CN104769724A - Memory transistor with multiple charge storage layers - Google Patents
Memory transistor with multiple charge storage layers Download PDFInfo
- Publication number
- CN104769724A CN104769724A CN201380031840.8A CN201380031840A CN104769724A CN 104769724 A CN104769724 A CN 104769724A CN 201380031840 A CN201380031840 A CN 201380031840A CN 104769724 A CN104769724 A CN 104769724A
- Authority
- CN
- China
- Prior art keywords
- layer
- oxide
- nitride
- gate electrode
- work function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015654 memory Effects 0.000 title claims abstract description 85
- 238000003860 storage Methods 0.000 title description 13
- 150000004767 nitrides Chemical class 0.000 claims abstract description 134
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 79
- 239000001301 oxygen Substances 0.000 claims abstract description 79
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 78
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 74
- 229920005591 polysilicon Polymers 0.000 claims abstract description 73
- 230000006870 function Effects 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims abstract description 65
- 239000004065 semiconductor Substances 0.000 claims abstract description 61
- 229910052710 silicon Inorganic materials 0.000 claims description 47
- 239000010703 silicon Substances 0.000 claims description 47
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 44
- 239000002070 nanowire Substances 0.000 claims description 17
- 230000004888 barrier function Effects 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 8
- SEOYNUHKXVGWFU-UHFFFAOYSA-N mu-oxidobis(oxidonitrogen) Chemical compound O=NON=O SEOYNUHKXVGWFU-UHFFFAOYSA-N 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 3
- AZLYZRGJCVQKKK-UHFFFAOYSA-N dioxohydrazine Chemical compound O=NN=O AZLYZRGJCVQKKK-UHFFFAOYSA-N 0.000 claims 6
- 229910044991 metal oxide Inorganic materials 0.000 claims 3
- 150000004706 metal oxides Chemical class 0.000 claims 3
- 238000001953 recrystallisation Methods 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 99
- 239000010410 layer Substances 0.000 description 385
- 230000008569 process Effects 0.000 description 80
- 239000007789 gas Substances 0.000 description 44
- 230000000903 blocking effect Effects 0.000 description 40
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 37
- 230000005641 tunneling Effects 0.000 description 32
- 238000005229 chemical vapour deposition Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 26
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 25
- 230000003647 oxidation Effects 0.000 description 25
- 238000007254 oxidation reaction Methods 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 16
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 16
- 230000014759 maintenance of location Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 12
- 238000000151 deposition Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 10
- 230000008021 deposition Effects 0.000 description 9
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 8
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 8
- OKZIUSOJQLYFSE-UHFFFAOYSA-N difluoroboron Chemical compound F[B]F OKZIUSOJQLYFSE-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000005468 ion implantation Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- -1 diborane Chemical compound 0.000 description 5
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000010923 batch production Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 239000005046 Chlorosilane Substances 0.000 description 3
- 229910004129 HfSiO Inorganic materials 0.000 description 3
- 229910006501 ZrSiO Inorganic materials 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000005516 deep trap Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Chemical compound [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- VYIRVGYSUZPNLF-UHFFFAOYSA-N n-(tert-butylamino)silyl-2-methylpropan-2-amine Chemical compound CC(C)(C)N[SiH2]NC(C)(C)C VYIRVGYSUZPNLF-UHFFFAOYSA-N 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 208000000044 Amnesia Diseases 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- HICCMIMHFYBSJX-UHFFFAOYSA-N [SiH4].[Cl] Chemical compound [SiH4].[Cl] HICCMIMHFYBSJX-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical compound [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- LRZMJFRZMNWFKE-UHFFFAOYSA-N difluoroborane Chemical compound FBF LRZMJFRZMNWFKE-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 231100000863 loss of memory Toxicity 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000012686 silicon precursor Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003949 trap density measurement Methods 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/69—IGFETs having charge trapping gate insulators, e.g. MNOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0413—Manufacture or treatment of FETs having insulated gates [IGFET] of FETs having charge-trapping gate insulators, e.g. MNOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/031—Manufacture or treatment of data-storage electrodes
- H10D64/037—Manufacture or treatment of data-storage electrodes comprising charge-trapping insulators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/685—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/693—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请是2011年11月3日提交的共同未决的美国申请序列第13/288,919号的部分继续申请,所述美国申请序列第13/288,919号是2008年5月13日提交的美国申请序列号第12/152,518号,即2011年11月22日发布的现在的专利第8,063,434号的分案,所述专利第8,063,434号在35U.S.C.119(e)下要求2007年5月25日提交的美国临时专利申请序列第60/940,160号的优先权权益,所有的这些申请在此通过引用以其整体并入。This application is a continuation-in-part of co-pending U.S. Application Serial No. 13/288,919 filed November 3, 2011, which is a U.S. Application Serial No. 13/288,919 filed May 13, 2008 12/152,518, a divisional issue dated November 22, 2011, of what is now Patent No. 8,063,434, which claims under 35 U.S.C. 119(e) filed May 25, 2007 Priority benefit of US Provisional Patent Application Serial No. 60/940,160, all of which are hereby incorporated by reference in their entirety.
技术领域technical field
本发明通常涉及半导体设备,并且更特别地涉及包含非易失性半导体存储器的集成电路以及制造所述半导体设备的方法。The present invention relates generally to semiconductor devices, and more particularly to integrated circuits including non-volatile semiconductor memories and methods of manufacturing the semiconductor devices.
背景background
非易失性半导体存储器是可以被电擦除并且被重新编程的设备。广泛用于电脑和其他电子设备中以及之间的一般的数据存储和传输的一种类型的非易失性存储器是闪速存储器,比如分栅闪速存储器。分栅闪速存储器晶体管具有与常规的逻辑晶体管(比如,金属-氧化物-半导体场效应晶体管(MOSFET))的架构类似的架构,因为其还包含在连接衬底中的源极和漏极的沟道上形成的控制栅。然而,存储器晶体管还包含在控制栅和沟道之间并且通过绝缘层或电介质层与两者绝缘的存储器或电荷俘获层。被施加到控制栅的编程电压在电荷俘获层上俘获电荷,由控制栅部分地取消或屏蔽电场,从而改变晶体管的阈值电压(VT)并且编程存储器单元。在读出期间,VT中的这样的位移通过在施加预先确定的读出电压下存在或不存在流过沟道的电流来感测。为了擦除存储器晶体管,擦除电压被施加到控制栅以恢复或逆转VT的位移。Nonvolatile semiconductor memory is a device that can be electrically erased and reprogrammed. One type of non-volatile memory that is widely used for general data storage and transfer in and between computers and other electronic devices is flash memory, such as split gate flash memory. Split-gate flash memory transistors have a similar architecture to that of conventional logic transistors, such as metal-oxide-semiconductor field-effect transistors (MOSFETs), because they also include a connection between the source and drain in the substrate. The control gate is formed over the channel. However, a memory transistor also includes a memory or charge-trapping layer between the control gate and the channel and insulated from both by an insulating or dielectric layer. A programming voltage applied to the control gate traps charge on the charge-trapping layer, partially canceling or shielding the electric field by the control gate, thereby changing the threshold voltage ( VT ) of the transistor and programming the memory cell. During readout, such a shift in VT is sensed by the presence or absence of current flowing through the channel upon application of a predetermined readout voltage. To erase a memory transistor, an erase voltage is applied to the control gate to restore or reverse the shift in VT .
对于闪速存储器的优点的重要衡量是数据保留时间,该数据保留时间是存储器晶体管在没有施加电力的情况下可以保留电荷或保持被编程的时间。在电荷俘获层中存储或俘获的电荷由于通过绝缘层的泄漏电流而随时间减小,从而减少编程的阈值电压(VTP)和擦除的阈值电压(VTE)之间的差异,这限制存储器晶体管的数据保留。An important measure of the advantages of flash memory is data retention time, which is the time that a memory transistor can retain a charge, or remain programmed, without power being applied. The charge stored or trapped in the charge-trapping layer decreases over time due to the leakage current through the insulating layer, thereby reducing the difference between the programmed threshold voltage (VTP) and the erased threshold voltage (VTE), which limits the memory transistor data retention.
常规存储器晶体管和形成该存储器晶体管的方法所存在的一个问题在于,电荷俘获层通常具有差的或随时间减小的数据保留,这限制有效的晶体管寿命。参考图1A,如果电荷俘获层是富硅(Si)的,则在由曲线图或线102代表的VTP和由线104代表的VTE之间存在大的初始窗口或差异,但窗口在保留模式中崩溃得非常迅速,到寿命终止(EOL 106)的时间少于约1.E+07秒。One problem with conventional memory transistors and methods of forming the same is that the charge-trapping layer typically has poor or diminished data retention over time, which limits effective transistor lifetime. Referring to FIG. 1A, if the charge-trapping layer is silicon (Si) rich, there is a large initial window or difference between VTP, represented by the graph or line 102, and VTE, represented by line 104, but the window is in the retention mode Crashes very quickly, with a time to end of life (EOL 106) of less than about 1.E+07 seconds.
参考图1B,如果在另一方面,假设电荷俘获层是高质量氮化物层,即具有低化学计量浓度的Si的层,那么在保留模式中窗口的崩溃速率或Vt的斜率将减少,然而初始的程序擦除窗口也被减少。此外,在保留模式中Vt的斜率仍然是相当陡峭的,并且泄漏路径没有被充分地最小化以明显改善数据保留,因此EOL 106仅仅被适度改善。Referring to Figure 1B, if, on the other hand, it is assumed that the charge-trapping layer is a high-quality nitride layer, i.e., a layer with a low stoichiometric concentration of Si, then the collapse rate of the window or the slope of Vt in the retention mode will be reduced, whereas the initial The program erase window was also reduced. Also, the slope of Vt in retention mode is still quite steep, and the leakage path is not minimized enough to significantly improve data retention, so EOL 106 is only modestly improved.
另一个问题在于,半导体存储器越来越多地在集成电路(IC)中将逻辑晶体管(比如MOSFET的)与存储器晶体管组合,该集成电路在用于嵌入式存储器或系统级芯片(SOC)应用的普通衬底上制造。用于形成存储器晶体管的性能的多种当前工艺与用于制造逻辑晶体管的工艺是不兼容的。Another problem is that semiconductor memories increasingly combine logic transistors (such as MOSFETs) with memory transistors in integrated circuits (ICs) that are used in embedded memory or system-on-chip (SOC) applications. fabricated on common substrates. Many of the current processes used to form the performance of memory transistors are incompatible with the processes used to fabricate logic transistors.
因此,存在对存储器晶体管以及形成该存储器晶体管的方法的需求,其提供改善的数据保留和增加的晶体管寿命。还期望的是,形成存储器设备的方法与用于在普通衬底上形成的相同的IC中形成逻辑元件的方法是兼容的。Accordingly, there is a need for memory transistors and methods of forming the same that provide improved data retention and increased transistor lifetime. It is also desirable that the method of forming the memory device is compatible with the method used to form logic elements in the same IC formed on a common substrate.
发明概述Summary of the invention
本发明提供对这些以及其他问题的解决方案,并且提供超过常规的存储器单元或设备以及制造其的方法的另外的优点。The present invention provides solutions to these and other problems, and provides additional advantages over conventional memory cells or devices and methods of manufacturing the same.
通常,设备包含存储器晶体管,该存储器晶体管包含:多晶硅沟道区,其电气连接在衬底中形成的源极区和漏极区;氧化物-氮化物-氮化物-氧化物(ONNO)堆叠,其被布置在沟道区之上;以及高功函数栅电极,其在ONNO堆叠的表面上形成。在一个实施方案中,ONNO堆叠包含多层电荷俘获区,该多层电荷俘获区包含富氧的第一氮化物层和被布置在第一氮化物层之上的贫氧的第二氮化物层。在另一个实施方案中,多层电荷俘获区还包含氧化物反隧穿层,该氧化物反隧穿层将第一氮化物层与第二氮化物层分开。Typically, the device contains a memory transistor comprising: a polysilicon channel region electrically connected to source and drain regions formed in a substrate; an oxide-nitride-nitride-oxide (ONNO) stack, which is arranged over the channel region; and a high work function gate electrode which is formed on the surface of the ONNO stack. In one embodiment, the ONNO stack comprises a multilayer charge-trapping region comprising an oxygen-rich first nitride layer and a second oxygen-poor nitride layer disposed over the first nitride layer . In another embodiment, the multilayer charge-trapping region further comprises an oxide anti-tunneling layer separating the first nitride layer from the second nitride layer.
附图的简要描述Brief description of the drawings
在结合附图和下文提供的所附权利要求来阅读以下详细描述时,本发明的这些和多种其他特征和优点将是显而易见的,其中:These and various other features and advantages of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings and the appended claims presented hereinafter, in which:
图1A是示出关于使用根据常规方法形成的电荷存储层并且具有编程电压和擦除电压之间的大的初始差异的存储器晶体管的数据保留的曲线图,但是该存储器晶体管快速地损失电荷;1A is a graph showing data retention for a memory transistor using a charge storage layer formed according to a conventional method and having a large initial difference between a programming voltage and an erasing voltage, but the memory transistor rapidly loses charge;
图1B是示出关于使用根据常规方法形成的电荷存储层并且具有编程电压和擦除电压之间的更小的初始差异的存储器晶体管的数据保留的曲线图;1B is a graph showing data retention for a memory transistor using a charge storage layer formed according to a conventional method and having a smaller initial difference between programming and erasing voltages;
图2A到2D是根据本发明的实施方案的半导体设备的局部横截面侧视图,示出用于形成包含逻辑晶体管和非易失性存储器晶体管的半导体设备的工艺流程;2A to 2D are partial cross-sectional side views of a semiconductor device according to an embodiment of the present invention, illustrating a process flow for forming the semiconductor device including logic transistors and nonvolatile memory transistors;
图3是根据本发明的实施方案的包括含有高功函数栅电极的逻辑晶体管和非易失性存储器晶体管的半导体设备的局部横截面侧视图;3 is a partial cross-sectional side view of a semiconductor device including a logic transistor having a high work function gate electrode and a non-volatile memory transistor according to an embodiment of the present invention;
图4A和4B示出包含ONONO堆叠的非易失性存储器设备的横截面视图;4A and 4B show a cross-sectional view of a nonvolatile memory device comprising ONONO stacks;
图5描绘根据本发明的实施方案的表示用于制造包含ONONO堆叠的非易失性电荷俘获存储器设备的方法中的一系列操作的流程图;5 depicts a flowchart representing a series of operations in a method for fabricating a nonvolatile charge trap memory device comprising an ONONO stack, according to an embodiment of the present invention;
图6A示出包含多层电荷俘获区的非平面的多栅设备;Figure 6A shows a non-planar multi-gate device comprising multiple layers of charge-trapping regions;
图6B示出图6A的非平面的多栅设备的横截面视图;Figure 6B shows a cross-sectional view of the non-planar multi-gate device of Figure 6A;
图7A和7B示出包含多层电荷俘获区和水平纳米线沟道的非平面的多栅设备;7A and 7B illustrate non-planar multi-gate devices comprising multilayer charge-trapping regions and horizontal nanowire channels;
图7C示出图7A的非平面的多栅设备的垂直串的横截面视图;Figure 7C shows a cross-sectional view of a vertical string of the non-planar multi-gate device of Figure 7A;
图8A和8B示出包含多层电荷俘获区和垂直的纳米线沟道的非平面的多栅设备;8A and 8B illustrate non-planar multi-gate devices comprising multilayer charge-trapping regions and vertical nanowire channels;
图9A到9F示出用于制造图8A的非平面的多栅设备的先栅极方案;以及9A to 9F illustrate a gate-first scheme for fabricating the non-planar multi-gate device of FIG. 8A; and
图10A到10F示出用于制造图8A的非平面的多栅设备的后栅极方案。10A to 10F illustrate a gate-last scheme for fabricating the non-planar multi-gate device of FIG. 8A.
具体描述specific description
本发明通常涉及非易失性存储器晶体管,该非易失性存储器晶体管包含多层电荷存储层和高功函数栅电极,以增加数据保留和/或改善编程时间和效率。结构和方法对其中半导体设备包括含有在普通衬底上形成的高功函数栅电极的逻辑晶体管和非易失性存储器晶体管的嵌入式存储器或系统级芯片(SOC)应用特别有用。The present invention generally relates to non-volatile memory transistors that include multiple charge storage layers and high work function gate electrodes to increase data retention and/or improve programming time and efficiency. The structures and methods are particularly useful for embedded memory or system-on-chip (SOC) applications where semiconductor devices include logic transistors and non-volatile memory transistors with high work function gate electrodes formed on a common substrate.
在以下描述中,为了解释的目的,大量具体的细节被阐述以便提供对本发明的彻底理解。然而,对本领域的其中一名技术人员将显而易见的是,本发明可以在没有这些具体细节的情况下被实施。在其他实例中,众所周知的结构以及技术未被详细地示出或以方框图的形式示出以便避免不必要地模糊对本描述的理解。In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known structures and techniques have not been shown in detail or in block diagram form in order to avoid unnecessarily obscuring the understanding of this description.
在描述中引用的“一个实施方案”或“实施方案”意指关于该实施方案描述的特定特征、结构或特性被包含在本发明的至少一个实施方案中。在本说明书的多个地方中词组“在一个实施方案中”的出现不一定全部指相同的实施方案。如本文使用的术语“结合(to couple)”可以包括直接连接和通过一个或更多个中介组件间接连接。Reference in the description to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. The appearances of the phrase "in one embodiment" in various places in this specification are not necessarily all referring to the same embodiment. The term "to couple" as used herein can include both direct connection and indirect connection through one or more intervening components.
简言之,根据本发明的非易失性存储器晶体管包含在氧化物-氮化物-氧化物(ONO)电介质堆叠上形成的高功函数栅电极。对于高功函数栅电极,其意指从栅电极中除去电子需要的最小能量被增加。Briefly, a non-volatile memory transistor according to the present invention includes a high work function gate electrode formed on an oxide-nitride-oxide (ONO) dielectric stack. For a high work function gate electrode, it means that the minimum energy required to remove electrons from the gate electrode is increased.
在某些优选实施方案中,高功函数栅电极包含掺杂的多晶硅(polycrystalline silicon)或多晶硅(polysilicon)(聚)层,该多晶硅层的制造可以被容易地整合到标准的互补金属氧化物半导体(CMOS)工艺流程(比如,用来制造金属氧化物半导体(MOS)逻辑晶体管的那些)中,以使得能够制造包含存储器晶体管和逻辑晶体管两者的半导体存储器或设备。更优选地,相同的掺杂的多晶硅层还可以被图案化以形成用于MOS逻辑晶体管的高功函数栅电极,从而改善逻辑晶体管的性能并且提高制造工艺的效率。任选地,ONO电介质堆叠包含多层电荷存储层或电荷俘获层以进一步改善存储器晶体管的性能,以及特别地改善存储器晶体管的数据保留。In certain preferred embodiments, the high work function gate electrode comprises a doped polycrystalline silicon or polysilicon (poly) layer, the fabrication of which can be easily integrated into standard CMOS (CMOS) process flows (such as those used to fabricate metal-oxide-semiconductor (MOS) logic transistors) to enable fabrication of semiconductor memories or devices that contain both memory transistors and logic transistors. More preferably, the same doped polysilicon layer can also be patterned to form high work function gate electrodes for MOS logic transistors, thereby improving the performance of the logic transistors and increasing the efficiency of the manufacturing process. Optionally, the ONO dielectric stack includes multiple layers of charge storage or charge trapping layers to further improve memory transistor performance, and in particular to improve memory transistor data retention.
现在将参考图2A到2D详细描述半导体设备以及形成其的方法,该半导体设备包含具有高功函数栅电极的非易失性存储器晶体管,该图2A到2D是示出用于形成包含存储器晶体管和逻辑晶体管两者的半导体设备的工艺流程的中间结构的局部横截面侧视图。为了清楚的目的,众所周知且与本发明不相关的半导体制造的多种细节已经从以下描述中省略。A semiconductor device including a nonvolatile memory transistor having a high work function gate electrode and a method of forming the same will now be described in detail with reference to FIGS. Partial cross-sectional side view of an intermediate structure of a semiconductor device's process flow for both logic transistors. For the sake of clarity, various details of semiconductor fabrication that are well known and not relevant to the present invention have been omitted from the following description.
参考图2,半导体设备的制造以在晶片或衬底206的表面204上形成ONO电介质堆叠202开始。通常,ONO电介质堆叠202包含薄的下方的氧化物层或隧穿氧化物层208以及顶部氧化物层或阻挡氧化物层212,该薄的下方的氧化物层或隧穿氧化物层208将电荷俘获或存储层210与在衬底206中的存储器晶体管的沟道区(未示出)分开或电绝缘。优选地,如上文指出并且如图2A-2D中所示,电荷存储层210是包含至少顶部电荷俘获氮氧化物层210A和下方的大体上的无俘获氮氧化物层210B的多层电荷存储层。Referring to FIG. 2 , the fabrication of a semiconductor device begins with the formation of an ONO dielectric stack 202 on a surface 204 of a wafer or substrate 206 . Typically, the ONO dielectric stack 202 includes a thin underlying or tunneling oxide layer 208 that transfers charge Trapping or storage layer 210 is separated or electrically insulated from the channel region (not shown) of the memory transistor in substrate 206 . Preferably, as noted above and as shown in FIGS. 2A-2D , the charge storage layer 210 is a multilayer charge storage layer comprising at least a top charge-trapping oxynitride layer 210A and an underlying substantially non-trapping oxynitride layer 210B. .
通常,衬底206可以包含任何已知的硅基半导体材料,该硅基半导体材料包含硅、硅锗、绝缘体上的硅或蓝宝石上的硅衬底。可选择地,衬底206可以包含在非硅基半导体材料(比如,砷化稼、锗、氮化稼或铝-磷化铝)上形成的硅层。优选地,衬底206是掺杂的或无掺杂的硅衬底。In general, substrate 206 may comprise any known silicon-based semiconductor material, including silicon, silicon germanium, silicon-on-insulator, or silicon-on-sapphire substrates. Alternatively, the substrate 206 may comprise a silicon layer formed on a non-silicon based semiconductor material such as gallium arsenide, germanium, gallium nitride or aluminum-aluminum phosphide. Preferably, substrate 206 is a doped or undoped silicon substrate.
ONO电介质堆叠202的下方氧化物层或隧穿氧化物层208通常包含相对薄的二氧化硅(SiO2)层,其从约15埃到约并且更优选地约隧穿氧化物层208可以通过任何适当的手段来形成或沉积,这些手段包括例如使用化学气相沉积(CVD)来沉积或热生长。在优选的实施方案中,隧穿介质层使用蒸气退火来形成或生长。通常,工艺包含其中衬底206被放置在沉积室或加工室中,被加热到从约700℃到约850℃的温度,并且被暴露于湿蒸气持续预先确定的时间段的湿式氧化方法,该预先确定的时间段基于所完成的隧穿氧化物层208的期望厚度来选择。示例性的加工时间是从约5分钟到约20分钟。氧化可以在大气压下或在低压下进行。The underlying oxide layer or tunneling oxide layer 208 of the ONO dielectric stack 202 typically comprises a relatively thin layer of silicon dioxide (SiO 2 ), ranging from about 15 Angstroms to appointment and more preferably about Tunneling oxide layer 208 may be formed or deposited by any suitable means including, for example, deposition using chemical vapor deposition (CVD) or thermal growth. In a preferred embodiment, the tunneling dielectric layer is formed or grown using a vapor anneal. Typically, the process involves a wet oxidation process in which the substrate 206 is placed in a deposition or processing chamber, heated to a temperature from about 700°C to about 850°C, and exposed to moisture vapor for a predetermined period of time, the The predetermined time period is selected based on the desired thickness of the completed tunnel oxide layer 208 . Exemplary processing times are from about 5 minutes to about 20 minutes. Oxidation can be performed at atmospheric pressure or at reduced pressure.
在优选的实施方案中,多层电荷存储层210的氮氧化物层210A、210B在利用不同的工艺和工艺气体或原始材料的分开的步骤中形成或沉积,并且具有从约到约并且更优选地为约的总厚度或组合厚度。下方无俘获氮氧化物层210B可以通过任何适当的手段来形成或沉积,这些手段包括例如使用工艺气体在低压CVD工艺中沉积,该工艺气体包括:硅源,比如甲硅烷(SiH4)、氯甲硅烷(SiH3Cl)、二氯甲硅烷(SiH2Cl2)、四氯甲硅烷(SiCl4);氮源,比如氮气(N2)、氨(NH3)、三氧化氮(NO3)或一氧化二氮(N2O);以及含氧气体,比如氧气(O2)或N2O。在一个实施方案中,无俘获氮氧化物层210B使用包括二氯甲硅烷、NH3和N2O的工艺气体以低压CVD工艺来沉积,同时使室保持在从约5毫托(mT)到约500mT的压力下,并且使衬底保持在从约700℃到约850℃并且更优选为至少约780℃的温度下,持续从约2.5分钟到约20分钟的时段。特别地,工艺气体可以包括以从约8:1到约1:8的比例混合的N2O和NH3的第一气体混合物以及以从约1:7到约7:1的比例混合的DCS和NH3的第二气体混合物,并且能够以从约每分钟5标准立方厘米(sccm)到约每分钟200标准立方厘米的流速被引入。In a preferred embodiment, the oxynitride layers 210A, 210B of the multilayer charge storage layer 210 are formed or deposited in separate steps using different processes and process gases or starting materials, and have a range from about to appointment and more preferably about total or combined thickness. The underlying trap-free oxynitride layer 210B may be formed or deposited by any suitable means including, for example, deposition in a low-pressure CVD process using process gases including: a silicon source such as monosilane (SiH 4 ), chlorine Monosilane (SiH 3 Cl), dichlorosilane (SiH 2 Cl 2 ), tetrachlorosilane (SiCl 4 ); nitrogen sources such as nitrogen (N 2 ), ammonia (NH 3 ), nitrogen trioxide (NO 3 ) or nitrous oxide (N 2 O); and oxygen-containing gases such as oxygen (O 2 ) or N 2 O. In one embodiment, the trap-free oxynitride layer 210B is deposited in a low pressure CVD process using process gases including dichlorosilane, NH 3 and N 2 O while maintaining the chamber at from about 5 millitorr (mT) to A pressure of about 500 mT, and the substrate is maintained at a temperature of from about 700°C to about 850°C, and more preferably at least about 780°C, for a period of from about 2.5 minutes to about 20 minutes. In particular, the process gas may include a first gas mixture of N2O and NH3 mixed in a ratio of from about 8:1 to about 1:8 and DCS mixed in a ratio of from about 1:7 to about 7:1 and NH 3 and can be introduced at a flow rate from about 5 standard cubic centimeters per minute (sccm) to about 200 sccm per minute.
顶部的电荷俘获氮氧化物层210A可以使用包括双叔丁基氨基甲硅烷(BTBAS)的工艺气体以CVD工艺被沉积在底部氮氧化物层210B之上。已经发现的是,BTBAS的使用通过增加电荷俘获氮氧化物层210A中的碳水平来增加在氮氧化物中形成的深陷阱的数目。此外,这些深陷阱减少了由于热辐射导致的电荷损失,从而进一步改善数据保留。更优选地,工艺气体包括以预先确定的比例混合的BTBAS和氨(NH3)以在氮氧化物电荷俘获层中提供窄带隙能量水平。特别地,工艺气体可以包括以从约7:1到约1:7的比例混合的BTBAS和NH3。例如,在一个实施方案中,在从约5mT到约500mT的室压力下以及在从约700℃到约850℃并且更优选地为至少约780℃的衬底温度下持续从约2.5分钟到约20分钟的时段,以低压CVD工艺使用BTBAS和氨NH3来沉积电荷俘获氮氧化层210A。The top charge-trapping oxynitride layer 210A may be deposited over the bottom oxynitride layer 210B in a CVD process using a process gas including bis-tert-butylaminosilane (BTBAS). It has been found that the use of BTBAS increases the number of deep traps formed in the oxynitride by increasing the carbon level in the charge-trapping oxynitride layer 210A. In addition, these deep traps reduce charge loss due to thermal radiation, further improving data retention. More preferably, the process gas includes BTBAS and ammonia (NH 3 ) mixed in a predetermined ratio to provide a narrow bandgap energy level in the nitrogen oxide charge-trapping layer. In particular, the process gas may include BTBAS and NH 3 mixed in a ratio of from about 7:1 to about 1:7. For example, in one embodiment, at a chamber pressure of from about 5 mT to about 500 mT and a substrate temperature of from about 700° C. The charge trapping oxynitride layer 210A was deposited in a low pressure CVD process using BTBAS and ammonia NH 3 over a period of 20 minutes.
已经发现的是,在以上条件下产生或沉积的氮氧化物层产生富含陷阱的氮氧化物层210A,这改善了编程速度和擦除速度并且增加编程电压和擦除电压之间的初始差异(窗口)而不损害存储器晶体管的电荷损失率,从而延长设备的使用寿命(EOL)。优选地,电荷俘获氮氧化物层210A具有至少约1E10/cm2、并且更优选地从约1E12/cm2到约1E14/cm2的电荷陷阱密度。It has been found that an oxynitride layer produced or deposited under the above conditions produces a trap-rich oxynitride layer 210A, which improves programming and erasing speeds and increases the initial difference between programming and erasing voltages (window) without compromising the charge loss rate of the memory transistors, thereby extending the lifetime (EOL) of the device. Preferably, the charge-trapping oxynitride layer 210A has a charge trap density of at least about 1E10/cm 2 , and more preferably from about 1E12/cm 2 to about 1E14/cm 2 .
可选择地,电荷俘获氮氧化层210A可以使用包括BTBAS并且大体上不包括氨(NH3)的工艺气体以CVD工艺被沉积在底部氮氧化物层210B之上。在该方法的这个替代实施方案中,沉积顶部电荷俘获氮氧化物层210A的步骤接着是在包含一氧化二氮(N2O)、NH3和/或一氧化氮(NO)的氮气环境中的热退火步骤。Alternatively, the charge-trapping oxynitride layer 210A may be deposited over the bottom oxynitride layer 210B in a CVD process using a process gas that includes BTBAS and substantially does not include ammonia (NH 3 ). In this alternative embodiment of the method, the step of depositing the top charge-trapping oxynitride layer 210A is followed by a nitrogen atmosphere containing nitrous oxide ( N2O ), NH3 , and/or nitrogen monoxide (NO). thermal annealing step.
优选地,顶部电荷俘获氮氧化物层210A在被用来形成底部的无俘获氮氧化物层210B的相同的CVD工具中被相继沉积,大体上没有破坏沉积室上的真空。更优选地,电荷俘获氮氧化物层210A在大体上没有改变衬底206在无俘获氮氧化物层210B的沉积期间被加热的温度的情况下被沉积。Preferably, the top charge-trapping oxynitride layer 210A is deposited sequentially in the same CVD tool used to form the bottom non-trapping oxynitride layer 210B, substantially without breaking the vacuum on the deposition chamber. More preferably, charge-trapping oxynitride layer 210A is deposited without substantially altering the temperature at which substrate 206 is heated during deposition of non-trapping oxynitride layer 210B.
用于下方的无俘获氮氧化物层210B的适当的厚度已经被发现是从约到约并且已经发现底部层和顶部电荷俘获氮氧化物层之间的厚度的比例从约1:6到约6:1,并且更优选地至少为约1:4。An appropriate thickness for the underlying non-trapping oxynitride layer 210B has been found to be from about to appointment And it has been found that the ratio of thickness between the bottom layer and the top charge-trapping oxynitride layer is from about 1:6 to about 6:1, and more preferably at least about 1:4.
ONO电介质堆叠202的顶部氧化物层212包含从约到约并且更优选地为约的相对厚的SiO2层。顶部氧化物层212可以通过任何适当的手段来形成或沉积,这些手段包括例如使用CVD来沉积或热生长。在优选的实施方案中,顶部氧化物层212为使用CVD工艺来沉积的高温氧化物(HTO)。通常,沉积工艺包括使衬底306在沉积室中在从约50mT到约1000mT的压力下暴露于硅源比如甲硅烷、氯甲硅烷、或二氯甲硅烷并且暴露于含氧气体比如O2或N2O持续从约10分钟到约120分钟的时段,同时使衬底保持在从约650℃到约850℃的温度下。The top oxide layer 212 of the ONO dielectric stack 202 comprises from about to appointment and more preferably about relatively thick SiO2 layer. The top oxide layer 212 may be formed or deposited by any suitable means including, for example, deposition using CVD or thermal growth. In a preferred embodiment, the top oxide layer 212 is a high temperature oxide (HTO) deposited using a CVD process. Typically, the deposition process includes exposing the substrate 306 to a silicon source such as monosilane, chlorosilane, or dichlorosilane and to an oxygen-containing gas such as O or The N2O is continued for a period of from about 10 minutes to about 120 minutes while maintaining the substrate at a temperature of from about 650°C to about 850°C.
优选地,顶部氧化物层212以用来形成氮氧化物层210A、210B的相同的工具被相继沉积。更优选地,氮氧化物层210A、210B以及顶部氧化物层212以用来生长隧穿氧化物层208的相同的工具形成或沉积。适当的工具包括例如可从加利福尼亚的Scott Valley的AVIZA技术商购的ONOAVP。Preferably, the top oxide layer 212 is deposited sequentially with the same tool used to form the oxynitride layers 210A, 210B. More preferably, the oxynitride layers 210A, 210B and the top oxide layer 212 are formed or deposited with the same tool used to grow the tunnel oxide layer 208 . Suitable tools include, for example, ONOAVP, commercially available from AVIZA Technologies of Scott Valley, California.
参考图2B,在其中半导体设备还包含在相同衬底的表面上形成的逻辑晶体管(比如MOS逻辑晶体管)的那些实施方案中,ONO电介质堆叠202从其中待形成逻辑晶体管并且在其上形成氧化物层214的表面204的区或区域中除去。Referring to FIG. 2B, in those embodiments where the semiconductor device also includes logic transistors (such as MOS logic transistors) formed on the surface of the same substrate, the ONO dielectric stack 202 from which the logic transistors are to be formed and over which the oxide Layer 214 is removed in regions or regions of surface 204 .
通常,使用标准的光刻法技术和氧化物蚀刻技术将ONO电介质堆叠202从表面204的期望的区或区域中除去。例如,在一个实施方案中,图案化的掩膜层(未示出)由在ONO电介质堆叠202上沉积的光致抗蚀剂和使用结合或产生等离子体的低压射频(RF)蚀刻或除去的暴露区而形成,该等离子体包括氟化烃和/或氟碳化合物,比如通常被称为的C2H2F4。通常,工艺气体还包括以选择为在加工期间保持从约50mT到约250mT的蚀刻室中的压力的流速的氩气(Ar)和氮气(N2)。Typically, the ONO dielectric stack 202 is removed from desired regions or regions of the surface 204 using standard photolithography techniques and oxide etch techniques. For example, in one embodiment, a patterned masking layer (not shown) is etched or removed from photoresist deposited on ONO dielectric stack 202 and using low-voltage radio frequency (RF) in conjunction with or plasma generation. formed in the exposed region, the plasma includes fluorinated hydrocarbons and/or fluorocarbons, such as are commonly referred to as C 2 H 2 F 4 . Typically, the process gases also include argon (Ar) and nitrogen ( N2 ) at flow rates selected to maintain a pressure in the etch chamber from about 50 mT to about 250 mT during processing.
逻辑晶体管的氧化物层214可以包含具有从约到约的厚度的SiO2层,并且可以使用CVD来沉积或热生长。在一个实施方案中,氧化物层214使用蒸气氧化工艺来热生长,例如通过使衬底206保持在从约650℃到约850℃的温度的蒸气环境中持续从约10分钟到约120分钟的时段。The oxide layer 214 of the logic transistors may comprise from about to appointment thick SiO2 layer, and can be deposited using CVD or thermally grown. In one embodiment, oxide layer 214 is thermally grown using a vapor oxidation process, for example by maintaining substrate 206 in a vapor environment at a temperature of from about 650° C. to about 850° C. for a period of from about 10 minutes to about 120 minutes. time period.
接下来,掺杂的多晶硅层形成在ONO电介质堆叠202的表面上,并且更优选地形成在逻辑晶体管的氧化物层214的表面上。更优选地,衬底206是硅衬底或具有硅表面,在其上形成ONO电介质堆叠以形成硅-氧化物-氮化物-氧化物-硅(SONOS)存储器晶体管的SONOS栅极堆叠。Next, a doped polysilicon layer is formed on the surface of the ONO dielectric stack 202, and more preferably on the surface of the oxide layer 214 of the logic transistors. More preferably, the substrate 206 is a silicon substrate or has a silicon surface on which an ONO dielectric stack is formed to form a SONOS gate stack of a silicon-oxide-nitride-oxide-silicon (SONOS) memory transistor.
参考图2C,掺杂的多晶硅层的形成开始于将具有从约到约的厚度的共形的多晶硅层216沉积在ONO电介质堆叠202和氧化物层214之上。多晶硅层216可以通过任何适当的手段来形成或沉积,这些手段包括例如使用硅源或硅前体以低压CVD工艺沉积。在一个实施方案中,多晶硅层216使用含硅工艺气体(比如,甲硅烷或二氯甲硅烷以及N2)以低压CVD工艺来沉积成大体上无掺杂的多晶硅层,同时使衬底206保持在从约5mT到约500mT的压力以及在从约600℃到约1000℃的温度的室中持续从约20分钟到约100分钟的时段。通过在低压CVD工艺期间将气体(比如,磷化氢、砷化氢、乙硼烷或二氟化硼(difluoroborane)(BF2))添加到CVD室中,多晶硅层216可以直接被形成或生长成掺杂的多晶硅层。Referring to FIG. 2C, the formation of the doped polysilicon layer begins with a to appointment A conformal polysilicon layer 216 is deposited over the ONO dielectric stack 202 and the oxide layer 214 in thickness. Polysilicon layer 216 may be formed or deposited by any suitable means including, for example, deposition by a low pressure CVD process using a silicon source or silicon precursor. In one embodiment, polysilicon layer 216 is deposited as a substantially undoped polysilicon layer in a low pressure CVD process using a silicon-containing process gas (eg, monosilane or dichlorosilane and N 2 ) while maintaining substrate 206 The chamber is at a pressure of from about 5 mT to about 500 mT and at a temperature of from about 600°C to about 1000°C for a period of from about 20 minutes to about 100 minutes. The polysilicon layer 216 can be formed or grown directly by adding a gas such as phosphine, arsine, diborane, or difluoroborane (BF 2 ) into the CVD chamber during the low pressure CVD process. into a doped polysilicon layer.
在一个实施方案中,在以LPCVD工艺生长或形成之后,多晶硅层216使用离子注入工艺进行掺杂。例如,多晶硅层216可以通过以从约5千电子伏(keV)到约100千电子伏的能量以及从约1e14cm-2到约1e16cm-2的剂量注入硼(B+)或BF2离子而被掺杂以形成N型(NMOS)的SONOS存储器晶体管,以及优选地具有高功函数栅电极的P型(PMOS)的逻辑晶体管。更优选地,多晶硅层216掺杂为选择的浓度或剂量使得从栅电极中除去电子所需要的最小能量是从至少约4.8电子伏(eV)到约5.3eV。In one embodiment, the polysilicon layer 216 is doped using an ion implantation process after being grown or formed by an LPCVD process. For example, polysilicon layer 216 may be implanted with boron (B + ) or BF ions at energies from about 5 kiloelectron volts (keV) to about 100 keV and doses from about 1e14 cm −2 to about 1e16 cm −2 . Doping to form N-type (NMOS) SONOS memory transistors, and preferably P-type (PMOS) logic transistors with high work function gate electrodes. More preferably, polysilicon layer 216 is doped to a concentration or dose selected such that the minimum energy required to remove electrons from the gate electrode is from at least about 4.8 electron volts (eV) to about 5.3 eV.
可选择地,在图案化或蚀刻多晶硅层和下面的电介质层之后,多晶硅层216可以通过离子注入被掺杂。将理解的是,此实施方案包括另外的掩膜步骤以保护衬底206的表面204和/或电介质层的暴露区域以免接受不期望的掺杂。然而,不管注入发生在图案化之前或之后,通常此类掩膜步骤被包括在现有工艺流程中。Alternatively, polysilicon layer 216 may be doped by ion implantation after patterning or etching the polysilicon layer and the underlying dielectric layer. It will be appreciated that this embodiment includes an additional masking step to protect the surface 204 of the substrate 206 and/or exposed regions of the dielectric layer from unwanted doping. However, generally such masking steps are included in existing process flows, whether implantation occurs before or after patterning.
参考图2D,多晶硅层216和下面的电介质堆叠202以及氧化物层214被图案化或蚀刻以形成存储器晶体管220和逻辑晶体管222的高功函数栅电极218。在一个实施方案中,多晶硅层216可以使用包含氢溴酸(HBr)、氯(CL2)和/或氧(O2)的等离子体在约25毫托的压力和约450W的功率下蚀刻或图案化。氧化物层208、212、214以及氮氧化物层210A、210B可以使用如描述的标准光刻法技术和氧化物蚀刻技术进行蚀刻。例如,在一个实施方案中,图案化的多晶硅层216被用作掩膜,并且暴露的氧化物层208、212、214以及氮氧化物层210A、210B使用低压RF等离子体来蚀刻或除去。通常,等离子体由工艺气体形成,该工艺气体包括氟化烃和/或氟碳化合物并且还包括以被选择以在加工期间保持从约50mT到约250mT的蚀刻室中的压力的流速的Ar和N2。Referring to FIG. 2D , polysilicon layer 216 and underlying dielectric stack 202 and oxide layer 214 are patterned or etched to form high work function gate electrode 218 of memory transistor 220 and logic transistor 222 . In one embodiment, polysilicon layer 216 may be etched or patterned using a plasma comprising hydrobromic acid (HBr), chlorine ( CL2 ), and/or oxygen ( O2 ) at a pressure of about 25 mTorr and a power of about 450W change. The oxide layers 208 , 212 , 214 and the oxynitride layers 210A, 210B can be etched using standard photolithography techniques and oxide etch techniques as described. For example, in one embodiment, patterned polysilicon layer 216 is used as a mask, and exposed oxide layers 208, 212, 214 and oxynitride layers 210A, 210B are etched or removed using low pressure RF plasma. Typically, the plasma is formed from a process gas comprising fluorinated hydrocarbons and/or fluorocarbons and also comprising Ar and N 2 .
最后,用单个或多个退火步骤使衬底在从约800℃到约1050℃的温度下热退火持续从约1秒到约5分钟的时间,以赶进被注入多晶硅层216中的离子并且修复由离子注入引起的多晶硅层的晶体结构的损坏。可选择地,高级退火技术(比如闪光和激光)可以在与1350℃一样高的温度和与1毫秒一样低的退火时间下应用。Finally, the substrate is thermally annealed at a temperature of from about 800° C. to about 1050° C. for a period of from about 1 second to about 5 minutes in a single or multiple annealing steps to drive in the ions implanted into the polysilicon layer 216 and Damage to the crystal structure of the polysilicon layer caused by ion implantation is repaired. Alternatively, advanced annealing techniques such as flash and laser can be applied at temperatures as high as 1350°C and annealing times as low as 1 millisecond.
根据本发明的实施方案的包括含有高功函数栅电极的逻辑晶体管302和非易失性存储器晶体管304的半导体设备300的局部横截面侧视图在图3中示出。参考图3,存储器晶体管304在硅衬底306上形成并且包含由覆盖电介质堆叠310的掺杂的多晶硅层形成的高功函数栅电极308。介质堆叠310覆盖沟道区312并且控制通过沟道区312的电流,该沟道区312将重掺杂的源极和漏极(S/D)区314分开。优选地,电介质堆叠310包含隧穿电介质层316、多层电荷存储层318A、318B以及顶部氧化物层或阻挡氧化物层320。更优选地,多层电荷存储层318A、318B包括至少顶部电荷俘获氮氧化物层318A和下方的大体上无俘获氮氧化物层318B。任选地,如图3中所示,存储器晶体管304还包含包围栅极堆叠的一个或更多个侧壁间隔件322以将栅极堆叠与S/D区320的接触(未示出)电绝缘且与在衬底306上形成的半导体设备中的其他晶体管电绝缘。A partial cross-sectional side view of a semiconductor device 300 including a logic transistor 302 with a high work function gate electrode and a non-volatile memory transistor 304 according to an embodiment of the invention is shown in FIG. 3 . Referring to FIG. 3 , a memory transistor 304 is formed on a silicon substrate 306 and includes a high work function gate electrode 308 formed from a doped polysilicon layer overlying a dielectric stack 310 . Dielectric stack 310 covers and controls current flow through channel region 312 , which separates heavily doped source and drain (S/D) regions 314 . Preferably, the dielectric stack 310 includes a tunneling dielectric layer 316 , multiple charge storage layers 318A, 318B and a top or blocking oxide layer 320 . More preferably, the multilayer charge storage layers 318A, 318B include at least a top charge-trapping oxynitride layer 318A and an underlying substantially free-trapping oxynitride layer 318B. Optionally, as shown in FIG. 3, the memory transistor 304 further includes one or more sidewall spacers 322 surrounding the gate stack to electrically connect the gate stack to contacts (not shown) of the S/D region 320. Insulated and electrically isolated from other transistors in the semiconductor device formed on the substrate 306 .
逻辑晶体管302包含覆盖形成于沟道区328之上的氧化物层326的栅电极324,该沟道区328将重掺杂的源极和漏极区330分开,并且任选地可以包含包围栅极的一个或更多个侧壁间隔件332以将栅极与S/D区的接触(未示出)电绝缘。优选地,如图3中所示,逻辑晶体管302的栅电极324还包含由掺杂的多晶硅层形成的高功函数栅电极。The logic transistor 302 includes a gate electrode 324 overlying an oxide layer 326 formed over a channel region 328 separating heavily doped source and drain regions 330, and optionally may include a surrounding gate electrode 324. One or more sidewall spacers 332 of the pole to electrically insulate the gate from the contacts (not shown) of the S/D regions. Preferably, as shown in FIG. 3, the gate electrode 324 of the logic transistor 302 further comprises a high work function gate electrode formed of a doped polysilicon layer.
通常,半导体设备300还包含大量的隔离结构334(比如,硅的局部氧化(LOCOS)区或结构、场氧化区或结构(FOX)或浅槽隔离(STI)结构)以使形成于衬底306上的各个晶体管彼此电气隔离。Typically, the semiconductor device 300 also includes a large number of isolation structures 334 (eg, local oxidation of silicon (LOCOS) regions or structures, field oxide regions or structures (FOX) or shallow trench isolation (STI) structures) to allow formation on the substrate 306 The individual transistors are electrically isolated from each other.
实施方式以及替代选择Implementation and Alternatives
在一个方面中,本公开涉及包含具有高功函数栅电极和多层电荷俘获区的存储器晶体管的半导体设备。图4A是示出一种此类存储器晶体管400的实施方案的横截面侧视图的方框图。存储器晶体管400包含ONNO堆叠402,该ONNO堆叠402包含形成于衬底408的表面406上的ONNO结构404。衬底408包含一个或更多个与栅极堆叠402对齐并且被沟道区412分开的扩散区410,比如源极和漏极区。通常,ONNO堆叠402包含在ONNO结构404之上形成并且与ONNO结构404接触的高功函数栅电极414。高功函数栅电极414通过ONNO结构404与衬底408分开或电气隔离。ONNO结构404包含使ONNO堆叠402与沟道区412分开或电气隔离的薄的下方氧化物层或隧穿电介质层416、顶部电介质层或阻挡电介质层420以及多层电荷俘获区422。In one aspect, the present disclosure relates to a semiconductor device including a memory transistor having a high work function gate electrode and a multilayer charge trapping region. FIG. 4A is a block diagram illustrating a cross-sectional side view of an embodiment of one such memory transistor 400 . The memory transistor 400 includes an ONNO stack 402 including an ONNO structure 404 formed on a surface 406 of a substrate 408 . The substrate 408 includes one or more diffusion regions 410 , such as source and drain regions, aligned with the gate stack 402 and separated by a channel region 412 . Generally, ONNO stack 402 includes a high work function gate electrode 414 formed over and in contact with ONNO structure 404 . High work function gate electrode 414 is separated or electrically isolated from substrate 408 by ONNO structure 404 . ONNO structure 404 includes a thin underlying oxide or tunneling dielectric layer 416 separating or electrically isolating ONNO stack 402 from channel region 412 , a top or blocking dielectric layer 420 , and a multilayer charge trapping region 422 .
纳米线沟道区412可以包含多晶硅或再结晶的多晶硅以形成单晶沟道区。任选地,在沟道区412包含晶体硅的情况下,沟道区可以被形成以具有相对于沟道区的长轴的<100>表面晶体取向。The nanowire channel region 412 may comprise polysilicon or recrystallized polysilicon to form a single crystal channel region. Optionally, where the channel region 412 comprises crystalline silicon, the channel region may be formed to have a <100> surface crystallographic orientation relative to the long axis of the channel region.
高功函数栅电极414包含掺杂的多晶硅层,其按照低压CVD工艺形成或沉积并且具有从约到约的厚度。如上文所提到,高功函数栅电极414的多晶硅层可以通过在低压CVD工艺期间将气体(比如磷化氢、砷化氢、乙硼烷或二氟化硼(BF2))添加到CVD室中而被直接形成或生长为掺杂的多晶硅层,或可以在按照CVD工艺生长或形成之后使用离子注入工艺来进行掺杂。在任一实施方案中,高功函数栅电极414的多晶硅层按照选择的浓度或剂量被掺杂使得从栅电极中除去电子需要的最小能量是从至少约4.8电子伏(eV)到约5.3eV。在示例性实施方案中,高功函数栅电极414的多晶硅层通过以从约5千电子伏(keV)到约100千电子伏的能量以及从约1e14cm-2到约1e16cm-2的剂量注入硼(B+)或BF2离子而被掺杂以形成N型(NMOS)的存储器晶体管。The high work function gate electrode 414 comprises a doped polysilicon layer formed or deposited by a low pressure CVD process and having a thickness from about to appointment thickness of. As mentioned above, the polysilicon layer of the high work function gate electrode 414 can be formed by adding a gas such as phosphine, arsine, diborane or boron difluoride (BF 2 ) to the CVD process during the low pressure CVD process. The polysilicon layer is directly formed or grown as a doped polysilicon layer in a chamber, or can be doped using an ion implantation process after being grown or formed according to a CVD process. In either embodiment, the polysilicon layer of high work function gate electrode 414 is doped at a concentration or dose selected such that the minimum energy required to remove electrons from the gate electrode is from at least about 4.8 electron volts (eV) to about 5.3 eV. In an exemplary embodiment, the polysilicon layer of the high work function gate electrode 414 is implanted with boron at an energy of from about 5 kiloelectron volts (keV) to about 100 keV and at a dose of from about 1e14 cm −2 to about 1e16 cm −2 . (B + ) or BF 2 ions are doped to form N-type (NMOS) memory transistors.
隧穿电介质层416可以是任何材料并且具有任何厚度,该厚度适合允许电荷载体在施加的栅偏压下隧穿到多层电荷俘获区422内同时当存储器晶体管400未被偏压时保持对泄漏的适当屏障。在一个实施方案中,隧穿电介质层416通过热氧化工艺形成并且由二氧化硅或硅氧氮化物或其组合组成。在另一个实施方案中,隧穿电介质层416通过化学气相沉积(CVD)或原子层沉积(ALD)形成并且由电介质层组成,该电介质层可以包括但不限于氮化硅、氧化铪、氧化锆、硅酸铪、铪氧氮化物、铪锆氧化物以及氧化镧。在特定的实施方案中,隧穿电介质层416具有在1纳米-10纳米的范围中的厚度。在特定的实施方案中,隧穿电介质层416具有大约2纳米的厚度。Tunneling dielectric layer 416 may be any material and have any thickness suitable to allow charge carriers to tunnel into multilayer charge-trapping region 422 under an applied gate bias while remaining resistant to leakage when memory transistor 400 is unbiased. an appropriate barrier. In one embodiment, the tunneling dielectric layer 416 is formed by a thermal oxidation process and is composed of silicon dioxide or silicon oxynitride or a combination thereof. In another embodiment, tunneling dielectric layer 416 is formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD) and consists of a dielectric layer that may include, but is not limited to, silicon nitride, hafnium oxide, zirconium oxide , hafnium silicate, hafnium oxynitride, hafnium zirconium oxide, and lanthanum oxide. In a particular implementation, the tunneling dielectric layer 416 has a thickness in the range of 1 nanometer to 10 nanometers. In a particular embodiment, tunneling dielectric layer 416 has a thickness of approximately 2 nanometers.
在一个实施方案中,阻挡电介质层420包含高温氧化物(HTO)。较高质量的HTO氧化物使得阻挡电介质层420能够被衡量厚度。在示例性实施方案中,包含HTO氧化物的阻挡电介质层420的厚度在2.5nm和10.0nm之间。In one embodiment, the blocking dielectric layer 420 includes a high temperature oxide (HTO). Higher quality HTO oxide enables blocking dielectric layer 420 to be scaled in thickness. In an exemplary embodiment, the blocking dielectric layer 420 comprising HTO oxide has a thickness between 2.5 nm and 10.0 nm.
在另一个实施方案中,阻挡电介质层420还被修改以包含氮。在一个此类实施方案中,在阻挡电介质层420的厚度上氮以ONO堆叠的形式被包含。代替常规的纯氧阻挡电介质层的此类夹层结构有利地减少沟道区412和高功函数栅电极414之间的整个堆叠402的EOT,并且能够调节带偏移以减少载体向后注入。然后,ONO堆叠的阻挡电介质层420可以与隧穿电介质层416和多层电荷俘获层422一起被包含,该多层电荷俘获层422包含富氧的第一氮化物层422a、贫氧的第二氮化物层422b以及反隧穿层422c。In another embodiment, the blocking dielectric layer 420 is also modified to include nitrogen. In one such embodiment, nitrogen is included in the form of an ONO stack over the thickness of the blocking dielectric layer 420 . Such a sandwich structure instead of a conventional pure oxygen blocking dielectric layer advantageously reduces the EOT of the entire stack 402 between the channel region 412 and the high work function gate electrode 414 and enables tuning of the band offset to reduce carrier back-injection. A blocking dielectric layer 420 of the ONO stack may then be included along with the tunneling dielectric layer 416 and a multilayer charge-trapping layer 422 comprising an oxygen-rich first nitride layer 422a, an oxygen-poor second The nitride layer 422b and the anti-tunneling layer 422c.
多层电荷俘获区422通常包含具有硅、氧以及氮的不同组成的至少两种氮化物层,包括富氧的第一氮化物层422a以及富硅、富氮且贫氧的第二氮化物层422b,富硅的。在某些实施方案(比如图4B中示出的实施方案)中,多层电荷俘获区还包括含有氧化物(比如二氧化硅)的反隧穿层422c,以提供包含ONONO结构404的ONONO堆叠402,该反隧穿层422c将贫氧的第二氮化物层422b与富氧的第一氮化物层422a分开。The multilayer charge-trapping region 422 typically includes at least two nitride layers having different compositions of silicon, oxygen, and nitrogen, including an oxygen-rich first nitride layer 422a and a silicon-rich, nitrogen-rich, and oxygen-poor second nitride layer. 422b, silicon-rich. In certain embodiments, such as the embodiment shown in FIG. 4B , the multilayer charge-trapping region also includes an anti-tunneling layer 422c comprising an oxide, such as silicon dioxide, to provide an ONONO stack comprising ONONO structure 404 402, the anti-tunneling layer 422c separates the oxygen-poor second nitride layer 422b from the oxygen-rich first nitride layer 422a.
已经发现的是,富氧的第一氮化物层422a减小编程之后和擦除之后的电荷损失率,这表现为在保留模式中的小的电压位移,然而富硅、富氮且贫氧的第二氮化物层422b提高了编程电压和擦除电压之间的初始差异的速度和增加量而不损害使用硅-氧化物-氮氧化物-氧化物-硅结构的实施方案制成的存储器晶体管的电荷损失率,从而延长设备的使用寿命。It has been found that an oxygen-rich first nitride layer 422a reduces the rate of charge loss after programming and after erasing, which manifests as a small voltage shift in retention mode, whereas a silicon-rich, nitrogen-rich, and oxygen-poor The second nitride layer 422b improves the speed and the amount of increase in the initial difference between the programming and erasing voltages without damaging memory transistors made using embodiments of the silicon-oxide-oxynitride-oxide-silicon structure The charge loss rate, thereby prolonging the service life of the device.
还已经发现的是,反隧穿层422c在从隧穿层编程到第一氮化物层422a内期间大体上减少了在贫氧的第二氮化物层422b的边界处积聚的电子电荷的概率,这导致比用于常规的非易失性存储器晶体管更低的泄漏电流。It has also been found that the anti-tunneling layer 422c substantially reduces the probability of electron charges accumulating at the boundary of the oxygen-lean second nitride layer 422b during programming from the tunneling layer into the first nitride layer 422a, This results in lower leakage current than for conventional non-volatile memory transistors.
多层电荷俘获区可以具有从约到约的总厚度,并且在某些实施方案中具有少于约的总厚度,伴随着反隧穿层422c的厚度从约到约并且氮化物层404b、404a的厚度大体上相等。The multilayer charge-trapping region can have from about to appointment a total thickness of , and in some embodiments have a thickness of less than about The total thickness, along with the thickness of the anti-tunneling layer 422c from about to appointment And the thicknesses of the nitride layers 404b and 404a are substantially equal.
现在将参考图5的流程图描述根据一个实施方案的形成或制造半导体设备的方法,该半导体设备包含具有高功函数栅电极和多层电荷俘获区的存储器晶体管。A method of forming or manufacturing a semiconductor device including a memory transistor having a high work function gate electrode and a multilayer charge trapping region according to one embodiment will now be described with reference to the flowchart of FIG. 5 .
参考图5,该方法开始于在衬底的表面上的含硅层上形成隧穿电介质层(比如第一氧化物层)(500)。隧穿电介质层可以通过任何适当的手段形成或沉积,这些手段包括等离子体氧化工艺、原位水汽生成工艺(ISSG)或自由基氧化工艺。在一个实施方案中,自由基氧化工艺包括使氢气(H2)和氧气(O2)流入加工室或炉内以通过氧化消耗一部分的衬底影响隧穿电介质层的生长。Referring to FIG. 5, the method begins by forming a tunneling dielectric layer, such as a first oxide layer, on a silicon-containing layer on a surface of a substrate (500). The tunneling dielectric layer may be formed or deposited by any suitable means, including plasma oxidation processes, in situ steam generation (ISSG) or radical oxidation processes. In one embodiment, the radical oxidation process includes flowing hydrogen ( H2 ) and oxygen ( O2 ) into a processing chamber or furnace to affect the growth of the tunneling dielectric layer by oxidizing a portion of the substrate.
接下来,多层电荷俘获区的富氧的第一氮化物层在隧穿电介质层的表面上形成(502)。在一个实施方案中,富氧的第一氮化物层在低压CVD工艺中使用硅源(比如甲硅烷(SiH4)、氯甲硅烷(SiH3Cl)、二氯甲硅烷或DCS(SiH2Cl2)、四氯甲硅烷(SiCl4)或双叔丁基氨基甲硅烷(BTBAS))、氮源(比如氮气(N2)、氨(NH3)、三氧化氮(NO3)或一氧化二氮(N2O))以及含氧气体(比如氧气(O2)或N2O)来形成或沉积。可选择地,可以使用其中氢已经被氘替换的气体,包括例如取代NH3的氘代氨(ND3)。用氘取代氢有利地使Si悬挂键在硅氧化物界面处钝化,从而增加设备的NBTI(负偏压温度不稳定性)寿命。Next, an oxygen-rich first nitride layer of the multilayer charge-trapping region is formed on the surface of the tunneling dielectric layer (502). In one embodiment, the oxygen-enriched first nitride layer is processed in a low pressure CVD process using a silicon source such as monosilane (SiH 4 ), chlorosilane (SiH 3 Cl), dichlorosilane or DCS (SiH 2 Cl 2 ), tetrachlorosilane (SiCl 4 ) or bis-tert-butylaminosilane (BTBAS)), nitrogen source (such as nitrogen (N 2 ), ammonia (NH 3 ), nitrogen trioxide (NO 3 ) or monoxide Dinitrogen (N 2 O)) and oxygen-containing gases such as oxygen (O 2 ) or N 2 O) are formed or deposited. Alternatively, gases in which hydrogen has been replaced by deuterium may be used, including, for example, deuterated ammonia (ND 3 ) in place of NH 3 . Substituting deuterium for hydrogen advantageously passivates the Si dangling bonds at the silicon oxide interface, thereby increasing the NBTI (Negative Bias Temperature Instability) lifetime of the device.
例如,通过将衬底放置在沉积室中并且引入包括N2O、NH3以及DCS的工艺气体,同时使室保持在从约5毫托(mT)到约500mT的压力下并且使衬底保持在从约700摄氏度到约850摄氏度、并且在某些实施方案中至少约760摄氏度的温度下持续从约2.5分钟到约20分钟的时段,可以使下方的或富氧的第一氮化物层在隧穿电介质层之上沉积。特别地,工艺气体可以包括以从约8:1到约1:8的比例混合的N2O和NH3的第一气体混合物以及以从约1:7到约7:1的比例混合的DCS和NH3的第二气体混合物,并且能够以从约每分钟5标准立方厘米(sccm)到约每分钟200标准立方厘米的流速被引入。已经发现的是,在这些条件下产生或沉积的氮氧化层产生富硅、富氧的第一氮化物层。For example, by placing the substrate in a deposition chamber and introducing process gases including N2O , NH3 , and DCS while maintaining the chamber at a pressure from about 5 millitorr (mT) to about 500 mT and keeping the substrate The underlying or oxygen-enriched first nitride layer may be allowed to deposited over the tunneling dielectric layer. In particular, the process gas may include a first gas mixture of N2O and NH3 mixed in a ratio of from about 8:1 to about 1:8 and DCS mixed in a ratio of from about 1:7 to about 7:1 and NH 3 and can be introduced at a flow rate from about 5 standard cubic centimeters per minute (sccm) to about 200 sccm per minute. It has been found that an oxynitride layer produced or deposited under these conditions results in a silicon-rich, oxygen-rich first nitride layer.
接下来,反隧穿层在第一氮化物层的表面上形成或沉积(504)。正如隧穿电介质层,反隧穿介质层可以通过任何适当的手段来形成或沉积,这些手段包括等离子体氧化工艺、原位水汽生成(ISSG)工艺或自由基氧化工艺。在一个实施方案中,自由基氧化工艺包括使氢气(H2)和氧气(O2)流入分批加工室或炉内以通过氧化消耗一部分的第一氮化物层来影响反隧穿层的生长。Next, an anti-tunneling layer is formed or deposited on the surface of the first nitride layer (504). As with the tunneling dielectric layer, the anti-tunneling dielectric layer may be formed or deposited by any suitable means, including plasma oxidation processes, in situ water vapor generation (ISSG) processes, or radical oxidation processes. In one embodiment, the radical oxidation process includes flowing hydrogen ( H2 ) and oxygen ( O2 ) into a batch processing chamber or furnace to affect the growth of the anti-tunneling layer by oxidizing a portion of the first nitride layer .
然后,多层电荷俘获区的顶部的或贫氧的第二氮化物层在反隧穿层的表面上形成(506)。在CVD工艺中使用包括N2O、NH3以及DCS的工艺气体,在从约5mT到约500mT的压力下以及在从约700摄氏度到约850摄氏度、并且在某些实施方案中至少约760摄氏度的衬底温度下,持续从约2.5分钟到约20分钟的时段,可以使贫氧的第二氮化物层在反隧穿层之上沉积。特别地,工艺气体可以包括以从约8:1到约1:8的比例混合的N2O和NH3的第一气体混合物以及以从约1:7到约7:1的比例混合的DCS和NH3的第二气体混合物,并且能够以从约5sccm到约20sccm的流速被引入。已经发现的是,在这些条件下产生或沉积的氮化层产生富硅、富氮且贫氧的第二氮化物层,这改善编程电压和擦除电压之间的初始差异的速度和增加量而不损害使用硅-氧化物-氮氧化物-氧化物-硅结构的实施方案制成的存储器晶体管的电荷损失率,从而延长设备的使用寿命。A second or oxygen-depleted nitride layer on top of the multilayer charge-trapping region is then formed on the surface of the anti-tunneling layer (506). Using a process gas comprising N2O , NH3 , and DCS in a CVD process at a pressure of from about 5 mT to about 500 mT and at a temperature of from about 700 degrees Celsius to about 850 degrees Celsius, and in some embodiments at least about 760 degrees Celsius An oxygen-depleted second nitride layer may be deposited over the anti-tunneling layer at a substrate temperature of 100°C for a period of from about 2.5 minutes to about 20 minutes. In particular, the process gas may include a first gas mixture of N2O and NH3 mixed in a ratio of from about 8:1 to about 1:8 and DCS mixed in a ratio of from about 1:7 to about 7:1 and NH 3 and can be introduced at a flow rate from about 5 seem to about 20 seem. It has been found that a nitride layer created or deposited under these conditions results in a silicon-rich, nitrogen-rich, and oxygen-poor second nitride layer, which improves the speed and amount of increase in the initial difference between program and erase voltages Without compromising the rate of charge loss of memory transistors made using embodiments of the silicon-oxide-oxynitride-oxide-silicon structure, thereby extending the lifetime of the device.
在某些实施方案中,在CVD工艺中使用包括以从约7:1到约1:7的比例混合的BTBAS和氨(NH3)的工艺气体可以使贫氧的第二氮化物层在反隧穿层之上沉积,以进一步包括选择的碳浓度以增加其中陷阱的数目。在第二氮氧化物层中选择的碳浓度可以包括从约5%到约15%的碳浓度。In certain embodiments, using a process gas comprising BTBAS and ammonia (NH 3 ) mixed in a ratio of from about 7:1 to about 1:7 in a CVD process can make the oxygen-depleted second nitride layer deposited over the tunneling layer to further include selected carbon concentrations to increase the number of traps therein. The selected carbon concentration in the second oxynitride layer may include a carbon concentration of from about 5% to about 15%.
接下来,顶部阻挡氧化物层或顶部阻挡电介质层在多层电荷俘获区的贫氧的第二氮化物层的表面上形成(508)。正如隧穿电介质层和反隧穿层,阻挡电介质层可以通过任何适当的手段来形成或沉积,这些手段包括等离子体氧化工艺、原位水汽生成(ISSG)工艺或自由基氧化工艺。在一个实施方案中,阻挡电介质层包含使用CVD工艺沉积的高温氧化物(HTO)。通常,沉积工艺包括使衬底306在从约50mT到约1000mT的压力下的沉积室中暴露于硅源(比如甲硅烷、氯甲硅烷、或二氯甲硅烷)以及含氧气体(比如O2或N2O)持续从约10分钟到约120分钟的时期,同时使衬底保持在从约650℃到约850℃的温度下。Next, a top blocking oxide layer or top blocking dielectric layer is formed on the surface of the oxygen-lean second nitride layer of the multilayer charge-trapping region (508). As with the tunneling and anti-tunneling dielectric layers, the blocking dielectric layer may be formed or deposited by any suitable means, including plasma oxidation processes, in situ water vapor generation (ISSG) processes, or radical oxidation processes. In one embodiment, the blocking dielectric layer comprises a high temperature oxide (HTO) deposited using a CVD process. Typically, the deposition process involves exposing the substrate 306 to a silicon source (such as monosilane, chlorosilane, or dichlorosilane) and an oxygen-containing gas (such as O 2 or N 2 O) for a period of from about 10 minutes to about 120 minutes while maintaining the substrate at a temperature of from about 650°C to about 850°C.
可选择地,使用ISSG氧化工艺来形成阻挡电介质层。在一个实施方案中,用已经添加了从约0.5%到约33%的氢气的富氧的气体混合物氢气在RTP室(比如上文描述的来自应用材料(Applied Materials)的ISSG室)中在从约8托到约12托的压力和约1050℃的温度下进行ISSG。Alternatively, the blocking dielectric layer is formed using an ISSG oxidation process. In one embodiment, hydrogen is heated in an RTP chamber (such as the ISSG chamber described above from Applied Materials) with an oxygen-enriched gas mixture to which from about 0.5% to about 33% hydrogen has been added. ISSG is performed at a pressure of about 8 Torr to about 12 Torr and a temperature of about 1050°C.
将理解的是,在任一实施方案中,第二氮化物层的厚度可以被调整或增加,因为某些贫氧的第二氮化物层在形成阻挡电介质层的过程期间将实际上将被消耗或氧化。It will be appreciated that in either embodiment, the thickness of the second nitride layer may be adjusted or increased, since some of the oxygen-lean second nitride layer will actually be consumed or consumed during the process of forming the blocking dielectric layer. oxidation.
最后,高功函数栅电极在阻挡电介质层上形成并且与阻挡电介质层接触(510)。高功函数栅电极包含按照低压CVD工艺形成或沉积并且具有从约到约的厚度的掺杂的多晶硅层。如上文所提到,高功函数栅电极的多晶硅层可以通过在低压CVD工艺期间将气体(比如磷化氢、砷化氢、乙硼烷或二氟化硼(BF2))添加到CVD室中而直接形成或生长为掺杂的多晶硅层,或可以在CVD工艺中的生长或形成之后使用离子注入工艺来进行掺杂。在任一实施方案中,高功函数栅电极的多晶硅层掺杂为选择的浓度或剂量使得从栅电极中除去电子需要的最小能量是从至少约4.8电子伏(eV)到约5.3eV。在示例性实施方案中,高功函数栅电极的多晶硅层通过以从约5千电子伏(keV)到约100千电子伏的能量以及从约1e14cm-2到约1e16cm-2的剂量注入硼(B+)或BF2离子而被掺杂以形成N型(NMOS)的存储器晶体管。Finally, a high work function gate electrode is formed on and in contact with the blocking dielectric layer (510). The high work function gate electrode comprises formed or deposited according to a low pressure CVD process and has from about to appointment thickness of the doped polysilicon layer. As mentioned above, the polysilicon layer of the high work function gate electrode can be obtained by adding a gas such as phosphine, arsine, diborane or boron difluoride (BF 2 ) to the CVD chamber during the low pressure CVD process. directly formed or grown as a doped polysilicon layer, or may be doped using an ion implantation process after growth or formation in a CVD process. In either embodiment, the polysilicon layer of the high work function gate electrode is doped at a concentration or dose selected such that the minimum energy required to remove electrons from the gate electrode is from at least about 4.8 electron volts (eV) to about 5.3 eV. In an exemplary embodiment , the polysilicon layer of the high work function gate electrode is implanted with boron ( B + ) or BF 2 ions are doped to form N-type (NMOS) memory transistors.
在完成栅极堆叠制造的情况下,另外的加工可以如本领域中已知地发生以推断SONOS型的存储器设备的制造。With gate stack fabrication completed, additional processing may take place as known in the art to follow fabrication of a SONOS-type memory device.
在另一方面中,本公开还涉及包含电荷俘获区的多栅存储器晶体管或多栅表面的存储器晶体管以及制造该存储器晶体管的方法,该电荷俘获区覆盖沟道区的两个或两个以上侧面,该沟道区在衬底表面上(on)或上方(above)形成。多栅设备包括平面的设备和非平面的设备两者。平面的多栅设备(未示出)通常包括双栅平面设备,其中大量的第一层被沉积以在随后形成的沟道区之下形成第一栅,并且大量的第二层被沉积在其之上以形成第二栅。非平面的多栅设备通常包括在衬底表面上或上方形成并且在三个或三个以上侧面上被栅包围的水平沟道区或垂直沟道区。In another aspect, the present disclosure also relates to a multi-gate memory transistor comprising a charge-trapping region covering two or more sides of a channel region, or a memory transistor with a multi-gate surface, and a method of fabricating the same , the channel region is formed on (on) or above (above) the substrate surface. Multi-gate devices include both planar and non-planar devices. Planar multi-gate devices (not shown) typically include dual-gate planar devices in which a substantial first layer is deposited to form a first gate beneath a subsequently formed channel region, and a substantial second layer is deposited over it. above to form a second grid. Non-planar multi-gate devices typically include a horizontal or vertical channel region formed on or above a substrate surface and surrounded on three or more sides by gates.
图6A示出包含高功函数栅电极的非平面的多栅存储器晶体管的一个实施方案。参考图6A,通常被称为finFET的存储器晶体管600包含由覆盖衬底606上的表面604的半导体材料的薄膜或层形成的沟道区602,该沟道区602连接存储器晶体管的源极区608和漏极区610。沟道区602在三侧上被鳍状物围住,这形成设备的栅极612。栅极612的厚度(在从源极区到漏极区的方向上测量的)决定设备的有效沟道区长度。正如上文描述的实施方案,沟道区602可以包含多晶硅或再结晶的多晶硅以形成单晶沟道区。任选地,在沟道区602包含晶体硅的情况下,沟道区可以被形成为具有相对于沟道区的长轴的<100>表面晶体取向。Figure 6A shows one embodiment of a non-planar multi-gate memory transistor comprising a high work function gate electrode. Referring to FIG. 6A, a memory transistor 600, commonly referred to as a finFET, includes a channel region 602 formed from a film or layer of semiconductor material covering a surface 604 on a substrate 606 connected to a source region 608 of the memory transistor. and drain region 610 . The channel region 602 is surrounded on three sides by fins, which form the gate 612 of the device. The thickness of the gate 612 (measured in the direction from the source region to the drain region) determines the effective channel region length of the device. As with the embodiments described above, the channel region 602 may comprise polysilicon or recrystallized polysilicon to form a single crystal channel region. Optionally, where the channel region 602 comprises crystalline silicon, the channel region may be formed to have a <100> surface crystallographic orientation relative to the long axis of the channel region.
根据本公开,图6A的非平面的多栅存储器晶体管600可以包含高功函数栅电极和多层电荷俘获区。图6B是包括衬底606、沟道区602以及栅极612的一部分的图6A的非平面的存储器晶体管的一部分的横截面视图,示出高功函数栅电极614和多层电荷俘获区616。栅极612还包含覆盖凸起的沟道区602的隧穿介质层618以及覆盖阻挡电介质层的阻挡电介质层620以形成存储器晶体管600的控制栅。沟道区602和栅极612可以直接在衬底606上形成或在形成于衬底上(on)或上方(over)的绝缘层或介质层622(比如,隐埋氧化物层)上形成。According to the present disclosure, the non-planar multi-gate memory transistor 600 of FIG. 6A may include a high work function gate electrode and a multi-layer charge-trapping region. 6B is a cross-sectional view of a portion of the non-planar memory transistor of FIG. 6A , including substrate 606 , channel region 602 , and a portion of gate 612 , showing high work function gate electrode 614 and multilayer charge-trapping region 616 . The gate 612 also includes a tunneling dielectric layer 618 overlying the raised channel region 602 and a blocking dielectric layer 620 overlying the blocking dielectric layer to form the control gate of the memory transistor 600 . The channel region 602 and the gate 612 may be formed directly on the substrate 606 or on an insulating or dielectric layer 622 (eg, a buried oxide layer) formed on or over the substrate.
正如上文描述的实施方案,高功函数栅电极614包含按照低压CVD工艺形成或沉积并且具有从约到约的厚度的掺杂的多晶硅层。通过添加气体(比如磷化氢、砷化氢、乙硼烷或BF2),高功函数栅电极614的多晶硅层可以被直接形成或生长为掺杂的多晶硅层,并且按照选择的浓度或剂量被掺杂使得从栅电极中除去电子需要的最小能量是从至少约4.8eV到约5.3eV。在示例性实施方案中,高功函数栅电极614的多晶硅层按照从约1e14cm-2到约1e16cm-2的浓度被掺杂。As in the embodiments described above, the high work function gate electrode 614 comprises formed or deposited according to a low pressure CVD process and has from about to appointment thickness of the doped polysilicon layer. By adding gases such as phosphine, arsine, diborane, or BF2 , the polysilicon layer of the high work function gate electrode 614 can be directly formed or grown as a doped polysilicon layer, and at a selected concentration or dose Doped such that the minimum energy required to remove electrons from the gate electrode is from at least about 4.8 eV to about 5.3 eV. In an exemplary embodiment, the polysilicon layer of the high work function gate electrode 614 is doped at a concentration of from about 1e14 cm −2 to about 1e16 cm −2 .
参考图6B,多层电荷俘获区616包含靠近隧穿介质层618的包含氮化物的至少一个下方的或底部的富氧的第一氮化物层616a以及覆盖富氧的第一氮化物层的上面的或顶部的贫氧的第二氮化物层616b。通常,贫氧的第二氮化物层616b包含富硅、贫氧的氮化物层并且包含分布在多层电荷俘获区中的电荷陷阱中的多数,然而富氧的第一氮化物层616a包含富氧的氮化物或硅氮氧化物,并且相对于贫氧的第二氮化物层是富氧的以减少其中电荷陷阱的数目。对于富氧,其意指其中氧在富氧的第一氮化物层616a中的浓度是从约15%到约40%,然而氧在贫氧的第二氮化物层616b中的浓度少于约5%。Referring to FIG. 6B, the multilayer charge trapping region 616 includes at least one lower or bottom oxygen-rich first nitride layer 616a adjacent to the tunneling dielectric layer 618 comprising nitride and an upper surface covering the oxygen-rich first nitride layer. or on top of the oxygen-depleted second nitride layer 616b. Typically, the oxygen-poor second nitride layer 616b comprises a silicon-rich, oxygen-lean nitride layer and contains a majority of the charge traps distributed in the multilayer charge-trapping region, whereas the oxygen-rich first nitride layer 616a comprises a rich Oxygen nitride or silicon oxynitride, and oxygen-rich relative to the oxygen-poor second nitride layer to reduce the number of charge traps therein. By oxygen-rich, it is meant that the concentration of oxygen in the oxygen-rich first nitride layer 616a is from about 15% to about 40%, while the concentration of oxygen in the oxygen-lean second nitride layer 616b is less than about 5%.
在一个实施方案中,阻挡介质620还包含氧化物(比如HTO)以提供ONNO结构。沟道区602和覆盖的ONNO结构可以直接在硅衬底606上形成并且用高功函数栅电极614覆盖以提供SONNOS结构。In one embodiment, the blocking dielectric 620 also includes an oxide such as HTO to provide an ONNO structure. The channel region 602 and overlying ONNO structure can be formed directly on the silicon substrate 606 and capped with a high work function gate electrode 614 to provide a SONNOS structure.
在某些实施方案(比如图6B中示出的实施方案)中,多层电荷俘获区616还包括含有电介质(比如氧化物)的至少一个薄的中间层或反隧穿层616c,其将贫氧的第二氮化物层616b与富氧的第一氮化物层616a分开。如上文所提到,反隧穿层616c在从隧穿编程到第一氮化物层616a内期间大体上减少在贫氧的第二氮化物层616b的边界处积聚的电子电荷的概率。In certain embodiments (such as the embodiment shown in FIG. 6B ), the multilayer charge-trapping region 616 also includes at least one thin intermediate layer or anti-tunneling layer 616c comprising a dielectric, such as an oxide, which will deplete The oxygen-rich second nitride layer 616b is separated from the oxygen-rich first nitride layer 616a. As mentioned above, the anti-tunneling layer 616c substantially reduces the probability of electron charges accumulating at the boundary of the oxygen-lean second nitride layer 616b during programming from tunneling into the first nitride layer 616a.
正如上文描述的实施方案,富氧的第一氮化物层616a和贫氧的第二氮化物层616b中的任一个或两个可以包含硅氮化物或硅氮氧化物,并且可以例如通过包括以确定的比例和流速的N2O/NH3和DCS/NH3气体混合物的CVD工艺来形成,以提供富硅且富氧的氮氧化物层。然后,多层电荷存储结构的第二氮化物层在中间氧化物层上形成。贫氧的第二氮化物层616b具有不同于富氧的第一氮化物层616a所具有的那种的氧、氮和/或硅的化学计量组成,并且还可以通过CVD工艺使用包括以确定的比例和流速的DCS/NH3和N2O/NH3气体混合物的工艺气体来形成或沉积以提供富硅、贫氧的顶部氮化物层。As with the embodiments described above, either or both of the oxygen-rich first nitride layer 616a and the oxygen-lean second nitride layer 616b may comprise silicon nitride or silicon oxynitride, and may be formed, for example, by including Formed by a CVD process of N2O / NH3 and DCS/ NH3 gas mixtures at defined ratios and flow rates to provide a silicon-rich and oxygen-rich oxynitride layer. Then, a second nitride layer of the multilayer charge storage structure is formed on the intermediate oxide layer. The oxygen-lean second nitride layer 616b has a different stoichiometric composition of oxygen, nitrogen, and/or silicon than that of the oxygen-rich first nitride layer 616a, and may also be determined by a CVD process using Process gases of DCS/NH 3 and N 2 O/NH 3 gas mixtures in ratios and flow rates are formed or deposited to provide a silicon-rich, oxygen-poor top nitride layer.
在包括含有氧化物的中间层或反隧穿层616c的那些实施方案中,反隧穿层可以通过使用自由基氧化使底部氮氧化物层氧化到选定的深度来形成。例如,可以在1000-1100摄氏度的温度下使用单个晶片工具进行自由基氧化,或可以在800-900摄氏度的温度下使用间歇反应器工具进行自由基氧化。H2气体和O2气体的混合物可以在300-500托的压力下被利用于分批工艺,或在10-15托的压力下使用单个蒸汽工具;使用单个晶片工具持续1-2分钟的时间,或使用分批工艺持续30分钟-1小时的时间。In those embodiments that include an oxide-containing intermediate layer or anti-tunneling layer 616c, the anti-tunneling layer may be formed by oxidizing the bottom oxynitride layer to a selected depth using radical oxidation. For example, radical oxidation can be performed at a temperature of 1000-1100 degrees Celsius using a single wafer tool, or at a temperature of 800-900 degrees Celsius using a batch reactor tool. A mixture of H2 gas and O2 gas can be utilized at a pressure of 300-500 Torr for a batch process, or at a pressure of 10-15 Torr using a single vapor tool; using a single wafer tool for a period of 1-2 minutes , or use a batch process for periods of 30 minutes - 1 hour.
最后,在包括含有氧化物的阻挡介质620的那些实施方案中,氧化物可以通过任何适当的手段来形成或沉积。在一个实施方案中,阻挡电介质620的氧化物是按照HTO CVD工艺沉积的高温氧化物。可选择地,阻挡电介质620或阻挡氧化物层可以被热生长,然而,将理解的是,在此实施方案中,顶部的氮化物厚度可以被调整或增加,因为某些顶部的氮化物在热生长阻挡氧化物层的过程期间实际上将被消耗或氧化。第三选择是使用自由基氧化将第二氮化物层氧化到选定的深度。Finally, in those embodiments that include blocking dielectric 620 that includes an oxide, the oxide may be formed or deposited by any suitable means. In one embodiment, the oxide of blocking dielectric 620 is a high temperature oxide deposited according to a HTO CVD process. Alternatively, the blocking dielectric 620 or blocking oxide layer may be thermally grown, however, it will be appreciated that in this embodiment the top nitride thickness may be adjusted or increased since some of the top nitride is thermally grown It will actually be consumed or oxidized during the process of growing the blocking oxide layer. A third option is to oxidize the second nitride layer to a selected depth using radical oxidation.
用于富氧的第一氮化物层616a的适当的厚度可以是从约到约(具有某些允许的偏差,例如±),其中约可以被自由基氧化消耗以形成反隧穿层616c。用于贫氧的第二氮化物层616b的适当的厚度可以是至少在某些实施方案中,贫氧的第二氮化物层616b可以被形成直到厚,其中可以被自由基氧化消耗以形成阻挡电介质620。在一些实施方案中,富氧的第一氮化物层616a和贫氧的第二氮化物层616b之间的厚度比例是大约1:1,然而其他的比例也是可能的。A suitable thickness for the oxygen-enriched first nitride layer 616a may be from about to appointment (with certain permissible deviations such as ± ), of which about may be consumed by radical oxidation to form the anti-tunneling layer 616c. A suitable thickness for the oxygen-poor second nitride layer 616b may be at least In some embodiments, the oxygen-depleted second nitride layer 616b may be formed until thick, of which may be consumed by radical oxidation to form blocking dielectric 620 . In some embodiments, the thickness ratio between the oxygen-rich first nitride layer 616a and the oxygen-lean second nitride layer 616b is about 1:1, although other ratios are possible.
在其他实施方案中,贫氧的第二氮化物层616b和阻挡电介质620中的任一个或两个可以包含高K电介质。适当的高K电介质包括:铪基材料,比如HfSiON、HfSiO或HfO;锆基材料,比如ZrSiON、ZrSiO或ZrO;以及钇基材料,比如Y2O3。In other embodiments, either or both of the oxygen-lean second nitride layer 616b and the blocking dielectric 620 may comprise a high-K dielectric. Suitable high-K dielectrics include: hafnium - based materials, such as HfSiON, HfSiO, or HfO; zirconium-based materials, such as ZrSiON, ZrSiO, or ZrO; and yttrium-based materials, such as Y2O3 .
在图7A和7B中示出的另一个实施方案中,存储器晶体管可以包含由覆盖衬底表面的半导体材料的薄膜形成的纳米线沟道区,该纳米线沟道区连接存储器晶体管的源极区和漏极区。对于纳米线沟道区,其意指在晶体硅材料的薄带中形成的导电沟道区,该导电沟道区具有约10纳米(nm)或更少并且更优选地少于约6nm的最大横截面尺寸。In another embodiment shown in Figures 7A and 7B, the memory transistor may comprise a nanowire channel region formed from a thin film of semiconductor material covering the surface of the substrate, the nanowire channel region connecting the source region of the memory transistor and the drain region. By nanowire channel region it is meant a conductive channel region formed in a thin strip of crystalline silicon material having a maximum of about 10 nanometers (nm) or less and more preferably less than about 6 nm. cross-sectional dimensions.
参考图7A,存储器晶体管700包含水平的纳米线沟道区702,其由在衬底706上的表面上或覆盖衬底706上的表面的半导体材料的薄膜或层形成并且连接存储器晶体管的源极区708和漏极区710。在示出的实施方案中,设备具有环栅(GAA)结构,其中纳米线沟道区702在所有侧面上被设备的栅极712围住。栅极712的厚度(在从源极区到漏极区的方向中测量)决定设备的有效沟道区长度。正如上文描述的实施方案,纳米线沟道区702可以包含多晶硅或再结晶的多晶硅以形成单晶沟道区。任选地,在沟道区702包含晶体硅的情况下,沟道区可以被形成为具有相对于沟道区的长轴的<100>表面晶体取向。Referring to FIG. 7A, a memory transistor 700 includes a horizontal nanowire channel region 702 formed from a thin film or layer of semiconductor material on or overlying a surface on a substrate 706 and connected to the source of the memory transistor. region 708 and drain region 710. In the illustrated embodiment, the device has a gate-all-around (GAA) structure in which the nanowire channel region 702 is surrounded on all sides by the gate 712 of the device. The thickness of the gate 712 (measured in the direction from the source region to the drain region) determines the effective channel region length of the device. As with the embodiments described above, the nanowire channel region 702 may comprise polysilicon or recrystallized polysilicon to form a single crystal channel region. Optionally, where the channel region 702 comprises crystalline silicon, the channel region may be formed to have a <100> surface crystallographic orientation relative to the long axis of the channel region.
根据本公开,图7A的非平面的多栅存储器晶体管700可以包含高功函数栅电极和多层电荷俘获区。图7B是包括衬底706、纳米线沟道区702以及栅极712的一部分的图7A的非平面的存储器晶体管的一部分的横截面视图,示出高功函数栅电极714和多层电荷俘获区716a-716c。参考图7B,栅极712还包含覆盖纳米线沟道区702的隧穿电介质层718以及阻挡电介质层720。According to the present disclosure, the non-planar multi-gate memory transistor 700 of FIG. 7A may include a high work function gate electrode and a multi-layer charge-trapping region. 7B is a cross-sectional view of a portion of the non-planar memory transistor of FIG. 7A including a substrate 706, a nanowire channel region 702, and a portion of a gate 712, showing a high work function gate electrode 714 and a multilayer charge-trapping region 716a-716c. Referring to FIG. 7B , the gate 712 also includes a tunneling dielectric layer 718 covering the nanowire channel region 702 and a blocking dielectric layer 720 .
正如上文描述的实施方案,高功函数栅电极714包含按照低压CVD工艺形成或沉积并且具有从约到约的厚度的掺杂的多晶硅层。通过添加气体(比如磷化氢、砷化氢、乙硼烷或BF2),高功函数栅电极714的多晶硅层可以被直接形成或生长为掺杂的多晶硅层,并且按照选择的浓度或剂量被掺杂使得从栅电极中除去电子需要的最小能量是从至少约4.8eV到约5.3eV。在示例性实施方案中,高功函数栅电极714的多晶硅层按照从约1e14cm-2到约1e16cm-2的浓度被掺杂。As in the embodiments described above, the high work function gate electrode 714 comprises formed or deposited according to a low pressure CVD process and has from about to appointment thickness of the doped polysilicon layer. By adding gases such as phosphine, arsine, diborane, or BF2 , the polysilicon layer of the high work function gate electrode 714 can be directly formed or grown as a doped polysilicon layer, and at a selected concentration or dose Doped such that the minimum energy required to remove electrons from the gate electrode is from at least about 4.8 eV to about 5.3 eV. In an exemplary embodiment, the polysilicon layer of the high work function gate electrode 714 is doped at a concentration of from about 1e14 cm −2 to about 1e16 cm −2 .
多层电荷俘获区716a-716c包含靠近隧穿介质层718的含有氮化物的至少一个内部的富氧的第一氮化物层716a以及覆盖富氧的第一氮化物层的外部的贫氧的第二氮化物层716b。通常,外部的贫氧的第二氮化物层716b包含富硅、贫氧的氮化物层并且包含分布在多层电荷俘获区中的电荷陷阱中的多数,然而富氧的第一氮化物层716a包含富氧的氮化物或硅氮氧化物,并且相对于外部的贫氧的第二氮化物层是富氧的以减少其中电荷陷阱的数目。The multilayer charge-trapping regions 716a-716c comprise at least one inner oxygen-rich first nitride layer 716a adjacent to the tunneling dielectric layer 718 containing a nitride and an outer oxygen-lean first nitride layer covering the oxygen-rich first nitride layer. Nitride layer 716b. Typically, the outer second oxygen-poor nitride layer 716b comprises a silicon-rich, oxygen-lean nitride layer and contains the majority of the charge traps distributed in the multilayer charge-trapping region, whereas the oxygen-rich first nitride layer 716a An oxygen-rich nitride or silicon oxynitride is included and is oxygen-rich relative to the outer oxygen-poor second nitride layer to reduce the number of charge traps therein.
在某些实施方案(比如示出的那种)中,多层电荷俘获区716还包括含有电介质(比如氧化物)的至少一个薄的中间层或反隧穿层716c,其将外部的贫氧的第二氮化物层716b与富氧的第一氮化物层716a分开。反隧穿层716c在从隧穿编程到富氧的第一氮化物层716a内期间大体上降低在外部的贫氧的第二氮化物层716b的边界处积聚的电子电荷的概率,这导致较低的泄漏电流。In certain embodiments, such as the one shown, the multilayer charge-trapping region 716 also includes at least one thin intermediate layer or anti-tunneling layer 716c comprising a dielectric, such as an oxide, that separates the outer oxygen-poor The second nitride layer 716b is separated from the oxygen-rich first nitride layer 716a. The anti-tunneling layer 716c substantially reduces the probability of electron charges accumulating at the boundary of the outer oxygen-lean second nitride layer 716b during programming from tunneling into the oxygen-rich first nitride layer 716a, which results in less low leakage current.
正如上文描述的实施方案,富氧的第一氮化物层716a和外部的贫氧的第二氮化物层716b中的任一个或两个可以包含硅氮化物或硅氮氧化物,并且可以例如通过包括以确定的比例和流速的N2O/NH3和DCS/NH3气体混合物的CVD工艺来形成以提供富硅且富氧的氮氧化物层。然后,多层电荷存储结构的第二氮化物层在中间氧化物层上形成。外部的贫氧的第二氮化物层716b具有不同于富氧的第一氮化物层716a所具有的那种的氧、氮和/或硅的化学计量组成,并且还可以通过CVD工艺使用包括以确定的比例和流速的DCS/NH3和N2O/NH3气体混合物的工艺气体来形成或沉积以提供富硅、贫氧的顶部氮化物层。As with the embodiments described above, either or both of the oxygen-rich first nitride layer 716a and the outer oxygen-poor second nitride layer 716b may comprise silicon nitride or silicon oxynitride, and may, for example Formed by a CVD process comprising N2O / NH3 and DCS/ NH3 gas mixtures at defined ratios and flow rates to provide a silicon-rich and oxygen-rich oxynitride layer. Then, a second nitride layer of the multilayer charge storage structure is formed on the intermediate oxide layer. The outer oxygen-lean second nitride layer 716b has a different stoichiometric composition of oxygen, nitrogen, and/or silicon than that of the oxygen-rich first nitride layer 716a, and may also be used by a CVD process comprising: Process gases of DCS/ NH3 and N2O / NH3 gas mixtures at defined ratios and flow rates are formed or deposited to provide a silicon-rich, oxygen-depleted top nitride layer.
在包括含有氧化物的中间层或反隧穿层716c的那些实施方案中,反隧穿层可以通过使用自由基氧化使富氧的第一氮化物层716a氧化到选定的深度来形成。例如,可以在1000-1100摄氏度的温度下使用单个晶片工具进行自由基氧化,或可以在800-900摄氏度的温度下使用间歇反应器工具进行自由基氧化。H2气体和O2气体的混合物可以在300-500托的压力下用于分批工艺,或在10-15托的压力下使用单个蒸汽工具;使用单个晶片工具持续1-2分钟的时间,或使用分批工艺持续30分钟-1小时的时间。In those embodiments that include an oxide-containing interlayer or anti-tunneling layer 716c, the anti-tunneling layer may be formed by oxidizing the oxygen-rich first nitride layer 716a to a selected depth using radical oxidation. For example, radical oxidation can be performed at a temperature of 1000-1100 degrees Celsius using a single wafer tool, or at a temperature of 800-900 degrees Celsius using a batch reactor tool. A mixture of H2 gas and O2 gas can be used at a pressure of 300-500 Torr for a batch process, or at a pressure of 10-15 Torr for a single vapor tool; with a single wafer tool for a duration of 1-2 minutes, Or use a batch process for periods ranging from 30 minutes to 1 hour.
最后,在其中阻挡电介质720包含氧化物的那些实施方案中,氧化物可以通过任何适当的手段来形成或沉积。在一个实施方案中,阻挡电介质层720的氧化物是按照HTO CVD工艺沉积的高温氧化物。可选择地,阻挡电介质层720或阻挡氧化物层可以被热生长,然而,将理解的是,在此实施方案中,外部的贫氧的第二氮化物层716b的厚度可能需要被调整或增加,因为某些顶部的氮化物在热生长阻挡氧化物层的过程期间实际上将被消耗或氧化。Finally, in those embodiments in which blocking dielectric 720 comprises an oxide, the oxide may be formed or deposited by any suitable means. In one embodiment, the oxide of the blocking dielectric layer 720 is a high temperature oxide deposited according to a HTO CVD process. Alternatively, the blocking dielectric layer 720 or the blocking oxide layer may be thermally grown, however, it will be appreciated that in this embodiment the thickness of the outer oxygen-poor second nitride layer 716b may need to be adjusted or increased , because some of the top nitride will actually be consumed or oxidized during the process of thermally growing the barrier oxide layer.
用于富氧的第一氮化物层716a的适当的厚度可以是从约到约(具有某些允许的偏差,例如±),其中约可以通过自由基氧化消耗以形成反隧穿层716c。用于外部的贫氧的第二氮化物层716b的适当的厚度可以是至少在某些实施方案中,外部的贫氧的第二氮化物层716b可以被形成直到厚,其中可以通过自由基氧化消耗以形成阻挡电介质层720。在一些实施方案中,富氧的第一氮化物层716a和外部的贫氧的第二氮化物层716b之间的厚度的比例是大约1:1,然而其他的比例也是可能的。A suitable thickness for the oxygen-enriched first nitride layer 716a may be from about to appointment (with certain permissible deviations such as ± ), of which about It may be consumed by radical oxidation to form the anti-tunneling layer 716c. A suitable thickness for the outer oxygen-depleted second nitride layer 716b may be at least In some embodiments, the outer oxygen-depleted second nitride layer 716b may be formed until thick, of which It may be consumed by radical oxidation to form blocking dielectric layer 720 . In some embodiments, the ratio of the thicknesses between the oxygen-rich first nitride layer 716a and the outer oxygen-lean second nitride layer 716b is about 1:1, although other ratios are possible.
在其他实施方案中,外部的贫氧的第二氮化物层716b和阻挡电介质层720中的任一个或两个可以包含高K电介质。适当的高K电介质包括:铪基材料,比如HfSiON、HfSiO或HfO;锆基材料,比如ZrSiON、ZrSiO或ZrO;以及钇基材料,比如Y2O3。In other embodiments, either or both of the outer oxygen-lean second nitride layer 716b and the blocking dielectric layer 720 may comprise a high-K dielectric. Suitable high-K dielectrics include: hafnium- based materials, such as HfSiON, HfSiO, or HfO; zirconium-based materials, such as ZrSiON, ZrSiO, or ZrO; and yttrium-based materials, such as Y2O3 .
图7C示出被布置在位成本(Bit-Cost)可扩展或BiCS架构726中的图7A的非平面的多栅设备700的垂直串的横截面视图。架构726由非平面的多栅设备700的垂直串或堆叠组成,其中每个设备或单元包含沟道区702,该沟道区702覆盖衬底706并且连接存储器晶体管的源极区和漏极区(在此图中未示出)并且具有其中纳米线沟道区702在所有侧面上被栅极712围住的环栅(GAA)结构。与层的简单堆叠相比,BiCS架构减少了关键的光刻(lithography)步骤的数目,导致减少的每存储位的成本。7C shows a cross-sectional view of a vertical string of the non-planar multi-gate device 700 of FIG. 7A arranged in a Bit-Cost scalable or BiCS architecture 726 . Architecture 726 consists of vertical strings or stacks of non-planar multi-gate devices 700, where each device or cell contains a channel region 702 that overlies a substrate 706 and connects the source and drain regions of a memory transistor (not shown in this figure) and has a gate all around (GAA) structure in which the nanowire channel region 702 is surrounded on all sides by the gate 712 . Compared to simple stacking of layers, the BiCS architecture reduces the number of critical lithography steps, resulting in reduced cost per stored bit.
在另一个实施方案中,存储器晶体管是或包括含有垂直的纳米线沟道区的非平面的设备,该垂直的纳米线沟道区在半导体材料中或由半导体材料形成,该半导体材料在衬底上的大量的导电半导体层之上突出或从在衬底上的大量的导电半导体层中突出。在图8A中以剖面图示出的此实施方案的一个版本中,存储器晶体管800包含连接设备的源极区804和漏极区806的被形成为半导体材料的圆柱体的垂直的纳米线沟道区802。沟道区802被隧穿电介质层808、多层电荷俘获区810、阻挡电介质层812以及覆盖阻挡电介质层的高功函数栅电极814包围以形成存储器晶体管800的控制栅。沟道区802可以在半导体材料的大体上实心的圆柱体的外层中包含环状区,或可以包含形成于电介质填充物材料的圆柱体之上的环状层。正如上文描述的水平的纳米线,沟道区802可以包含多晶硅或再结晶的多晶硅以形成单晶沟道区。任选地,在沟道区802包含晶体硅的情况下,沟道区可以被形成为具有相对于沟道区的长轴的<100>表面晶体取向。In another embodiment, the memory transistor is or includes a non-planar device comprising a vertical nanowire channel region in or formed from a semiconductor material on a substrate protruding over or from the plurality of conductive semiconductor layers on the substrate. In one version of this embodiment, shown in cross-section in FIG. 8A, the memory transistor 800 comprises a vertical nanowire channel formed as a cylinder of semiconductor material connecting the source region 804 and the drain region 806 of the device. District 802. The channel region 802 is surrounded by a tunneling dielectric layer 808 , a multilayer charge trapping region 810 , a blocking dielectric layer 812 , and a high work function gate electrode 814 overlying the blocking dielectric layer to form the control gate of the memory transistor 800 . Channel region 802 may comprise an annular region in the outer layer of a substantially solid cylinder of semiconductor material, or may comprise an annular layer formed over the cylinder of dielectric fill material. As with the horizontal nanowires described above, the channel region 802 may comprise polysilicon or recrystallized polysilicon to form a single crystal channel region. Optionally, where the channel region 802 comprises crystalline silicon, the channel region may be formed to have a <100> surface crystallographic orientation relative to the long axis of the channel region.
正如上文描述的实施方案,高功函数栅电极814包含按照低压CVD工艺形成或沉积并且具有从约到约的厚度的掺杂的多晶硅层。通过添加气体(比如磷化氢、砷化氢、乙硼烷或BF2),高功函数栅电极814的多晶硅层可以被直接形成或生长为掺杂的多晶硅层,并且按照选择的浓度或剂量被掺杂使得从栅电极中除去电子需要的最小能量是从至少约4.8eV到约5.3eV。在示例性实施方案中,高功函数栅电极814的多晶硅层按照从约1e14cm-2到约1e16cm-2的浓度被掺杂。As in the embodiments described above, the high work function gate electrode 814 comprises formed or deposited according to a low pressure CVD process and has from about to appointment thickness of the doped polysilicon layer. By adding gases such as phosphine, arsine, diborane, or BF2 , the polysilicon layer of the high work function gate electrode 814 can be directly formed or grown as a doped polysilicon layer, and at a selected concentration or dose Doped such that the minimum energy required to remove electrons from the gate electrode is from at least about 4.8 eV to about 5.3 eV. In an exemplary embodiment, the polysilicon layer of the high work function gate electrode 814 is doped at a concentration of from about 1e14 cm −2 to about 1e16 cm −2 .
在某些实施方案(比如图8B中示出的实施方案)中,多层电荷俘获区810包含最靠近隧穿电介质层808的至少内部或富氧的第一氮化物层810a以及外部或贫氧的第二氮化物层810b。任选地,如在示出的实施方案中,富氧的第一氮化物层810a和贫氧的第二氮化物层810b被包含氧化物的中间氧化物层或反隧穿层810c分开。In certain embodiments (such as the embodiment shown in FIG. 8B ), the multilayer charge-trapping region 810 includes at least an inner or oxygen-rich first nitride layer 810 a proximate to the tunneling dielectric layer 808 and an outer or oxygen-poor first nitride layer 810 a. The second nitride layer 810b. Optionally, as in the illustrated embodiment, the oxygen-rich first nitride layer 810a and the oxygen-lean second nitride layer 810b are separated by an intermediate oxide-containing or anti-tunneling layer 810c.
富氧的第一氮化物层810a和贫氧的第二氮化物层810b中的任一个或两个可以包含硅氮化物或硅氮氧化物,并且可以例如通过包括以确定的比例和流速的N2O/NH3和DCS/NH3气体混合物的CVD工艺来形成以提供富硅且富氧的氮氧化物层。Either or both of the oxygen-rich first nitride layer 810a and the oxygen-lean second nitride layer 810b may comprise silicon nitride or silicon oxynitride, and may be formed, for example, by including N at a defined ratio and flow rate. 2 O/NH 3 and DCS/NH 3 gas mixture CVD process to provide silicon-rich and oxygen-rich oxynitride layer.
最后,贫氧的第二氮化物层810b和阻挡电介质层812中的任一个或两个可以包含高K电介质,比如HfSiON、HfSiO、HfO、ZrSiON、ZrSiO、ZrO或Y2O3。Finally, either or both of the oxygen-lean second nitride layer 810b and the blocking dielectric layer 812 may comprise a high-K dielectric, such as HfSiON, HfSiO, HfO, ZrSiON, ZrSiO, ZrO , or Y2O3 .
用于富氧的第一氮化物层810a的适当的厚度可以是从约到约(具有某些允许的偏差,例如±),其中约可以通过自由基氧化消耗以形成反隧穿层820。用于贫氧的第二氮化物层810b的适当的厚度可以是至少并且用于阻挡电介质层812的适当的厚度可以是从约 A suitable thickness for the oxygen-enriched first nitride layer 810a may be from about to appointment (with certain permissible deviations such as ± ), of which about The anti-tunneling layer 820 may be consumed by radical oxidation. A suitable thickness for the oxygen-poor second nitride layer 810b may be at least And a suitable thickness for the blocking dielectric layer 812 may be from about
图8A的存储器晶体管800可以使用先栅极方案或后栅极方案来制成。图9A-9F示出用于制造图8A的非平面的多栅设备的先栅极方案。图20A-20F示出用于制造图8A的非平面的多栅设备的后栅极方案。The memory transistor 800 of FIG. 8A can be fabricated using a gate-first approach or a gate-last approach. 9A-9F illustrate a gate-first scheme for fabricating the non-planar multi-gate device of FIG. 8A. 20A-20F illustrate a gate-last scheme for fabricating the non-planar multi-gate device of FIG. 8A.
参考图9A,在先栅极方案中,第一或下方的电介质层902(比如氧化物)在衬底906中的第一掺杂的扩散区904(比如源极区或漏极区)之上形成。高功函数栅电极908在第一电介质层902之上形成以形成设备的控制栅,并且第二或上方的电介质层910在该高功函数栅电极908之上形成。正如上文描述的实施方案,高功函数栅电极908可以通过沉积和/或掺杂多晶硅层来形成,该多晶硅层具有从约到约的厚度和从约1e14cm-2到约1e16cm-2的掺杂浓度,使得从栅电极中除去电子需要的最小能量是从至少约4.8eV到约5.3eV。通过添加气体(比如磷化氢、砷化氢、乙硼烷或BF2),多晶硅层可以按照低压CVD工艺被沉积为掺杂的多晶硅层,或可以在沉积之后使用离子注入工艺掺杂。Referring to FIG. 9A, in a gate-first approach, a first or underlying dielectric layer 902 (such as an oxide) is over a first doped diffusion region 904 (such as a source or drain region) in a substrate 906. form. A high work function gate electrode 908 is formed over the first dielectric layer 902 to form the control gate of the device, and a second or upper dielectric layer 910 is formed over the high work function gate electrode 908 . As with the embodiments described above, the high work function gate electrode 908 can be formed by depositing and/or doping a polysilicon layer having a thickness from about to appointment The thickness and the doping concentration of from about 1e14cm -2 to about 1e16cm -2 , such that the minimum energy required to remove electrons from the gate electrode is from at least about 4.8eV to about 5.3eV. The polysilicon layer can be deposited as a doped polysilicon layer in a low pressure CVD process by adding gases such as phosphine, arsine, diborane or BF2 , or can be doped after deposition using an ion implantation process.
第一电介质层902和第二电介质层910可以通过CVD、自由基氧化来沉积,或通过使下面的层或衬底的一部分氧化来形成。通常,高功函数栅电极908的厚度是从约并且第一电介质层902和第二电介质层910的厚度是从约 The first dielectric layer 902 and the second dielectric layer 910 may be deposited by CVD, radical oxidation, or formed by oxidizing an underlying layer or a portion of the substrate. Typically, the thickness of the high work function gate electrode 908 is from about And the thickness of the first dielectric layer 902 and the second dielectric layer 910 is from about
参考图9B,第一开口912被蚀刻穿过上覆的高功函数栅电极908、以及第一电介质层902和第二电介质层910直到衬底906中的扩散区904。接下来,隧穿氧化物层914、电荷俘获区916以及阻挡电介质层918被相继沉积在开口中并且上方的电介质层910被平面化以产生图9C中示出的中间结构。Referring to FIG. 9B , a first opening 912 is etched through the overlying high work function gate electrode 908 , and the first and second dielectric layers 902 , 910 to the diffusion region 904 in the substrate 906 . Next, tunnel oxide layer 914, charge trapping region 916, and blocking dielectric layer 918 are sequentially deposited in the opening and the overlying dielectric layer 910 is planarized to produce the intermediate structure shown in FIG. 9C.
虽然未示出,但将理解的是,如在上文描述的实施方案中,电荷俘获区916可以包含多层电荷俘获区,该多层电荷俘获区包含靠近隧穿电介质层914的至少一个下方或富氧的第一氮化物层、以及覆盖富氧的第一氮化物层的上方或贫氧的第二氮化物层。通常,贫氧的第二氮化物层包含富硅、贫氧的氮化物层并且包含分布在多层电荷俘获区中的电荷陷阱中的多数,然而富氧的第一氮化物层包含富氧的氮化物或硅氮氧化物,并且相对于贫氧的第二氮化物层是富氧的以减少其中电荷陷阱的数目。在某些实施方案中,多层电荷俘获区916还包含将贫氧的第二氮化物层与富氧的第一氮化物层分开的含有电介质(比如氧化物)的至少一个薄的中间层或反隧穿层。Although not shown, it will be appreciated that, as in the embodiments described above, the charge-trapping region 916 may comprise a multilayer charge-trapping region comprising at least one underlying layer adjacent to the tunneling dielectric layer 914. Or an oxygen-rich first nitride layer, and an oxygen-poor second nitride layer covering the top of the oxygen-rich first nitride layer. Typically, the oxygen-lean second nitride layer contains a silicon-rich, oxygen-lean nitride layer and contains the majority of the charge traps distributed in the multilayer charge-trapping region, whereas the oxygen-rich first nitride layer contains an oxygen-rich nitride or silicon oxynitride, and is oxygen-rich relative to the oxygen-poor second nitride layer to reduce the number of charge traps therein. In certain embodiments, the multilayer charge-trapping region 916 further comprises at least one thin intermediate layer or layer comprising a dielectric, such as an oxide, separating the oxygen-lean second nitride layer from the oxygen-rich first nitride layer. Anti-tunneling layer.
接下来,第二或沟道区开口920被各向异性地蚀刻穿过隧穿氧化物914、电荷俘获区916以及阻挡电介质918,图9D。参考图9E,半导体材料922被沉积在沟道区开口中以在其中形成垂直的沟道区924。垂直的沟道区924可以在半导体材料的大体上实心的圆柱体的外层中包含环状区,或如图9E中所示,可以包含包围电介质填充物材料926的圆柱体的单独的半导体材料层922。Next, a second or channel region opening 920 is anisotropically etched through tunnel oxide 914, charge trapping region 916, and blocking dielectric 918, FIG. 9D. Referring to FIG. 9E , semiconductor material 922 is deposited in the channel region opening to form a vertical channel region 924 therein. The vertical channel region 924 may comprise an annular region within the outer layer of a substantially solid cylinder of semiconductor material, or, as shown in FIG. 9E , may comprise a separate semiconductor material surrounding a cylinder of dielectric fill material 926. Layer 922.
参考图9F,上方的电介质层910的表面被平面化,并且包含形成于其中的第二掺杂的扩散区930(比如源极区或漏极区)的半导体材料层928被沉积在上方的电介质层之上以形成示出的设备。Referring to FIG. 9F , the surface of the upper dielectric layer 910 is planarized, and a layer 928 of semiconductor material containing a second doped diffusion region 930 (such as a source or drain region) formed therein is deposited on the upper dielectric layer 910. layer above to form the device shown.
参考图10A,在后栅极方案中,电介质层1002(比如氧化物)在衬底1006上的表面上的牺牲层1004之上形成,开口蚀刻穿过电介质层和牺牲层以及形成在其中的垂直的沟道区1008。正如上文描述的实施方案,垂直的沟道区1008可以在半导体材料1010(比如多晶硅或单晶硅)的大体上实心的圆柱体的外层中包含环状区,或可以包含包围电介质填充物材料的圆柱体(未示出)的单独的半导体材料层。电介质层1002可以包含能够将存储器晶体管800的随后形成的高功函数栅电极与上覆的电气有源层或另一存储器晶体管电气隔离的任何适当的电介质材料(比如硅氧化物)。Referring to FIG. 10A , in a gate-last scheme, a dielectric layer 1002 (such as an oxide) is formed over a sacrificial layer 1004 on a surface on a substrate 1006, and openings are etched through the dielectric layer and sacrificial layer and the vertical gates formed therein. The channel region 1008. As with the embodiments described above, the vertical channel region 1008 may comprise an annular region in the outer layer of a substantially solid cylinder of semiconductor material 1010, such as polysilicon or monocrystalline silicon, or may comprise a surrounding dielectric fill A cylinder of material (not shown) is a separate layer of semiconducting material. Dielectric layer 1002 may comprise any suitable dielectric material (such as silicon oxide) capable of electrically isolating a subsequently formed high work function gate electrode of memory transistor 800 from an overlying electrically active layer or another memory transistor.
参考图10B,第二开口1012被蚀刻穿过电介质层1002和牺牲层1004直到衬底1006,并且牺牲层1004至少部分地被蚀刻或除去。牺牲层1004可以包含可以以相对于电介质层1002、衬底1006以及垂直的沟道区1008的材料的高选择性被蚀刻或除去的任何适当的材料。在一个实施方案中,牺牲层1004包含可以通过缓冲氧化物蚀刻(BOE蚀刻)除去的氧化物。Referring to FIG. 10B , second opening 1012 is etched through dielectric layer 1002 and sacrificial layer 1004 to substrate 1006 , and sacrificial layer 1004 is at least partially etched or removed. Sacrificial layer 1004 may comprise any suitable material that may be etched or removed with high selectivity relative to the materials of dielectric layer 1002 , substrate 1006 , and vertical channel region 1008 . In one embodiment, the sacrificial layer 1004 includes an oxide that can be removed by buffered oxide etching (BOE etching).
参考图10C和10D,隧穿电介质层1014、多层电荷俘获区1016A-C以及阻挡电介质层1018被相继沉积在开口中,并且电介质层1002的表面被平面化以产生图10C中示出的中间结构。如在上文描述的实施方案中,多层电荷俘获层1016A-C是分裂的多层电荷俘获层,其包含最靠近隧穿电介质层1014的至少内部的富氧的第一氮化物层1016A和外部的贫氧的第二氮化物层1016B。任选地,第一电荷俘获层和第二电荷俘获层可以被中间氧化物层或反隧穿层1016C分开。Referring to Figures 10C and 10D, tunneling dielectric layer 1014, multilayer charge-trapping regions 1016A-C, and blocking dielectric layer 1018 are sequentially deposited in the openings, and the surface of dielectric layer 1002 is planarized to produce the intermediate layer shown in Figure 10C. structure. As in the embodiments described above, the multilayer charge-trapping layers 1016A-C are split multilayer charge-trapping layers comprising an oxygen-rich first nitride layer 1016A closest to at least an inner portion of the tunneling dielectric layer 1014 and The outer oxygen-depleted second nitride layer 1016B. Optionally, the first and second charge-trapping layers may be separated by an intermediate oxide layer or anti-tunneling layer 1016C.
接下来,高功函数栅电极1022被沉积到第二开口1012中并且上方的电介质层1002的表面被平面化以产生图10E中示出中间结构。正如上文描述的实施方案,高功函数栅电极1022包含具有从约1e14cm-2到约1e16cm-2的掺杂浓度的掺杂的多晶硅层,使得从栅电极中除去电子需要的最小能量是从至少约4.8eV到约5.3eV。通过将气体(比如磷化氢、砷化氢、乙硼烷或BF2)添加到CVD工艺,高功函数栅电极1022的多晶硅层被直接生长为掺杂的多晶硅层。最后,开口1024被蚀刻穿过栅极层1022以形成分开的存储器设备1026A和1026B的控制栅。Next, a high work function gate electrode 1022 is deposited into the second opening 1012 and the surface of the overlying dielectric layer 1002 is planarized to produce the intermediate structure shown in Figure 10E. As with the embodiments described above, the high work function gate electrode 1022 comprises a doped polysilicon layer having a doping concentration of from about 1e14 cm to about 1e16 cm such that the minimum energy required to remove electrons from the gate electrode is from At least about 4.8eV to about 5.3eV. The polysilicon layer of the high work function gate electrode 1022 is directly grown as a doped polysilicon layer by adding a gas such as phosphine, arsine, diborane or BF2 to the CVD process. Finally, openings 1024 are etched through gate layer 1022 to form control gates of separate memory devices 1026A and 1026B.
本发明的特定实施方案和实例的前述描述已经被呈现用于说明和描述的目的,虽然本发明已经通过某些前述的实例来描述和说明,但是其不应被理解为受此限制。其不意图是详尽的或将本发明限制于公开的准确形式,并且在本发明范围之内的多种修改、改进以及变型根据以上所述的教导是可能的。本发明的范围旨在包括如本文公开以及通过所附的权利要求及其等效物公开的一般范围。本发明的范围由包括已知的等效物和在提交本申请时不可预见的等效物的权利要求来限定。The foregoing descriptions of specific embodiments and examples of the present invention have been presented for purposes of illustration and description, and while the invention has been described and illustrated by certain foregoing examples, it should not be construed as limited thereto. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications, improvements, and variations are possible within the scope of the invention in light of the teaching set forth above. The scope of the invention is intended to include the generic scope as disclosed herein and as disclosed by the appended claims and their equivalents. The scope of the invention is defined by the claims including known equivalents and equivalents which were not foreseeable at the time of filing this application.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810982560.XA CN109585453A (en) | 2012-07-01 | 2013-07-01 | Memory transistor with multiple charge storage layers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/539,466 US8633537B2 (en) | 2007-05-25 | 2012-07-01 | Memory transistor with multiple charge storing layers and a high work function gate electrode |
US13/539,466 | 2012-07-01 | ||
PCT/US2013/048885 WO2014008166A1 (en) | 2012-07-01 | 2013-07-01 | Memory transistor with multiple charge storing layers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810982560.XA Division CN109585453A (en) | 2012-07-01 | 2013-07-01 | Memory transistor with multiple charge storage layers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104769724A true CN104769724A (en) | 2015-07-08 |
CN104769724B CN104769724B (en) | 2018-09-18 |
Family
ID=49882448
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380031840.8A Active CN104769724B (en) | 2012-07-01 | 2013-07-01 | Memory transistor with multiple charge storage layers |
CN201810982560.XA Pending CN109585453A (en) | 2012-07-01 | 2013-07-01 | Memory transistor with multiple charge storage layers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810982560.XA Pending CN109585453A (en) | 2012-07-01 | 2013-07-01 | Memory transistor with multiple charge storage layers |
Country Status (3)
Country | Link |
---|---|
KR (2) | KR102215973B1 (en) |
CN (2) | CN104769724B (en) |
WO (1) | WO2014008166A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106471615A (en) * | 2015-03-09 | 2017-03-01 | 赛普拉斯半导体公司 | ONO stacks forming method |
CN107863349A (en) * | 2017-10-17 | 2018-03-30 | 安阳师范学院 | Based on HfxSi1‑xO2Charge storage device of multivariant oxide storage material and preparation method thereof |
CN109461735A (en) * | 2018-10-18 | 2019-03-12 | 上海华力微电子有限公司 | Improve the technology integrating method of grid dividing structure flash memory multistep etching polysilicon damage |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10020317B2 (en) * | 2015-08-31 | 2018-07-10 | Cypress Semiconductor Corporation | Memory device with multi-layer channel and charge trapping layer |
KR102374052B1 (en) | 2016-02-26 | 2022-03-14 | 삼성전자주식회사 | A semiconductor device and methods of manufacturing the same |
US10068912B1 (en) | 2017-06-05 | 2018-09-04 | Cypress Semiconductor Corporation | Method of reducing charge loss in non-volatile memories |
CN111435658B (en) * | 2019-01-14 | 2023-05-23 | 联华电子股份有限公司 | Method of forming memory stack structure |
US11152477B2 (en) * | 2020-02-26 | 2021-10-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transistors with different threshold voltages |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020109138A1 (en) * | 2001-02-09 | 2002-08-15 | Micron Technology, Inc. | Programmable memory address and decode circuits with ultra thin vertical body transistors |
US20090065852A1 (en) * | 2007-09-11 | 2009-03-12 | Horng-Chih Lin | Nonvolatile memory device with nanowire channel and method for fabricating the same |
CN101548385A (en) * | 2007-05-25 | 2009-09-30 | 赛普拉斯半导体公司 | Single Crystal Silicon Fabrication Process for Nonvolatile Charge Trap Memory Devices |
US8071453B1 (en) * | 2009-04-24 | 2011-12-06 | Cypress Semiconductor Corporation | Method of ONO integration into MOS flow |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10038728A1 (en) * | 2000-07-31 | 2002-02-21 | Infineon Technologies Ag | Semiconductor memory cell arrangement and method for the production thereof |
DE10130766B4 (en) * | 2001-06-26 | 2005-08-11 | Infineon Technologies Ag | Vertical transistor, memory arrangement and method for producing a vertical transistor |
US6912163B2 (en) * | 2003-01-14 | 2005-06-28 | Fasl, Llc | Memory device having high work function gate and method of erasing same |
US7060594B2 (en) * | 2004-10-19 | 2006-06-13 | Macronix International Co., Ltd. | Memory device and method of manufacturing including deuterated oxynitride charge trapping structure |
US7473589B2 (en) * | 2005-12-09 | 2009-01-06 | Macronix International Co., Ltd. | Stacked thin film transistor, non-volatile memory devices and methods for fabricating the same |
TW200826293A (en) * | 2006-12-11 | 2008-06-16 | Innolux Display Corp | Read-only memory and method for manufacturing the same |
WO2008129478A1 (en) * | 2007-04-19 | 2008-10-30 | Nxp B.V. | Nonvolatile memory cell comprising a nanowire and manufacturing method thereof |
US8093128B2 (en) * | 2007-05-25 | 2012-01-10 | Cypress Semiconductor Corporation | Integration of non-volatile charge trap memory devices and logic CMOS devices |
US20090179253A1 (en) * | 2007-05-25 | 2009-07-16 | Cypress Semiconductor Corporation | Oxide-nitride-oxide stack having multiple oxynitride layers |
US8643124B2 (en) * | 2007-05-25 | 2014-02-04 | Cypress Semiconductor Corporation | Oxide-nitride-oxide stack having multiple oxynitride layers |
US7737488B2 (en) * | 2007-08-09 | 2010-06-15 | Macronix International Co., Ltd. | Blocking dielectric engineered charge trapping memory cell with high speed erase |
-
2013
- 2013-07-01 CN CN201380031840.8A patent/CN104769724B/en active Active
- 2013-07-01 WO PCT/US2013/048885 patent/WO2014008166A1/en active Application Filing
- 2013-07-01 KR KR1020207004116A patent/KR102215973B1/en active Active
- 2013-07-01 CN CN201810982560.XA patent/CN109585453A/en active Pending
- 2013-07-01 KR KR1020147035197A patent/KR102078611B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020109138A1 (en) * | 2001-02-09 | 2002-08-15 | Micron Technology, Inc. | Programmable memory address and decode circuits with ultra thin vertical body transistors |
CN101548385A (en) * | 2007-05-25 | 2009-09-30 | 赛普拉斯半导体公司 | Single Crystal Silicon Fabrication Process for Nonvolatile Charge Trap Memory Devices |
US20090065852A1 (en) * | 2007-09-11 | 2009-03-12 | Horng-Chih Lin | Nonvolatile memory device with nanowire channel and method for fabricating the same |
US8071453B1 (en) * | 2009-04-24 | 2011-12-06 | Cypress Semiconductor Corporation | Method of ONO integration into MOS flow |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106471615A (en) * | 2015-03-09 | 2017-03-01 | 赛普拉斯半导体公司 | ONO stacks forming method |
CN106471615B (en) * | 2015-03-09 | 2019-05-17 | 赛普拉斯半导体公司 | ONO stacks forming method |
CN107863349A (en) * | 2017-10-17 | 2018-03-30 | 安阳师范学院 | Based on HfxSi1‑xO2Charge storage device of multivariant oxide storage material and preparation method thereof |
CN109461735A (en) * | 2018-10-18 | 2019-03-12 | 上海华力微电子有限公司 | Improve the technology integrating method of grid dividing structure flash memory multistep etching polysilicon damage |
Also Published As
Publication number | Publication date |
---|---|
KR102215973B1 (en) | 2021-02-16 |
KR20150040806A (en) | 2015-04-15 |
KR20200018733A (en) | 2020-02-19 |
WO2014008166A1 (en) | 2014-01-09 |
CN104769724B (en) | 2018-09-18 |
KR102078611B1 (en) | 2020-04-08 |
CN109585453A (en) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12009401B2 (en) | Memory transistor with multiple charge storing layers and a high work function gate electrode | |
US12048162B2 (en) | Method of ono integration into logic CMOS flow | |
US10699901B2 (en) | SONOS ONO stack scaling | |
US8063434B1 (en) | Memory transistor with multiple charge storing layers and a high work function gate electrode | |
CN104769724B (en) | Memory transistor with multiple charge storage layers | |
CN111180525B (en) | Oxide nitride oxide stack with multiple oxynitride layers | |
CN104321877B (en) | ONO is integrated into the method in logic CMOS flow | |
KR20160141705A (en) | Method of fabricating a charge-trapping gate stack using a cmos process flow | |
KR20150040807A (en) | Radical oxidation process for fabricating a nonvolatile charge trap memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |