CN104787777A - High-dispersion small-crystal-grain ZSM-5 molecular sieve and preparation method thereof - Google Patents
High-dispersion small-crystal-grain ZSM-5 molecular sieve and preparation method thereof Download PDFInfo
- Publication number
- CN104787777A CN104787777A CN201510126094.1A CN201510126094A CN104787777A CN 104787777 A CN104787777 A CN 104787777A CN 201510126094 A CN201510126094 A CN 201510126094A CN 104787777 A CN104787777 A CN 104787777A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- zsm
- sodium hydroxide
- crystallization
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 78
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000006185 dispersion Substances 0.000 title description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 176
- 239000000243 solution Substances 0.000 claims abstract description 48
- 230000015556 catabolic process Effects 0.000 claims abstract description 38
- 238000006731 degradation reaction Methods 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims abstract description 31
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000004202 carbamide Substances 0.000 claims abstract description 26
- 239000012266 salt solution Substances 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 19
- 239000010703 silicon Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000003756 stirring Methods 0.000 claims abstract description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 13
- 238000002425 crystallisation Methods 0.000 claims description 31
- 230000008025 crystallization Effects 0.000 claims description 31
- 239000013078 crystal Substances 0.000 claims description 16
- 229920002678 cellulose Polymers 0.000 claims description 14
- 239000001913 cellulose Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- 229910021536 Zeolite Inorganic materials 0.000 claims description 8
- 239000010457 zeolite Substances 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 229920000742 Cotton Polymers 0.000 claims description 5
- 229920001131 Pulp (paper) Polymers 0.000 claims description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 5
- 238000004090 dissolution Methods 0.000 claims description 5
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 4
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 4
- 241001330002 Bambuseae Species 0.000 claims description 4
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 4
- 239000011425 bamboo Substances 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 4
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 3
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 claims description 3
- 239000011121 hardwood Substances 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000011122 softwood Substances 0.000 claims description 2
- 235000011121 sodium hydroxide Nutrition 0.000 claims 11
- 159000000013 aluminium salts Chemical class 0.000 claims 3
- 229910000329 aluminium sulfate Inorganic materials 0.000 claims 3
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 abstract description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 11
- 239000011259 mixed solution Substances 0.000 abstract description 7
- 239000003795 chemical substances by application Substances 0.000 abstract description 5
- 230000000593 degrading effect Effects 0.000 abstract description 3
- 229920000875 Dissolving pulp Polymers 0.000 abstract description 2
- 239000008367 deionised water Substances 0.000 description 17
- 229910021641 deionized water Inorganic materials 0.000 description 17
- 239000011148 porous material Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000009826 distribution Methods 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- AMGNHZVUZWILSB-UHFFFAOYSA-N 1,2-bis(2-chloroethylsulfanyl)ethane Chemical compound ClCCSCCSCCCl AMGNHZVUZWILSB-UHFFFAOYSA-N 0.000 description 1
- MWRWFPQBGSZWNV-UHFFFAOYSA-N Dinitrosopentamethylenetetramine Chemical compound C1N2CN(N=O)CN1CN(N=O)C2 MWRWFPQBGSZWNV-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000011549 crystallization solution Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008104 plant cellulose Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- SFXFPRFVFALOCV-UHFFFAOYSA-N silicon;tetraethyl silicate Chemical compound [Si].CCO[Si](OCC)(OCC)OCC SFXFPRFVFALOCV-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
本发明提供了一种高分散小晶粒ZSM-5分子筛及其制备方法。所述分子筛硅铝比为20-150,分子筛晶粒粒径为50-500nm。所述方法包括如下步骤:将纤维素溶解在氢氧化钠/尿素/水的混合溶液中搅拌降解,离心得到降解液A,静置;将氢氧化钠、铝盐、模板剂用水溶解,得到铝盐溶液B;将硅源和降解液A加入铝盐溶液B中混匀,使得混合物中各成分摩尔比以SiO2:Al2O3:H2O:模板剂计为20-150:1:130-3000:1-20,再加入氢氧化钠调节pH值至碱性;将调节pH值后的混合物进行晶化,然后经过后处理得到所述的ZSM-5分子筛。所得ZSM-5分子筛晶粒大小均匀,分散性好。
The invention provides a highly dispersed small-grain ZSM-5 molecular sieve and a preparation method thereof. The silicon-aluminum ratio of the molecular sieve is 20-150, and the grain size of the molecular sieve is 50-500nm. The method comprises the following steps: dissolving cellulose in a mixed solution of sodium hydroxide/urea/water, stirring and degrading, centrifuging to obtain degradation solution A, and standing still; dissolving sodium hydroxide, aluminum salt, and template agent in water to obtain aluminum Salt solution B; add silicon source and degradation solution A to aluminum salt solution B and mix well, so that the molar ratio of each component in the mixture is 20-150:1 in terms of SiO 2 : Al 2 O 3 : H 2 O : template: 130-3000: 1-20, then add sodium hydroxide to adjust the pH value to alkaline; crystallize the mixture after adjusting the pH value, and then undergo post-treatment to obtain the ZSM-5 molecular sieve. The obtained ZSM-5 molecular sieve has uniform grain size and good dispersibility.
Description
技术领域technical field
本发明是属于分子筛合成领域,具体涉及一种高分散小晶粒ZSM-5分子筛及其制备方法。The invention belongs to the field of molecular sieve synthesis, and in particular relates to a highly dispersed small-grain ZSM-5 molecular sieve and a preparation method thereof.
背景技术Background technique
ZSM-5分子筛(USP 3702886)是由美国Mobil公司开发的一种硅铝酸盐沸石分子筛,属于中孔系列沸石,它具有二维十元环孔道系统:平行于a轴方向的十元环孔道呈Z字型弯曲,孔道拐角约为150°左右,孔径为平行于c轴方向的十元环孔道呈直线形,椭圆形孔道的孔径为这种特殊的孔道结构和尺寸,使其具有良好的择形性能,同时具有硅铝比可调、亲油性、热稳定性和催化活性高的优点,因此成为目前最重要的分子筛催化材料之一,广泛应用于石油加工、煤化工和精细化工等催化领域。ZSM-5 molecular sieve (USP 3702886) is an aluminosilicate zeolite molecular sieve developed by Mobil Corporation of the United States. It is bent in a Z shape, the corner of the channel is about 150°, and the hole diameter is The channel of the ten-membered ring parallel to the c-axis is linear, and the diameter of the elliptical channel is This special pore structure and size make it have good shape-selective properties, and at the same time have the advantages of adjustable silicon-aluminum ratio, lipophilicity, thermal stability and high catalytic activity, so it has become one of the most important molecular sieve catalytic materials at present. , Widely used in catalytic fields such as petroleum processing, coal chemical industry and fine chemical industry.
与传统的大晶粒ZSM-5分子筛相比,小晶粒具有较短的晶内扩散孔道长度和较大的外比表面积,暴露的孔口更多,使得反应物和产物可以更有效地进出孔道,有利于增大反应物与微孔内活性位的接触机率,提高了反应的活性;同时,缩短了产物的扩散路径,减少了产物在分子筛中的停留时间,抑制了二次反应的发生,从而有效地增加目的产物,提高分子筛的选择性;另外,高的外表面积使小晶粒具有更高的容碳能力,提高了分子筛的寿命。Compared with the traditional large-grain ZSM-5 molecular sieve, the small-grain has a shorter intra-crystalline diffusion channel length and a larger external specific surface area, and more exposed pores allow reactants and products to enter and exit more efficiently Pores are conducive to increasing the contact probability between reactants and active sites in the micropores, improving the activity of the reaction; at the same time, shortening the diffusion path of the product, reducing the residence time of the product in the molecular sieve, and inhibiting the occurrence of secondary reactions , so as to effectively increase the target product and improve the selectivity of the molecular sieve; in addition, the high external area enables the small crystal grains to have higher carbon storage capacity, which improves the life of the molecular sieve.
秦关林等(石油炼制,1978,11:85)和王中南等(石油化工,1983,12:744)采用水热合成法,在低温(100-120℃)条件下,使用四丙基铵、乙胺和丙胺作模板剂合成了小晶粒ZSM-5分子筛,晶化时间长约300小时。由于合成的温度较低,晶体生长速度慢,合成的周期较长,不利于生产。Qin Guanlin et al. (Petroleum Refining, 1978, 11:85) and Wang Zhongnan et al. (Petrochemical Industry, 1983, 12:744) adopted a hydrothermal synthesis method at low temperature (100-120°C) using tetrapropylammonium, Ethylamine and propylamine were used as templates to synthesize small-grain ZSM-5 molecular sieves, and the crystallization time was about 300 hours. Because the synthesis temperature is low, the crystal growth rate is slow, and the synthesis period is long, which is not conducive to production.
Verduijn J P(EP 0753482)等和Van Grieken R等(Micropor.Mesopor.Mater.2000,39(1-2):135)采用清液合成法,使用正硅酸乙酯(TEOS)作硅源,在无钠或低钠体系下合成了小晶粒ZSM-5分子筛,由于钠离子的存在会降低成核效率,而使晶粒明显增大,但过低的钠含量不利于铝进入沸石骨架,合成沸石的硅铝比往往较高。使用正硅酸乙酯硅源,工业化过程存在问题。另外,该合成体系碱度高,产品收率低。郭洪臣等(CN 1699173A)使用水玻璃作硅源,在含钠量较高的体系下合成了硅铝比90左右,晶粒大小60nm左右的小晶粒ZSM-5分子筛,但分子筛产品的晶体形貌不规整,尤其是团聚现象比较严重。Verduijn J P (EP 0753482) etc. and Van Grieken R etc. (Micropor. Mesopor. Mater. 2000, 39 (1-2): 135) adopt clear liquid synthesis method, use orthoethyl silicate (TEOS) as silicon source, Small-grain ZSM-5 molecular sieves were synthesized in a sodium-free or low-sodium system. The existence of sodium ions would reduce the nucleation efficiency and make the crystal grains significantly larger. However, too low sodium content is not conducive to the entry of aluminum into the zeolite framework. Synthetic zeolites tend to have higher silica-to-alumina ratios. There are problems with the industrialization process using tetraethyl orthosilicate silicon source. In addition, the synthesis system has high alkalinity and low product yield. Guo Hongchen et al. (CN 1699173A) used water glass as a silicon source, synthesized a silicon-aluminum ratio of about 90, and a small grain ZSM-5 molecular sieve with a grain size of about 60nm under a system with a higher sodium content, but the crystal form of the molecular sieve product The appearance is irregular, especially the phenomenon of reunion is more serious.
由于ZSM-5分子筛是固体酸催化剂,酸性位是其活性中心,而酸性位是由骨架铝产生的,一般认为,分子筛的酸性与其硅铝比呈正比关系。高硅铝比ZSM-5酸量小,单位催化剂上的活性中心就少,催化效率低;而且,随着反应进行,积碳覆盖少许酸性位即会明显降低催化剂的活性,缩短催化剂寿命。Since ZSM-5 molecular sieve is a solid acid catalyst, the acid site is its active center, and the acid site is produced by the skeleton aluminum. It is generally believed that the acidity of the molecular sieve is directly proportional to its silicon-aluminum ratio. High silicon aluminum has less acid content than ZSM-5, so there are fewer active centers on the unit catalyst, and the catalytic efficiency is low; moreover, as the reaction progresses, the carbon deposit covering a little acid site will obviously reduce the activity of the catalyst and shorten the life of the catalyst.
因此,适当降低分子筛的硅铝比,有助于提高反应效率和催化寿命。但随着硅铝比的降低,小晶粒普遍存在的团聚现象就会更加明显。团聚会造成小晶粒分子筛的有效表面积和活性位的减少,反应活性、抗积碳能力下降,还会对催化剂成型过程中分子筛在基质中的分散造成影响,严重影响催化剂的催化性能。Therefore, appropriately reducing the silicon-aluminum ratio of molecular sieves can help improve reaction efficiency and catalytic life. However, as the ratio of silicon to aluminum decreases, the common agglomeration phenomenon of small grains will become more obvious. Agglomeration will reduce the effective surface area and active sites of small-grained molecular sieves, reduce the reactivity and anti-coking ability, and also affect the dispersion of molecular sieves in the matrix during the catalyst forming process, seriously affecting the catalytic performance of the catalyst.
目前,大多采用硬模板合成纳米ZSM-5的方法,即让分子筛的晶化过程在限定的空间内进行,从而防止小晶粒发生团聚。Schmidt I等(Inorg.Chem.2000,39(11):2279)和Kim S S等(Chem.Mater.2003,15(8):1664)通过将硅源、铝源、模板剂、碱和水混合,再浸渍到多孔炭黑中进行晶化,然后焙烧去除模板,得到小晶粒的ZSM-5分子筛。这种方法虽可以制备出晶粒范围较窄的分子筛,不易团聚,但要求模板材料孔径必须均匀,并且还要保证晶化过程发生在模板剂孔内而不是表面,另外,这种特殊的介孔材料本身需要复杂的制备过程,价格昂贵,造成合成的纳米分子筛成本太高,硬模板一般要通过焙烧的方法去除,无法二次利用,因此工业化应用将受到极大的限制。At present, the method of synthesizing nano-ZSM-5 with hard template is mostly used, that is, the crystallization process of molecular sieve is carried out in a limited space, so as to prevent the agglomeration of small crystal grains. Schmidt I etc. (Inorg.Chem.2000,39(11):2279) and Kim S S etc. (Chem.Mater.2003,15(8):1664) by silicon source, aluminum source, templating agent, alkali and water mixing, then impregnated into porous carbon black for crystallization, and then calcined to remove the template to obtain ZSM-5 molecular sieve with small crystal grains. Although this method can prepare molecular sieves with a narrow grain range and is not easy to agglomerate, it requires that the pore size of the template material must be uniform, and it is also necessary to ensure that the crystallization process occurs in the pores of the template agent rather than on the surface. In addition, this special medium The porous material itself requires a complex preparation process and is expensive, resulting in high cost of synthesized nano-molecular sieves. The hard template is generally removed by roasting and cannot be reused. Therefore, industrial applications will be greatly limited.
发明内容Contents of the invention
本发明针对上述纳米、亚微米分子筛容易团聚等问题,主要解决以往技术中低硅铝比小晶粒ZSM-5沸石分子筛,尤其是纳米、亚微米尺寸,存在的晶型不规整、易团聚的问题,提供了一种高分散小晶粒ZSM-5分子筛及其制备方法。该方法通过在合成体系加入少量降解的纤维素,制备的小晶粒ZSM-5分子筛,尤其是对低硅铝比的分子筛具有晶形规整、分散性好,不易团聚的优点。The present invention aims at the above-mentioned problems such as easy agglomeration of nanometer and submicron molecular sieves, and mainly solves the problem of low-silicon-aluminum-ratio small-grain ZSM-5 zeolite molecular sieves in the prior art, especially nanometer and submicron size, which have irregular crystal forms and are easy to agglomerate. The problem is to provide a highly dispersed small grain ZSM-5 molecular sieve and its preparation method. The method adds a small amount of degraded cellulose to the synthesis system to prepare small-grain ZSM-5 molecular sieves, especially for molecular sieves with low silicon-aluminum ratio, which have the advantages of regular crystal shape, good dispersion and not easy to agglomerate.
为解决上述技术问题,本发明采用的技术方案如下:In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
一种高分散小晶粒ZSM-5分子筛,所述分子筛硅铝比为20-150,分子筛晶粒粒径为50-500nm。A ZSM-5 molecular sieve with high dispersion and small crystal grains, the silicon-aluminum ratio of the molecular sieve is 20-150, and the grain size of the molecular sieve is 50-500nm.
根据本发明所述的ZSM-5分子筛,其中优选所述分子筛晶粒粒径为100-300nm。According to the ZSM-5 molecular sieve of the present invention, preferably, the grain size of the molecular sieve is 100-300nm.
本发明所提供的分子筛硅铝比低、晶形规整、分散性好,不易团聚。The molecular sieve provided by the invention has low silicon-aluminum ratio, regular crystal shape, good dispersibility and is not easy to agglomerate.
根据本发明所述的ZSM-5分子筛,本发明优选所述的ZSM-5分子筛由包括如下步骤的制备方法制备得到:According to the ZSM-5 molecular sieve of the present invention, the preferred ZSM-5 molecular sieve of the present invention is prepared by a preparation method comprising the following steps:
(1)将纤维素溶解在氢氧化钠/尿素/水的混合溶液中搅拌降解,离心得到降解液A;(1) dissolving cellulose in a mixed solution of sodium hydroxide/urea/water, stirring and degrading, and centrifuging to obtain degradation solution A;
(2)将氢氧化钠、铝盐、模板剂用水溶解,得到铝盐溶液B;(2) dissolving sodium hydroxide, aluminum salt, and template in water to obtain aluminum salt solution B;
(3)将硅源和降解液A加入铝盐溶液B中混匀,使得混合物中各成分摩尔比以SiO2:Al2O3:H2O:模板剂计为20-150:1:130-3000:1-20,再加入氢氧化钠调节pH值至碱性;(3) Add silicon source and degradation solution A to aluminum salt solution B and mix well, so that the molar ratio of each component in the mixture is 20-150:1:130 in terms of SiO 2 : Al 2 O 3 : H 2 O : template -3000: 1-20, then add sodium hydroxide to adjust the pH to alkaline;
(4)将步骤(3)调节pH值后的混合物进行晶化,然后经过后处理得到所述的ZSM-5分子筛。(4) crystallize the mixture after adjusting the pH value in step (3), and then obtain the ZSM-5 molecular sieve through post-treatment.
根据本发明所述的ZSM-5分子筛,本发明在一些优选实施例中在步骤(1)将氢氧化钠/尿素/水的混合溶液预冷至-20-0℃,再加入纤维素在该温度下搅拌降解,离心后得到降解液A。According to the ZSM-5 molecular sieve of the present invention, in some preferred embodiments of the present invention, in step (1), the mixed solution of sodium hydroxide/urea/water is pre-cooled to -20-0°C, and then cellulose is added in the Stir and degrade at high temperature, and obtain degradation solution A after centrifugation.
这样可降低高聚物的结晶度,有利于纤维素的深度膨润,可以加速纤维素的溶解平衡。This can reduce the crystallinity of the polymer, facilitate the deep swelling of the cellulose, and accelerate the dissolution equilibrium of the cellulose.
根据本发明所述的ZSM-5分子筛,在本发明的一些实施例中,所配制的降解液A在使用前是在-20-0℃下放置。According to the ZSM-5 molecular sieve of the present invention, in some embodiments of the present invention, the prepared degradation solution A is placed at -20-0°C before use.
根据本发明所述的ZSM-5分子筛,还优选步骤(1)中的氢氧化钠/尿素/水的混合溶液中,以该混合溶液总重量为100%计,氢氧化钠含量为3-10%,尿素含量为8-16%。According to the ZSM-5 molecular sieve of the present invention, it is also preferred that in the mixed solution of sodium hydroxide/urea/water in the step (1), the total weight of the mixed solution is 100%, and the sodium hydroxide content is 3-10% %, the urea content is 8-16%.
根据本发明所述的ZSM-5分子筛,步骤(1)中所述纤维素可以为市售的常规使用的纤维素,其可以是提取自常规植物的纤维素;本发明的一些优选实施例中为棉短绒浆、竹浆和木浆中的一种或多种;According to the ZSM-5 molecular sieve of the present invention, the cellulose described in step (1) can be commercially available conventionally used cellulose, which can be extracted from conventional plant cellulose; in some preferred embodiments of the present invention One or more of cotton linter pulp, bamboo pulp and wood pulp;
其中一些更优选实施例中所述木浆为阔叶木浆或针叶木浆。In some of the more preferred embodiments, the wood pulp is hardwood pulp or softwood pulp.
根据本发明所述的ZSM-5分子筛,步骤(2)所述铝盐可以为本领域常规采用的铝盐,本发明优选为硫酸铝、偏铝酸钠和异丙醇铝中的一种或几种。According to the ZSM-5 molecular sieve of the present invention, the aluminum salt described in step (2) can be an aluminum salt conventionally used in the art, and the present invention is preferably one or more of aluminum sulfate, sodium metaaluminate and aluminum isopropoxide. Several kinds.
根据本发明所述的ZSM-5分子筛,步骤(2)所述模板剂可以为本领域常规使用的模板剂,本发明优选为正丁胺、乙二胺和四丙基溴化铵中的一种或几种。According to the ZSM-5 molecular sieve of the present invention, the template agent described in step (2) can be a template agent conventionally used in the art, and the present invention is preferably one of n-butylamine, ethylenediamine and tetrapropylammonium bromide. species or several.
根据本发明所述的ZSM-5分子筛,还优选步骤(2)的水为去离子水。According to the ZSM-5 molecular sieve of the present invention, it is also preferred that the water in step (2) is deionized water.
根据本发明所述的ZSM-5分子筛,步骤(2)中加入的氢氧化钠用量可以根据铝盐而确定,加入氢氧化钠的量保证铝盐完全溶解即可。According to the ZSM-5 molecular sieve of the present invention, the amount of sodium hydroxide added in step (2) can be determined according to the aluminum salt, and the amount of sodium hydroxide added can ensure that the aluminum salt is completely dissolved.
根据本发明所述的ZSM-5分子筛,优选步骤(3)中降解液A的加入量为所述混合物加入氢氧化钠后的总重量的5-10%。According to the ZSM-5 molecular sieve of the present invention, the added amount of degradation solution A in step (3) is preferably 5-10% of the total weight of the mixture after sodium hydroxide is added.
根据本发明所述的ZSM-5分子筛,为了更好的混合均匀,优选步骤(3)中是将硅源和降解液A滴加到铝盐溶液B中。According to the ZSM-5 molecular sieve of the present invention, in order to better mix uniformly, it is preferable to add the silicon source and the degradation solution A to the aluminum salt solution B dropwise in step (3).
根据本发明所述的ZSM-5分子筛,还优选步骤(3)中加入氢氧化钠调节pH值至10-14。According to the ZSM-5 molecular sieve of the present invention, it is also preferred to add sodium hydroxide in step (3) to adjust the pH value to 10-14.
根据本发明所述的ZSM-5分子筛,步骤(3)中所述硅源可以为本领域常规的硅源,本发明优选为硅溶胶、粗孔硅胶和白炭黑中的一种或几种。According to the ZSM-5 molecular sieve of the present invention, the silicon source described in step (3) can be a conventional silicon source in the art, and the present invention is preferably one or more of silica sol, coarse-pore silica gel and white carbon black .
可以理解的是,本发明步骤(3)中将硅源和降解液A加入铝盐溶液B中,其中硅源和降解液A的加入顺序并没有特别要求,可以同时、或者以任何顺序将硅源和降解液A加入铝盐溶液B中。It can be understood that, in step (3) of the present invention, the silicon source and the degradation solution A are added to the aluminum salt solution B, wherein the order of adding the silicon source and the degradation solution A is not particularly required, and the silicon source and the degradation solution A can be added simultaneously or in any order. Add the source and degradation solution A to the aluminum salt solution B.
根据本发明所述的ZSM-5分子筛,优选步骤(4)中所述晶化为两段晶化;According to the ZSM-5 molecular sieve of the present invention, the crystallization described in the preferred step (4) is two-stage crystallization;
其中进一步优选第一段晶化温度为80-110℃,晶化时间10-40h;第二段晶化温度为150-180℃,晶化时间20-50h。Among them, it is further preferred that the crystallization temperature of the first stage is 80-110°C, and the crystallization time is 10-40h; the crystallization temperature of the second stage is 150-180°C, and the crystallization time is 20-50h.
根据本发明所述的ZSM-5分子筛,其中步骤(4)中所述晶化还可以为一段晶化;According to the ZSM-5 molecular sieve of the present invention, wherein the crystallization described in step (4) can also be one-stage crystallization;
其中优选一段晶化具体为:晶化温度150-180℃,晶化时间为30-60h。Among them, the preferred stage of crystallization is specifically: the crystallization temperature is 150-180°C, and the crystallization time is 30-60h.
根据本发明所述的ZSM-5分子筛,步骤(4)中所述后处理可以采用本领域常规的后处理操作,譬如可以包括过滤、洗涤和干燥中的至少一种。According to the ZSM-5 molecular sieve of the present invention, the post-treatment in step (4) can adopt conventional post-treatment operations in the art, for example, can include at least one of filtering, washing and drying.
本发明任意一项所述的ZSM-5分子筛的制备方法,所述方法包括如下步骤:The preparation method of ZSM-5 molecular sieve described in any one of the present invention, described method comprises the steps:
(1)将纤维素溶解在氢氧化钠/尿素/水的混合溶液中搅拌降解,离心得到降解液A,静置;(1) dissolving the cellulose in a mixed solution of sodium hydroxide/urea/water, stirring and degrading, centrifuging to obtain the degradation solution A, and standing;
(2)将氢氧化钠、铝盐、模板剂用水溶解,得到铝盐溶液B;(2) dissolving sodium hydroxide, aluminum salt, and template in water to obtain aluminum salt solution B;
(3)将硅源和降解液A加入铝盐溶液B中混匀,使得混合物中各成分摩尔比以SiO2:Al2O3:H2O:模板剂计为20-150:1:130-3000:1-20,再加入氢氧化钠调节pH值至碱性;(3) Add silicon source and degradation solution A to aluminum salt solution B and mix well, so that the molar ratio of each component in the mixture is 20-150:1:130 in terms of SiO 2 : Al 2 O 3 : H 2 O : template -3000: 1-20, then add sodium hydroxide to adjust the pH to alkaline;
(4)将步骤(3)调节pH值后的混合物进行晶化,然后经过后处理得到所述的ZSM-5分子筛。(4) crystallize the mixture after adjusting the pH value in step (3), and then obtain the ZSM-5 molecular sieve through post-treatment.
其中本发明可以更具体为:Wherein the present invention can be more specifically:
(1)使用预冷动的氢氧化钠/尿素/水混合溶液对纤维素进行低温搅拌降解,离心得到降解液A,并低温储存;(1) Use the pre-cooled sodium hydroxide/urea/water mixed solution to degrade the cellulose with low-temperature stirring, centrifuge to obtain the degradation solution A, and store it at low temperature;
(2)将氢氧化钠、铝盐、模板剂Q用去离子水溶解得到,铝盐溶液B;(2) Dissolving sodium hydroxide, aluminum salt, template agent Q with deionized water, aluminum salt solution B;
(3)将硅源和降解液A同时缓慢地滴加到铝盐溶液B中,使得混合物的总组成的摩尔比为SiO2:Al2O3:H2O:Q=20-150:1:130-3000:1-20,再加入NaOH调节pH值为10-14;(3) Slowly add the silicon source and the degradation solution A to the aluminum salt solution B simultaneously, so that the molar ratio of the total composition of the mixture is SiO 2 : Al 2 O 3 : H 2 O: Q=20-150:1 : 130-3000: 1-20, then add NaOH to adjust the pH value to 10-14;
(4)反应混合物经两段晶化:第一段晶化温度为80-110℃,晶化时间为10-40小时;第二段晶化温度为150-180℃,晶化时间为20-50小时。(4) The reaction mixture is crystallized in two stages: the crystallization temperature of the first stage is 80-110°C, and the crystallization time is 10-40 hours; the crystallization temperature of the second stage is 150-180°C, and the crystallization time is 20- 50 hours.
综上所述,本发明提供了一种高分散小晶粒ZSM-5分子筛及其制备方法。本发明的技术方案具有如下优点:In summary, the present invention provides a highly dispersed small-grain ZSM-5 molecular sieve and a preparation method thereof. Technical scheme of the present invention has following advantage:
本发明提供了一种硅铝比为20-150的小晶粒ZSM-5分子筛的合成方法,该方法通过纤维素降解产生的高分子聚合物吸附在纳米颗粒表面,改变颗粒表面电荷分布,增大颗粒间的位阻,从而起到分散效果,同时通过控制溶液的组成,很好地解决了以往低硅铝比小晶粒ZSM-5分子筛存在的晶型不规整,易团聚等缺点,所得ZSM-5分子筛晶粒大小均匀,尺寸在50-500nm之间,分散性好。The invention provides a method for synthesizing small-grain ZSM-5 molecular sieves with a silicon-aluminum ratio of 20-150. In the method, the polymer produced by cellulose degradation is adsorbed on the surface of nanoparticles to change the charge distribution on the surface of the particles and increase the The steric hindrance between the large particles can play a dispersing effect. At the same time, by controlling the composition of the solution, the defects of irregular crystal form and easy agglomeration of ZSM-5 molecular sieves with low silicon-aluminum ratio and small crystal grains in the past have been well solved. The obtained ZSM-5 molecular sieve has uniform grain size, the size is between 50-500nm, and the dispersion is good.
附图说明Description of drawings
图1为实施例1产品的XRD图谱。Fig. 1 is the XRD pattern of examples 1 product.
图2为对比例1产品的SEM图。Figure 2 is a SEM image of the product of Comparative Example 1.
图3为实施例1产品的SEM图。Fig. 3 is the SEM figure of embodiment 1 product.
图4为实施例1产品的激光粒度分布图。Fig. 4 is the laser particle size distribution figure of embodiment 1 product.
图5为实施例4产品的SEM图。Fig. 5 is the SEM picture of the product of embodiment 4.
图6为实施例4产品的激光粒度分布图。Fig. 6 is the laser particle size distribution diagram of the product of embodiment 4.
图7为实施例5产品的SEM图。Fig. 7 is the SEM picture of the product of embodiment 5.
图8为实施例5产品的激光粒度分布图。Figure 8 is a laser particle size distribution diagram of the product of Example 5.
图9为实施例7产品的SEM图。Fig. 9 is the SEM picture of the product of embodiment 7.
图2、3、5、7、9均采用FEI QUANTA-200扫描电子显微镜,对分子筛的表面形貌和晶粒大小进行直观的观察。Figures 2, 3, 5, 7, and 9 all use FEI QUANTA-200 scanning electron microscope to visually observe the surface morphology and grain size of molecular sieves.
图4、6、8采用Malvern Mastersizer 2000激光粒度仪,利用颗粒的光散射现象进行粒度分析,对整个样品的粒度分布进行统计测量。Figures 4, 6, and 8 use the Malvern Mastersizer 2000 laser particle size analyzer to conduct particle size analysis using the light scattering phenomenon of particles, and perform statistical measurements on the particle size distribution of the entire sample.
具体实施方式Detailed ways
以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。The implementation process and beneficial effects of the present invention are described in detail below through specific examples, aiming to help readers better understand the essence and characteristics of the present invention, and not as a limitation to the scope of implementation of this case.
实施例1Example 1
取NaOH 6g,向其中加入去离子水80g,使其充分溶解,然后加入尿素10g,搅拌溶解后,将其放于-20℃环境冷藏2小时;取棉短绒浆4g,放入上述NaOH/尿素/水溶液中降解,离心得到降解液,放于-10℃保存。取氢氧化钠18g、偏铝酸钠4g、四丙基溴化铵40g,用去离子水150g溶解;取硅溶胶250g和降解液30g,同时缓慢地滴加到铝盐溶液中,再加入NaOH调节pH值为14;将反应混合物装到反应釜中,在100℃下晶化36h小时,然后升温到170℃,晶化24小时,所得产品经过滤、洗涤、干燥后,平均晶粒大小在100nm左右,SiO2/Al2O3为30。其XRD图谱如图1所示,SEM图如图3所示,粒度分布如图4所示。Take 6g of NaOH, add 80g of deionized water to it, make it fully dissolved, then add 10g of urea, stir and dissolve, put it in -20°C environment for 2 hours and refrigerate it for 2 hours; take 4g of cotton linter pulp, add the above NaOH/ Degrade in urea/water solution, centrifuge to obtain degradation solution, and store at -10°C. Take 18g of sodium hydroxide, 4g of sodium metaaluminate, and 40g of tetrapropylammonium bromide, and dissolve them in 150g of deionized water; take 250g of silica sol and 30g of degradation solution, and slowly add them dropwise to the aluminum salt solution, and then add NaOH Adjust the pH value to 14; put the reaction mixture into a reaction kettle, crystallize at 100°C for 36 hours, then raise the temperature to 170°C, and crystallize for 24 hours. After filtering, washing and drying, the average grain size of the obtained product is About 100nm, SiO 2 /Al 2 O 3 is 30. The XRD pattern is shown in Figure 1, the SEM image is shown in Figure 3, and the particle size distribution is shown in Figure 4.
实施例2Example 2
取NaOH 7g,向其中加入去离子水80g,使其充分溶解,然后加入尿素12g,搅拌溶解后,将其放于-20℃环境冷藏2小时;取棉短绒浆4g,放入上述NaOH/尿素/水溶液中降解,离心得到降解液,放于-10℃保存。取氢氧化钠20g、异丙醇铝6.8g、四丙基溴化铵40g,用去离子水250g溶解;取白炭黑100g和降解液30g,同时缓慢地滴加到铝盐溶液中,再加入NaOH调节pH值为14;将反应混合物装到反应釜中,在100℃下晶化36h小时,然后升温到170℃,晶化24小时,所得产品经过滤、洗涤、干燥后,平均晶粒大小在70nm左右,SiO2/Al2O3为40。Take 7g of NaOH, add 80g of deionized water to it, make it fully dissolved, then add 12g of urea, stir and dissolve, put it in -20℃ for 2 hours; take 4g of cotton linter pulp, add the above NaOH/ Degrade in urea/water solution, centrifuge to obtain degradation solution, and store at -10°C. Take 20g of sodium hydroxide, 6.8g of aluminum isopropoxide, and 40g of tetrapropylammonium bromide, and dissolve them with 250g of deionized water; take 100g of white carbon black and 30g of degradation solution, and slowly add them dropwise to the aluminum salt solution, and then Add NaOH to adjust the pH value to 14; put the reaction mixture into the reaction kettle, crystallize at 100°C for 36 hours, then raise the temperature to 170°C, and crystallize for 24 hours. After filtering, washing and drying, the average crystal grain The size is around 70nm, SiO 2 /Al 2 O 3 is 40.
实施例3Example 3
取NaOH 6g,向其中加入去离子水80g,使其充分溶解,然后加入尿素10g,搅拌溶解后,将其放于-20℃环境冷藏2小时;取棉短绒浆4g,放入上述NaOH/尿素/水溶液中降解,离心得到降解液,放于-10℃保存。取氢氧化钠20g、偏铝酸钠2g、四丙基溴化铵40g,用去离子水250g溶解;取粗孔硅胶100g和降解液30g,同时缓慢地滴加到铝盐溶液中,再加入NaOH调节pH值为14;将反应混合物装到反应釜中,在100℃下晶化36h小时,然后升温到170℃,晶化24小时,所得产品经过滤、洗涤、干燥后,平均晶粒大小在100nm左右,SiO2/Al2O3为50。Take 6g of NaOH, add 80g of deionized water to it, make it fully dissolved, then add 10g of urea, stir and dissolve, put it in -20°C environment for 2 hours and refrigerate it for 2 hours; take 4g of cotton linter pulp, add the above NaOH/ Degrade in urea/water solution, centrifuge to obtain degradation solution, and store at -10°C. Take 20g of sodium hydroxide, 2g of sodium metaaluminate, and 40g of tetrapropylammonium bromide, and dissolve them in 250g of deionized water; take 100g of coarse-pore silica gel and 30g of degradation solution, and slowly add them dropwise to the aluminum salt solution, and then add Adjust the pH value to 14 with NaOH; put the reaction mixture into a reaction kettle, crystallize at 100°C for 36 hours, then raise the temperature to 170°C, and crystallize for 24 hours. After filtering, washing and drying, the average grain size of the obtained product is At around 100 nm, SiO 2 /Al 2 O 3 is 50.
实施例4Example 4
取NaOH 6g,向其中加入去离子水80g,使其充分溶解,然后加入尿素10g,搅拌溶解后,将其放于-15℃环境冷藏2小时;取竹浆4g,放入上述NaOH/尿素/水溶液中降解,离心得到降解液,放于-5℃保存。取氢氧化钠18g、偏铝酸钠2g、正丁胺20g,用去离子水250g溶解;取粗孔硅胶100g和降解液30g,同时缓慢地滴加到铝盐溶液中,再加入NaOH调节pH值为14;将反应混合物装到反应釜中,在100℃下晶化36h小时,然后升温到170℃,晶化24小时,所得产品经过滤、洗涤、干燥后,平均晶粒大小在150nm左右,SiO2/Al2O3为50。其SEM图如图5所示,粒度分布如图6所示。Take 6g of NaOH, add 80g of deionized water to it, make it fully dissolved, then add 10g of urea, stir to dissolve, put it in -15℃ for 2 hours and refrigerate it for 2 hours; take 4g of bamboo pulp, put it into the NaOH/urea/ Degrade in aqueous solution, centrifuge to obtain the degradation solution, and store it at -5°C. Take 18g of sodium hydroxide, 2g of sodium metaaluminate, and 20g of n-butylamine, and dissolve them in 250g of deionized water; take 100g of coarse-pore silica gel and 30g of degradation solution, and slowly add them dropwise to the aluminum salt solution, and then add NaOH to adjust the pH The value is 14; put the reaction mixture into a reaction kettle, crystallize at 100°C for 36 hours, then raise the temperature to 170°C, and crystallize for 24 hours. After filtering, washing and drying, the average grain size of the obtained product is about 150nm , SiO 2 /Al 2 O 3 is 50. Its SEM image is shown in Figure 5, and the particle size distribution is shown in Figure 6.
实施例5Example 5
取NaOH 6g,向其中加入去离子水80g,使其充分溶解,然后加入尿素10g,搅拌溶解后,将其放于-20℃环境冷藏2小时;取竹浆4g,放入上述NaOH/尿素/水溶液中降解,离心得到降解液,放于-10℃保存。取氢氧化钠18g、硫酸铝6g、乙二胺18g,用去离子水400g溶解;取粗孔硅胶100g和降解液30g同时缓慢地滴加到铝盐溶液中,再加入NaOH调节pH值为13;将反应混合物装到反应釜中,在170℃下晶化48h小时,所得产品经过滤、洗涤、干燥后,平均晶粒大小在300nm左右,SiO2/Al2O3为100。其SEM图如图7所示,粒度分布如图8所示。Take 6g of NaOH, add 80g of deionized water to it, make it fully dissolved, then add 10g of urea, stir and dissolve, put it in -20℃ for 2 hours; take 4g of bamboo pulp, put it into the above-mentioned NaOH/urea/ Degrade in aqueous solution, centrifuge to obtain the degradation solution, and store it at -10°C. Take 18g of sodium hydroxide, 6g of aluminum sulfate, and 18g of ethylenediamine, and dissolve them in 400g of deionized water; take 100g of coarse-pore silica gel and 30g of degradation solution and slowly add them dropwise to the aluminum salt solution, and then add NaOH to adjust the pH value to 13 ;Put the reaction mixture in the reaction kettle, and crystallize at 170°C for 48 hours. After filtering, washing and drying, the obtained product has an average grain size of about 300nm and a SiO 2 /Al 2 O 3 ratio of 100. Its SEM image is shown in Figure 7, and the particle size distribution is shown in Figure 8.
实施例6Example 6
取NaOH 6g,向其中加入去离子水80g,使其充分溶解,然后加入尿素10g,搅拌溶解后,将其放于-20℃环境冷藏2小时;取阔叶木浆4g,放入上述NaOH/尿素/水溶液中降解,离心得到降解液,放于-10℃保存。取氢氧化钠18g、硫酸铝4g、乙二胺18g,用去离子水400g溶解;取粗孔硅胶100g和降解液30g同时缓慢地滴加到铝盐溶液中,再加入NaOH调节pH值为13;将反应混合物装到反应釜中,在170℃下晶化48h小时,所得产品经过滤、洗涤、干燥后,平均晶粒大小在300nm左右,SiO2/Al2O3为140。Take 6g of NaOH, add 80g of deionized water to it, make it fully dissolved, then add 10g of urea, stir and dissolve, put it in -20℃ for 2 hours; take 4g of hardwood pulp, add the above-mentioned NaOH/urea Degraded in / aqueous solution, centrifuged to obtain the degradation solution, stored at -10°C. Take 18g of sodium hydroxide, 4g of aluminum sulfate, and 18g of ethylenediamine, and dissolve them in 400g of deionized water; take 100g of coarse-pore silica gel and 30g of degradation solution and slowly add them dropwise to the aluminum salt solution, and then add NaOH to adjust the pH value to 13 ;Put the reaction mixture in a reaction kettle, and crystallize at 170°C for 48 hours. After filtering, washing and drying, the obtained product has an average grain size of about 300nm and a SiO 2 /Al 2 O 3 ratio of 140.
实施例7Example 7
取NaOH 5g,向其中加入去离子水80g,使其充分溶解,然后加入尿素10g,搅拌溶解后,将其放于-10℃环境冷藏2小时;取针叶木浆4g,放入上述NaOH/尿素/水溶液中降解,离心得到降解液,放于-10℃保存。取氢氧化钠16g、偏铝酸钠4g、四丙基溴化铵40g,用去离子水500g溶解;取粗孔硅胶100g和降解液40g,同时缓慢地滴加到铝盐溶液中,再加入NaOH调节pH值为12.5;将反应混合物装到反应釜中,在100℃下晶化20h小时,然后升温到170℃,晶化24小时,所得产品经过滤、洗涤、干燥后,平均晶粒大小在500nm左右,SiO2/Al2O3为100。其SEM图如图9所示。Take 5g of NaOH, add 80g of deionized water to it, make it fully dissolved, then add 10g of urea, stir and dissolve, put it in -10℃ for 2 hours; take 4g of coniferous wood pulp, add the above-mentioned NaOH/urea Degraded in / aqueous solution, centrifuged to obtain the degradation solution, stored at -10°C. Take 16g of sodium hydroxide, 4g of sodium metaaluminate, and 40g of tetrapropylammonium bromide, and dissolve them in 500g of deionized water; take 100g of coarse-pore silica gel and 40g of degradation solution, and slowly add them dropwise to the aluminum salt solution, and then add Adjust the pH value to 12.5 with NaOH; put the reaction mixture into a reaction kettle, crystallize at 100°C for 20 hours, then raise the temperature to 170°C, and crystallize for 24 hours. After filtering, washing and drying, the average grain size of the obtained product is At around 500nm, SiO 2 /Al 2 O 3 is 100. Its SEM image is shown in Figure 9.
对比例1Comparative example 1
本对比例是按照CN 200810019849.8所提供的方法制备的小晶粒ZSM-5分子筛。具体制备方法如下:取正硅酸乙酯0.28mol(60g),向其中加入去离子水5.6mol(100.8g),使其充分溶解,然后加入浓硫酸2g,调节溶液的pH至1.0,再加入硫酸铝0.0068mol(4.5g)、四丙基溴化铵0.027mol(7.2g),ZSM-5沸石晶种0.5g,20℃下搅拌充分水解6h,加入0.0125mol(0.5g)NaOH固体,调节晶化液pH=10,搅拌均匀,封装入高压水热釜,在180℃下静态晶化15h,所得产物经过洗涤、过滤、干燥、焙烧后得到ZSM-5沸石原粉。该沸石原粉经XRD分析结构为ZSM-5,其硅铝比为27,SEM图如图2所示,晶粒大小为100-200nm。This comparative example is a small grain ZSM-5 molecular sieve prepared according to the method provided by CN 200810019849.8. The specific preparation method is as follows: Take 0.28mol (60g) of ethyl orthosilicate, add 5.6mol (100.8g) of deionized water to it, make it fully dissolved, then add 2g of concentrated sulfuric acid, adjust the pH of the solution to 1.0, and then add 0.0068mol (4.5g) of aluminum sulfate, 0.027mol (7.2g) of tetrapropylammonium bromide, 0.5g of ZSM-5 zeolite seed crystal, fully hydrolyzed by stirring at 20°C for 6h, adding 0.0125mol (0.5g) of NaOH solid, and adjusting The pH of the crystallization solution is 10, stirred evenly, packaged in a high-pressure hydrothermal kettle, and statically crystallized at 180°C for 15 hours. The obtained product is washed, filtered, dried, and roasted to obtain ZSM-5 zeolite raw powder. The XRD analysis structure of the raw zeolite powder is ZSM-5, and its silicon-aluminum ratio is 27. The SEM image is shown in Figure 2, and the grain size is 100-200nm.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510126094.1A CN104787777B (en) | 2015-03-20 | 2015-03-20 | High-dispersion small-crystal-grain ZSM-5 molecular sieve and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510126094.1A CN104787777B (en) | 2015-03-20 | 2015-03-20 | High-dispersion small-crystal-grain ZSM-5 molecular sieve and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104787777A true CN104787777A (en) | 2015-07-22 |
CN104787777B CN104787777B (en) | 2017-09-01 |
Family
ID=53553031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510126094.1A Active CN104787777B (en) | 2015-03-20 | 2015-03-20 | High-dispersion small-crystal-grain ZSM-5 molecular sieve and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104787777B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105000574A (en) * | 2015-07-24 | 2015-10-28 | 中科合成油技术有限公司 | HZSM-5 molecular sieve with special appearance and preparation method and application thereof |
CN105565339A (en) * | 2016-03-02 | 2016-05-11 | 中国科学院山西煤炭化学研究所 | Preparation method of small-crystalline-grain ZSM-22 (Zeolite Socony Mobil-22) molecular sieve |
CN107285339A (en) * | 2016-04-01 | 2017-10-24 | 神华集团有限责任公司 | A kind of high silica ZSM-5 molecular sieve and its preparation method and application |
CN107459047A (en) * | 2016-06-06 | 2017-12-12 | 中国科学院青岛生物能源与过程研究所 | A kind of molecular sieve preparation method based on hemicellulose |
CN109694088A (en) * | 2017-10-23 | 2019-04-30 | 惠生工程(中国)有限公司 | A kind of preparation method of nano-ZSM-5 molecular sieve |
CN112520754A (en) * | 2019-09-19 | 2021-03-19 | 中国石油化工股份有限公司 | Aluminum-rich ZSM-5 molecular sieve and synthesis method thereof |
CN115231587A (en) * | 2021-04-22 | 2022-10-25 | 中国石油化工股份有限公司 | Nano ZSM-5 molecular sieve and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1303816A (en) * | 2000-06-28 | 2001-07-18 | 中国科学院山西煤炭化学研究所 | Method for quickly synthesizing small crystal grain ZSM-5 molecular sieve by using guide agent method |
CN101723403A (en) * | 2008-10-28 | 2010-06-09 | 中国石油化工股份有限公司 | Mesopore and micropore compound ZSM-5 zeolite material |
CN102745714A (en) * | 2011-04-20 | 2012-10-24 | 中国石油化工股份有限公司 | Preparation method of small crystal grain ZSM-5 molecular sieve |
CN104192859A (en) * | 2014-08-21 | 2014-12-10 | 陕西延长石油(集团)有限责任公司研究院 | Quick synthesis method of small-crystal-grain ZSM-5 molecular sieve |
-
2015
- 2015-03-20 CN CN201510126094.1A patent/CN104787777B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1303816A (en) * | 2000-06-28 | 2001-07-18 | 中国科学院山西煤炭化学研究所 | Method for quickly synthesizing small crystal grain ZSM-5 molecular sieve by using guide agent method |
CN101723403A (en) * | 2008-10-28 | 2010-06-09 | 中国石油化工股份有限公司 | Mesopore and micropore compound ZSM-5 zeolite material |
CN102745714A (en) * | 2011-04-20 | 2012-10-24 | 中国石油化工股份有限公司 | Preparation method of small crystal grain ZSM-5 molecular sieve |
CN104192859A (en) * | 2014-08-21 | 2014-12-10 | 陕西延长石油(集团)有限责任公司研究院 | Quick synthesis method of small-crystal-grain ZSM-5 molecular sieve |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105000574A (en) * | 2015-07-24 | 2015-10-28 | 中科合成油技术有限公司 | HZSM-5 molecular sieve with special appearance and preparation method and application thereof |
CN105565339A (en) * | 2016-03-02 | 2016-05-11 | 中国科学院山西煤炭化学研究所 | Preparation method of small-crystalline-grain ZSM-22 (Zeolite Socony Mobil-22) molecular sieve |
CN107285339A (en) * | 2016-04-01 | 2017-10-24 | 神华集团有限责任公司 | A kind of high silica ZSM-5 molecular sieve and its preparation method and application |
CN107459047A (en) * | 2016-06-06 | 2017-12-12 | 中国科学院青岛生物能源与过程研究所 | A kind of molecular sieve preparation method based on hemicellulose |
CN109694088A (en) * | 2017-10-23 | 2019-04-30 | 惠生工程(中国)有限公司 | A kind of preparation method of nano-ZSM-5 molecular sieve |
CN112520754A (en) * | 2019-09-19 | 2021-03-19 | 中国石油化工股份有限公司 | Aluminum-rich ZSM-5 molecular sieve and synthesis method thereof |
CN112520754B (en) * | 2019-09-19 | 2022-12-09 | 中国石油化工股份有限公司 | Aluminum-rich ZSM-5 molecular sieve and synthesis method thereof |
CN115231587A (en) * | 2021-04-22 | 2022-10-25 | 中国石油化工股份有限公司 | Nano ZSM-5 molecular sieve and preparation method and application thereof |
CN115231587B (en) * | 2021-04-22 | 2024-01-30 | 中国石油化工股份有限公司 | Nano ZSM-5 molecular sieve and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104787777B (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104787777B (en) | High-dispersion small-crystal-grain ZSM-5 molecular sieve and preparation method thereof | |
CN101759198B (en) | Small crystal particle Y-shaped molecular sieve and preparation method thereof | |
CN101643219A (en) | Preparation method of nano-ZSM-5 molecular sieve | |
CN101353168B (en) | Synthetic method of nano aluminum-rich beta-zeolite | |
CN101311117B (en) | Nanocomposite mesoporous molecular sieve and preparation method thereof | |
CN107519933B (en) | Y/EU-1/SBA-15/ASA/MOF composite material and preparation method thereof | |
CN109205636A (en) | Preparation method of Y/SAPO-34/ZSM-11/ASA hierarchical pore material | |
CN102616807A (en) | Method for synthesizing Y type molecular sieve | |
CN107344721B (en) | A kind of Modified Zeolite Y and its preparation method and application | |
CN102050461B (en) | Multi-level structure mesoporous zeolite material and preparation method thereof | |
CN106946268B (en) | A kind of MOR/ZSM-35 composite molecular screen and its synthetic method | |
CN107601527A (en) | A kind of preparation method of nanometer of molecular sieve of SAPO 34 | |
CN105621449A (en) | NaY type molecular sieve and preparation method thereof | |
CN104355318B (en) | A kind of synthetic method of nano-ZSM-5 molecular sieve | |
CN106517239A (en) | Pillared layered mordenite, and preparation method thereof | |
JP3510742B2 (en) | Faujasite type zeolite and method for producing the same | |
CN113086989B (en) | The preparation method of hierarchical porous NaY molecular sieve | |
CN109775722A (en) | A kind of preparation method of hierarchical porous ZSM-5 nano-aggregates | |
CN102092741B (en) | Nano mesoporous molecular sieve and synthesis method thereof | |
CN101468803A (en) | Method for synthesizing fine grain NaY molecular sieve | |
CN102050465B (en) | Method for preparing Y-type molecular sieve through solid-phase in-situ synthesis | |
CN101468802A (en) | Method for synthesizing fine grain NaY molecular sieve | |
CN112547116A (en) | Preparation method of mesoporous Beta molecular sieve with improved yield | |
CN102489335B (en) | Preparation method of high-solid-content amorphous silicon aluminium | |
CN104591209B (en) | Small crystal grain Y-shaped molecular sieve and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |