/tetraphenylporphyrin/CH 3 NH 3 PbI 3 /PCBM/Al, effective The area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 2, and the test conditions are the same as in Example 6.
实施例8Example 8
除第三步外,其它步骤制备方法同实施例6。Except for the third step, the preparation method of other steps is the same as in Example 6.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为0.05%的二苯并18-冠-6环状分子材料均匀分散于占有质量份数为99.95%二甲基甲酰胺溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing 0.05% by mass of dibenzo-18-crown-6 cyclic molecular material in 99.95% by mass of dimethylformamide solvent to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过喷涂法在空穴传输层表面形成厚度为0.6nm的一层薄膜;The solution prepared above is sprayed to form a film with a thickness of 0.6 nm on the surface of the hole transport layer;
将上述制备的薄膜在120℃下,空气中进行干燥30min,形成超薄定向层。The film prepared above was dried in air at 120° C. for 30 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图2所示:G/ITO/PEDOT:PSS/二苯并18-冠-6/CH3NH3PbI3/PCBM/Al,有效面积为0.09cm2,光电转换效率数据见表2,测试条件同实施例6。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 2: G/ITO/PEDOT:PSS/Dibenzo-18-crown-6/CH 3 NH 3 PbI 3 /PCBM/ Al, the effective area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 2, and the test conditions are the same as in Example 6.
实施例9Example 9
除第三步外,其它步骤制备方法同实施例6。Except for the third step, the preparation method of other steps is the same as in Example 6.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为2.5%的β-环糊精环状分子材料均匀分散于占有质量份数为97.5%乙二醇溶剂中,配制成透明均匀的超薄定向层溶液;Uniformly dispersing the β-cyclodextrin cyclic molecular material with a mass fraction of 2.5% in an ethylene glycol solvent with a mass fraction of 97.5% to prepare a transparent and uniform ultra-thin alignment layer solution;
将上述配制好的溶液通过喷墨打印法在空穴传输层表面形成厚度为9nm的一层薄膜;Form the above prepared solution on the surface of the hole transport layer by inkjet printing to form a thin film with a thickness of 9nm;
将上述制备的薄膜在,90℃下,空气中进行干燥60min,形成超薄定向层。The film prepared above was dried in air at 90° C. for 60 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图2所示:G/ITO/PEDOT:PSS/β-环糊精/CH3NH3PbI3/PCBM/Al,有效面积为0.09cm2,光电转换效率数据见表2,测试条件同实施例6。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 2: G/ITO/PEDOT:PSS/β-cyclodextrin/CH 3 NH 3 PbI 3 /PCBM/Al, effective The area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 2, and the test conditions are the same as in Example 6.
实施例10Example 10
除第三步外,其它步骤制备方法同实施例6。Except for the third step, the preparation method of other steps is the same as in Example 6.
第三步,制备超薄定向层:The third step is to prepare an ultra-thin alignment layer:
将占有质量份数为5%的四-对叔丁基[4]杯芳烃环状分子材料均匀分散于占有质量份数为95%二甲基亚砜溶剂中,配制成透明均匀的超薄定向层溶液;The four-p-tert-butyl[4]calixarene cyclic molecular material with a mass fraction of 5% is uniformly dispersed in a dimethyl sulfoxide solvent with a mass fraction of 95%, and a transparent and uniform ultra-thin oriented layer solution;
将上述配制好的溶液通过提拉法在空穴传输层表面形成厚度为15nm的一层薄膜;Form the above prepared solution on the surface of the hole transport layer by a pulling method to form a thin film with a thickness of 15nm;
将上述制备的薄膜在150℃下,空气中进行干燥10min,形成超薄定向层。The film prepared above was dried in air at 150° C. for 10 minutes to form an ultra-thin alignment layer.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图2所示:G/ITO/PEDOT:PSS/四-对叔丁基杯[4]芳烃/CH3NH3PbI3/PCBM/Al,有效面积为0.09cm2,光电转换效率数据见表2,测试条件同实施例6。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 2: G/ITO/PEDOT:PSS/tetra-p-tert-butylcalix[4]arene/CH 3 NH 3 PbI 3 /PCBM/Al, the effective area is 0.09cm 2 , the photoelectric conversion efficiency data are shown in Table 2, and the test conditions are the same as in Example 6.
对比例1Comparative example 1
无超薄定向层:No ultra-thin alignment layer:
其它步骤制备方法同实施例1。The preparation method of other steps is the same as that of Example 1.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图1所示:G/ITO/TiO2/CH3NH3PbI3/spiro-OMeTAD/Au,有效面积为0.09cm2,光电转换效率数据见表1,测试条件同实施例1。The device structure of organic-inorganic hybrid perovskite-based solar cells prepared by the above method is shown in Figure 1: G/ITO/TiO 2 /CH 3 NH 3 PbI 3 /spiro-OMeTAD/Au, with an effective area of 0.09 cm 2 , the photoelectric conversion efficiency data are shown in Table 1, and the test conditions are the same as in Example 1.
对比例2Comparative example 2
无超薄定向层。No ultra-thin alignment layer.
其它步骤制备方法同实施例6。The preparation method of other steps is the same as that of Example 6.
用上述方法制备的有机无机杂化钙钛矿基太阳能电池的器件结构如图2所示:G/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Al,有效面积为0.09cm2,光电转换效率数据见表2,测试条件同实施例6。The device structure of the organic-inorganic hybrid perovskite-based solar cell prepared by the above method is shown in Figure 2: G/ITO/PEDOT:PSS/CH 3 NH 3 PbI 3 /PCBM/Al, the effective area is 0.09cm 2 , The photoelectric conversion efficiency data are shown in Table 2, and the test conditions are the same as in Example 6.
表1:图1所示电池结构实施例和对比例数据Table 1: Data of battery structure examples and comparative examples shown in Figure 1
表2:图2所示电池结构实施例和对比例数据Table 2: Data of battery structure examples and comparative examples shown in Figure 2
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也应属于本发明权利要求的保护范围。The descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications should also belong to the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510166048.4A CN104795499B (en) | 2015-04-09 | 2015-04-09 | Perovskite-based solar cell of organic inorganic hybridization and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510166048.4A CN104795499B (en) | 2015-04-09 | 2015-04-09 | Perovskite-based solar cell of organic inorganic hybridization and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104795499A CN104795499A (en) | 2015-07-22 |
CN104795499B true CN104795499B (en) | 2017-10-27 |
Family
ID=53560167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510166048.4A Active CN104795499B (en) | 2015-04-09 | 2015-04-09 | Perovskite-based solar cell of organic inorganic hybridization and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104795499B (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105200522A (en) * | 2015-08-13 | 2015-12-30 | 陕西师范大学 | Large-area perovskite thin sheet and preparation and application thereof |
CN105098080A (en) * | 2015-08-17 | 2015-11-25 | 电子科技大学 | Method for manufacturing organic and inorganic perovskite crystal film |
CN105226191A (en) * | 2015-09-25 | 2016-01-06 | 中国电子科技集团公司第四十八研究所 | Flexible perovskite solar cell and preparation technology thereof |
CN105355786A (en) * | 2015-10-19 | 2016-02-24 | 南开大学 | Method for preparing titanium dioxide and perovskite plane heterojunction solar cell at low temperature |
CN105470401B (en) * | 2015-11-24 | 2017-12-08 | 武汉理工大学 | A kind of preparation method of the perovskite solar cell based on silk rod blade coating |
CN105514277B (en) * | 2015-12-21 | 2017-10-20 | 成都新柯力化工科技有限公司 | A kind of perovskite photovoltaic material of wide scope spectral absorption and preparation method thereof |
CN105609641B (en) * | 2015-12-26 | 2021-12-17 | 中国乐凯集团有限公司 | Perovskite type solar cell and preparation method thereof |
CN105671640A (en) * | 2015-12-29 | 2016-06-15 | 东南大学 | Layered large-size hybridized perovskite microcrystal material and preparation method thereof |
CN105826477B (en) * | 2016-05-12 | 2019-06-21 | 东莞市联洲知识产权运营管理有限公司 | A kind of perovskite solar cell and preparation method thereof |
CN106784323A (en) * | 2016-12-14 | 2017-05-31 | 天津市职业大学 | A kind of large area perovskite solar cell composite photoelectric conversion layer and preparation method thereof |
CN106784325B (en) * | 2016-12-26 | 2018-11-27 | 天津市职业大学 | A kind of perovskite solar cell and preparation method using Ca-Ti ore type composite material as hole transmission layer |
WO2018152135A1 (en) * | 2017-02-16 | 2018-08-23 | The Regents Of The University Of California | Systems, devices and methods for amplification of signals based on a cycling excitation process in disordered materials |
CN106684247A (en) * | 2017-03-15 | 2017-05-17 | 中南大学 | Perovskite solar cell and preparation method thereof |
CN107146849B (en) * | 2017-06-08 | 2019-12-17 | 华中科技大学 | A recycling treatment method for perovskite solar cells |
CN107418558B (en) * | 2017-06-20 | 2019-05-31 | 东南大学 | A kind of preparation method of environment-friendly type bimetallic perovskite quantum dot |
CN109285952B (en) * | 2017-07-20 | 2024-04-12 | 松下知识产权经营株式会社 | Light absorbing material and solar cell using the same |
CN107394045B (en) * | 2017-07-21 | 2019-09-20 | 中国乐凯集团有限公司 | Organic-inorganic hybrid perovskite thin-film solar cells |
EP3699969B1 (en) * | 2017-09-21 | 2024-04-17 | Sekisui Chemical Co., Ltd. | Solar cell |
CN107946466B (en) * | 2017-12-07 | 2020-08-07 | 暨南大学 | Perovskite type solar cell and modification method of PEDOT (polymer doped tin oxide) PSS (patterned sapphire substrate) layer thereof |
CN108232014B (en) * | 2017-12-30 | 2020-11-10 | 杭州纤纳光电科技有限公司 | A kind of perovskite film doped with ion stabilizer and its preparation method and application |
CN108258128B (en) * | 2018-01-17 | 2020-09-04 | 杭州纤纳光电科技有限公司 | Perovskite solar cell with interface modification layer and preparation method thereof |
CN108281572B (en) * | 2018-01-22 | 2019-08-06 | 苏州大学 | Perovskite light-emitting diode containing ethylene oxide compound and its preparation method |
CN108409980B (en) * | 2018-03-23 | 2020-01-17 | 南京晓庄学院 | Perovskite-type lead halide-based organic-inorganic hybrid molecular machine and its preparation method and application |
CN110400876A (en) * | 2018-04-25 | 2019-11-01 | 杭州纤纳光电科技有限公司 | A kind of anti-oxidant doped perovskite thin film and its preparation method and application |
CN108645895B (en) * | 2018-06-01 | 2020-12-29 | 中国石油大学(华东) | A kind of preparation method of porphyrin-modified perovskite nanoparticles and gas sensor thereof |
CN109762554B (en) * | 2019-03-08 | 2021-07-13 | 福州大学 | A one-step method for the synthesis of stable CsPbBr3 perovskites in aqueous solution |
CN110061135B (en) * | 2019-03-20 | 2023-05-19 | 杭州电子科技大学 | Preparation method of visible light photoelectric detector |
CN110635039B (en) * | 2019-08-21 | 2021-01-26 | 厦门大学 | A method of passivating perovskite and perovskite solar cell |
CN112086535B (en) * | 2020-08-20 | 2022-08-09 | 隆基绿能科技股份有限公司 | Laminated battery |
CN112563421A (en) * | 2020-12-09 | 2021-03-26 | 电子科技大学 | Interface passivation layer perovskite solar cell based on DNT-Ph-Br and preparation method thereof |
CN114639782B (en) * | 2020-12-16 | 2025-02-14 | 陕西师范大学 | A method to improve the efficiency and stability of perovskite solar cells |
CN113651825B (en) * | 2021-08-17 | 2022-07-26 | 华侨大学 | Fullerene derivative, preparation method thereof and perovskite solar cell |
CN116496658B (en) * | 2022-01-20 | 2024-07-02 | 中国科学院苏州纳米技术与纳米仿生研究所 | Crystalline amorphous hybrid zinc oxide nanoparticle ink, preparation method and application |
CN116102031B (en) * | 2023-02-06 | 2024-09-03 | 淄博恒亿化工科技有限公司 | ZSM-5 molecular sieve, preparation method and application thereof in catalyzing cyclohexene hydration reaction |
CN116154015A (en) * | 2023-02-20 | 2023-05-23 | 中国科学院半导体研究所 | Inorganic perovskite solar cell and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104157787A (en) * | 2014-08-12 | 2014-11-19 | 郑州大学 | Plane-mesopore mixed perovskite solar cell structure and manufacturing method |
CN204029873U (en) * | 2014-08-12 | 2014-12-17 | 中国乐凯集团有限公司 | A kind of planar heterojunction perovskite solar cell |
CN104465992A (en) * | 2014-11-30 | 2015-03-25 | 浙江大学 | Perovskite planar heterojunction solar battery based on self-assembled monolayer |
CN204497277U (en) * | 2015-04-09 | 2015-07-22 | 中国乐凯集团有限公司 | The perovskite-based solar cell of organic inorganic hybridization |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140060643A1 (en) * | 2012-09-05 | 2014-03-06 | Lane W. Martin | Light Absorbing Oxide Materials for Photovoltaic and Photocatalytic Applications and Devices |
-
2015
- 2015-04-09 CN CN201510166048.4A patent/CN104795499B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104157787A (en) * | 2014-08-12 | 2014-11-19 | 郑州大学 | Plane-mesopore mixed perovskite solar cell structure and manufacturing method |
CN204029873U (en) * | 2014-08-12 | 2014-12-17 | 中国乐凯集团有限公司 | A kind of planar heterojunction perovskite solar cell |
CN104465992A (en) * | 2014-11-30 | 2015-03-25 | 浙江大学 | Perovskite planar heterojunction solar battery based on self-assembled monolayer |
CN204497277U (en) * | 2015-04-09 | 2015-07-22 | 中国乐凯集团有限公司 | The perovskite-based solar cell of organic inorganic hybridization |
Also Published As
Publication number | Publication date |
---|---|
CN104795499A (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104795499B (en) | Perovskite-based solar cell of organic inorganic hybridization and preparation method thereof | |
CN105609641B (en) | Perovskite type solar cell and preparation method thereof | |
Kim et al. | Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. | |
Zhang et al. | Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells | |
US10236460B2 (en) | Photovoltaic cell enhancement through UVO treatment | |
CN109950410B (en) | Preparation method of perovskite thin film and application of perovskite thin film in perovskite solar cell | |
CN108365102A (en) | Stable and efficient two-dimensional layered perovskite solar cell and preparation method thereof | |
Guo et al. | Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells | |
CN107394045B (en) | Organic-inorganic hybrid perovskite thin-film solar cells | |
Li et al. | Chlorobenzene vapor assistant annealing method for fabricating high quality perovskite films | |
Chen et al. | Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier | |
CN105870341A (en) | Method for improving growth quality of perovskite crystal and solar cell device | |
CN109449297B (en) | An organic solar cell structure based on polypropylene as a third element and its preparation method | |
CN107240643A (en) | Bromo element doping methylamine lead iodine perovskite solar cell and preparation method thereof | |
JP6914556B2 (en) | Organic optical active layer composite ink, organic solar cell and its manufacturing method | |
CN102509769B (en) | Thin-film photoelectric conversion devices based on hybridization of Ag2S flake nanocrystal arrays and P3HT prepared at low temperature | |
Makenali et al. | Efficiency improvement of perovskite solar cells by charge transport balancing using length tunable ZnO nanorods and optimized perovskite morphology | |
CN105870342B (en) | The method of interface processing preparation high-performance perovskite thin film | |
Xi et al. | Highly efficient inverted perovskite solar cells mediated by electrodeposition-processed NiO NPs hole-selective contact with different energy structure and surface property | |
CN116847670A (en) | Perovskite solar cell of passivation composite hole transport layer | |
CN106356457A (en) | Perovskite photoelectric detector for accelerating electron filtering | |
CN104701455A (en) | Hybrid membrane production method | |
CN106025078B (en) | A kind of planar heterojunction perovskite photovoltaic cell and preparation method thereof | |
KR101112676B1 (en) | Large Area High Efficiency Organic Solar Cell with Nanoparticles and High Conductivity Organic-Inorganic Composite Buffer Layer | |
Ma et al. | Hollow rice grain-shaped TiO2 nanostructures for high-efficiency and large-area perovskite solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |