CN104789810B - A preparation method of in-situ Al3Ti particle reinforced Al-Si-Cu composite material semi-solid slurry - Google Patents
A preparation method of in-situ Al3Ti particle reinforced Al-Si-Cu composite material semi-solid slurry Download PDFInfo
- Publication number
- CN104789810B CN104789810B CN201510095774.1A CN201510095774A CN104789810B CN 104789810 B CN104789810 B CN 104789810B CN 201510095774 A CN201510095774 A CN 201510095774A CN 104789810 B CN104789810 B CN 104789810B
- Authority
- CN
- China
- Prior art keywords
- stirring
- composite material
- situ
- powder
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910018594 Si-Cu Inorganic materials 0.000 title claims abstract description 42
- 229910008465 Si—Cu Inorganic materials 0.000 title claims abstract description 42
- 239000002245 particle Substances 0.000 title claims abstract description 28
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 239000007787 solid Substances 0.000 title claims abstract description 25
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 18
- 239000002002 slurry Substances 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 81
- 239000000843 powder Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000155 melt Substances 0.000 claims abstract description 14
- 239000002893 slag Substances 0.000 claims abstract description 7
- 229910000838 Al alloy Inorganic materials 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 claims description 6
- RXCBCUJUGULOGC-UHFFFAOYSA-H dipotassium;tetrafluorotitanium;difluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[K+].[K+].[Ti+4] RXCBCUJUGULOGC-UHFFFAOYSA-H 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims 1
- 238000010099 solid forming Methods 0.000 abstract description 6
- 239000012071 phase Substances 0.000 abstract description 4
- 239000007791 liquid phase Substances 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 7
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种原位Al3Ti颗粒增强Al‑Si‑Cu复合材料半固态浆料的制备方法,其工艺为:将1~2Kg的Al‑Si‑Cu合金放入电磁搅拌炉内的坩埚中过热至750~770℃,保温10~15min,接着精炼、除渣,然后保持此温度不变启动电磁搅拌,边搅拌边将K2TiF6粉剂分批加入熔体,此过程在3~5min内完成,时间一到,暂停搅拌,待温度降至635~625℃时再次施加电磁搅拌,当温度降至570~560℃时停止搅拌。本发明得到的半固态组织中α‑Al相形貌较圆整,弥散悬浮于液相中,满足半固态成形要求,而且操作简便、无污染,便于批量制备。
The invention discloses a method for preparing semi-solid slurry of Al-Si-Cu composite material reinforced by in-situ Al 3 Ti particles. Overheat the crucible to 750~770°C, keep it warm for 10~15min, then refine and remove slag, then keep the temperature constant and start electromagnetic stirring, and add K 2 TiF 6 powder to the melt in batches while stirring, this process takes 3~ Finish within 5 minutes. Once the time is up, stop stirring, apply electromagnetic stirring again when the temperature drops to 635~625°C, and stop stirring when the temperature drops to 570~560°C. The α-Al phase in the semi-solid structure obtained by the present invention has a relatively round shape, is dispersed and suspended in the liquid phase, meets the requirements of semi-solid forming, and is easy to operate and pollution-free, and is convenient for batch preparation.
Description
技术领域technical field
本发明属于合金材料制备技术领域,具体涉及一种在电磁搅拌条件下用原位反应制备Al3Ti颗粒增强Al-Si-Cu复合材料半固态浆料的制备方法。The invention belongs to the technical field of alloy material preparation, and in particular relates to a method for preparing Al 3 Ti particle reinforced Al-Si-Cu composite material semi-solid slurry by in-situ reaction under electromagnetic stirring conditions.
背景技术Background technique
半固态成形技术是一种生产效率高的近净成型技术,被誉为是21世纪新一代金属成形工艺。与传统的液态铸造相比,半固态铸造铸件的机加工量少,加工温度低,凝固收缩率小,组织和性能也得到了明显的提高。而半固态浆料的制备是半固态成形的关键,其制备方法主要有机械搅拌法、等温热处理法、电磁搅拌法、近液相线法和超声振动法等。与其它半固态浆料制备技术相比,电磁搅拌技术制备半固态浆料有着独特的优势,它能以快速混合对流的方式对熔体进行传热和传质,且具有不接触性、可控制性、无污染性等优点,对铸坯表层质量、偏析及中心缩孔缩松还有着良好的改善作用,最重要的是它能轻松便捷地实现较大批量地生产,在实际应用中能得到推广。而原位生成法合成的增强相表面无污染,与基体润湿性好,界面结合牢固,而且不会生成有害的反应物,无须对增强体进行合成、预处理和加入等工序。综上可知,将电磁搅拌半固态成形技术与原位反应相结合能制备出性能优异的合金坯料,这将为新型材料制备技术的发展提供一个新的指引方向。Semi-solid forming technology is a near-net forming technology with high production efficiency, and is known as a new generation of metal forming technology in the 21st century. Compared with traditional liquid casting, semi-solid casting has less machining, lower processing temperature, smaller solidification shrinkage rate, and significantly improved structure and performance. The preparation of semi-solid slurry is the key to semi-solid forming, and its preparation methods mainly include mechanical stirring method, isothermal heat treatment method, electromagnetic stirring method, near liquidus method and ultrasonic vibration method. Compared with other semi-solid slurry preparation technologies, electromagnetic stirring technology has unique advantages in preparing semi-solid slurry. It can transfer heat and mass to the melt in a rapid mixing and convection manner, and has non-contact and controllable It has the advantages of non-toxicity and non-pollution, and has a good effect on improving the surface quality, segregation, and central shrinkage of the slab. The most important thing is that it can easily and conveniently realize large-scale production, and can be obtained in practical applications. promote. The reinforced phase synthesized by the in-situ generation method has no pollution on the surface, good wettability with the substrate, strong interface bonding, and no harmful reactants, and no steps such as synthesis, pretreatment and addition of the reinforcement are required. In summary, the combination of electromagnetic stirring semi-solid forming technology and in-situ reaction can prepare alloy billets with excellent performance, which will provide a new direction for the development of new material preparation technology.
发明内容Contents of the invention
本发明的目的是提供一种用原位反应制备Al3Ti颗粒增强Al-Si-Cu复合材料半固态浆料的制备方法。The purpose of the present invention is to provide a method for preparing semi-solid slurry of Al-Si-Cu composite material reinforced by Al 3 Ti particles by in-situ reaction.
本发明所述的制备工艺为:先将分析纯氟钛酸钾粉剂(分子式为K2TiF6,纯度≥99.5%)干燥以备用,将1~2Kg的Al-Si-Cu铝合金锭放入EMS-SM05型铝合金用电磁搅拌炉内的坩埚中过热至750℃~770℃,保温10min~15min,接着用六氯乙烷精炼、除渣,然后在保持此温度的条件下启动电磁搅拌装置,搅拌电压为250V~380V,搅拌频率为30HZ~40HZ,电磁搅拌的同时每隔一段时间用钟罩将铝箔包覆的一定量的备用粉剂(K2TiF6粉剂的加入量占Al-Si-Cu铝合金熔体质量的4%~8%)分批压入熔体,加入K2TiF6粉剂的过程在设定的3min~5min内完成,时间一到,立即停止搅拌,即可制得Al3Ti颗粒增强Al-Si-Cu复合材料。待温度降至635℃~625℃时再次对熔体施加电磁搅拌,此次搅拌在降温条件下(降温速率约为0.02℃/S~0.05℃/S)进行,当温度降至570℃~560℃时停止搅拌,降温搅拌过程中可设定搅拌电压为250V~350V,搅拌频率为30HZ~35HZ,最后可在595℃~575℃这一温度区间段用石英管抽取合金熔液并迅速水淬,即可得到比较理想的Al3Ti颗粒增强Al-Si-Cu复合材料半固态浆料。The preparation process of the present invention is as follows: firstly dry the analytically pure potassium fluorotitanate powder (molecular formula is K 2 TiF 6 , purity ≥ 99.5%) for later use, put 1~2Kg of Al-Si-Cu aluminum alloy ingot into EMS-SM05 aluminum alloy is superheated to 750°C~770°C in the crucible in the electromagnetic stirring furnace, kept for 10min~15min, then refined with hexachloroethane, slag removed, and then the electromagnetic stirring device is started under the condition of maintaining this temperature , the stirring voltage is 250V~380V, the stirring frequency is 30HZ~40HZ, at the same time of electromagnetic stirring, use a bell jar to wrap a certain amount of spare powder with aluminum foil every once in a while (the amount of K 2 TiF 6 powder accounts for Al-Si- 4%~8% of the mass of Cu aluminum alloy melt) into the melt in batches, and the process of adding K 2 TiF 6 powder is completed within the set 3min~5min. When the time is up, stop stirring immediately to obtain Al 3 Ti particles reinforced Al-Si-Cu composites. When the temperature drops to 635°C~625°C, electromagnetic stirring is applied to the melt again. This time the stirring is carried out under cooling conditions (the cooling rate is about 0.02°C/S~0.05°C/S). When the temperature drops to 570°C~560 Stop stirring at ℃, during cooling and stirring, the stirring voltage can be set to 250V~350V, the stirring frequency can be 30HZ~35HZ, and finally the alloy melt can be extracted with a quartz tube in the temperature range of 595°C~575°C and rapidly water quenched , then an ideal semi-solid slurry of Al 3 Ti particle reinforced Al-Si-Cu composite material can be obtained.
所述Al-Si-Cu合金中Si的质量百分比为10.5%~11.5%,Cu的质量百分比为3.0%~3.5%,余量为Al。The mass percentage of Si in the Al-Si-Cu alloy is 10.5%-11.5%, the mass percentage of Cu is 3.0%-3.5%, and the balance is Al.
本发明得到的原位Al3Ti颗粒增强Al-Si-Cu复合材料半固态组织中,Al3Ti颗粒呈细小块状,分布也较为均匀,初生α-Al相主要呈近球状、小块状,弥散悬浮于液相中,完全满足半固态成形要求,操作简便、安全可靠,而且无污染,便于批量制备。In the semi-solid structure of the in-situ Al 3 Ti particle reinforced Al-Si-Cu composite material obtained by the present invention, the Al 3 Ti particles are in the form of fine blocks, and the distribution is relatively uniform, and the primary α-Al phase is mainly in the form of spherical and small blocks. , dispersed and suspended in the liquid phase, fully meet the requirements of semi-solid forming, easy to operate, safe and reliable, and non-polluting, convenient for batch preparation.
附图说明Description of drawings
图1为本发明所述的原位Al3Ti颗粒增强Al-Si-Cu复合材料半固态组织的XRD图谱。Fig. 1 is the XRD spectrum of the semi-solid structure of the in-situ Al 3 Ti particle reinforced Al-Si-Cu composite material according to the present invention.
图2为本发明一个实施实例1条件下制备的原位Al3Ti颗粒增强Al-Si-Cu复合材料半固态组织形貌。Fig. 2 is the semi-solid structure morphology of the in-situ Al 3 Ti particle reinforced Al-Si-Cu composite material prepared under the conditions of Example 1 of the present invention.
图3为本发明实施实例2条件下制备的原位Al3Ti颗粒增强Al-Si-Cu复合材料半固态组织形貌。Fig. 3 is the semi-solid structure morphology of the in-situ Al 3 Ti particle reinforced Al-Si-Cu composite material prepared under the conditions of Example 2 of the present invention.
具体实施方式detailed description
本发明将通过以下实施实例作进一步说明。The present invention will be further illustrated by the following implementation examples.
图1为在电磁搅拌作用下加入氟钛酸钾备用粉末制备的原位Al3Ti颗粒增强Al-Si-Cu复合材料半固态组织的XRD图谱,可知其原位合成了Al3Ti增强颗粒。Figure 1 is the XRD spectrum of the semi-solid structure of the in-situ Al 3 Ti particle reinforced Al-Si-Cu composite material prepared by adding potassium fluotitanate spare powder under the action of electromagnetic stirring, which shows that Al 3 Ti reinforced particles were synthesized in situ.
本实施实例中所述的原位Al3Ti颗粒增强Al-Si-Cu复合材料的半固态浆料,是通过二次电磁搅拌与原位反应相结合制备的。The semi-solid slurry of in-situ Al 3 Ti particle reinforced Al-Si-Cu composite material described in this implementation example is prepared by a combination of secondary electromagnetic stirring and in-situ reaction.
实施例1。Example 1.
先将分析纯氟钛酸钾粉剂(分子式为K2TiF6,纯度≥99.5%)干燥以备用,将1Kg的Al-Si-Cu铝合金锭放入EMS-SM05型铝合金用电磁搅拌炉内的坩埚中过热至760℃,保温10min,所述Al-Si-Cu合金中Si的质量百分比为10.5%,Cu的质量百分比3.5%,余量为Al。接着用六氯乙烷精炼、除渣,然后在保持此温度的条件下启动电磁搅拌装置,搅拌电压为250V,搅拌频率为30HZ,电磁搅拌的同时每隔一段时间用钟罩将铝箔包覆的一定量的备用粉剂(K2TiF6粉剂的加入量占Al-Si-Cu铝合金熔体质量的6%)分批压入熔体,加入K2TiF6粉剂的过程在设定的3min内完成,时间一到,立即停止搅拌,即可制得Al3Ti颗粒增强Al-Si-Cu复合材料。待温度降至625℃时再次对熔体施加电磁搅拌,此次搅拌在降温条件下(降温速率约为0.04℃/S)进行,当温度降至570℃时停止搅拌,降温搅拌过程中设定搅拌电压为250V,搅拌频率为35HZ,最后搅拌温度降至585℃时用石英管抽取合金熔液并迅速水淬,即可得到比较理想的Al3Ti颗粒增强Al-Si-Cu复合材料半固态浆料,见附图2。First dry the analytically pure potassium fluorotitanate powder (molecular formula K 2 TiF 6 , purity ≥ 99.5%) for later use, put 1Kg of Al-Si-Cu aluminum alloy ingot into the EMS-SM05 type electromagnetic stirring furnace for aluminum alloy The crucible was overheated to 760°C and held for 10 minutes. The mass percentage of Si in the Al-Si-Cu alloy was 10.5%, the mass percentage of Cu was 3.5%, and the balance was Al. Then use hexachloroethane to refine and remove slag, and then start the electromagnetic stirring device under the condition of maintaining this temperature, the stirring voltage is 250V, and the stirring frequency is 30HZ. A certain amount of spare powder (the amount of K 2 TiF 6 powder added accounts for 6% of the mass of Al-Si-Cu aluminum alloy melt) is pressed into the melt in batches, and the process of adding K 2 TiF 6 powder is within the set 3min When the time is up, the stirring is stopped immediately, and the Al 3 Ti particle reinforced Al-Si-Cu composite material can be prepared. When the temperature drops to 625°C, apply electromagnetic stirring to the melt again. This time, the stirring is carried out under the condition of cooling (the cooling rate is about 0.04°C/S). When the temperature drops to 570°C, stop stirring. The stirring voltage is 250V, the stirring frequency is 35HZ, and when the stirring temperature drops to 585°C, the alloy melt is extracted with a quartz tube and rapidly quenched in water to obtain an ideal semi-solid Al 3 Ti particle reinforced Al-Si-Cu composite material Slurry, see accompanying drawing 2.
实施例2。Example 2.
先将分析纯氟钛酸钾粉剂(分子式为K2TiF6,纯度≥99.5%)干燥以备用,将2Kg的Al-Si-Cu铝合金锭放入EMS-SM05型铝合金用电磁搅拌炉内的坩埚中过热至760℃,保温10min,所述Al-Si-Cu合金中Si的质量百分比为11.0%,Cu的质量百分比为3.5%,余量为Al。接着用六氯乙烷精炼、除渣,然后在保持此温度的条件下启动电磁搅拌装置,搅拌电压为250V,搅拌频率为30HZ,电磁搅拌的同时每隔一段时间用钟罩将铝箔包覆的一定量的备用粉剂(K2TiF6粉剂的加入量占Al-Si-Cu铝合金熔体质量的6%)分批压入熔体,加入K2TiF6粉剂的过程在设定的3min内完成,时间一到,立即停止搅拌,即可制得Al3Ti颗粒增强Al-Si-Cu复合材料。待温度降至625℃时再次对熔体施加电磁搅拌,此次搅拌在降温条件下(降温速率约为0.04℃/S)进行,当温度降至570℃时停止搅拌,降温搅拌过程中设定搅拌电压为300V,搅拌频率为30HZ,最后搅拌温度降至585℃时用石英管抽取合金熔液并迅速水淬,即可得到比较理想的Al3Ti颗粒增强Al-Si-Cu复合材料半固态浆料,见附图3。First dry the analytically pure potassium fluorotitanate powder (molecular formula is K 2 TiF 6 , purity ≥ 99.5%) for later use, put 2Kg of Al-Si-Cu aluminum alloy ingot into the EMS-SM05 electromagnetic stirring furnace for aluminum alloy The crucible was overheated to 760°C and held for 10 minutes. The mass percentage of Si in the Al-Si-Cu alloy was 11.0%, the mass percentage of Cu was 3.5%, and the balance was Al. Then use hexachloroethane to refine and remove slag, and then start the electromagnetic stirring device under the condition of maintaining this temperature, the stirring voltage is 250V, and the stirring frequency is 30HZ. A certain amount of spare powder (the amount of K 2 TiF 6 powder added accounts for 6% of the mass of Al-Si-Cu aluminum alloy melt) is pressed into the melt in batches, and the process of adding K 2 TiF 6 powder is within the set 3min When the time is up, the stirring is stopped immediately, and the Al 3 Ti particle reinforced Al-Si-Cu composite material can be prepared. When the temperature drops to 625°C, apply electromagnetic stirring to the melt again. This time, the stirring is carried out under the condition of cooling (the cooling rate is about 0.04°C/S). When the temperature drops to 570°C, stop stirring. The stirring voltage is 300V, the stirring frequency is 30HZ, and when the stirring temperature drops to 585°C, the alloy melt is extracted with a quartz tube and rapidly water-quenched to obtain an ideal semi-solid Al 3 Ti particle reinforced Al-Si-Cu composite material Slurry, see accompanying drawing 3.
实施例3Example 3
将2Kg的Al-Si-Cu铝合金锭放入EMS-SM05型铝合金用电磁搅拌炉内的坩埚中过热至750℃,保温15min,所述Al-Si-Cu合金中Si的质量百分比为11.5%,Cu的质量百分比为3.0%,余量为Al。接着用六氯乙烷精炼、除渣,然后在保持此温度的条件下启动电磁搅拌装置,搅拌电压为380V,搅拌频率为40HZ,电磁搅拌的同时每隔一段时间用钟罩将铝箔包覆的一定量的备用粉剂(K2TiF6粉剂的加入量占Al-Si-Cu铝合金熔体质量的8%)分批压入熔体,加入K2TiF6粉剂的过程在设定的5min内完成,时间一到,立即停止搅拌,即可制得Al3Ti颗粒增强Al-Si-Cu复合材料。待温度降至635℃时再次对熔体施加电磁搅拌,此次搅拌在降温条件下(降温速率约为0.05℃/S)进行,当温度降至560℃时停止搅拌,降温搅拌过程中设定搅拌电压为350V,搅拌频率为30HZ,最后搅拌温度降至575℃时用石英管抽取合金熔液并迅速水淬,即可得到比较理想的Al3Ti颗粒增强Al-Si-Cu复合材料半固态浆料。Put 2Kg of Al-Si-Cu aluminum alloy ingot into the crucible in the EMS-SM05 type aluminum alloy electromagnetic stirring furnace and overheat to 750°C, keep it warm for 15min, the mass percentage of Si in the Al-Si-Cu alloy is 11.5 %, the mass percentage of Cu is 3.0%, and the balance is Al. Then use hexachloroethane to refine and remove slag, and then start the electromagnetic stirring device under the condition of maintaining this temperature, the stirring voltage is 380V, and the stirring frequency is 40HZ. A certain amount of spare powder (the addition of K 2 TiF 6 powder accounts for 8% of the mass of Al-Si-Cu aluminum alloy melt) is pressed into the melt in batches, and the process of adding K 2 TiF 6 powder is within the set 5min When the time is up, the stirring is stopped immediately, and the Al 3 Ti particle reinforced Al-Si-Cu composite material can be prepared. When the temperature drops to 635°C, electromagnetic stirring is applied to the melt again. This time, the stirring is carried out under cooling conditions (the cooling rate is about 0.05°C/S). When the temperature drops to 560°C, the stirring is stopped. During the cooling and stirring process, set The stirring voltage is 350V, the stirring frequency is 30HZ, and when the stirring temperature drops to 575°C, the alloy melt is extracted with a quartz tube and rapidly quenched in water to obtain an ideal semi-solid Al 3 Ti particle reinforced Al-Si-Cu composite material slurry.
实施例4Example 4
将2Kg的Al-Si-Cu铝合金锭放入EMS-SM05型铝合金用电磁搅拌炉内的坩埚中过热至770℃,保温15min,接着用六氯乙烷精炼、除渣,然后在保持此温度的条件下启动电磁搅拌装置,搅拌电压为250V,搅拌频率为30HZ,电磁搅拌的同时每隔一段时间用钟罩将铝箔包覆的一定量的备用粉剂(K2TiF6粉剂的加入量占Al-Si-Cu铝合金熔体质量的4%)分批压入熔体,加入K2TiF6粉剂的过程在设定的3min内完成,时间一到,立即停止搅拌,即可制得Al3Ti颗粒增强Al-Si-Cu复合材料。待温度降至625℃时再次对熔体施加电磁搅拌,此次搅拌在降温条件下(降温速率约为0.02℃/S)进行,当温度降至570℃时停止搅拌,降温搅拌过程中设定搅拌电压为300V,搅拌频率为30HZ,最后搅拌温度降至595℃时用石英管抽取合金熔液并迅速水淬,即可得到比较理想的Al3Ti颗粒增强Al-Si-Cu复合材料半固态浆料Put 2Kg of Al-Si-Cu aluminum alloy ingot into the crucible in the EMS-SM05 type aluminum alloy electromagnetic stirring furnace and overheat to 770°C, keep it for 15 minutes, then refine it with hexachloroethane, remove the slag, and then keep it Start the electromagnetic stirring device under the condition of high temperature, the stirring voltage is 250V, and the stirring frequency is 30HZ. While electromagnetic stirring, use a bell jar to wrap a certain amount of spare powder with aluminum foil at intervals (the addition of K 2 TiF 6 powder accounts for 4% of the mass of the Al-Si-Cu aluminum alloy melt) is pressed into the melt in batches, and the process of adding K 2 TiF 6 powder is completed within the set 3 minutes. When the time is up, stop stirring immediately to obtain Al 3 Ti particles reinforced Al-Si-Cu composites. When the temperature drops to 625°C, electromagnetic stirring is applied to the melt again. This time, the stirring is carried out under cooling conditions (the cooling rate is about 0.02°C/S). When the temperature drops to 570°C, the stirring is stopped. The stirring voltage is 300V, the stirring frequency is 30HZ, and when the stirring temperature drops to 595°C, the alloy melt is extracted with a quartz tube and rapidly quenched in water to obtain an ideal semi-solid Al 3 Ti particle reinforced Al-Si-Cu composite material slurry
从附图1、2、3 中可知本发明制备的Al3Ti颗粒增强Al-Si-Cu复合材料半固态组织中初生α-Al相主要呈近球状、小块状,弥散悬浮于液相中,平均晶粒尺寸细小,完全满足半固态成形要求,操作简便、安全可靠,而且无污染,便于批量制备。From Figures 1, 2, and 3, it can be seen that the primary α-Al phase in the semi-solid structure of the Al 3 Ti particle reinforced Al-Si-Cu composite material prepared by the present invention is mainly in the form of spherical and small blocks, and is dispersed and suspended in the liquid phase , the average grain size is small, fully meet the requirements of semi-solid forming, easy to operate, safe and reliable, and non-polluting, easy to batch preparation.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510095774.1A CN104789810B (en) | 2015-03-04 | 2015-03-04 | A preparation method of in-situ Al3Ti particle reinforced Al-Si-Cu composite material semi-solid slurry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510095774.1A CN104789810B (en) | 2015-03-04 | 2015-03-04 | A preparation method of in-situ Al3Ti particle reinforced Al-Si-Cu composite material semi-solid slurry |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104789810A CN104789810A (en) | 2015-07-22 |
CN104789810B true CN104789810B (en) | 2017-04-05 |
Family
ID=53554999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510095774.1A Active CN104789810B (en) | 2015-03-04 | 2015-03-04 | A preparation method of in-situ Al3Ti particle reinforced Al-Si-Cu composite material semi-solid slurry |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104789810B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107012354B (en) * | 2017-04-05 | 2018-12-14 | 江苏大学 | A kind of preparation method of Al-Si9Cu1 particulate reinforced composite |
CN109797318B (en) * | 2019-04-01 | 2021-08-20 | 重庆大学 | A kind of method for preparing Al3Ti reinforced aluminum-based material |
CN113667862B (en) * | 2021-08-05 | 2022-04-19 | 贵州贵材创新科技股份有限公司 | TiAl intermetallic compound reinforced aluminum-silicon composite material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RO110960B1 (en) * | 1995-10-20 | 1996-05-30 | Inst De Metale Neferoase Si Ra | Composite materials with metallic matrix preparation process |
CN1257296C (en) * | 2003-12-19 | 2006-05-24 | 上海交通大学 | TiB2/Ai high--damp composite material and preparing method thereof |
CN102586635B (en) * | 2011-12-13 | 2015-01-28 | 南昌大学 | A preparation method of in-situ Al2O3 particle reinforced Al-Si-Cu composite material semi-solid slurry |
CN104313384B (en) * | 2014-09-30 | 2017-05-24 | 南昌大学 | Preparation method of in-situ Al3Ti intermetallic compound particle reinforced aluminum-based composite material |
-
2015
- 2015-03-04 CN CN201510095774.1A patent/CN104789810B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104789810A (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104532044B (en) | Low-cost and high-efficiency Al-Ti-C-Ce refining agent and preparation method thereof | |
CN106756146B (en) | A kind of preparation method of Al-Ti-C-Ce fining agents | |
CN101608270A (en) | A high-efficiency and low-cost aluminum and aluminum alloy refiner and preparation method thereof | |
CN106435299B (en) | A kind of SiC particulate reinforced aluminum matrix composites and preparation method thereof | |
CN109182822B (en) | Die forging method of high-performance 7075 aluminum alloy | |
CN104878238A (en) | Method for preparing nano-particle dispersed ultrafine grain metal matrix nano composite | |
CN103540812B (en) | A kind of Aluminum alloy material for engine cylinder cover and preparation method thereof | |
CN103589916A (en) | Rapid solidification Al-Ti-B-Sc intermediate alloy refiner and preparation method thereof | |
CN110229969A (en) | A kind of the nano-TiC particle reinforced aluminum matrix composites and method of melting-reaction method preparation | |
CN104789810B (en) | A preparation method of in-situ Al3Ti particle reinforced Al-Si-Cu composite material semi-solid slurry | |
Liu et al. | A developed method for producing in situ TiC/Al composites by using quick preheating treatment and ultrasonic vibration | |
CN104451239B (en) | Preparation Method of Powder Thixomorphing of Al3Tip/Al-Based Self-Growing Composite | |
CN102296257A (en) | Preparation method of nano crystalline state polycrystal magnesium material | |
CN104313384B (en) | Preparation method of in-situ Al3Ti intermetallic compound particle reinforced aluminum-based composite material | |
CN102899517B (en) | In-situ SiC-TiC particle mixing enhanced aluminum-based composite material and preparation process thereof | |
CN109266893B (en) | Method for reinforcing magnesium alloy composite material by coating zinc oxide graphene | |
CN107400808A (en) | A kind of Al Ti C Nb intermediate alloys and its preparation method and application | |
CN109930041A (en) | A kind of high-ductility in-situ nano particle reinforced magnesium base compound material and preparation method thereof | |
CN104164583B (en) | A kind of fabricated in situ prepares the method for aluminum matrix composite | |
CN106244838B (en) | Niobium titanium carbon Al-alloy alterant and preparation method thereof | |
CN101693969B (en) | Al-Mn grain refiner for Mg-Al-based alloy and its preparation method and use method | |
CN107201488A (en) | Eutectic Silicon in Al-Si Cast Alloys fast spheroidizing annealing processing method in a kind of cocrystallized Al-Si alloy | |
CN103924115A (en) | Preparation method of nano aluminium nitride-reinforced magnesium-based composite material | |
CN104404327B (en) | The preparation method that a kind of in-situ nano grade particles strengthens magnesium base composite material | |
CN110229977A (en) | A kind of particle enhances the preparation method of high Al-Si metal matrix composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201130 Address after: 226002 Jiangsu Province, Nantong city Gangzha District happiness street jiangba village community group 2 Patentee after: NANTONG DRAYSON COMPOSITES Co.,Ltd. Address before: 999 No. 330000 Jiangxi province Nanchang Honggutan University Avenue Patentee before: Nanchang University |