CN104782097A - Method and device for calculating quantity of encoded data packets transmitted within broadcast system - Google Patents
Method and device for calculating quantity of encoded data packets transmitted within broadcast system Download PDFInfo
- Publication number
- CN104782097A CN104782097A CN201380001402.7A CN201380001402A CN104782097A CN 104782097 A CN104782097 A CN 104782097A CN 201380001402 A CN201380001402 A CN 201380001402A CN 104782097 A CN104782097 A CN 104782097A
- Authority
- CN
- China
- Prior art keywords
- parameter
- noise ratio
- data channel
- error rate
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
- H04L1/203—Details of error rate determination, e.g. BER, FER or WER
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/30—Resource management for broadcast services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
- H04L2001/0093—Point-to-multipoint
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明实施例提供一种广播数据包数量的计算方法和设备,能够在不存在闭环反馈的情况下,依然能够确定具体的编码数据包数目,在保证数据包发送成功率的前提下,不造成过多的浪费。具体实现方式为:通过获取第一参数,并根据所述第一参数获取块误码率,或在满足预设条件时根据第二参数获取到块误码率,并根据块误码率获取实际编码数据包数目。本发明用于计算广播数据包具体的发送数量。
Embodiments of the present invention provide a method and device for calculating the number of broadcast data packets, which can determine the specific number of encoded data packets without closed-loop feedback, and ensure the success rate of sending data packets without causing Too much waste. The specific implementation method is: by obtaining the first parameter, and obtaining the block error rate according to the first parameter, or obtaining the block error rate according to the second parameter when the preset condition is met, and obtaining the actual block error rate according to the block error rate. Number of encoded packets. The invention is used for calculating the specific sending quantity of broadcast data packets.
Description
一种广播系统中发送的编码数据包数量的计算方法和设备 技术领域 本发明涉及通信领域, 尤其涉及一种广播系统中发送的编码数据包数 量的计算方法和设备。 TECHNICAL FIELD The present invention relates to the communication field, and in particular, to a method and device for calculating the number of encoded data packets sent in a broadcast system.
背景技术 当前,在 3GPP LTE R12的内容中规定:在设备间(Device To Device , D2D)通信中, 没有物理层的闭环反馈 (Closed Loop ) 。 这会导致在发射 端釆用喷泉编码( Fountain Coding )的情况下, 由于发射机不能获取来自 接收机的物理层闭环反馈信息, 因此发射机无法确认接收机是否正确接 收了足够数量的数据包, 进而发射机不能确定待发射的并且保证接收端 接收的编码数据包的正确数量。 当发射机发射的编码数据包数量过多时, 会在满足接收机接收编码 数据包之外, 造成通信资源的浪费, 而当发射的编码数据包不够时, 则 无法保证通信的可靠性。 Background of the Invention Currently, 3GPP LTE R12 stipulates that in Device To Device (D2D) communication, there is no closed loop feedback (Closed Loop) at the physical layer. This will result in the case where the transmitter uses Fountain Coding (Fountain Coding), because the transmitter cannot obtain the physical layer closed-loop feedback information from the receiver, so the transmitter cannot confirm whether the receiver has correctly received a sufficient number of data packets, Furthermore, the transmitter cannot determine the correct number of encoded data packets to be transmitted and ensure receipt by the receiver. When the number of encoded data packets transmitted by the transmitter is too large, it will cause a waste of communication resources in addition to satisfying the receiver to receive the encoded data packets, and when the transmitted encoded data packets are not enough, the reliability of communication cannot be guaranteed.
发明内容 本发明的实施例提供一种广播系统中发送的编码数据包数量的计算 方法和设备, 能够在不存在闭环反馈的情况下, 依然能够确定具体的编 码数据包数目, 在保证数据包发送成功率的前提下, 不造成过多的浪费。 为达到上述目的, 本发明的实施例釆用如下技术方案: 第一方面, 提供一种广播数据包数量的计算方法, 所述方法包括: 根据第一参数估算数据信道信噪比; 根据所述数据信道信噪比, 结合具体广播系统参数, 得到发送的实 际编码数据包数目。 在第一种可能的实现方式中, 结合第一方面, 所述第一参数至少包 括最远广播距离。 在第二种可能的实现方式中, 结合第一方面, 所述根据第一参数估 算信道信噪比包括: 根据所述第一参数, 获取所述数据信道对应的路径损耗值; 根据所述数据信道对应的所述路径损耗值, 获取当前所述数据信道 的信噪比。 在第三种可能的实现方式中, 结合第一方面, 所述根据所述数据信 道信噪比, 结合具体广播参数, 得到发送的实际编码数据包数目具体包 括: 所述根据所述数据信道信噪比, 获取到所述信道信噪比对应的块误 码率; 根据所述块误码率以及所述具体的广播系统参数, 得到所述发送的 实际编码数据包数目。 SUMMARY OF THE INVENTION Embodiments of the present invention provide a method and device for calculating the number of encoded data packets sent in a broadcast system, which can determine the specific number of encoded data packets without closed-loop feedback, and ensure that the data packets are sent Under the premise of the success rate, do not cause too much waste. In order to achieve the above purpose, the embodiments of the present invention adopt the following technical solutions: In the first aspect, a method for calculating the number of broadcast data packets is provided, the method includes: estimating the signal-to-noise ratio of the data channel according to the first parameter; The signal-to-noise ratio of the data channel, combined with specific broadcasting system parameters, obtains the actual number of encoded data packets sent. In a first possible implementation manner, with reference to the first aspect, the first parameter includes at least the farthest broadcast distance. In a second possible implementation manner, in combination with the first aspect, the estimating the channel signal-to-noise ratio according to the first parameter includes: acquiring a path loss value corresponding to the data channel according to the first parameter; The path loss value corresponding to the channel obtains the signal-to-noise ratio of the current data channel. In a third possible implementation manner, in combination with the first aspect, the obtaining the actual number of encoded data packets sent according to the data channel signal-to-noise ratio in combination with specific broadcast parameters specifically includes: Noise ratio, obtaining a block error rate corresponding to the channel signal-to-noise ratio; obtaining the actual number of encoded data packets sent according to the block error rate and the specific broadcast system parameters.
第二方面,提供一种广播系统中发送的编码数据包数量的计算方法, 所述方法包括: 在满足预设条件时, 向发射机反馈第二参数; 所述发射机根据接收到的所述第二参数, 确定所述第二参数对应的 数据信道信噪比, 并确定所述数据信道信噪比对应的块误码率; 所述发射机根据所述块误码率, 结合具体广播参数确定实际编码数 据包数目。 在第一种可能的实现方式中, 结合第二方面, 所述第二参数至少包 括系统参考或同步信号对应的信噪比。 In a second aspect, a method for calculating the number of encoded data packets sent in a broadcast system is provided, the method comprising: when a preset condition is met, feeding back a second parameter to a transmitter; the transmitter according to the received a second parameter, determining a data channel signal-to-noise ratio corresponding to the second parameter, and determining a block error rate corresponding to the data channel signal-to-noise ratio; the transmitter combines specific broadcast parameters according to the block error rate Determine the actual number of encoded packets. In a first possible implementation manner, in combination with the second aspect, the second parameter includes at least a system reference or a signal-to-noise ratio corresponding to a synchronization signal.
在第二种可能的实现方式中, 结合第二方面, 所述满足预设条件具 体包括: 当所述第二参数低于预设阈值时, 向所述发射机反馈所述第二参数。 在第三种可能的实现方式中, 结合第二方面, 所述发射机根据接收 到的所述第二参数, 确定所述第二参数对应的数据信道信噪比, 并确定 所述数据信道信噪比对应的块误码率具体包括: 所述发射机在接收到的所述第二参数中选择最小值, 并获取所述最 小值对应的信道信噪比, 获取所述信道信噪比对应的块误码率。 In a second possible implementation manner, in combination with the second aspect, the meeting the preset condition specifically includes: when the second parameter is lower than a preset threshold, feeding back the second parameter to the transmitter. In a third possible implementation manner, in combination with the second aspect, the transmitter determines the signal-to-noise ratio of the data channel corresponding to the second parameter according to the received second parameter, and determines The block error rate corresponding to the data channel signal-to-noise ratio specifically includes: the transmitter selects a minimum value among the received second parameters, and obtains the channel signal-to-noise ratio corresponding to the minimum value, and obtains the The block error rate corresponding to the channel signal-to-noise ratio.
第三方面, 提供一种广播数据包数量的计算设备, 包括: 信噪比计算单元, 用于根据第一参数估算数据信道信噪比; 数目确定单元, 用于根据所述数据信道信噪比, 结合具体广播系统 参数, 得到发送的实际编码数据包数目。 In a third aspect, a calculation device for the number of broadcast data packets is provided, including: a signal-to-noise ratio calculation unit, configured to estimate a data channel signal-to-noise ratio according to a first parameter; a number determination unit, configured to calculate a data channel signal-to-noise ratio based on the data channel , combined with specific broadcast system parameters, the actual number of encoded data packets sent is obtained.
在第一种可能的实现方式中, 结合第三方面, 所述第一参数至少包 括最远广播距离。 In a first possible implementation manner, with reference to the third aspect, the first parameter includes at least the farthest broadcast distance.
在第二种可能的实现方式中, 结合第三方面, 所述信噪比计算单元 包括: 路径损耗计算子单元, 用于根据所述第一参数, 获取所述数据信道 对应的路径损耗值; 信噪比计算子单元,用于根据所述数据信道对应的所述路径损耗值, 获取当前所述数据信道的信噪比。 In a second possible implementation manner, in combination with the third aspect, the signal-to-noise ratio calculation unit includes: a path loss calculation subunit, configured to acquire a path loss value corresponding to the data channel according to the first parameter; The signal-to-noise ratio calculation subunit is configured to obtain the current signal-to-noise ratio of the data channel according to the path loss value corresponding to the data channel.
在第三种可能的实现方式中, 所述数目确定单元具体包括: 误码率计算子单元, 用于根据所述数据信道信噪比, 获取到所述数 据信道信噪比对应的块误码率; In a third possible implementation manner, the number determination unit specifically includes: a bit error rate calculation subunit, configured to obtain the block error bit corresponding to the data channel signal-to-noise ratio according to the data channel signal-to-noise ratio Rate;
数据包确定子单元, 用于根据所述块误码率以及所述具体的广播系 统参数, 得到所述发送的实际编码数据包数目。 第四方面,提供一种广播系统中发送的编码数据包数量的计算设备, 所述设备包括: 反馈单元, 用于在满足预设条件时, 向发射机反馈第二参数; 误码率确定单元, 用于所述发射机根据接收到的所述第二参数, 确 定所述第二参数对应的数据信道信噪比, 并确定所述数据信道信噪比对 应的块误码率; 数目确定单元, 用于所述发射机根据所述块误码率, 结合具体广播 参数确定实际编码数据包数目。 在第一种可能的实现方式中, 结合第四方面, 所述第二参数至少包 括系统参考或同步信号对应的信噪比。 The data packet determination subunit is configured to obtain the actual number of encoded data packets to be sent according to the block error rate and the specific broadcast system parameters. In a fourth aspect, a device for calculating the number of encoded data packets sent in a broadcasting system is provided, the device comprising: a feedback unit configured to feed back a second parameter to a transmitter when a preset condition is met; a bit error rate determination unit , for the transmitter to determine, according to the received second parameter, a data channel signal-to-noise ratio corresponding to the second parameter, and determine a block error rate corresponding to the data channel signal-to-noise ratio; The number determination unit is used for the transmitter to determine the actual number of encoded data packets according to the block error rate and specific broadcast parameters. In a first possible implementation manner, with reference to the fourth aspect, the second parameter includes at least a system reference or a signal-to-noise ratio corresponding to a synchronization signal.
在第二种可能的实现方式中, 结合第四方面, 所述满足预设条件具 体包括: 当所述第二参数低于预设阈值时, 向所述发射机反馈所述第二参数。 在第三种可能的实现方式中, 结合第四方面, 所述误码率确定单元 具体用于: 所述发射机在接收到的所述第二参数中选择最小值, 并获取所述最 小值对应的信道信噪比, 获取所述信道信噪比对应的块误码率。 第五方面,提供一种广播系统中发送的编码数据包数量的计算装置, 所述装置包括: 第一处理器, 用于根据第一参数估算信道信噪比; 所述第一处理器, 还用于根据所述数据信道信噪比, 结合具体广播 系统参数, 得到发送的实际编码数据包数目。 在第一种可能的实现方式中, 结合第五方面, 所述第一参数至少包 括最远广播距离。 In a second possible implementation manner, with reference to the fourth aspect, the meeting the preset condition specifically includes: when the second parameter is lower than a preset threshold, feeding back the second parameter to the transmitter. In a third possible implementation manner, in combination with the fourth aspect, the bit error rate determining unit is specifically configured to: the transmitter selects a minimum value among the received second parameters, and acquires the minimum value A corresponding channel signal-to-noise ratio, and obtain a block bit error rate corresponding to the channel signal-to-noise ratio. In a fifth aspect, there is provided a device for calculating the number of encoded data packets sent in a broadcast system, the device comprising: a first processor, configured to estimate a channel signal-to-noise ratio according to a first parameter; the first processor, further It is used to obtain the actual number of encoded data packets sent according to the signal-to-noise ratio of the data channel and in combination with specific broadcast system parameters. In a first possible implementation manner, with reference to the fifth aspect, the first parameter includes at least the farthest broadcast distance.
在第二种可能的实现方式中, 结合第五方面, 所述第一处理器具体 用于: In a second possible implementation manner, with reference to the fifth aspect, the first processor is specifically configured to:
根据所述第一参数, 获取所述信道对应的路径损耗值; 根据所述信道对应的所述路径损耗值,获取当前数据信道的信噪比。 在第三种可能的实现方式中, 结合第五方面, 所述第一处理器还具 体用于: 根据所述数据信道信噪比,获取到所述信道信噪比对应的块误码率; 根据所述块误码率以及所述具体的广播系统参数, 得到所述发送的 实际编码数据包数目。 第六方面,提供一种广播系统中发送的编码数据包数量的计算装置, 所述装置包括: 发射器, 用于在满足预设条件时, 向发射机反馈第二参数; 第二处理器, 用于所述发射机根据接收到的所述第二参数, 确定所 述第二参数对应的数据信道信噪比, 并确定所述数据信道信噪比对应的 块误码率; 所述第二处理器, 还用于所述发射机根据所述块误码率, 结合具体 广播参数确定实际编码数据包数目。 在第一种可能的实现方式中, 结合第六方面, 所述第二参数至少包 括系统参考或同步信号对应的信噪比。 Acquire a path loss value corresponding to the channel according to the first parameter; and acquire a signal-to-noise ratio of a current data channel according to the path loss value corresponding to the channel. In a third possible implementation manner, in combination with the fifth aspect, the first processor is further specifically configured to: acquire a block error rate corresponding to the channel signal-to-noise ratio according to the data channel signal-to-noise ratio; According to the block error rate and the specific broadcast system parameters, the actual number of encoded data packets sent is obtained. In a sixth aspect, there is provided a device for calculating the number of encoded data packets sent in a broadcast system, the device comprising: a transmitter, configured to feed back a second parameter to the transmitter when a preset condition is met; a second processor, being used for the transmitter to determine a data channel signal-to-noise ratio corresponding to the second parameter according to the received second parameter, and determine a block error rate corresponding to the data channel signal-to-noise ratio; the second The processor is further used for the transmitter to determine the actual number of encoded data packets according to the block error rate and specific broadcast parameters. In a first possible implementation manner, with reference to the sixth aspect, the second parameter includes at least a signal-to-noise ratio corresponding to a system reference or a synchronization signal.
在第二种可能的实现方式中, 所述发射器满足的预设条件包括: 当所述第二参数低于预设阈值时, 向所述发射机反馈所述第二参数。 在第三种可能的实现方式中, 所述第二处理器具体用于: 所述发射机在接收到的所述第二参数中选择最小值, 并获取所述最 小值对应的信道信噪比, 获取所述数据信道信噪比对应的块误码率。 本发明实施例提供的一种广播数据包数量的计算方法和设备, 通过 获取第一参数, 并根据所述第一参数获取块误码率, 或在满足预设条件 时根据第二参数获取到块误码率, 并根据块误码率获取发送的实际编码 数据包数目; 从而能够在不存在闭环反馈的情况下, 依然能够确定具体 的编码数据包的数目, 在保证数据包发送成功率的前提下, 不造成过多 的浪费。 In a second possible implementation manner, the preset condition satisfied by the transmitter includes: when the second parameter is lower than a preset threshold, feeding back the second parameter to the transmitter. In a third possible implementation manner, the second processor is specifically configured to: the transmitter selects a minimum value among the received second parameters, and acquires a channel signal-to-noise ratio corresponding to the minimum value , and acquire the block bit error rate corresponding to the data channel signal-to-noise ratio. In the method and device for calculating the number of broadcast data packets provided by the embodiments of the present invention, the first parameter is obtained, and the block bit error rate is obtained according to the first parameter, or obtained according to the second parameter when the preset condition is met. block error rate, and obtain the actual number of encoded data packets sent according to the block error rate; thus, in the absence of closed-loop feedback, the specific number of encoded data packets can still be determined, while ensuring the success rate of data packet transmission Under the premise, do not cause too much waste.
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将 对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技 术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。 图 1 为本发明实施例提供一种广播数据包数量的计算方法的示意 图; BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art, and it is obvious that Apparently, the drawings in the following description are only some embodiments of the present invention, and those skilled in the art can also obtain other drawings according to these drawings without any creative work. FIG. 1 is a schematic diagram of a method for calculating the number of broadcast data packets provided by an embodiment of the present invention;
图 2为本发明实施例提供另一种广播数据包数量的计算方法的示意 图; FIG. 2 is a schematic diagram of another method for calculating the number of broadcast data packets provided by an embodiment of the present invention;
图 3 为本发明实施例提供一种广播数据包数量的计算方法的详细示 意图; FIG. 3 is a detailed schematic diagram of a method for calculating the number of broadcast data packets provided by an embodiment of the present invention;
图 4为本发明实施例提供一种广播数据包数量的计算方法的详细示 意图; FIG. 4 is a detailed schematic diagram of a method for calculating the number of broadcast data packets provided by an embodiment of the present invention;
图 5为为本发明实施例提供的另一种广播数据包数量的计算方法的 详细示意图; 图 6为本发明实施例提供一种广播数据包数量的计算设备的结构示 意图; FIG. 5 is a detailed schematic diagram of another method for calculating the number of broadcast data packets provided by an embodiment of the present invention; FIG. 6 is a schematic structural diagram of a calculation device for the number of broadcast data packets provided by an embodiment of the present invention;
图 7为本发明实施例提供一种广播数据包数量的计算设备的具体结 构示意图; FIG. 7 is a schematic structural diagram of a calculation device for broadcasting the number of data packets provided by an embodiment of the present invention;
图 8为本发明实施例提供一种广播数据包数量的计算设备的具体结 构示意图; FIG. 8 is a schematic structural diagram of a calculation device for broadcasting the number of data packets provided by an embodiment of the present invention;
图 9为本发明实施例提供一种广播数据包数量的计算设备的结构示 意图; FIG. 9 is a schematic structural diagram of a computing device for broadcasting the number of data packets provided by an embodiment of the present invention;
图 10 为本发明实施例提供一种广播数据包数量的计算装置的结构 示意图; 图 1 1 为本发明实施例提供一种广播数据包数量的计算装置的结构 示意图。 Figure 10 is a schematic structural diagram of a calculation device for the number of broadcast data packets provided by an embodiment of the present invention; Figure 11 is a schematic structural diagram of a calculation device for the number of broadcast data packets provided by an embodiment of the present invention.
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。 本发明实施例提供一种广播数据包数量的计算方法, 如图 1 所示, 该方法包括: Detailed ways The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts fall within the protection scope of the present invention. An embodiment of the present invention provides a method for calculating the number of broadcast data packets, as shown in FIG. 1, the method includes:
101、 根据第一参数估算信道信噪比; 101. Estimate the channel signal-to-noise ratio according to the first parameter;
102、 根据所述信道信噪比, 结合具体广播系统参数, 得到发送的实 际编码数据包数目。 本发明实施例提供的一种的广播数据包数量的计算方法, 通过获取 第一参数, 并根据所述第一参数获取块误码率, 之后根据块误码率获取 发送的实际编码数据包数目; 从而能够在不存在闭环反馈的情况下, 依 然能够确定具体的编码数据包的数目, 在保证数据包发送成功率的前提 下, 不造成过多的浪费。 相对于上一个方法, 本发明实施例还提供另一种广播数据包数量的 计算方法, 如图 2所示, 该方法包括: 102. According to the channel signal-to-noise ratio and in combination with specific broadcast system parameters, obtain the actual number of encoded data packets to be sent. A method for calculating the number of broadcast data packets provided by an embodiment of the present invention obtains the first parameter, obtains the block error rate according to the first parameter, and then obtains the actual number of encoded data packets sent according to the block error rate ; Therefore, in the absence of closed-loop feedback, the number of specific encoded data packets can still be determined, and on the premise of ensuring the success rate of sending data packets, excessive waste will not be caused. Compared with the previous method, the embodiment of the present invention also provides another method for calculating the number of broadcast data packets, as shown in FIG. 2, the method includes:
201、 在满足预设条件时, 向发射机反馈第二参数; 201. When the preset condition is met, feed back the second parameter to the transmitter;
202、 所述发射机根据接收到的所述第二参数, 确定所述第二参数对 应的信道信噪比, 并确定所述信道信噪比对应的块误码率; 202. The transmitter determines a channel signal-to-noise ratio corresponding to the second parameter according to the received second parameter, and determines a block error rate corresponding to the channel signal-to-noise ratio;
203、 所述发射机根据所述块误码率, 结合具体广播参数确定发送的 实际编码数据包数目。 本发明实施例提供的一种的广播数据包数量的计算方法, 通过在满 足预设条件时, 向发射机反馈第二参数, 所述发射机根据接收到的所述 第二参数, 确定所述第二参数对应的信道信噪比, 并确定所述信道信噪 比对应的块误码率, 所述发射机根据所述块误码率, 结合具体广播参数 确定实际编码数据包数目; 从而能够在不存在闭环反馈的情况下, 依然 能够确定具体的编码数据包的数目, 在保证数据包发送成功率的前提下, 不造成过多的浪费。 203. The transmitter determines the actual number of encoded data packets to be sent according to the block error rate and in combination with specific broadcast parameters. In a method for calculating the number of broadcast data packets provided by an embodiment of the present invention, when the preset condition is met, the transmitter feeds back the second parameter, and the transmitter determines the second parameter according to the received second parameter. a channel signal-to-noise ratio corresponding to the second parameter, and determining a block error rate corresponding to the channel signal-to-noise ratio, and the transmitter determines the actual number of encoded data packets according to the block error rate and in combination with specific broadcast parameters; thereby being able In the absence of closed-loop feedback, still The specific number of encoded data packets can be determined, and under the premise of ensuring the success rate of sending data packets, excessive waste will not be caused.
为了使本领域技术人员能够更清楚地理解本发明实施例提供的技术 方案, 下面通过具体的实施例, 对本发明实施例提供的另一种产生数据 的方法进行伴细说明。 本发明实施例还提供一种详细的广播数据包数量的计算方法, 如图 In order to enable those skilled in the art to more clearly understand the technical solutions provided by the embodiments of the present invention, another method for generating data provided by the embodiments of the present invention will be described in detail below through specific examples. The embodiment of the present invention also provides a detailed calculation method for the number of broadcast data packets, as shown in the figure
3所示, 该方法具体包括: 3, the method specifically includes:
301、 根据第一参数估算信道信噪比。 301. Estimate a channel signal-to-noise ratio according to a first parameter.
302、 根据所述信道信噪比, 结合具体广播参数, 得到发送的实际编 码数据包数目。 302. Obtain the actual number of encoded data packets sent according to the channel signal-to-noise ratio and in combination with specific broadcast parameters.
其中, 如图 3所示, 步骤 301具体包括: Wherein, as shown in FIG. 3, step 301 specifically includes:
301 1、 根据所述第一参数, 获取所述信道对应的路径损耗值;301 1. Acquire a path loss value corresponding to the channel according to the first parameter;
3012、 根据所述信道对应的所述路径损耗值, 获取当前数据信道的 信噪比。 在本实施例中, 第一参数指的是最远广播距离, 也就是发射机 需要覆盖最远的接收机所处的距离, 当然, 第一参数还可以由其他的体 现方式。 3012. Acquire the signal-to-noise ratio of the current data channel according to the path loss value corresponding to the channel. In this embodiment, the first parameter refers to the farthest broadcast distance, that is, the distance where the transmitter needs to cover the farthest receiver. Of course, the first parameter can also be expressed in other ways.
这里的路径损耗值, 也就是 Path Loss ( PL ) , 是由于电磁波的传输 环境造成的损耗值。 The path loss value here, that is, Path Loss ( PL ), is the loss value caused by the transmission environment of electromagnetic waves.
对应的, 如图 4所示, 步骤 302具体包括: Correspondingly, as shown in FIG. 4, step 302 specifically includes:
3021、 根据数据信道信噪比, 获取到所述信道信噪比对应的块误码 率; 3021. According to the signal-to-noise ratio of the data channel, obtain the block bit error rate corresponding to the channel signal-to-noise ratio;
3022、 根据所述块误码率以及所述具体的广播系统参数, 得到所述 发送的实际编码数据包数目。 3022. Obtain the actual number of encoded data packets sent according to the block error rate and the specific broadcast system parameters.
这里的块误码率为 Block Error Ratio ( BLER ) , 指的是通信数据传 输过程中错误数据块与总数据块数目的比值, 误码率越高, 表明传输的 数据没有被正常接收的数据包越多。 其中的具体广播参数指的是: 当前传输通信数据釆用的信道类型、 物理层釆用的信号调制方法以及具体的编码类型等, 这些参数都是根据 实际的通信情况进行选择的。 下边通过举例, 说明一下该方法的具体过程。 首先, 发射机在发送具体的通信数据包前, 根据当前通信环境的具 体参数, 获取当前通信环境的路径损耗。 例如: 当前通信的预计目标最远距离为 2.4 公里, 载波频段的频率 为 2GHz , 通信系统的带宽为 10MHz , 并且发射机的最大发送功率为 lOdBm, 由以上参数, 结合计算路径损耗的公式: The block error rate here is Block Error Ratio ( BLER ), which refers to the ratio of the number of error data blocks to the total number of data blocks during the communication data transmission process. The higher the bit error rate, it indicates that the transmitted data has not been received normally. more. The specific broadcast parameters refer to: the channel type used for the current transmission of communication data, the signal modulation method used by the physical layer, and the specific encoding type, etc. These parameters are all selected according to the actual communication situation. The specific process of the method will be described below through an example. First, before sending a specific communication data packet, the transmitter obtains the path loss of the current communication environment according to the specific parameters of the current communication environment. For example: the farthest target distance of the current communication is expected to be 2.4 kilometers, the frequency of the carrier frequency band is 2GHz, the bandwidth of the communication system is 10MHz, and the maximum transmission power of the transmitter is lOdBm. Based on the above parameters, the formula for calculating the path loss is:
PL = 32·45 + 20 ΗΆΜΗζ)) + 20 lg d(km) + Δ , 在该公式中, PL是路径损耗的 缩写, 32.45是在大量仿真实验下得到的经典参数值, /(M fe)是该通信环 境中的载波频率, 单位为 MHz, 指的是本次通信的预计目标最远距 离, 单位为 km, Δ则是在通信前, 由发射机和接收机预先设定好的, 针 对于本通信环境中的计算补偿值。 当△的取值为 4时, 向公式中带入上述数据, 从而有: PL = 32.45 + 20 ΗΆΜΗζ )) + 20 lg d(km) + Δ, in this formula, PL is the abbreviation of path loss, 32.45 is the classic parameter value obtained under a large number of simulation experiments, /( M fe ) is the carrier frequency in the communication environment, the unit is MHz, it refers to the expected target distance of this communication, the unit is km, Δ is pre-set by the transmitter and receiver before communication, for The calculated compensation value in this communication environment. When the value of △ is 4, bring the above data into the formula, so that:
PL = 32.45 + 20 log f(MHz) + 20 log d(Km) + Δ = 32.45 + 66 + 7.6 + 4 « 1 lOtffi 也就是在本次通信环境中的路径损耗值为 1 10dB。 其次, 在确定路径损耗后, 再根据获取到的路径损耗值来得到当前 信道的信噪比。 具体的计算公式为: 57W? = P - ^ - (-174 + 101g(/Offfe))) , 其中 PL为上一 步计算出来的路径损耗, 这里的 /(皿 )是带宽值, 单位为 Hz。 公式中的 P为发射机的发射功率, 单位为 dBm。 PL = 32.45 + 20 log f(MHz) + 20 log d(Km) + Δ = 32.45 + 66 + 7.6 + 4 « 1 lOtffi That is, the path loss value in this communication environment is 1 10dB. Secondly, after the path loss is determined, the signal-to-noise ratio of the current channel is obtained according to the obtained path loss value. The specific calculation formula is: 57W? = P - ^ - (-174 + 101g(/Offfe))), where PL is the path loss calculated in the previous step, where /(mm) is the bandwidth value, and the unit is Hz. P in the formula is the transmitting power of the transmitter, and the unit is dBm.
将上述数据代入, 可以得到《\« = 10 -110 _ (-174 + 1(^(10 * 106))) = 4^。 再次, 根据通过大量数据仿真结果得到的信噪比和块误码率的对应 关系, 得到当前信噪比为 4dB时, 对应的块误码率。 例如: 当前釆用的为 EVA信道, 并且物理层釆用的是 QPSK调制, 和 1/3 Turbo的编码方法, 得到的 BLER为 10%。 最后, 根据获取到的当前块误码率和发送编码的冗余度, 得到在该 条件下实际编码包数目。 Substituting the above data, we can get "\« = 10 -110 _ (-174 + 1(^(10 * 10 6 ))) = 4^. Thirdly, according to the corresponding relationship between the signal-to-noise ratio and the block bit error rate obtained through a large amount of data simulation results, the corresponding block bit error rate is obtained when the current signal-to-noise ratio is 4dB. For example: the EVA channel is currently used, and the physical layer uses QPSK modulation and a 1/3 Turbo coding method, and the obtained BLER is 10%. Finally, according to the obtained current block bit error rate and the redundancy of sending codes, the actual number of coded packets under this condition is obtained.
假设当前釆用喷泉码( Fountain Coding )需要保证译码失败率为 ^ 所对应的冗余度为 5% , 则根据 1-10%可以计算出最终发射机的实 际编码数据包数目。 其中 K为发射机原始输入的数据包数目, 5%为发射 机当前在保证译码失败率的前提下的冗余度, 10%为之前获取的块误码 率。 从上述数据得到的 W = *l.n则为最终的编码包数目。 本发明实施例提供的一种广播系统中发送的编码数据包数量的计算 方法, 通过获取第一参数, 并根据所述第一参数获取块误码率, 之后根 据块误码率获取实际编码数据包数目; 从而能够在不存在闭环反馈的情 况下, 依然能够确定具体的编码数据包的数目, 在保证数据包发送成功 率的前提下, 不造成过多的浪费。 本发明实施例还提供一种广播数据包数量的计算方法,如图 5所示, 该方法包括: Assuming that the currently used Fountain Coding needs to ensure that the decoding failure rate ^ corresponds to a redundancy of 5%, then the actual number of encoded data packets of the final transmitter can be calculated based on 1-10%. Where K is the number of data packets originally input by the transmitter, 5% is the current redundancy of the transmitter under the premise of ensuring the decoding failure rate, and 10% is the block error rate obtained before. W = *l.n obtained from the above data is the final number of encoded packets. In the method for calculating the number of encoded data packets sent in a broadcast system provided by an embodiment of the present invention, the first parameter is obtained, and the block bit error rate is obtained according to the first parameter, and then the actual encoded data is obtained according to the block bit error rate The number of packets; thus, in the absence of closed-loop feedback, the number of specific encoded data packets can still be determined, and on the premise of ensuring the success rate of sending data packets, excessive waste will not be caused. The embodiment of the present invention also provides a method for calculating the number of broadcast data packets, as shown in FIG. 5, the method includes:
401、 在满足预设条件时, 向发射机反馈第二参数; 401. When the preset condition is met, feed back the second parameter to the transmitter;
402、 所述发射机根据接收到的所述第二参数, 确定所述第二参数对 应的数据信道信噪比, 并确定所述数据信道信噪比对应的块误码率; 402. The transmitter determines a data channel signal-to-noise ratio corresponding to the second parameter according to the received second parameter, and determines a block error rate corresponding to the data channel signal-to-noise ratio;
403、 所述发射机根据所述块误码率, 结合具体广播参数确定实际编 码数据包数目。 其中, 所述第二参数至少包括系统参考或同步信号对应的信噪比。 满足预设条件具体包括: 当所述第二参数低于预设阈值时, 向所述发射机反馈所述第二参数。 步骤 402具体包括: 403. The transmitter determines the actual number of encoded data packets according to the block error rate and in combination with specific broadcast parameters. Wherein, the second parameter includes at least a signal-to-noise ratio corresponding to a system reference or a synchronization signal. Satisfying the preset condition specifically includes: when the second parameter is lower than a preset threshold, feeding back the second parameter to the transmitter. Step 402 specifically includes:
4021、 所述发射机在接收到的所述第二参数中选择最小值, 并获取 所述最小值对应的信道信噪比, 根据所述信道信噪比对应的块误码率。 在本实施例中, 第二参数为参考信号接收质量 (Reference Signal Received Quality, RSRQ ) , 当然, 第二参数还可以由其他的体现方式。 这里的 RSRQ 是在通信建立的发现 Discover 阶段, 由用户设备向簇头 Cluster Header发送接收到的 Discover信号的 RSRQ。 下边通过举例, 说明一下该方法的具体过程。 首先, 当满足预设条件时, 向发射机反馈参考信号接收质量 RSRQ。 具体的,在通信建立的 Discover阶段,每个 D2D用户设备会接收 Discover 信号,并且在接收后 ,会向用户设备所属的簇头 CH反馈接收到的 Discover 信号的 RSRQ , 簇头 CH会将各个用户设备反馈的 RSRQ发送至发射机。 值得一提的是, 为了在一定程度上减少资源占用, 各个用户设备还 可以在自身设定一个阈值, 只有当接收到 Discover信号的 RSRQ在低于 设定的阈值时, 才向所属的簇头 CH反馈。 其次, 接收机在接受到反馈的 RSRQ后, 根据接收到的 RSRQ , 确 定该发射机使用信道的信噪比, 并根据信噪比确定对应的块误码率。 4021. The transmitter selects a minimum value among the received second parameters, and acquires The channel signal-to-noise ratio corresponding to the minimum value is based on the block error rate corresponding to the channel signal-to-noise ratio. In this embodiment, the second parameter is Reference Signal Received Quality (Reference Signal Received Quality, RSRQ), and of course, the second parameter may also be expressed in other manners. The RSRQ here is the RSRQ for sending the received Discover signal to the Cluster Header by the user equipment during the Discover stage of communication establishment. The specific process of the method will be described below through an example. First, when the preset condition is satisfied, the reference signal receiving quality RSRQ is fed back to the transmitter. Specifically, in the Discover phase of communication establishment, each D2D user equipment will receive the Discover signal, and after receiving it, will feed back the RSRQ of the received Discover signal to the cluster head CH to which the user equipment belongs, and the cluster head CH will send each user equipment The RSRQ fed back by the device is sent to the transmitter. It is worth mentioning that, in order to reduce resource occupation to a certain extent, each user equipment can also set a threshold for itself, and only when the RSRQ of the Discover signal received is lower than the set threshold, it sends CH Feedback. Secondly, after receiving the fed back RSRQ, the receiver determines the signal-to-noise ratio of the channel used by the transmitter according to the received RSRQ, and determines the corresponding block error rate according to the signal-to-noise ratio.
具体的,信噪比与 RSRQ有如下对应关系, SNR = RSI^+ ,其中 指的是信噪比, 指的是接收到的 RSRQ中的最小值, 而 Δ则是 RS 信号和数据信道之间差值对应的一个补偿值。 例如, 当在使用 EVA信道, 釆用 QP SK调制和 1 /3 Turbo编码的情 况下, 此时若 ^匪为 3dB , 并且△取值为 0 , 可以得到《\«此时的数值 为 3dB , 根据大量仿真实验得到的相关数据, 可以得到《W为 3dB时对应 的块误码率为 20%。 当具体的传输环境不同时, 向上述公式中带入不同 的△值即可,在得到相应的《\«后,按照同样的方法得到对应的块误码率。 最后, 根据获取到的当前块误码率和发送编码的冗余度, 得到在该 条件下实际编码包数目。 Specifically, the signal-to-noise ratio and RSRQ have the following corresponding relationship, SNR = RSI^+ , which refers to the signal-to-noise ratio, refers to the minimum value of the received RSRQ, and Δ is the difference between the RS signal and the data channel A compensation value corresponding to the difference. For example, when the EVA channel is used, QPSK modulation and 1/3 Turbo coding are used, if the ^NM is 3dB and the value of △ is 0, it can be obtained that the value of "\" at this time is 3dB, According to relevant data obtained from a large number of simulation experiments, it can be obtained that when W is 3dB, the corresponding block bit error rate is 20%. When the specific transmission environment is different, just bring different △ values into the above formula. After obtaining the corresponding «\«, follow the same method to obtain the corresponding block error rate. Finally, according to the obtained current block bit error rate and the redundancy of sending codes, the actual number of coded packets under this condition is obtained.
假设当前釆用喷泉码 (Fountain Coding ) 需要保证译码失败概率为 ιο_1ΰ所对应的冗余度为 5% ,则根据 ι_2ο%可以计算出最终发射机的 实际编码数据包数目。 其中 Κ为发射机原始输入的数据包数目, 5%为发 射机当前在保证译码失败概率的前提下的冗余度, 20%为之前获取的块误 码率。 从上述数据得到的 W = *1J1则为最终的编码包数目。 本发明实施例提供的一种的广播数据包数量的计算方法, 通过在满 足预设条件时, 向发射机反馈第二参数, 所述发射机根据接收到的所述 第二参数, 确定所述第二参数对应的数据信道信噪比, 并确定所述数据 信道信噪比对应的块误码率, 所述发射机根据所述块误码率, 结合具体 广播参数确定实际编码数据包数目; 从而能够在不存在闭环反馈的情况 下, 依然能够确定具体的编码数据包数目, 在保证数据包发送成功率的 前提下, 不造成过多的浪费。 本发明实施例提供一种广播数据包数量的计算设备 5 , 如图 6所示, 该设备还包括: 信噪比计算单元 51 , 用于根据第一参数估算数据信道信噪比; 数目确定单元 52, 用于根据所述数据信道信噪比, 结合具体广播系 统参数, 得到发送的实际编码数据包数目。 其中的第一参数至少包括最 远广播距离。 其中, 如图 7所示, 信噪比计算单元 51 包括: 路径损耗计算子单元 511 , 用于根据所述数据信道信噪比, 获取所 述数据信道对应的路径损耗值; 信噪比计算子单元 512 , 用于根据所述数据信道对应的所述路径损 耗值, 获取当前所述数据信道的信噪比。 类似的, 如图 8所示, 数目确定单元 52具体包括: 误码率计算子单元 521 , 用于根据所述数据信道信噪比, 获取到所 述数据信道信噪比对应的块误码率; 数据包确定子单元 522 , 用于根据所述块误码率以及所述具体的广 播参数, 得到所述发送的实际编码数据包数目。 本发明实施例提供的一种的广播数据包数量的计算设备, 通过获取 第一参数, 并根据所述第一参数获取块误码率, 之后根据块误码率获取 实际编码数据包数目; 从而能够在不存在闭环反馈的情况下, 依然能够 确定具体的编码数据包数目, 在保证数据包发送成功率的前提下, 不造 成过多的浪费。 本发明实施例还提供一种广播系统中发送的编码数据包数量的计算 设备 6 , 如图 9所示, 该设备 6包括: 反馈单元 61 , 用于在满足预设条件时, 向发射机反馈第二参数; 误码率确定单元 62 , 用于所述发射机根据接收到的所述第二参数, 确定所述第二参数对应的数据信道信噪比, 获取所述数据信道信噪比对 应的块误码率; 数目确定单元 63 , 用于所述发射机根据所述块误码率, 结合具体广 播参数确定实际编码数据包数目。 所述第二参数至少包括系统参考或同 步信号对应的信噪比。 其中, 反馈单元 61需要满足的预设条件具体包括; 当所述第二参数低于预设阈值时, 向所述发射机反馈所述第二参数。 误码率确定单元 62具体用于: 所述发射机在接收到的所述第二参数中选择最小值, 并获取所述最 小值对应的信道信噪比, 获取所述信道信噪比对应的块误码率。 本发明实施例提供的一种的广播数据包数量的计算设备, 通过在满 足预设条件时, 向发射机反馈第二参数, 所述发射机根据接收到的所述 第二参数, 确定所述第二参数对应的信道信噪比, 并获取所述信道信噪 比对应的块误码率, 所述发射机根据所述块误码率, 结合具体广播参数 确定实际编码数据包数目; 从而能够在不存在闭环反馈的情况下, 依然 能够确定具体的编码数据包数目, 在保证数据包发送成功率的前提下, 不造成过多的浪费。 本发明实施例还提供一种广播系统中发送编码数据包数量的计算装 置 7 , 如图 10所示, 该装置 7包括: 总线 71 ; 以及连接到总线 71上的 存储器 72、 处理器 73、 接收器 74和发射器 75 , 其中存储器 72用于存储 相关指令, 该处理器 73执行相关指令用于根据第一参数估算数据信道信 噪比; 该处理器 73执行相关指令还用于根据所述数据信道信噪比, 结合 具体广播系统参数, 得到发送的实际编码数据包数目。 在本发明实施例中, 可选的, 该处理器执行相关指令用于根据第一 参数估算数据信道信噪比中, 所述第一参数至少包括最远广播距离。 在本发明实施例中, 可选的, 该处理器执行相关指令用于根据第一 参数估算数据信道信噪比具体包括: 根据所述第一参数, 获取所述数据信道对应的路径损耗值; 根据所述数据信道对应的所述路径损耗值, 获取当前所述数据信道 的信噪比。 在本发明实施例中, 可选的, 该处理器执行相关指令用于根据所述 数据信道信噪比, 结合具体广播系统参数, 得到发送的实际编码数据包 数目具体包括: 所述根据所述数据信道信噪比, 获取到所述数据信道信噪比对应的 块误码率; 根据所述块误码率以及所述具体的广播系统参数, 得到所述发送的 实际编码数据包数目。 因此, 本发明实施例提供的一种的广播数据包数量的计算装置, 通 过获取第一参数, 并根据所述第一参数获取块误码率, 之后根据块误码 率获取实际编码数据包数目; 从而能够在不存在闭环反馈的情况下, 依 然能够确定具体的编码数据包数目, 在保证数据包发送成功率的前提下, 不造成过多的浪费。 本发明实施例还提供一种广播系统中发送编码数据包数量的计算装 置 8 , 如图 1 1所示, 该装置 8包括: 总线 81 ; 以及连接到总线 81上的 存储器 82、 处理器 83、 接收器 84和发射器 85 , 其中存储器 82用于存储 相关指令, 该处理器 83执行相关指令用于在满足预设条件时, 向发射机 反馈第二参数; 该处理器 83执行相关指令用于所述发射机根据接收到的 所述第二参数, 确定所述第二参数对应的数据信道信噪比, 并确定所述 数据信道信噪比对应的块误码率; 该处理器 83执行相关指令用于所述发 射机根据所述块误码率, 结合具体广播参数确定实际编码数据包数目。 在本发明实施例中, 可选的, 该处理器 83执行相关指令用于所述发 射机根据接收到的所述第二参数中的第二参数至少包括系统参考或同步 信号对应的信噪比。 在本发明实施例中, 可选的, 该处理器 83执行相关指令用于所述发 射机根据接收到的所述第二参数中的预设条件具体包括: 当所述第二参数低于预设阈值时, 向所述发射机反馈所述第二参数。 该处理器 83 执行相关指令用于所述发射机根据接收到的所述第二 参数, 确定所述第二参数对应的数据信道信噪比, 并确定所述数据信道 信噪比对应的块误码率具体包括: 所述发射机在接收到的所述第二参数中选择最小值, 并获取所述最 小值对应的信道信噪比, 获取所述信道信噪比对应的块误码率。 本发明实施例提供的一种的广播数据包数量的计算装置, 通过在满 足预设条件时, 向发射机反馈第二参数, 所述发射机根据接收到的所述 第二参数, 确定所述第二参数对应的信道信噪比, 并获取所述信道信噪 比对应的块误码率, 所述发射机根据所述块误码率, 结合具体广播参数 确定实际编码数据包数目; 从而能够在不存在闭环反馈的情况下, 依然 能够确定具体的编码数据包数目, 在保证数据包发送成功率的前提下, 不造成过多的浪费。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上 述描述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例 中的对应过程, 在此不再赘述。 在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装 置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例 仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以结合或者 可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所 显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接 口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形 式。 所述作为分离部件说明的单元可以是或者也可以不是物理上分开 的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于 一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选 择其中的部分或者全部单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单 元中, 也可以是各个单元单独物理包括, 也可以两个或两个以上单元集 成在一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以 釆用硬件加软件功能单元的形式实现。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计 算机可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的 步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以 存储程序代码的介质。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应以所述权利要求的保护范围为准。 Assuming that the currently used Fountain Coding needs to ensure that the decoding failure probability is ιο_1ΰ and the corresponding redundancy is 5%, then the actual number of coded data packets of the final transmitter can be calculated according to ι_2ο %. Where Κ is the number of data packets originally input by the transmitter, 5% is the current redundancy of the transmitter under the premise of ensuring the decoding failure probability, and 20% is the block error rate obtained before. W = *1J1 obtained from the above data is the final number of encoded packets. In a method for calculating the number of broadcast data packets provided by an embodiment of the present invention, when the preset condition is met, the transmitter feeds back the second parameter, and the transmitter determines the second parameter according to the received second parameter. A data channel signal-to-noise ratio corresponding to the second parameter, and determining a block error rate corresponding to the data channel signal-to-noise ratio, and the transmitter determines the actual number of encoded data packets according to the block error rate and in combination with specific broadcast parameters; Therefore, in the absence of closed-loop feedback, the specific number of encoded data packets can still be determined, and on the premise of ensuring the success rate of sending data packets, excessive waste will not be caused. The embodiment of the present invention provides a calculation device 5 for the number of broadcast data packets. As shown in FIG. 52. It is used to obtain the actual number of encoded data packets to be sent according to the signal-to-noise ratio of the data channel and in combination with specific broadcast system parameters. The first parameter includes at least the farthest broadcast distance. Wherein, as shown in FIG. 7, the signal-to-noise ratio calculation unit 51 includes: a path loss calculation subunit 511, configured to obtain a path loss value corresponding to the data channel according to the data channel signal-to-noise ratio; a signal-to-noise ratio calculation subunit The unit 512 is configured to acquire the current signal-to-noise ratio of the data channel according to the path loss value corresponding to the data channel. Similarly, as shown in FIG. 8, the number determination unit 52 specifically includes: a bit error rate calculation subunit 521, configured to obtain the block bit error rate corresponding to the data channel signal-to-noise ratio according to the data channel signal-to-noise ratio The data packet determination subunit 522 is configured to obtain the actual number of encoded data packets sent according to the block error rate and the specific broadcast parameters. A calculation device for the number of broadcast data packets provided in an embodiment of the present invention obtains the first parameter, and obtains a block error rate according to the first parameter, and then obtains the actual number of encoded data packets according to the block error rate; thus In the absence of closed-loop feedback, the specific number of encoded data packets can still be determined, and on the premise of ensuring the success rate of sending data packets, excessive waste will not be caused. The embodiment of the present invention also provides a computing device 6 for the number of encoded data packets sent in a broadcasting system. As shown in FIG. 9, the device 6 includes: a feedback unit 61, configured to feed back to the transmitter The second parameter: a bit error rate determining unit 62, configured for the transmitter to determine the signal-to-noise ratio of the data channel corresponding to the second parameter according to the received second parameter, and obtain the signal-to-noise ratio corresponding to the data channel The block error rate; the number determining unit 63, configured for the transmitter to determine the actual number of encoded data packets according to the block error rate and in combination with specific broadcast parameters. The second parameter includes at least a signal-to-noise ratio corresponding to a system reference or a synchronization signal. Wherein, the preset condition that the feedback unit 61 needs to meet specifically includes: when the second parameter is lower than a preset threshold, feeding back the second parameter to the transmitter. The bit error rate determining unit 62 is specifically configured to: the transmitter selects a minimum value among the received second parameters, and acquires a channel signal-to-noise ratio corresponding to the minimum value, and acquires a channel signal-to-noise ratio corresponding to the channel signal-to-noise ratio Block error rate. A calculation device for the number of broadcast data packets provided by an embodiment of the present invention feeds back a second parameter to a transmitter when a preset condition is met, and the transmitter determines the A channel signal-to-noise ratio corresponding to the second parameter, and acquiring a block error rate corresponding to the channel signal-to-noise ratio, and the transmitter determines the actual number of encoded data packets according to the block error rate and in combination with specific broadcast parameters; thereby being able In the absence of closed-loop feedback, the specific number of encoded data packets can still be determined, and on the premise of ensuring the success rate of sending data packets, excessive waste will not be caused. The embodiment of the present invention also provides a calculation device 7 for transmitting the number of encoded data packets in a broadcasting system. As shown in FIG. 10, the device 7 includes: a bus 71; The processor 74 and the transmitter 75, wherein the memory 72 is used to store relevant instructions, and the processor 73 executes the relevant instructions for estimating the signal-to-noise ratio of the data channel according to the first parameter; the processor 73 executes the relevant instructions and is also used for The channel signal-to-noise ratio, combined with specific broadcasting system parameters, is used to obtain the actual number of encoded data packets sent. In this embodiment of the present invention, optionally, the processor executes related instructions for estimating the signal-to-noise ratio of the data channel according to a first parameter, where the first parameter includes at least the farthest broadcast distance. In the embodiment of the present invention, optionally, the processor executing related instructions to estimate the signal-to-noise ratio of the data channel according to the first parameter specifically includes: acquiring a path loss value corresponding to the data channel according to the first parameter; Acquire the current signal-to-noise ratio of the data channel according to the path loss value corresponding to the data channel. In the embodiment of the present invention, optionally, the processor executes related instructions to obtain the actual number of encoded data packets sent according to the signal-to-noise ratio of the data channel in combination with specific broadcast system parameters, which specifically includes: said according to said A data channel signal-to-noise ratio, obtaining a block error rate corresponding to the data channel signal-to-noise ratio; obtaining the actual number of encoded data packets sent according to the block error rate and the specific broadcast system parameters. Therefore, an apparatus for calculating the number of broadcast data packets provided in an embodiment of the present invention acquires the first parameter, obtains the block error rate according to the first parameter, and then obtains the actual number of encoded data packets according to the block error rate ; Therefore, in the absence of closed-loop feedback, the specific number of encoded data packets can still be determined, and on the premise of ensuring the success rate of sending data packets, excessive waste will not be caused. The embodiment of the present invention also provides a calculation device 8 for transmitting the number of encoded data packets in a broadcasting system. As shown in FIG. 11, the device 8 includes: a bus 81; and a memory 82 connected to the bus 81, a processor 83, The receiver 84 and the transmitter 85, wherein the memory 82 is used to store related instructions, and the processor 83 executes the related instructions to feed back the second parameter to the transmitter when the preset condition is met; the processor 83 executes the related instructions for determining, by the transmitter, a data channel signal-to-noise ratio corresponding to the second parameter according to the received second parameter, and determining a block error rate corresponding to the data channel signal-to-noise ratio; the processor 83 performs correlation The instruction is used for the transmitter to determine the actual number of encoded data packets according to the block error rate and specific broadcast parameters. In the embodiment of the present invention, optionally, the processor 83 executes related instructions for the transmitter to include at least the signal-to-noise ratio corresponding to the system reference or the synchronization signal according to the received second parameter among the second parameters. . In this embodiment of the present invention, optionally, the processor 83 executes related instructions for the transmitter to specifically include: When the threshold is set, feed back the second parameter to the transmitter. The processor 83 executes related instructions for the transmitter to determine the data channel signal-to-noise ratio corresponding to the second parameter according to the received second parameter, and determine the block error rate corresponding to the data channel signal-to-noise ratio The code rate specifically includes: the transmitter selects a minimum value among the received second parameters, and obtains a channel signal-to-noise ratio corresponding to the minimum value, and obtains a block error rate corresponding to the channel signal-to-noise ratio. An apparatus for calculating the number of broadcast data packets provided by an embodiment of the present invention feeds back a second parameter to the transmitter when a preset condition is met, and the transmitter determines the A channel signal-to-noise ratio corresponding to the second parameter, and acquiring a block error rate corresponding to the channel signal-to-noise ratio, and the transmitter determines the actual number of encoded data packets according to the block error rate and in combination with specific broadcast parameters; thereby being able In the absence of closed-loop feedback, the specific number of encoded data packets can still be determined, and on the premise of ensuring the success rate of sending data packets, excessive waste will not be caused. Those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described system, device and unit can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here. In the several embodiments provided in this application, it should be understood that the disclosed system, device and method can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms. The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may also be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment. In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit. The above-mentioned integrated units may be realized in the form of hardware, or may be realized in the form of hardware plus software functional units. Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, the aforementioned program can be stored in a computer-readable storage medium, and when the program is executed, execute It includes the steps of the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes. The above description is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any skilled person in the technical field can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (22)
- Claims1st, the computational methods of the coded data packet quantity sent in a kind of broadcast system, it is characterised in that methods described includes:According to the first parameter estimation data channel signal to noise ratio;According to the data channel signal to noise ratio, with reference to specific broadcast system parameter, the actual coding number of data packets sent.2nd, according to the method described in claim 1, it is characterised in that first parameter at least includes farthest broadcast distances.3rd, according to the method described in claim 1, it is characterised in that described to be included according to the first parameter estimation channel SNRs:According to first parameter, the corresponding path loss values of the data channel are obtained;According to the corresponding path loss values of the data channel, the signal to noise ratio of presently described data channel is obtained.4th, according to the method described in claim 1, it is characterised in that described according to the data channel signal to noise ratio, with reference to specific broadcast parameter, the actual coding number of data packets sent is specifically included:It is described according to the data channel signal to noise ratio, get the corresponding bLock error rate of the data channel signal to noise ratio;According to the bLock error rate and the specific broadcast system parameter, the actual coding number of data packets of the transmission is obtained.5th, the computational methods of the coded data packet quantity sent in a kind of broadcast system, it is characterised in that methods described includes:When meeting preparatory condition, the second parameter is fed back to emitter;The emitter determines the corresponding data channel signal to noise ratio of second parameter, and determine the corresponding bLock error rate of the data channel signal to noise ratio according to second parameter received;The emitter determines actual coding number of data packets according to the bLock error rate with reference to specific broadcast parameter.6th, method according to claim 5, it is characterised in that second parameter at least includes system reference or the corresponding signal to noise ratio of synchronizing signal.7th, method according to claim 5, it is characterised in that the preparatory condition that meets is specifically included:When second parameter is less than predetermined threshold value, second parameter is fed back to the emitter. 8th, method according to claim 5, it is characterized in that, the emitter determines the corresponding data channel signal to noise ratio of second parameter, and determine that the corresponding bLock error rate of the data channel signal to noise ratio is specifically included according to second parameter received:The emitter selects minimum value in second parameter received, and obtains the corresponding channel SNRs of the minimum value, obtains the corresponding bLock error rate of the channel SNRs.9th, the computing device of the coded data packet quantity sent in a kind of broadcast system, it is characterised in that the equipment includes:Signal-to-noise ratio computation unit, for according to the first parameter estimation data channel signal to noise ratio;Number decision unit, for according to the data channel signal to noise ratio, with reference to specific broadcast system parameter, the actual coding number of data packets sent.10th, equipment according to claim 9, it is characterised in that first parameter at least includes farthest broadcast distances.11, equipment according to claim 9, it is characterised in that the signal-to-noise ratio computation unit includes:Path loss calculation subelement, for according to first parameter, obtaining the corresponding path loss values of the data channel;Signal-to-noise ratio computation subelement, for according to the corresponding path loss values of the data channel, obtaining the signal to noise ratio of presently described data channel.12nd, equipment according to claim 9, it is characterised in that the number decision unit is specifically included:Error rate calculation subelement, for according to the data channel signal to noise ratio, getting the corresponding bLock error rate of the data channel signal to noise ratio;Packet determination subelement, for according to the bLock error rate and the specific broadcast system parameter, obtaining the actual coding number of data packets of the transmission.13rd, the computing device of the coded data packet quantity sent in a kind of broadcast system, it is characterised in that the equipment includes:Feedback unit, for when meeting preparatory condition, the second parameter to be fed back to emitter;Bit error rate determining unit, for the emitter according to second parameter received, determines the corresponding data channel signal to noise ratio of second parameter, and determine the corresponding bLock error rate of the data channel signal to noise ratio;Number decision unit, for the emitter according to the bLock error rate, actual coding number of data packets is determined with reference to specific broadcast parameter. 14th, equipment according to claim 13, it is characterised in that second parameter at least includes system reference or the corresponding signal to noise ratio of synchronizing signal.15th, equipment according to claim 13, it is characterised in that the preparatory condition that meets is specifically included:When second parameter is less than predetermined threshold value, second parameter is fed back to the emitter.16th, equipment according to claim 13, it is characterised in that the bit error rate determining unit specifically for:The emitter selects minimum value in second parameter received, and obtains the corresponding channel SNRs of the minimum value, obtains the corresponding bLock error rate of the channel SNRs.17th, the computing device of coded data packet quantity is sent in a kind of broadcast system, it is characterised in that described device includes:First processor, for according to the first parameter estimation data channel signal to noise ratio;The first processor, is additionally operable to according to the data channel signal to noise ratio, with reference to specific broadcast system parameter, the actual coding number of data packets sent.18th, device according to claim 17, it is characterised in that first parameter at least includes farthest broadcast distances.19th, device according to claim 17, it is characterised in that the first processor specifically for:According to first parameter, the corresponding path loss values of the data channel are obtained;According to the corresponding path loss values of the data channel, the signal to noise ratio of presently described data channel is obtained.20th, device according to claim 17, it is characterised in that the first processor also particularly useful for:It is described according to the data channel signal to noise ratio, get the corresponding bLock error rate of the data channel signal to noise ratio;According to the bLock error rate and the specific broadcast system parameter, the actual coding number of data packets of the transmission is obtained.21st, the computing device of the coded data packet quantity sent in a kind of broadcast system, it is characterised in that described device includes:Transmitter, for when meeting preparatory condition, the second parameter to be fed back to emitter;Second processor, for the emitter according to second parameter received, determines the corresponding data channel signal to noise ratio of second parameter, and determine that the data channel signal to noise ratio is corresponding BLock error rate;The second processor, is additionally operable to the emitter according to the bLock error rate, actual coding number of data packets is determined with reference to specific broadcast parameter.22nd, device according to claim 21, it is characterised in that second parameter at least includes system reference or the corresponding signal to noise ratio of synchronizing signal.23rd, device according to claim 21, it is characterised in that the preparatory condition that the transmitter is met includes:When second parameter is less than predetermined threshold value, second parameter is fed back to the emitter.24th, device according to claim 21, it is characterised in that the second processor specifically for:The emitter selects minimum value in second parameter received, and obtains the corresponding channel SNRs of the minimum value, obtains the corresponding bLock error rate of the data channel signal to noise ratio.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/085656 WO2015058351A1 (en) | 2013-10-22 | 2013-10-22 | Method and device for calculating quantity of encoded data packets transmitted within broadcast system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104782097A true CN104782097A (en) | 2015-07-15 |
Family
ID=52992120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380001402.7A Pending CN104782097A (en) | 2013-10-22 | 2013-10-22 | Method and device for calculating quantity of encoded data packets transmitted within broadcast system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104782097A (en) |
WO (1) | WO2015058351A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109862347A (en) * | 2019-01-25 | 2019-06-07 | 国家新闻出版广电总局广播电视规划院 | A kind of TV Safe Broadcasting Evaluation in Support Ability method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1343056A (en) * | 2000-09-07 | 2002-04-03 | 松下电器产业株式会社 | Method and equipment for grouping transmission data |
US20060188004A1 (en) * | 2005-01-27 | 2006-08-24 | Kabushiki Kaisha Toshiba | Radio communication device and semiconductor integrated circuit device used for the same |
CN101663821A (en) * | 2007-05-03 | 2010-03-03 | 汤姆森许可贸易公司 | Method and apparatus for improving throughput and error performance of rateless coding systems |
CN101741488A (en) * | 2010-01-29 | 2010-06-16 | 华为技术有限公司 | Link adaptation method and device based on time division system |
US20100272011A1 (en) * | 2009-04-27 | 2010-10-28 | Qualcomm Incorporated | Iterative decoding with configurable number of iterations |
CN102246480A (en) * | 2008-12-11 | 2011-11-16 | 爱立信电话股份有限公司 | Precoding with reduced feedback for coordinated multipoint transmission on the downlink |
US20120117446A1 (en) * | 2010-11-09 | 2012-05-10 | Qualcomm, Incorporated | Packet-level erasure protection coding in aggregated packet transmissions |
CN102572920A (en) * | 2010-12-23 | 2012-07-11 | 普天信息技术研究院有限公司 | Interference coordination methods under heterogeneous network |
CN102594396A (en) * | 2012-03-05 | 2012-07-18 | 黄东 | Interference suppression method for narrow-band communication system |
CN102684824A (en) * | 2011-03-17 | 2012-09-19 | 中兴通讯股份有限公司 | A data transmission method and system |
CN102752786A (en) * | 2011-04-18 | 2012-10-24 | 中国移动通信集团公司 | Method, system and device for determining channel quality of communication system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101582744A (en) * | 2009-06-19 | 2009-11-18 | 重庆邮电大学 | Encoding and decoding method of RS fountain codes based on iterative approach |
CN103338092B (en) * | 2013-06-13 | 2016-09-21 | 清华大学 | The method and system of distributed short-wave radio set communication |
-
2013
- 2013-10-22 CN CN201380001402.7A patent/CN104782097A/en active Pending
- 2013-10-22 WO PCT/CN2013/085656 patent/WO2015058351A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1343056A (en) * | 2000-09-07 | 2002-04-03 | 松下电器产业株式会社 | Method and equipment for grouping transmission data |
US20060188004A1 (en) * | 2005-01-27 | 2006-08-24 | Kabushiki Kaisha Toshiba | Radio communication device and semiconductor integrated circuit device used for the same |
CN101663821A (en) * | 2007-05-03 | 2010-03-03 | 汤姆森许可贸易公司 | Method and apparatus for improving throughput and error performance of rateless coding systems |
CN102246480A (en) * | 2008-12-11 | 2011-11-16 | 爱立信电话股份有限公司 | Precoding with reduced feedback for coordinated multipoint transmission on the downlink |
US20100272011A1 (en) * | 2009-04-27 | 2010-10-28 | Qualcomm Incorporated | Iterative decoding with configurable number of iterations |
CN101741488A (en) * | 2010-01-29 | 2010-06-16 | 华为技术有限公司 | Link adaptation method and device based on time division system |
US20120117446A1 (en) * | 2010-11-09 | 2012-05-10 | Qualcomm, Incorporated | Packet-level erasure protection coding in aggregated packet transmissions |
CN102572920A (en) * | 2010-12-23 | 2012-07-11 | 普天信息技术研究院有限公司 | Interference coordination methods under heterogeneous network |
CN102684824A (en) * | 2011-03-17 | 2012-09-19 | 中兴通讯股份有限公司 | A data transmission method and system |
CN102752786A (en) * | 2011-04-18 | 2012-10-24 | 中国移动通信集团公司 | Method, system and device for determining channel quality of communication system |
CN102594396A (en) * | 2012-03-05 | 2012-07-18 | 黄东 | Interference suppression method for narrow-band communication system |
Also Published As
Publication number | Publication date |
---|---|
WO2015058351A1 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110913375B (en) | Wireless communication system and equipment | |
CN102883451B (en) | Cross layer design method of up resources of shared system by terminal direction connection technology | |
CN108834112B (en) | A NOMA-based power allocation method for relay-assisted D2D communication system | |
CN104393904B (en) | The method, apparatus and system of transmitting channel information | |
CN110931026B (en) | Audio data communication method, equipment and system | |
CN108631929B (en) | Data transmission method and device | |
CN103929755A (en) | A communication method and device | |
CN110366234A (en) | A Rate Splitting Method for Non-Orthogonal Multiple Access Uplink | |
CN101801109B (en) | Medium access control system and medium access control method in wireless packet network | |
CN108370293A (en) | Trunking method and equipment in OMAMRC systems and the destination with feedback | |
CN107006019B (en) | A data transmission method and device | |
US11108597B2 (en) | Data transmission method and apparatus | |
WO2014032421A1 (en) | Distributed multi-cell multi-user beamforming method, transmitter and relevant system | |
CN108632830A (en) | A kind of anti-interference collaboration frequency spectrum cut-in method based on information Yu energy cooperative transmission | |
CN108430110B (en) | A kind of power distribution method and system recognizing car networking cooperation communication system | |
CN103684534B (en) | Communication means, terminal unit and communicator end to end | |
CN104782097A (en) | Method and device for calculating quantity of encoded data packets transmitted within broadcast system | |
CN102843217B (en) | D2D communication system based on network coding and relaying and implementation method thereof | |
CN109309549B (en) | Feedback duration indication, confirmation method, base station and user equipment | |
CN102546137B (en) | Method and device for detecting wireless link | |
CN106877994B (en) | Audio data transmitting and receiving method | |
CN108540265B (en) | D2D Interference Cancellation and Cooperative Forwarding Method Based on Network Coding | |
CN100531002C (en) | Method for sending information and method and apparatus for receiving information | |
CN115865269B (en) | Blind detection method and device, terminal equipment and computer readable storage medium | |
CN109005011A (en) | It is a kind of for the data transmission method of underwater acoustic network, system and readable storage medium storing program for executing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20190423 |