CN104776919B - FPGA-Based Infrared Focal Plane Array Stripe Non-uniformity Correction System and Method - Google Patents
FPGA-Based Infrared Focal Plane Array Stripe Non-uniformity Correction System and Method Download PDFInfo
- Publication number
- CN104776919B CN104776919B CN201510181531.XA CN201510181531A CN104776919B CN 104776919 B CN104776919 B CN 104776919B CN 201510181531 A CN201510181531 A CN 201510181531A CN 104776919 B CN104776919 B CN 104776919B
- Authority
- CN
- China
- Prior art keywords
- module
- histogram
- image
- column
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012937 correction Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000003860 storage Methods 0.000 claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims description 92
- 230000001186 cumulative effect Effects 0.000 claims description 57
- 238000012545 processing Methods 0.000 claims description 38
- 238000009826 distribution Methods 0.000 claims description 16
- 238000003702 image correction Methods 0.000 claims description 10
- 238000010606 normalization Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 4
- 230000003139 buffering effect Effects 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000003331 infrared imaging Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Image Analysis (AREA)
- Image Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
技术领域technical field
本发明属于红外成像技术领域,更具体地,涉及一种基于FPGA实现的利用中值红外均衡算法进行红外焦平面阵列条带状非均匀性校正系统和方法。The invention belongs to the technical field of infrared imaging, and more specifically relates to a system and method for correcting striped non-uniformity of an infrared focal plane array using a median infrared equalization algorithm based on FPGA.
背景技术Background technique
现今使用的红外成像系统多是基于红外焦平面阵列(IRFPA)器件,但由于制造工艺水平与材料的问题,红外焦平面阵列器件存在信噪比低的问题,这一方面是由于探测单元响应不一致所引起的固定图案噪声,另一方面是由于读出电路的非均匀性与偏置电压噪声所引起的条带状非均匀性,这种非均匀性严重影响了红外图像的质量,限制了红外焦平面阵列器件的应用。Most of the infrared imaging systems used today are based on infrared focal plane array (IRFPA) devices, but due to manufacturing process level and material problems, infrared focal plane array devices have the problem of low signal-to-noise ratio, which is due to the inconsistent response of detection units The fixed pattern noise caused by it, on the other hand, is the striped non-uniformity caused by the non-uniformity of the readout circuit and the bias voltage noise. This non-uniformity seriously affects the quality of the infrared image and limits the infrared Applications of focal plane array devices.
传统的非均匀性校正的方法虽然在去除红外图像非均匀性上有优异的表现,但是条带状非均匀性既有结构性,又有随机性。现有的基于定标的方法(例如:单点定标、两点定标)利用对黑体的观测进行图像校正,只适用于参数时域固定的情况。而传统基于场景的方法(例如:恒定统计法、神经网络法、时域高通滤波法、Kalman滤波法)一般需要对时域上连续的若干帧进行运算,其收敛速度较慢,无法适应参数时域上的变化。因此需要研究专门针对条带状非均匀性进行校正的算法。目前此类算法主要停留在软件实现层面,处理时间长,无法满足图像实时性处理要求。已有的采用硬件实现的实时红外焦平面条带状非均匀性校正系统采用的算法过于简单,处理效果较差。因此需要设计一种处理效果好的实时性红外焦平面阵列条带状非均匀性校正系统。Although the traditional non-uniformity correction method has excellent performance in removing the non-uniformity of infrared images, the strip-like non-uniformity has both structure and randomness. Existing calibration-based methods (such as: one-point calibration, two-point calibration) use the observation of the black body for image correction, which are only applicable to the case where the parameters are fixed in the time domain. However, traditional scene-based methods (such as: constant statistics method, neural network method, time-domain high-pass filter method, Kalman filter method) generally need to operate on several consecutive frames in the time domain, and their convergence speed is slow and cannot adapt to the parameters. domain changes. Therefore, it is necessary to study algorithms for correcting strip-like non-uniformity. At present, such algorithms mainly stay at the software implementation level, and the processing time is long, which cannot meet the real-time processing requirements of images. The existing hardware-based real-time infrared focal plane stripe non-uniformity correction system adopts an algorithm that is too simple, and the processing effect is poor. Therefore, it is necessary to design a real-time infrared focal plane array stripe non-uniformity correction system with good processing effect.
中值红外均衡(MIRE)算法由Y.Tendero等人在2010年提出,对条带状非均匀性有较好的校正效果,并且没有迭代运算,复杂度较低。其基本过程如下:第一,计算每一列图像Cj的直方图Ij;第二,计算每一列图像的累计直方图Hj;第三,计算每一列图像累计直方图的逆直方图;第四,计算其中值累计直方图使 第五,将每一列的列直方图规范化到该列的中值直方图,得到校正后的图像 The median infrared equalization (MIRE) algorithm was proposed by Y.Tendero et al. in 2010. It has a good correction effect on striped non-uniformity, and has no iterative operation, so the complexity is low. The basic process is as follows: first, calculate the histogram I j of each column of images C j ; second, calculate the cumulative histogram H j of each column of images; third, calculate the inverse histogram of the cumulative histogram of each column of images ; Fourth, calculate the median cumulative histogram Make Fifth, normalize the column histogram of each column to the median histogram of the column to obtain the corrected image
采用FPGA实现中值红外均衡算法时存在如下难点:原算法流程中五个步骤相互之间必须要完全完成上一步的所有计算后才可以进行下一步计算,无法形成一条连贯的流水线,不利于硬件的实现,并且需要相当大的存储空间以缓存中间结果。The following difficulties exist when using FPGA to realize the median infrared equalization algorithm: the five steps in the original algorithm process must completely complete all the calculations of the previous step before proceeding to the next calculation, which cannot form a coherent pipeline, which is not conducive to hardware implementation, and requires considerable storage space to cache intermediate results.
发明内容Contents of the invention
针对现有技术的以上缺陷或改进需求,本发明提供一种基于FPGA的红外焦平面阵列条带状非均匀性校正系统和方法,以中值红外均衡算法(MIRE)为核心,针对算法以及FPGA的特性进行了优化,其目的在于用以填补现有的针对条带状非均匀性进行校正的硬件系统和方法的空缺。For the above defects or improvement needs of the prior art, the present invention provides a FPGA-based infrared focal plane array striped non-uniformity correction system and method, with the median infrared equalization algorithm (MIRE) as the core, for the algorithm and FPGA The characteristics of the method are optimized, and the purpose is to fill the vacancy of the existing hardware systems and methods for correcting the striped non-uniformity.
为实现上述目的,按照本发明的一个方面,提供一种基于FPGA的红外焦平面阵列条带状非均匀性校正系统,包括图像缓存模块、参数计算模块、非均匀性校正模块以及数据输出模块,其中:In order to achieve the above object, according to one aspect of the present invention, a FPGA-based infrared focal plane array stripe non-uniformity correction system is provided, including an image cache module, a parameter calculation module, a non-uniformity correction module and a data output module, in:
所述图像缓存模块,用于缓存外部输入的红外图像,当缓存完一帧图像之后将所述图像按列向所述非均匀性校正模块输出数据;The image caching module is used to cache the externally input infrared image, and output data of the image to the non-uniformity correction module in columns after one frame of image is cached;
所述参数计算模块,用于接收并解析输入的外部指令得到校正参数,并根据所述校正参数换算得到加权系数后传递给所述非均匀性校正模块;The parameter calculation module is used to receive and analyze the input external instructions to obtain correction parameters, and convert the weight coefficients according to the correction parameters to the non-uniformity correction module;
所述非均匀性校正模块,包括:The non-uniformity correction module includes:
输入控制与数据分发模块,用于控制所述图像缓存模块每次输出一列图像到直方图统计模块,同时计数已经输出的列数,当计算某一列图像规范化像素所需要的全部数据都已获得后,控制所述图像缓存模块输出二次缓存后的该列图像数据到累计直方图处理模块;The input control and data distribution module is used to control the image cache module to output a column of images to the histogram statistics module at a time, and count the number of columns that have been output at the same time, when all the data required to calculate the normalized pixels of a certain column of images have been obtained. , controlling the image caching module to output the column of image data after secondary caching to the cumulative histogram processing module;
所述直方图统计模块,用于对所述输入控制与数据分发模块输出的图像列数据进行直方图统计,同时将上一列图像的直方图信息传递给所述累计直方图处理模块;The histogram statistics module is used to perform histogram statistics on the image column data output by the input control and data distribution module, and at the same time pass the histogram information of the previous column image to the cumulative histogram processing module;
所述累计直方图处理模块,用于根据每一列图像的直方图信息计算该列图像的累计直方图并进行缓存,同时产生计算累计直方图的逆直方图所需使用的标记值并传递给标记值转发模块,并且根据所述输入控制与数据分发模块传递的图像数据索引对应列的索引值传递给索引值转发模块;The cumulative histogram processing module is used to calculate and cache the cumulative histogram of the column of images according to the histogram information of each column of images, and simultaneously generate the tag value needed to calculate the inverse histogram of the cumulative histogram and pass it to the tag The value forwarding module, and the index value of the column corresponding to the image data index passed by the input control and data distribution module is passed to the index value forwarding module;
所述标记值转发模块,用于将所述标记值进行缓存并转发给逆直方图计算模块组;The tag value forwarding module is configured to cache the tag value and forward it to the inverse histogram calculation module group;
所述索引值转发模块,用于将所述索引值转发给所述逆直方图计算模块组;The index value forwarding module is configured to forward the index value to the inverse histogram calculation module group;
所述逆直方图计算模块组,包含多个逆直方图计算模块,用于通过所述标记值完成逆直方图的计算并更新模块内部DPRAM,然后根据所述索引值对所述模块内部DPRAM进行索引,并将对应数据转发给规范化计算模块;The inverse histogram calculation module group includes a plurality of inverse histogram calculation modules, which are used to complete the calculation of the inverse histogram through the tag value and update the internal DPRAM of the module, and then perform the internal DPRAM on the internal DPRAM of the module according to the index value Index, and forward the corresponding data to the normalized computing module;
并行控制模块,用于控制所述逆直方图计算模块组中的每个逆直方图计算模块完成所述逆直方图的计算、更新和对应数据转发;以及A parallel control module, configured to control each inverse histogram calculation module in the inverse histogram calculation module group to complete the calculation, update and corresponding data forwarding of the inverse histogram; and
所述规范化计算模块,用于通过所述参数计算模块更新加权系数,并将所述逆直方图计算模块组的输出结果与对应加权系数相乘,所乘结果相加后得到图像校正结果,并将所述图像校正结果传递给所述数据输出模块;以及The normalization calculation module is used to update the weighting coefficient through the parameter calculation module, and multiply the output result of the inverse histogram calculation module group by the corresponding weighting coefficient, and obtain the image correction result after adding the multiplied results, and delivering the image correction result to the data output module; and
所述数据输出模块,用于缓存并输出校正后的图像。The data output module is used for buffering and outputting corrected images.
按照本发明的另一方面,提供一种基于FPGA的红外焦平面阵列条带状非均匀性校正方法,包括:According to another aspect of the present invention, a method for correcting striped non-uniformity of an infrared focal plane array based on FPGA is provided, comprising:
步骤1计算加权系数其中,表示标准差;k表示加权系数的序号,取值为1,2,…,2N+1,2N+1为计算窗口大小;Step 1 Calculate the weighting coefficient in, Indicates the standard deviation; k indicates the serial number of the weighting coefficient, the value is 1, 2, ..., 2N+1, 2N+1 is the calculation window size;
步骤2缓存原始输入的红外图像;Step 2 caches the original input infrared image;
步骤3对所述原始输入的红外图像边缘进行镜像拓展,调整输出列与输出图像地址的映射关系,设所述原始输入的红外图像缓存空间起始地址为0,图像列数为L,计算窗口大小为2x+1,则输出第n列图像时的首地址m为:Step 3. Mirroring and expanding the edge of the original input infrared image, adjusting the mapping relationship between the output column and the output image address, setting the initial address of the infrared image buffer space of the original input to be 0, the number of image columns to be L, and the calculation window The size is 2x+1, then the first address m when outputting the nth column image is:
每输出当前列的下一个像素时,地址偏移一列像素的地址空间;When outputting the next pixel of the current column, the address is offset by the address space of one column of pixels;
步骤4对当前列图像Cj进行直方图统计,得到直方图Ij;Step 4 performs histogram statistics on the current column image C j to obtain the histogram I j ;
步骤5计算当前图像列Cj的累计直方图Hj;Step 5 calculates the cumulative histogram H j of the current image column C j ;
步骤6计算当前图像列Cj累计直方图的逆直方图;Step 6 Calculate the inverse histogram of the cumulative histogram of the current image column C j ;
步骤7当某一列图像校正计算窗口中所有列的逆直方图都已计算完毕后,将二次缓存的该列图像像素Xi,j输入,在缓存的累计直方图对应列区域中以此像素灰度值为地址查找累计直方图得到索引值Hj(Xi,j);Step 7 When the inverse histograms of all columns in the image correction calculation window of a certain column have been calculated, input the image pixel X i, j of the column cached twice, and use this pixel in the corresponding column area of the cached cumulative histogram The gray value is the index value H j (X i,j ) obtained from the cumulative histogram of the address lookup;
步骤8以所述索引值Hj(Xi,j)作为地址索引得到目标列图像像素Xi,j分别规范化到对应列的直方图后的像素值 Step 8 Use the index value H j (X i,j ) as the address index to obtain the pixel values of the image pixels X i, j of the target column after normalization to the histogram of the corresponding column respectively
步骤9将每一列图像规范化到相邻列直方图后的像素值乘以对应的加权系数ψσ(k),所乘结果相加后得到图像校正结果 Step 9 Normalize each column of image to the pixel value after adjacent column histogram Multiply by the corresponding weighting coefficient ψ σ (k), and add the multiplied results to get the image correction result
步骤10重复所述步骤4至9,直到完成所述原始输入的红外图像全部列的处理;Step 10 repeats the steps 4 to 9 until the processing of all columns of the original input infrared image is completed;
步骤11将校正后的图像数据缓存并输出。Step 11 caches and outputs the corrected image data.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:Generally speaking, compared with the prior art, the above technical solution conceived by the present invention has the following beneficial effects:
1、与利用DSP进行运算实现红外焦平面阵列条带状非均匀性校正的方法相比,本方法所有算法都由FPGA完成,不需要使用DSP辅助运算,系统处理速度快,可以实现大幅面红外图像的实时校正,同时还有效地降低了校正成本;1. Compared with the method of implementing infrared focal plane array strip non-uniformity correction by using DSP, all the algorithms of this method are completed by FPGA, without the need of DSP auxiliary operation, the system processing speed is fast, and large-format infrared can be realized Real-time correction of images, while effectively reducing the cost of correction;
2、将原算法4、5步进行等效变换,使两个步骤可以形成一条完整的流水线,大大简化了系统的结构,同时节省了存储中值直方图所需要的存储空间;2. Perform an equivalent transformation of steps 4 and 5 of the original algorithm, so that the two steps can form a complete pipeline, which greatly simplifies the structure of the system and saves the storage space required for storing the median histogram;
3、利用标记值实现累计直方图及其逆直方图同时计算,节省了系统处理时间;3. Use the marked value to realize the simultaneous calculation of the cumulative histogram and its inverse histogram, which saves the system processing time;
4、利用片上存储资源配合乒乓操作以及对存储区域的合理规划实现了列的尺度上的流水处理。即在一列图像的传输周期中,流水线上的各级模块分别完成一列图像数据的处理并将处理得到的中间结果使用片内DPRAM进行缓存,同时将上一个列周期中运算得到的中间结果输出给下一级模块进行处理。充分利用了FPGA并行计算的优势,有利于系统运行速度的提升;4. Using on-chip storage resources to cooperate with ping-pong operations and reasonable planning of the storage area to achieve pipeline processing on the column scale. That is, in the transmission cycle of a column of images, the modules at all levels on the pipeline complete the processing of a column of image data respectively and use the on-chip DPRAM to cache the intermediate results obtained from the processing, and at the same time output the intermediate results obtained in the previous column cycle to the The next level module is processed. Make full use of the advantages of FPGA parallel computing, which is conducive to the improvement of system running speed;
5、本发明FPGA资源占用量很小,可以使用低成本的FPGA器件实现,算法处理模块还可以作为一个子模块与其他算法处理模块集成到一个FPGA中,这只需要对图像缓存模块的入口逻辑与数据输出模块的出口逻辑进行修改以适应其他模块的时序而不用对核心算法模块进行修改,十分方便,增大了方法的实用性。5. The FPGA resource occupation of the present invention is very small, and can be implemented using low-cost FPGA devices. The algorithm processing module can also be integrated into an FPGA as a sub-module with other algorithm processing modules, which only requires the entry logic of the image cache module It is very convenient to modify the export logic of the data output module to adapt to the timing of other modules without modifying the core algorithm module, which increases the practicability of the method.
附图说明Description of drawings
图1为本发明基于FPGA的红外焦平面阵列条带状非均匀性校正系统的结构图;Fig. 1 is the structural diagram of the infrared focal plane array stripe non-uniformity correction system based on FPGA of the present invention;
图2为本发明基于FPGA的红外焦平面阵列条带状非均匀性校正方法的流程图;Fig. 2 is the flow chart of the infrared focal plane array stripe non-uniformity correction method based on FPGA of the present invention;
图3为本发明规范化计算模块加权系数寄存器更新示意图;Fig. 3 is a schematic diagram of updating the weighting coefficient register of the standardized calculation module of the present invention;
图4为本发明原始红外图像、人工添加条带状非均匀性的红外图像与本发明处理后的图像对比示意图。Fig. 4 is a schematic diagram of the comparison between the original infrared image of the present invention, the infrared image artificially added with striped non-uniformity, and the processed image of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
图1所示为本发明基于FPGA的红外焦平面阵列条带状非均匀性校正系统的结构图,包括图像缓存模块、参数计算模块、非均匀性校正模块与数据输出模块。其中非均匀性校正模块是整个系统的主体,包括输入控制与数据分发模块、直方图统计模块、累计直方图处理模块、标记值转发模块、索引值转发模块、逆直方图计算模块组、并行控制模块与规范化计算模块。其中:Fig. 1 shows the structural diagram of the FPGA-based infrared focal plane array stripe non-uniformity correction system of the present invention, including an image cache module, a parameter calculation module, a non-uniformity correction module and a data output module. Among them, the non-uniformity correction module is the main body of the whole system, including input control and data distribution module, histogram statistics module, cumulative histogram processing module, mark value forwarding module, index value forwarding module, inverse histogram calculation module group, parallel control modules and normalized computing modules. in:
图像缓存模块,利用外部图像缓存DPRAM(DUAL-PORT STATIC RAM)缓存外部输入的红外图像,当缓存完一帧图像之后向非均匀性校正模块的输入控制与数据分发模块发出数据准备好信号,同时响应输入控制与数据分发模块发出的控制命令,按列的顺序输出图像。图像缓存模块将外部DPRAM存储区域划分为两个部分,采用乒乓方式进行操作:在使用A区域缓存当前帧图像的同时,将B区域中缓存的前一帧图像输出给输入控制与数据分发模块。图像缓存模块在输出缓存图像的同时利用FPGA芯片内部的DPRAM(图1中未示出)对图像进行二次缓存,并在输入控制与数据分发模块的控制下输出。The image cache module uses the external image cache DPRAM (DUAL-PORT STATIC RAM) to cache the externally input infrared image, and sends a data ready signal to the input control and data distribution module of the non-uniformity correction module after a frame of image is cached, and at the same time In response to a control command issued by the input control and data distribution module, the images are output in the order of columns. The image cache module divides the external DPRAM storage area into two parts, and operates in a ping-pong manner: while using the A area to cache the current frame image, it outputs the previous frame image cached in the B area to the input control and data distribution module. The image cache module uses the DPRAM (not shown in Figure 1) inside the FPGA chip to cache the image twice while outputting the cached image, and outputs it under the control of the input control and data distribution module.
参数计算模块,采用UART实现与上位机的接口,接收外部指令输入并解析上位机指令,得到校正参数。计算所需的加权系数事先在计算机上计算完成并存入片上ROM中,参数计算模块根据校正参数换算得到对应地址从ROM中得到对应的加权系数传递给规范化计算模块。The parameter calculation module uses UART to realize the interface with the upper computer, receives external command input and analyzes the upper computer instructions, and obtains the calibration parameters. The weighting coefficients required for calculation are calculated in advance on the computer and stored in the on-chip ROM. The parameter calculation module obtains the corresponding address from the ROM according to the conversion of the correction parameters and transmits the corresponding weighting coefficients to the normalization calculation module.
输入控制与数据分发模块,与图像缓存模块相连,当收到图像缓存模块发出的数据准备好信号后产生非均匀性校正模块其余部分的逻辑复位信号,然后控制图像缓存模块按列的顺序每次输出一列图像到直方图统计模块,同时计数已经输出的列数。当计算某一列图像规范化像素所需要的全部数据都已获得后,控制图像缓存模块输出二次缓存后的该列图像数据到累计直方图处理模块。The input control and data distribution module is connected with the image cache module, and after receiving the data ready signal from the image cache module, it generates a logic reset signal for the rest of the non-uniformity correction module, and then controls the image cache module in the order of columns each time Output a column of images to the histogram statistics module, and count the number of output columns at the same time. When all the data required for calculating the normalized pixels of a column of images have been obtained, the control image buffering module outputs the secondary cached image data of the column to the cumulative histogram processing module.
直方图统计模块,与输入控制与数据分发模块相连,对输入控制与数据分发模块输出的图像列数据进行直方图统计。直方图统计模块利用内部DPRAM实时统计每一列图像的直方图,同时将上一列图像的直方图信息传递给累计直方图处理模块。直方图统计模块将内部DPRAM存储区域划分为两个部分,采用乒乓方式进行操作:在使用A区域统计当前图像列直方图的同时,将B区域中缓存的前一列图像的直方图输出给累计直方图处理模块。The histogram statistics module is connected with the input control and data distribution module, and performs histogram statistics on the image column data output by the input control and data distribution module. The histogram statistical module uses the internal DPRAM to count the histogram of each column of images in real time, and at the same time transmits the histogram information of the previous column of images to the cumulative histogram processing module. The histogram statistics module divides the internal DPRAM storage area into two parts and operates in a ping-pong manner: while using area A to count the histogram of the current image column, the histogram of the previous column image cached in area B is output to the cumulative histogram image processing module.
累计直方图处理模块,与直方图统计模块和输入控制与数据分发模块相连,根据每一列图像的直方图信息计算该列图像的累计直方图并利用片上DPRAM进行缓存,同时产生计算累计直方图的逆直方图所需使用的标记信息传递给标记值转发模块,并且根据输入控制与数据分发模块传递的图像数据索引对应列的DPRAM缓存区域读出对应的索引值传递给索引值转发模块。The cumulative histogram processing module is connected with the histogram statistical module and the input control and data distribution module, calculates the cumulative histogram of the column image according to the histogram information of each column image and uses the on-chip DPRAM to cache, and simultaneously generates the calculation cumulative histogram The tag information required by the inverse histogram is passed to the tag value forwarding module, and the corresponding index value is read from the DPRAM cache area corresponding to the column of the image data index passed by the input control and data distribution module and passed to the index value forwarding module.
标记值转发模块,与累计直方图处理模块相连,将每一列图像累计直方图的标记信息通过内部FIFO进行缓存并转发给逆直方图计算模块组中对应需要更新的逆直方图计算模块。因为逆直方图计算模块更新速度较累计直方图处理模块处理速度慢,因此标记值转发模块内部含有两个FIFO,保证同时可以有两个逆直方图计算模块进行更新。The marker value forwarding module is connected with the cumulative histogram processing module, and caches the marker information of the cumulative histogram of each column of images through the internal FIFO and forwards it to the corresponding inverse histogram calculation module in the inverse histogram calculation module group that needs to be updated. Because the update speed of the inverse histogram calculation module is slower than that of the cumulative histogram processing module, the tag value forwarding module contains two FIFOs to ensure that two inverse histogram calculation modules can be updated at the same time.
索引值转发模块,与累计直方图处理模块相连,将对应列图像得到的索引值转发给逆直方图计算模块组。The index value forwarding module is connected with the cumulative histogram processing module, and forwards the index value obtained from the corresponding column image to the inverse histogram calculation module group.
逆直方图计算模块组,与标记值转发模块、索引值转发模块和并行控制模块相连,其包含多个逆直方图计算模块,每一个逆直方图计算模块有刷新与输出两种状态,由并行控制模块控制进行切换。处于刷新状态时,通过标记值转发模块传递的标记值来完成逆直方图的计算并更新模块内部DPRAM,具体做法为:先读出一个标记值将其中的灰度值填入存储器中其高度值对应地址中,再将两个地址之间空白部分用该灰度值进行填充;处于输出状态时,根据索引值转发模块转发的索引值对模块内部DPRAM进行索引并将对应数据转发给规范化计算模块。在本发明实施例中,逆直方图计算模块组中包含的模块个数由计算窗口大小决定,对应关系为:窗口大小为2×N+1的情况下,需使用2×N+4个逆直方图计算模块并行进行处理。The inverse histogram calculation module group is connected with the tag value forwarding module, the index value forwarding module and the parallel control module. It contains a plurality of inverse histogram calculation modules. The control module controls switching. When in the refresh state, complete the calculation of the inverse histogram and update the internal DPRAM of the module through the tag value passed by the tag value forwarding module. The specific method is: first read a tag value and fill the gray value in the memory with its height value In the corresponding address, fill the blank part between the two addresses with the gray value; when in the output state, index the internal DPRAM of the module according to the index value forwarded by the index value forwarding module and forward the corresponding data to the standardized calculation module . In the embodiment of the present invention, the number of modules included in the inverse histogram calculation module group is determined by the size of the calculation window, and the corresponding relationship is: when the window size is 2×N+1, 2×N+4 inverse The histogram calculation module performs processing in parallel.
并行控制模块,与逆直方图计算模块组相连,向逆直方图计算模块发出刷新起始信号,控制逆直方图计算模块组中的各个单独的模块在需要刷新时切换到刷新状态,并在刷新结束时切换到输出状态。The parallel control module is connected with the inverse histogram calculation module group, sends a refresh start signal to the inverse histogram calculation module, controls each individual module in the inverse histogram calculation module group to switch to the refresh state when it needs to be refreshed, and refreshes Switch to output state when finished.
规范化计算模块,与逆直方图计算模块组及参数计算模块相连,通过参数计算模块更新加权系数。每一个逆直方图计算模块输入接口处都有一个乘法器,将该逆直方图计算模块的输出结果与对应加权系数相乘,所乘结果相加后得到规范化后像素值即图像校正结果,并将结果传递给数据输出模块。The normalized calculation module is connected with the inverse histogram calculation module group and the parameter calculation module, and the weighting coefficient is updated through the parameter calculation module. There is a multiplier at the input interface of each inverse histogram calculation module, and the output result of the inverse histogram calculation module is multiplied by the corresponding weighting coefficient, and the multiplied results are added to obtain the normalized pixel value, which is the image correction result, and Pass the result to the data output module.
数据输出模块,利用片外DPRAM缓存校正后的图像,提供面向DSP的EMIF接口,可以将结果输出给DSP进行后续处理,并采用VGA接口实现外部测试接口。The data output module uses off-chip DPRAM to buffer the corrected image, provides an EMIF interface for DSP, and can output the result to DSP for subsequent processing, and uses the VGA interface to realize the external test interface.
图2所示为本发明基于FPGA的红外焦平面阵列条带状非均匀性校正方法的流程图,具体包括以下步骤:Fig. 2 shows the flow chart of the infrared focal plane array stripe non-uniformity correction method based on FPGA of the present invention, specifically comprises the following steps:
步骤1计算加权系数ψσ(k)。Step 1 calculates the weighting coefficient ψ σ (k).
加权系数ψσ(k)计算公式如下:其中,其中,σ表示标准差;k表示加权系数的序号,取值为1,2,…,2N+1(假设计算窗口大小为2N+1)。为了节省系统占用的硬件资源,硬件系统并不直接设定标准差σ计算加权系数,而是设定若干档,每一档事先用软件计算好加权系数ψσ(k)然后存储在片上ROM中以供调用。在本发明实施例中,分档方式如下:首先依照成像器的幅面与特性确定最大计算窗口大小(2P+1)与最小计算窗口大小(2Q+1)(注意需要为奇数),对于大小为(2N+1)(Q≤N≤P)的每一个窗口,定义不均匀性系数取Λ分别为0.5、0.4、0.3、0.2与0.1时的ψσ(k)(k∈[1,2N+1])作为加权系数,其中,所有加权系数均放大256倍(即左移8位)。应当注意实际上每一档的加权系数一共有(2P+1)个,对于N<P的情况,其第x项系数映射到第x+P-N项,空的项数系数为0。每一帧图像开始处理时,首先检测上位机是否发送参数变更指令,如果没有,则判断当前帧是否为第一帧,如果是第一帧,则采用默认的参数,如果不是第一帧,则不更新参数;如果上位机发送了参数变更指令,则解析出新的参数进行更新。然后将参数映射到系数ROM中对应的存储空间,读出对应的加权系数ψσ(k)更新到规范化计算模块。The formula for calculating the weighting coefficient ψ σ (k) is as follows: in, Among them, σ represents the standard deviation; k represents the serial number of the weighting coefficient, and the values are 1, 2, ..., 2N+1 (assuming that the calculation window size is 2N+1). In order to save hardware resources occupied by the system, the hardware system does not directly set the standard deviation σ to calculate the weighting coefficient, but sets several files, and each file calculates the weighting coefficient ψ σ (k) by software in advance and then stores it in the on-chip ROM for calling. In the embodiment of the present invention, the binning method is as follows: First, determine the maximum calculation window size (2P+1) and the minimum calculation window size (2Q+1) according to the format and characteristics of the imager (note that it needs to be an odd number). For each window of (2N+1)(Q≤N≤P), define the non-uniformity coefficient Take ψ σ (k)(k∈[1,2N+1]) when Λ is 0.5, 0.4, 0.3, 0.2 and 0.1 respectively as weighting coefficients, where all weighting coefficients are enlarged by 256 times (i.e. shifted to the left by 8 bits ). It should be noted that there are actually (2P+1) weighting coefficients for each file. For the case of N<P, the coefficient of the xth item is mapped to the x+PNth item, and the coefficient of the number of empty items is 0. When each frame of image processing starts, first check whether the host computer sends a parameter change command, if not, then judge whether the current frame is the first frame, if it is the first frame, use the default parameters, if not the first frame, then The parameters are not updated; if the host computer sends a parameter change command, it will parse out the new parameters and update them. Then map the parameters to the corresponding storage space in the coefficient ROM, read out the corresponding weighting coefficient ψ σ (k) and update it to the normalization calculation module.
步骤2缓存原始输入的红外图像。Step 2 caches the raw input infrared image.
因为图像输入按行的顺序输入,而本发明后续处理要求按列的顺序输出图像,因此需要对原始图像进行缓存,待一帧完整的图像缓存完毕时才进行处理。Because the image input is input in the order of rows, and the subsequent processing of the present invention requires the output of images in the order of columns, the original image needs to be cached, and the processing is not performed until a complete frame of the image is cached.
步骤3原始图像边缘镜像拓展。Step 3 The edge mirroring of the original image is extended.
后续处理过程存在当前列图像与相邻列图像之间的运算,而对于处于边缘的像素则缺少相应的相邻列的数据进行处理,因此需要对原图像行方向上的边界进行特殊处理,本发明通过对原始图像边缘进行镜像拓展解决此问题。图像的镜像拓展通过调整输出列与输出图像地址的映射关系来实现,设输入图像缓存空间起始地址为0,图像列数为L,计算窗口大小为2x+1,则输出第n列图像时的首地址m为:In the subsequent processing process, there is an operation between the current column image and the adjacent column image, but for the pixels at the edge, there is no corresponding adjacent column data for processing, so it is necessary to perform special processing on the boundary of the original image in the row direction. The present invention This problem is solved by mirroring the edges of the original image. The mirror image expansion of the image is realized by adjusting the mapping relationship between the output column and the output image address. Assuming that the starting address of the input image buffer space is 0, the number of image columns is L, and the calculation window size is 2x+1, then when the nth column image is output The first address m of is:
每输出当前列的下一个像素时,地址偏移一列像素的地址空间。When outputting the next pixel of the current column, the address is offset by the address space of one column of pixels.
步骤4计算当前图像列Cj的直方图Ij。Step 4 calculates the histogram I j of the current image column C j .
以像素灰度值映射DPRAM地址来使用片内DPRAM对当前列图像Cj进行直方图统计,得到直方图Ij。关于直方图统计具体细节,此为本领域技术人员公知常识,在此不做详细介绍。The on-chip DPRAM is used to perform histogram statistics on the current column image C j by mapping the DPRAM address with the pixel gray value to obtain the histogram I j . The specific details of the histogram statistics are common knowledge of those skilled in the art, and will not be described in detail here.
步骤5计算当前图像列Cj的累计直方图Hj。Step 5 calculates the cumulative histogram H j of the current image column C j .
为了节省处理时间,本发明并行计算当前图像列的累计直方图Hj与累计直方图的逆直方图因此需要在计算当前累计直方图的同时生成用于计算逆直方图的信息,具体包括以下子步骤:In order to save processing time, the present invention parallelizes the cumulative histogram H j of the current image column and the inverse histogram of the cumulative histogram Therefore, it is necessary to generate information for calculating the inverse histogram while calculating the current cumulative histogram, which specifically includes the following sub-steps:
(5-1)读取直方图对应灰度值的高度值,初始状态时灰度值为0;(5-1) Read the height value corresponding to the gray value of the histogram, and the gray value is 0 in the initial state;
(5-2)对于每一个灰度值得到的高度值,将该高度值与累计高度值(初始状态时为0)相加得到新的累计高度值,并将新的累计高度值写入DPRAM中当前灰度级对应的地址来更新累计直方图;(5-2) For the height value obtained by each grayscale value, add the height value to the cumulative height value (0 in the initial state) to obtain a new cumulative height value, and write the new cumulative height value into DPRAM Update the cumulative histogram with the address corresponding to the current gray level;
(5-3)如果该高度值为0,则执行步骤(5-5),否则将新的累计高度值与当前灰度值作为标记值下传至标记值转发模块中;(5-3) If the height value is 0, then perform step (5-5), otherwise the new cumulative height value and the current gray value are passed down to the tag value forwarding module as the tag value;
(5-4)如果当前高度值为1,则标记值的填充标志位填0,否则填1;(5-4) If the current height value is 1, then fill in 0 for the filling flag of the mark value, otherwise fill in 1;
(5-5)如果达到最大灰度值,则结束,否则灰度值加1,然后执行步骤(5-1)。(5-5) If the maximum gray value is reached, then end, otherwise, add 1 to the gray value, and then execute step (5-1).
步骤6计算当前图像列Cj累计直方图的逆直方图具体包括以下子步骤:Step 6 Calculate the inverse histogram of the cumulative histogram of the current image column C j Specifically include the following sub-steps:
(6-1)当有新的标记数据时,从标记值转发FIFO中读出标记值数据,将灰度值部分数据内容填入累计高度值对应的地址中;(6-1) When there is new marked data, read out the marked value data from the marked value forwarding FIFO, and fill in the gray value part data content in the address corresponding to the cumulative height value;
(6-2)如果填充标志位为0,则执行步骤(6-3),否则将当前累计高度值与前一次收到的累计高度值之间对应的地址区域全部填入当前灰度值;(6-2) If the filling flag is 0, then perform step (6-3), otherwise fill in the current gray value in the corresponding address area between the current cumulative height value and the previous cumulative height value received;
(6-3)如果已到达最大高度值则结束,否则继续执行步骤(6-1)。(6-3) If the maximum altitude has been reached, then end; otherwise, continue to execute step (6-1).
步骤7计算索引值Hj(Xi,j)。Step 7 calculates the index value H j (X i,j ).
当逆直方图统计模块计算完校正某一列图像需要的所有相邻列的逆直方图之后,将二次缓存的该列图像像素Xi,j输入,在缓存的累计直方图对应列区域中以此像素灰度值为地址查找累计直方图得到索引值Hj(Xi,j)。After the inverse histogram statistical module calculates the inverse histograms of all adjacent columns needed to correct a certain column of images, the second cached image pixels X i,j of the column are input, and in the corresponding column area of the cached cumulative histogram as The gray value of this pixel is the index value H j (X i,j ) obtained from the address lookup cumulative histogram.
步骤8计算待校正图像列像素Xi,j分别规范化到相邻列的直方图后的值 Step 8 Calculate the values of the pixels X i and j in the image column to be corrected after being normalized to the histogram of the adjacent column
各个处于输出状态的逆直方图统计模块以索引值Hj(Xi,j)作为地址索引自身的逆直方图存储DPRAM,得到目标列图像像素Xi,j分别规范化到对应列的直方图后的像素值 Each inverse histogram statistical module in the output state uses the index value H j (X i,j ) as the address index to store its own inverse histogram in DPRAM, and obtains the image pixels X i, j of the target column after being normalized to the histogram of the corresponding column pixel value of
步骤9将规范化到相邻列直方图后的值加权平均得到最终的校正结果 Step 9 will normalize to the values after adjacent column histogram Weighted average to get the final correction result
在窗口大小为2×N+1的情况下,一共有2×N+4个逆直方图统计模块的数据输出接口接到规范化计算模块上,其中同一时刻只有2×N+1个接口上的输入为有效输入。在规范化计算模块的每一个输入接口处都有一个乘法器,将每一列的输出结果乘以对应的加权系数ψσ(k)。对应加权系数存放于寄存器中,一共有2×N+4个寄存器,其中3个处于更新状态中的无效输入接口对应的系数为零,这样保证了计算结果不会被无效数据干扰。本发明以加权系数寄存器循环赋值更新实现计算窗口的滑动,图3所示为本发明规范化计算模块加权系数寄存器更新示意图,图的上半部分所展示的是计算第N+1列图像规范化像素值时的情形,计算窗口为图像的第1列至第2N+1列,对应逆直方图计算模块中的1至2N+1号,其所乘的加权系数寄存器中的值正好对应ψσ(1)到ψσ(2N+1)。图中下半部分所展示的是计算第N+2列图像规范化像素值时的情形,计算窗口为图像的第2列至第2N+2列,对应逆直方图计算模块中的2至2N+2号,此时加权系数寄存器进行循环赋值,第1号的值赋给第2号,第2号赋给第3号,以此类推,第2N+4号的值赋给第1号,这样对应逆直方图计算模块所乘的加权系数寄存器中的值正好对应ψσ(1)到ψσ(2N+1)。因为加权系数放大了256倍,所以将所有乘积相加后,需要将结果右移8位,得到最终的校正结果 When the window size is 2×N+1, a total of 2×N+4 data output interfaces of the inverse histogram statistical module are connected to the normalized calculation module, of which only 2×N+1 interfaces are connected at the same time Input is valid input. There is a multiplier at each input interface of the normalized calculation module, and the output result of each column Multiply by the corresponding weighting coefficient ψ σ (k). The corresponding weighting coefficients are stored in registers. There are a total of 2×N+4 registers, and the coefficients corresponding to 3 invalid input interfaces in the updating state are zero, which ensures that the calculation results will not be disturbed by invalid data. The present invention realizes the sliding of the calculation window by cyclically assigning and updating the weighting coefficient register. Figure 3 shows a schematic diagram of updating the weighting coefficient register of the standardized calculation module of the present invention. The upper part of the figure shows the calculation of the normalized pixel value of the image in the N+1th column In the case of , the calculation window is the 1st column to the 2N+1 column of the image, corresponding to numbers 1 to 2N+1 in the inverse histogram calculation module, and the value in the weighting coefficient register that it is multiplied by just corresponds to ψ σ (1 ) to ψ σ (2N+1). The lower part of the figure shows the situation when calculating the normalized pixel value of the N+2th column image. The calculation window is from the 2nd column to the 2N+2th column of the image, corresponding to 2 to 2N+ in the inverse histogram calculation module No. 2, at this time, the weighting coefficient register performs cyclic assignment, the value of No. 1 is assigned to No. 2, No. 2 is assigned to No. 3, and so on, the value of No. 2N+4 is assigned to No. 1, so The value in the weighting coefficient register that is multiplied by the inverse histogram calculation module corresponds exactly to ψ σ (1) to ψ σ (2N+1). Because the weighting coefficient is magnified by 256 times, after adding all the products, the result needs to be shifted to the right by 8 bits to get the final correction result
步骤10重复步骤4至9,直到完成图像全部列的处理。Step 10 Repeat steps 4 to 9 until all columns of the image are processed.
步骤11校正结果输出。将校正后的图像数据缓存起来,通过EMIF接口输出给DSP以进行后续算法处理,同时通过VGA接口将校正后的图像显示在显示器中,以供测试使用。此类逻辑为本领域技术人员公知常识,在此不做详细介绍。In step 11, the correction result is output. The corrected image data is cached and output to the DSP through the EMIF interface for subsequent algorithm processing, and the corrected image is displayed on the monitor through the VGA interface for testing. This type of logic is common knowledge of those skilled in the art, and will not be described in detail here.
图4所示为本发明原始红外图像、人工添加条带状非均匀性的红外图像与本发明处理后的图像对比示意图。图4(a)为没有条带状非均匀性的原始红外图像;图4(b)为人工加入条带状非均匀性的的图像;图4(c)为本发明得到的处理结果,可以看到条带状非均匀性得到了很好的校正并且图像没有明显的失真,视觉效果得到了明显的改善。Fig. 4 is a schematic diagram showing the comparison between the original infrared image of the present invention, the infrared image artificially added with striped non-uniformity, and the processed image of the present invention. Fig. 4 (a) is the original infrared image without striped non-uniformity; Fig. 4 (b) is the image that artificially adds striped non-uniformity; Fig. 4 (c) is the processing result that the present invention obtains, can Seeing that the banding non-uniformity is well corrected and the image has no obvious distortion, the visual effect has been significantly improved.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510181531.XA CN104776919B (en) | 2015-04-17 | 2015-04-17 | FPGA-Based Infrared Focal Plane Array Stripe Non-uniformity Correction System and Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510181531.XA CN104776919B (en) | 2015-04-17 | 2015-04-17 | FPGA-Based Infrared Focal Plane Array Stripe Non-uniformity Correction System and Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104776919A CN104776919A (en) | 2015-07-15 |
CN104776919B true CN104776919B (en) | 2018-01-26 |
Family
ID=53618528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510181531.XA Expired - Fee Related CN104776919B (en) | 2015-04-17 | 2015-04-17 | FPGA-Based Infrared Focal Plane Array Stripe Non-uniformity Correction System and Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104776919B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109640280B (en) * | 2019-01-10 | 2020-12-22 | 深圳市沃特沃德股份有限公司 | Call control method, device, computer equipment and storage medium |
CN113888442B (en) * | 2021-10-20 | 2025-04-15 | 上海热芯视觉科技有限公司 | Infrared image non-uniformity correction method and system based on FPGA |
CN114066759B (en) * | 2021-11-18 | 2023-08-01 | 电子科技大学 | A method and system for real-time distortion correction of infrared images based on FPGA |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456224A (en) * | 2010-10-19 | 2012-05-16 | 高森 | Real-time digital image enhancement method based on field programmable gate array (FPGA) |
CN103076096A (en) * | 2013-01-07 | 2013-05-01 | 南京理工大学 | Infrared nonuniformity correcting algorithm based on mid-value histogram balance |
CN104217399A (en) * | 2013-05-29 | 2014-12-17 | 无锡华润矽科微电子有限公司 | Circuit and method for realizing platform histogram equalization processing function of infrared image |
-
2015
- 2015-04-17 CN CN201510181531.XA patent/CN104776919B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456224A (en) * | 2010-10-19 | 2012-05-16 | 高森 | Real-time digital image enhancement method based on field programmable gate array (FPGA) |
CN103076096A (en) * | 2013-01-07 | 2013-05-01 | 南京理工大学 | Infrared nonuniformity correcting algorithm based on mid-value histogram balance |
CN104217399A (en) * | 2013-05-29 | 2014-12-17 | 无锡华润矽科微电子有限公司 | Circuit and method for realizing platform histogram equalization processing function of infrared image |
Non-Patent Citations (6)
Title |
---|
"Efficient single image non-uniformity correction algorithm";Y.Tendero 等;《Proc Spie》;20101231;第7834卷(第1期);78340E-78340E-12 * |
"Non-uniformity Correction of Infrared Images by Midway Equalization";Y.Tendero 等;《Image Processing on Line》;20121231;134-146页 * |
"中值直方图均衡的单帧红外图像非均匀校正算法";贺明 等;《红外与激光工程》;20120930;第41卷(第9期);2550-2553页 * |
"基于FPGA的直方图均衡实时并行算法及新架构实现";刘延 等;《红外技术》;20100331;第32卷(第3期);148-151页 * |
"基于FPGA的红外图像非均匀性校正系统设计";马欣慰 等;《科技资讯》;20140930;30,32页 * |
"基于中间均衡直方图的红外图像非均匀性校正";康长青 等;《激光与红外》;20131130;第43卷(第11期);1240-1242页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104776919A (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210192687A1 (en) | Image processing device and method | |
CN102208005B (en) | A 2-D Convolver | |
CN110175670B (en) | A method and system for implementing YOLOv2 detection network based on FPGA | |
US11593913B2 (en) | Method and system for correcting a distorted input image | |
CN105787898B (en) | Plateau equalization implementation method and its device based on FPGA | |
CN104835131A (en) | Method and system for achieving HDR image generation and tone mapping based on IC | |
CN104776919B (en) | FPGA-Based Infrared Focal Plane Array Stripe Non-uniformity Correction System and Method | |
CN115209145A (en) | Video compression method, system, device and readable storage medium | |
CN111340835A (en) | FPGA-based video image edge detection system | |
CN108171645A (en) | A kind of lucky imaging processing system based on FPGA | |
CN104952088A (en) | Method for compressing and decompressing display data | |
CN104268098A (en) | On-chip cache system for transformation on ultrahigh-definition video frame rates | |
CN109215001B (en) | High temperature difference self-adaptive platform histogram equalization implementation method based on FPGA | |
CN106780415A (en) | A kind of statistics with histogram circuit and multimedia processing system | |
Cadenas et al. | Parallel pipelined array architectures for real-time histogram computation in consumer devices | |
CN105333960A (en) | Non-uniformity correction and blind pixel replacement method and device of infrared focal plane detector | |
CN104954749B (en) | A kind of information recording method | |
CN104835121A (en) | Infinite norm constraint and maximum entropy principle-based hue mapping method | |
WO2021035643A1 (en) | Monitoring image generation method, apparatus, device, system, and image processing device | |
CN117934256A (en) | An image enhancement system based on Lanczos function interpolation algorithm | |
CN106204469A (en) | A kind of low-light (level) image real time enhancing method | |
KR20150019192A (en) | Apparatus and method for composition image for avm system | |
CN103702130A (en) | Method for combining reading data in image distortion correcting algorithm | |
CN107450347B (en) | A GPU real-time non-uniformity correction method based on infrared hardware-in-the-loop simulation system | |
CN114638748A (en) | Image processing method, image restoration method, computer equipment, storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180126 |