[go: up one dir, main page]

CN104767455B - A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method - Google Patents

A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method Download PDF

Info

Publication number
CN104767455B
CN104767455B CN201510170083.3A CN201510170083A CN104767455B CN 104767455 B CN104767455 B CN 104767455B CN 201510170083 A CN201510170083 A CN 201510170083A CN 104767455 B CN104767455 B CN 104767455B
Authority
CN
China
Prior art keywords
msub
mrow
mfrac
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510170083.3A
Other languages
Chinese (zh)
Other versions
CN104767455A (en
Inventor
林明耀
赵纪龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510170083.3A priority Critical patent/CN104767455B/en
Publication of CN104767455A publication Critical patent/CN104767455A/en
Application granted granted Critical
Publication of CN104767455B publication Critical patent/CN104767455B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • External Artificial Organs (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种混合励磁同步电机无位置传感器直接转矩控制方法,利用滑膜观测器估计混合励磁同步电机的转速和初始位置,总体控制思想基于直接转矩控制方法。根据转速判断电机运行区域,电机运行于低速区,采用id=0控制,当负载转矩小于等于额定转矩时,无需增磁控制;当负载转矩大于额定转矩时,进行增磁控制。电机运行于高速区,采用弱磁控制,首先保持id=0,利用励磁电流if进行弱磁;当励磁电流if达到额定值时,采用d轴电流id进行弱磁。混合励磁同步电机无位置传感器直接转矩控制减小了成本的同时,提高了驱动系统的可靠性和转矩快速响应能力。

The invention discloses a direct torque control method for a hybrid excitation synchronous motor without a position sensor. A sliding film observer is used to estimate the rotational speed and initial position of the hybrid excitation synchronous motor. The overall control idea is based on the direct torque control method. Judging the motor operating area according to the speed, the motor runs in the low speed area, and adopts i d = 0 control. When the load torque is less than or equal to the rated torque, there is no need for magnetization control; when the load torque is greater than the rated torque, the magnetization control is performed . The motor runs in the high-speed area and adopts field-weakening control. First, keep id = 0, and use the excitation current if to carry out field-weakening ; when the field current if reaches the rated value, use the d -axis current id to carry out field-weakening. The position sensorless direct torque control of the hybrid excitation synchronous motor reduces the cost and improves the reliability and torque quick response capability of the drive system.

Description

一种混合励磁同步电机无位置传感器直接转矩控制方法A Sensorless Direct Torque Control Method for Hybrid Excitation Synchronous Motor

技术领域technical field

本发明属于电气传动技术领域,涉及一种无位置传感器直接转矩策略,特别是涉及一种混合励磁同步电机控制方法。The invention belongs to the technical field of electric transmission, and relates to a direct torque strategy without a position sensor, in particular to a control method for a hybrid excitation synchronous motor.

背景技术Background technique

混合励磁同步电机是在永磁同步与电励磁同步电机的基础上发展起来的一种宽调速电机,其主要目的是为了解决永磁同步电机气隙磁场难以调节的问题。混合励磁同步电机具有两种励磁源,一种是永磁体,另一种是电励磁,永磁体产生的磁势为主磁势,励磁绕组产生的磁势为辅磁势。这种电机结合了永磁同步与电励磁同步电机的优点,两种励磁源在电机气隙中相互作用产生主磁通,当电励磁线圈通入正向的励磁电流时,产生正向电磁转矩而增大了电机转矩;反之,当电励磁线圈通入反向励磁电流时,则产生反向磁场削弱气隙磁场达到弱磁升速的目的,从而拓宽了电机的调速范围。Hybrid excitation synchronous motor is a kind of wide speed regulation motor developed on the basis of permanent magnet synchronous motor and electric excitation synchronous motor. Its main purpose is to solve the problem that the air gap magnetic field of permanent magnet synchronous motor is difficult to adjust. The hybrid excitation synchronous motor has two excitation sources, one is permanent magnet and the other is electric excitation. The magnetic potential generated by the permanent magnet is the main magnetic potential, and the magnetic potential generated by the excitation winding is the auxiliary magnetic potential. This motor combines the advantages of permanent magnet synchronous and electric excitation synchronous motors. The two excitation sources interact in the air gap of the motor to generate the main magnetic flux. When the electric excitation coil is fed with positive excitation current, positive electromagnetic rotation is generated. The torque increases the motor torque; on the contrary, when the electric excitation coil passes the reverse excitation current, a reverse magnetic field is generated to weaken the air gap magnetic field to achieve the purpose of weakening the magnetic field and increasing the speed, thus widening the speed regulation range of the motor.

目前,国内外对于混合励磁同步电机控制方法及驱动系统研究较少,基本围绕矢量控制,且为有传感器控制,基于矢量控制可以归为三类,一类是id=0策略,另一类为弱磁策略,最后一种为效率最优策略。上述控制策略的优点连续控制,比较平滑;缺点是转矩动态响应不够快,需旋转坐标变换,较复杂。由于存在传感器,所以控制系统价格较高,且容易出现故障,可靠性较低。At present, there are few studies on the control method and drive system of hybrid excitation synchronous motors at home and abroad, which basically focus on vector control, and it is controlled by sensors. Based on vector control, it can be classified into three categories. is the field weakening strategy, and the last one is the efficiency optimal strategy. The advantage of the above control strategy is continuous control, which is relatively smooth; the disadvantage is that the torque dynamic response is not fast enough, and the rotation coordinate transformation is required, which is more complicated. Due to the presence of sensors, the control system is expensive, prone to failure, and low in reliability.

发明内容Contents of the invention

技术问题:本发明提供一种转矩动态响应更为快速,系统可靠性高,成本低的无位置传感器直接转矩控制方法。Technical problem: The present invention provides a sensorless direct torque control method with faster torque dynamic response, high system reliability and low cost.

技术方案:本发明的混合励磁同步电机无位置传感器直接转矩控制方法,包括以下步骤:Technical solution: The position sensorless direct torque control method of the hybrid excitation synchronous motor of the present invention comprises the following steps:

(1)三个霍尔电流传感器和两个电压传感器分别从电机主电路采集相电流ia、ib和励磁电流if,母线电压UDC和励磁电压Uf,将采集到的信号经电压跟随、滤波、偏置及过压保护信号调理后送入控制器;(1) Three Hall current sensors and two voltage sensors respectively collect phase current ia , ib and excitation current if, bus voltage U DC and excitation voltage U f from the main circuit of the motor, and pass the collected signals through voltage Follow, filter, bias and overvoltage protection signals are conditioned and sent to the controller;

(2)将送入控制器的相电流ia、ib进行A/D转换,经过三相坐标系到两相静止坐标系的3/2变换得到两相静止坐标系下的α轴电流iα和β轴电流iβ;利用送入控制器的UDC和开关状态Sa、Sb、Sc,根据下式确定两相静止坐标系下的α轴电压uα和β轴电压uβ(2) A/D conversion is performed on the phase currents i a and i b sent to the controller, and the α-axis current i in the two-phase stationary coordinate system is obtained through the 3/2 transformation from the three-phase coordinate system to the two-phase stationary coordinate system α and β axis current i β ; using the U DC sent to the controller and the switch states S a , S b , S c , determine the α axis voltage u α and β axis voltage u β in the two-phase stationary coordinate system according to the following formula :

其中,Sa、Sb、Sc分别为逆变器三相桥臂a、b、c上下开关管的开关状态,上桥臂导通时值为1,下桥臂导通时,值为0;Among them, S a , S b , and S c are the switching states of the upper and lower switching tubes of the inverter three-phase bridge arms a, b, and c, respectively. When the upper bridge arm is turned on, the value is 1; when the lower bridge arm is turned on, the value 0;

(3)利用步骤(2)得到的iα、iβ、uα、uβ,根据以下各公式分别计算实际电磁转矩估计值Te、实际定子磁链估计值ψs、定子磁链工作扇区估计值θi(3) Using the i α , i β , u α , u β obtained in step (2), calculate the actual electromagnetic torque estimated value T e , the actual stator flux linkage estimated value ψ s , and the stator flux linkage working value respectively according to the following formulas: Sector estimate θ i :

其中,ψα和ψβ分别为两相静止坐标系下的定子α轴磁链和β轴磁链,Rs为电枢绕组电阻,p为电机极对数;Among them, ψ α and ψ β are the stator α-axis flux linkage and β-axis flux linkage in the two-phase stationary coordinate system, respectively, R s is the armature winding resistance, and p is the number of pole pairs of the motor;

根据以下各公式分别计算实际转速估计值n和转子位置角估计值θeAccording to the following formulas, the estimated value of the actual speed n and the estimated value of the rotor position angle θ e are respectively calculated:

其中,K1是固定的观测增益,为定子α轴观测误差电流,为定子β轴观测误差电流,分别为α轴与β轴观测电流,sign()为符号函数,eα、eβ分别为α轴与β轴反电势,ωe为电角速度;where K1 is the fixed observation gain, is the observation error current of the stator α-axis, is the stator β-axis observation error current, are the observed currents on the α-axis and β-axis respectively, sign() is the sign function, e α and e β are the counter electromotive forces of the α-axis and β-axis respectively, and ω e is the electrical angular velocity;

(4)用给定转速nref减去步骤3)估测到的转速n,将得到的转速偏差Δn输入速度调节器后得到电磁转矩参考值Teref,将所述电磁转矩参考值Teref和估计转速n送入电流分配器,判断实际转速是否小于额定转速,如是,则电机运行于低速区,进入步骤5),否则,电机运行于高速区,进入步骤6);(4) Subtract the speed n estimated in step 3) from the given speed n ref , input the obtained speed deviation Δn into the speed regulator to obtain the electromagnetic torque reference value T eref , and convert the electromagnetic torque reference value T eref and the estimated speed n are sent to the current distributor to determine whether the actual speed is less than the rated speed, if so, the motor runs in the low speed zone, and enters step 5); otherwise, the motor runs in the high speed zone, and enters step 6);

(5)判断负载转矩是否满足TL≤TN,确定定子磁链参考值ψsref和电磁转矩参考值Teref后进入步骤(7),其中TL为负载转矩、TN为额定转矩,具体如下;(5) Determine whether the load torque satisfies T L ≤ T N , determine the stator flux reference value ψ sref and the electromagnetic torque reference value T eref , and then enter step (7), where T L is the load torque and T N is the rated Torque, as follows;

当TL≤TN时,无需增磁控制,if=0,采用id=0控制,按照如下电流分配方案进行电流分配:When T L T N , there is no need for magnetization control, if if = 0, use i d = 0 control, and carry out current distribution according to the following current distribution scheme:

进而得到定子磁链参考值为Then the reference value of the stator flux linkage is obtained

当TL>TN时,q轴电流已达到额定值,需进行增磁控制,因此iq=iqN,采用d轴电流id=0控制,按照如下电流分配方案进行电流分配:When T L >T N , the q-axis current has reached the rated value, and magnetization control is required, so i q =i qN , and the d-axis current i d =0 is used for control, and the current distribution is performed according to the following current distribution scheme:

进而得到定子磁链参考值为:Then the reference value of the stator flux linkage is obtained as:

其中,idref、iqref分别为d轴与q轴电流参考值,iqN为q轴电流的额定值;ifref为励磁电流参考值;Ld、Lq分别为d轴与q轴电感,Mf为电枢与励磁绕组之间的互感;ψm为永磁体磁链;ψd、ψq分别d轴、q轴磁链;Teref为电磁转矩,ψs为定子磁链,ψsref为定子磁链参考值;Among them, i dref and i qref are the d-axis and q-axis current reference values respectively, i qN is the rated value of the q-axis current; i fref is the excitation current reference value; L d and L q are the d-axis and q-axis inductances respectively, M f is the mutual inductance between the armature and the field winding; ψ m is the flux linkage of the permanent magnet; ψ d , ψ q are the flux linkages of the d -axis and q-axis respectively; sref is the stator flux reference value;

(6)首先判断转速是否小于弱磁基速nflux,如是,则保持d轴电流id=0,采用励磁电流if弱磁,按照如下电流分配方案进行电流分配:(6) First judge whether the rotational speed is less than the field-weakening base speed n flux , if so, keep the d-axis current i d = 0, adopt the field current i f to weaken the field, and carry out current distribution according to the following current distribution scheme:

定子磁链参考值Reference value of stator flux linkage

如给定转速达到弱磁基速nflux,励磁电流if达到额定值,继续采用d轴电流id弱磁,按照如下电流分配方案进行电流分配:If the given speed reaches the field-weakening base speed n flux and the excitation current if reaches the rated value, continue to use the d-axis current i d to weaken the field, and carry out current distribution according to the following current distribution scheme:

定子磁链参考值Reference value of stator flux linkage

其中,IfN为励磁电流额定值,ωeN为额定电角速度;Among them, I fN is the rated value of excitation current, ω eN is the rated electrical angular velocity;

(7)用所述定子磁链参考值ψsref减去步骤(3)中得到的实际定子磁链估计值ψs得到定子磁链偏差Δψs,用电磁转矩参考值Teref减去步骤(3)中的实际电磁转矩估计值Te得到电磁转矩偏差ΔTe,然后将Δψs送入滞环比较器得到转矩控制信号τ,将ΔTe送入滞环比较器得到磁链控制信号φ,三个控制信号τ、φ、θ经过开关表选取开关状态,驱动主功率变换器;(7) Subtract the actual stator flux estimated value ψ s obtained in step (3) from the stator flux reference value ψ sref to obtain the stator flux deviation Δψ s , and subtract the step ( 3) The actual electromagnetic torque estimated value T e is obtained to obtain the electromagnetic torque deviation ΔT e , and then Δψ s is sent to the hysteresis comparator to obtain the torque control signal τ, and ΔT e is sent to the hysteresis comparator to obtain the flux linkage control Signal φ, three control signals τ, φ, θ select the switching state through the switch table to drive the main power converter;

同时将步骤(1)中采集的励磁电流if,经信号调理与A/D转换后,与步骤(5)或(6)得到的励磁电流参考值ifref一起送入直流励磁脉冲宽度调制模块,运算输出4路脉冲宽度调制信号来驱动励磁功率变换器。At the same time, the excitation current if collected in step (1) is sent to the DC excitation pulse width modulation module together with the excitation current reference value i fref obtained in step (5) or (6) after signal conditioning and A/D conversion , the operation outputs 4 pulse width modulation signals to drive the excitation power converter.

本发明方法的一种优选方案中,步骤7)中的直流励磁脉冲宽度调制模块为空间矢量脉冲宽度调制模块。In a preferred solution of the method of the present invention, the DC excitation pulse width modulation module in step 7) is a space vector pulse width modulation module.

有益效果:现有混合励磁同步电机控制方法大多数基于矢量控制,控制方法虽然简单方便,但转矩响应较慢,且绝大多数采用有位置传感器策略。因此,此类控制方法使得控制系统可靠性较低的同时,价格也相对较高。本发明通过步骤3)至步骤6)的无位置直接转矩控制方法,使得混合励磁同步电机运行在整个运行区域,都具有较高可靠性和转矩动态响应。所以本发明相对现有控制方法具有以下优点:Beneficial effects: Most of the existing hybrid excitation synchronous motor control methods are based on vector control. Although the control method is simple and convenient, the torque response is slow, and most of them adopt the position sensor strategy. Therefore, this kind of control method makes the reliability of the control system low, and the price is relatively high. The present invention uses the positionless direct torque control method from step 3) to step 6), so that the hybrid excitation synchronous motor runs in the entire operating region, and has high reliability and torque dynamic response. Therefore, the present invention has the following advantages relative to the existing control method:

(1)该方法采用了直接转矩控制,使转矩动态响应更为快速;(1) This method adopts direct torque control, which makes the torque dynamic response faster;

(2)相对于有位置传感器控制,本发明采用了无位置传感器控制,提高了系统可靠性,并极大地缩减了成本;(2) Compared with position sensor control, the present invention adopts position sensorless control, improves system reliability, and greatly reduces cost;

(3)相对于矢量控制,该控制方法使得混合励磁电机在电动汽车中获得了广泛的应用前景。(3) Compared with vector control, this control method makes the hybrid excitation motor obtain a wide application prospect in electric vehicles.

附图说明Description of drawings

图1是本发明方法的逻辑流程框图;Fig. 1 is a logic flow diagram of the inventive method;

图2是本发明方法的系统框图;Fig. 2 is a system block diagram of the inventive method;

图3是实现本发明方法的结构框图;Fig. 3 is a structural block diagram realizing the method of the present invention;

图4是无位置转速与位置角判断图。Fig. 4 is a judgment diagram of speed and position angle without position.

具体实施方式Detailed ways

下面结合实施例和说明书附图对本发明作进一步的说明。The present invention will be further described below in conjunction with embodiment and accompanying drawing.

图2为实现本发明混合励磁同步电机无位置传感器直接转矩控制方法的系统框图,该控制系统由交流电源、整流器、稳压电容、DSP控制器、主功率变换器、辅功率变换器、电流和电压传感器、混合励磁同步电机等组成。Fig. 2 is the system block diagram that realizes the position sensorless direct torque control method of hybrid excitation synchronous motor of the present invention, and this control system consists of AC power supply, rectifier, voltage stabilizing capacitor, DSP controller, main power converter, auxiliary power converter, current It is composed of a voltage sensor and a hybrid excitation synchronous motor.

交流电源给整个系统供电,经过整流器整流后,滤波、稳压,送给主、辅功率变换器,霍尔电压传感器采集母线电压,调理后送入控制器。主、辅功率变换器的输出端接混合励磁同步电机,霍尔电流互感器采集相电流和励磁电流,调理后送入控制器,处理后送入控制器计算转子位置角与转速。控制器输出10路PWM信号分别驱动主、励磁功率变换器。The AC power supplies power to the entire system. After being rectified by the rectifier, the voltage is filtered and stabilized, and sent to the main and auxiliary power converters. The Hall voltage sensor collects the bus voltage and sends it to the controller after conditioning. The output terminals of the main and auxiliary power converters are connected to the hybrid excitation synchronous motor, and the Hall current transformer collects the phase current and excitation current, and sends them to the controller after conditioning, and sends them to the controller to calculate the rotor position angle and speed after processing. The controller outputs 10 channels of PWM signals to drive the main and excitation power converters respectively.

本发明的混合励磁同步电机无位置传感器直接转矩控制方法如图3所示,具体包括以下步骤:The position sensorless direct torque control method of the hybrid excitation synchronous motor of the present invention is shown in Figure 3, specifically comprising the following steps:

(1)三个霍尔电流传感器和两个电压传感器分别从电机主电路采集相电流ia、ib和励磁电流if,母线电压UDC和励磁电压Uf,将采集到的信号经电压跟随、滤波、偏置及过压保护等信号调理后送入控制器。(1) Three Hall current sensors and two voltage sensors respectively collect phase current ia , ib and excitation current if, bus voltage U DC and excitation voltage U f from the main circuit of the motor, and pass the collected signals through voltage Signals such as following, filtering, bias and overvoltage protection are conditioned and sent to the controller.

(2)将送入控制器的相电流ia、ib进行A/D转换,经过三相坐标系到两相静止坐标系的3/2变换得到两相静止坐标系下的α轴电流iα和β轴电流iβ;利用送入控制器的UDC和开关状态Sa、Sb、Sc,根据下式确定两相静止坐标系下的α轴电压uα和β轴电压uβ:如下式所示。(2) A/D conversion is performed on the phase currents i a and i b sent to the controller, and the α-axis current i in the two-phase stationary coordinate system is obtained through the 3/2 transformation from the three-phase coordinate system to the two-phase stationary coordinate system α and β axis current i β ; using the U DC sent to the controller and the switch states S a , S b , S c , determine the α axis voltage u α and β axis voltage u β in the two-phase stationary coordinate system according to the following formula : as shown in the following formula.

其中,Sa、Sb、Sc分别为逆变器三相桥臂a、b、c上下开关管的开关状态,上桥臂导通时值为1,下桥臂导通时,值为0;(3)利用步骤2)得到的iα、iβ、uα、uβ估计实际转速n、实际转矩Te、实际定子磁链ψs、转子位置θe和扇区θi,具体如下Among them, S a , S b , and S c are the switching states of the upper and lower switching tubes of the inverter three-phase bridge arms a, b, and c, respectively. When the upper bridge arm is turned on, the value is 1; when the lower bridge arm is turned on, the value 0; (3) Use i α , i β , u α , u β obtained in step 2) to estimate actual speed n, actual torque T e , actual stator flux linkage ψ s , rotor position θ e and sector θ i , details as follows

混合励磁同步电机在αβ坐标系下的电压方程为The voltage equation of the hybrid excitation synchronous motor in the αβ coordinate system is

磁链方程Flux linkage equation

定子磁链Stator flux linkage

将式(4)带入式(3)可得Put formula (4) into formula (3) to get

转矩方程torque equation

利用式(5)可估计出实际定子磁链,利用式(6)可估计出实际电磁转矩,利用式(7)可以估计出工作扇区。The actual stator flux linkage can be estimated by formula (5), the actual electromagnetic torque can be estimated by formula (6), and the working sector can be estimated by formula (7).

其中,ψα和ψβ分别为两相静止坐标系下的定子α轴磁链和β轴磁链,Rs为电枢绕组电阻,Te为电磁转矩,if为励磁绕组电流,ωe为电角速度,Mf为电枢与励磁绕组之间的互感,ψm为永磁体磁链。Among them, ψ α and ψ β are the stator α-axis flux linkage and β-axis flux linkage in the two-phase stationary coordinate system respectively, R s is the armature winding resistance, T e is the electromagnetic torque, if is the field winding current, ω e is the electrical angular velocity, M f is the mutual inductance between the armature and the field winding, and ψ m is the flux linkage of the permanent magnet.

设计滑膜观测器估计转速n和转子位置角θe,如图4所示,具体如下:Design a synovial film observer to estimate the rotational speed n and the rotor position angle θ e , as shown in Fig. 4, and the details are as follows:

建立滑膜观测器数学模型:Establish the mathematical model of the synovium observer:

其中,K1是固定的观测增益,分别为α轴与β轴观测电流, 观测误差电流,sign()为符号函数。where K1 is the fixed observation gain, are the observed currents of the α-axis and β-axis respectively, Observe the error current, sign() is a sign function.

用式(8)减去式(2)可得Subtract formula (2) from formula (8) to get

当滑膜观测器稳定时,可得When the synovium observer is stable, we can get

其中,eα、eβ分别为α轴与β轴反电势。Among them, e α and e β are the back electromotive force of the α axis and the β axis respectively.

利用低通滤波器从式(10)的开关量中提取连续等效信号从而可得Use low-pass filter to extract continuous equivalent signal from the switching value of formula (10) thus available

由此可得转子位置角θe的估计值为From this, the estimated value of the rotor position angle θ e can be obtained as

从而可得转速估计值n为Thus, the speed estimation value n can be obtained as

其中,p为电机极对数。Among them, p is the number of motor pole pairs.

(4)用给定转速n*减去步骤3)估测到的转速n,将得到的转速偏差Δn输入速度调节器后得到转矩参考值将转矩参考值和估计转速n送入电流分配器,判断实际转速是否小于额定转速,如是,电机运行于低速区,进入步骤5),否则,进入步骤6)。(4) Subtract the speed n estimated in step 3) from the given speed n * , and input the obtained speed deviation Δn into the speed regulator to obtain the torque reference value Set the torque reference value to and the estimated rotational speed n are sent to the current distributor to determine whether the actual rotational speed is less than the rated rotational speed, if so, the motor operates in the low-speed area, and enter step 5), otherwise, enter step 6).

(5)下面分析低速区混合励磁同步电机控制策略,具体如下;(5) The control strategy of the hybrid excitation synchronous motor in the low-speed area is analyzed below, as follows;

在d-q坐标系中,混合励磁同步电机的数学模型如式(14)到式(16)所示磁链方程:In the d-q coordinate system, the mathematical model of the hybrid excitation synchronous motor is shown in formula (14) to formula (16) Flux linkage equation:

电压方程:Voltage equation:

转矩方程:Torque equation:

其中,id、iq分别为d轴与q轴电流;Ld、Lq分别为d轴与q轴电感;ud、uq分别为d轴与q轴的电压,uf为励磁绕组电压;Rf为励磁绕组电阻;ψd、ψq、ψf分别d轴、q轴与励磁绕组磁链。Among them, id and i q are the d -axis and q-axis currents respectively; L d and L q are the inductances of the d-axis and q-axis respectively; u d and u q are the voltages of the d-axis and q-axis respectively, and u f is the excitation winding Voltage; R f is the excitation winding resistance; ψ d , ψ q , ψ f are respectively d-axis, q-axis and the flux linkage of the excitation winding.

当TL≤TN时,无需增磁控制,所以if=0,采用id=0控制,结合式(16)可得如下电流分配:When T L ≤ T N , there is no need for magnetization control, so if if = 0, use i d = 0 control, combined with formula (16 ) , the following current distribution can be obtained:

定子磁链参考值为The reference value of stator flux linkage is

将式(17)带入式(18)可得Put formula (17) into formula (18) to get

当TL>TN时,q轴电流已达到额定值,需进行增磁控制,因此iq=iqN,采用id=0控制,结合式(16)可得如下电流分配:When T L > T N , the q-axis current has reached the rated value, and magnetization control is required, so i q = i qN , using i d = 0 control, combined with formula (16), the following current distribution can be obtained:

将式(20)带入式(18)可得Put formula (20) into formula (18) to get

其中,idref、iqref分别为d轴与q轴电流参考值,iqN为q轴电流的额定值;ifref为励磁电流参考值;Teref为电磁转矩参考值,ψs为定子磁链,ψsref为定子磁链参考值。Among them, i dref and i qref are the d-axis and q-axis current reference values respectively, i qN is the rated value of the q-axis current; i fref is the excitation current reference value; T eref is the electromagnetic torque reference value, ψ s is the stator magnetic Chain, ψ sref is the reference value of stator flux linkage.

经过步骤5)的运算后,直接进入步骤7)进行控制。After the calculation in step 5), directly enter step 7) for control.

(6)当混合励磁电机进入高速区后,反电势基值为(6) When the hybrid excitation motor enters the high-speed zone, the back EMF base value is

Ebase=ωeNψm (22)E base = ω eN ψ m (22)

q轴反电势为The q-axis back EMF is

Eq=ωem+Ldid+Mfif) (23)E q =ω em +L d i d +M f i f ) (23)

令式(22)等于式(23),可得Let formula (22) be equal to formula (23), we can get

首先判断转速是否小于弱磁基速nflux,如是,则保持d轴电流id=0,采用励磁电流if弱磁,可得如下电流分配:First judge whether the rotational speed is less than the field-weakening base speed n flux , if so, keep the d-axis current i d = 0, and use the field current i f to weaken the field, and the following current distribution can be obtained:

将式(25)带入式(18)可得Put formula (25) into formula (18) to get

如转速达到弱磁基速nflux,励磁电流达到额定值,得到如下结果:If the rotational speed reaches the field-weakening base speed nflux and the excitation current reaches the rated value, the following results are obtained:

继续采用d轴电流id弱磁,于是可得如下电流分配:Continue to use the d-axis current i d to weaken the field, so the following current distribution can be obtained:

将式(27)带入式(18)可得Put formula (27) into formula (18) to get

其中,IfN为励磁电流额定值,ωeN为额定电角速度,Ebase为反电势基值,Eq为q轴反电势。Among them, I fN is the rated value of the excitation current, ω eN is the rated electrical angular velocity, E base is the base value of the back EMF, and E q is the back EMF of the q-axis.

经过步骤6)运算后,直接进入步骤7)进行控制。After step 6) calculation, directly enter step 7) for control.

(7)用所述定子磁链参考值ψsref减去步骤(3)中的定子磁链估计值ψs得到定子磁链偏差Δψs,用电磁转矩参考值Teref减去步骤(3)中的电磁转矩估计值Te得到电磁转矩偏差ΔTe,然后将Δψs送入滞环比较器得到转矩控制信号τ,将ΔTe送入滞环比较器得到磁链控制信号φ。三个控制信号τ、φ、θ经过表1所示的开关表选取选取适当开关状态,驱动主功率变换器;(7) Subtract the estimated stator flux linkage value ψ s in step (3) from the stator flux linkage reference value ψ sref to obtain the stator flux linkage deviation Δψ s , and subtract step (3) from the electromagnetic torque reference value T eref The electromagnetic torque estimation value T e in the electromagnetic torque deviation ΔT e is obtained, and then Δψ s is sent to the hysteresis comparator to obtain the torque control signal τ, and ΔT e is sent to the hysteresis comparator to obtain the flux linkage control signal φ. The three control signals τ, φ, θ are selected through the switch table shown in Table 1 to select the appropriate switch state to drive the main power converter;

表1逆变器开关表Table 1 Inverter switch table

同时将步骤(1)中采集的励磁电流if,经信号调理与A/D转换后和步骤(5)和(6)得到的励磁电流参考值ifref一起送入直流励磁脉宽调制模块,运算输出4路脉冲宽度调制信号来驱动励磁功率变换器。At the same time, the excitation current if collected in step (1) is sent to the DC excitation pulse width modulation module together with the excitation current reference value i fref obtained in steps (5) and (6) after signal conditioning and A/D conversion. The operation outputs 4 pulse width modulation signals to drive the excitation power converter.

上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。The foregoing embodiments are only preferred implementations of the present invention. It should be pointed out that those skilled in the art can make several improvements and equivalent replacements without departing from the principle of the present invention. Technical solutions requiring improvement and equivalent replacement all fall within the protection scope of the present invention.

Claims (2)

1.一种混合励磁同步电机无位置传感器直接转矩控制方法,其特征在于,该方法包括以下步骤:1. a hybrid excitation synchronous motor position sensorless direct torque control method, is characterized in that, the method comprises the following steps: (1)三个霍尔电流传感器和两个电压传感器分别从电机主电路采集相电流ia、ib和励磁电流if,母线电压UDC和励磁电压Uf,将采集到的信号经电压跟随、滤波、偏置及过压保护信号调理后送入控制器;(1) Three Hall current sensors and two voltage sensors respectively collect phase current ia , ib and excitation current if, bus voltage U DC and excitation voltage U f from the main circuit of the motor, and pass the collected signals through voltage Follow, filter, bias and overvoltage protection signals are conditioned and sent to the controller; (2)将送入控制器的相电流ia、ib进行A/D转换,经过三相坐标系到两相静止坐标系的3/2变换得到两相静止坐标系下的α轴电流iα和β轴电流iβ;利用送入控制器的UDC和开关状态Sa、Sb、Sc,根据下式确定两相静止坐标系下的α轴电压uα和β轴电压uβ(2) A/D conversion is performed on the phase currents i a and i b sent to the controller, and the α-axis current i in the two-phase stationary coordinate system is obtained through the 3/2 transformation from the three-phase coordinate system to the two-phase stationary coordinate system α and β axis current i β ; using the U DC sent to the controller and the switch states S a , S b , S c , determine the α axis voltage u α and β axis voltage u β in the two-phase stationary coordinate system according to the following formula : <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>&amp;alpha;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>&amp;beta;</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <mn>3</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msqrt> <mn>3</mn> </msqrt> </mtd> <mtd> <mrow> <mo>-</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>S</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>u</mi><mi>&amp;alpha;</mi></msub></mtd></mtr><mtr><mtd><msub><mi>u</mi><mi>&amp;beta;</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><msub><mi>U</mi><mrow><mi>D</mi><mi>C</mi></mrow></msub><mn>3</mn></mfrac><mfenced open = "[" close = "]"><mtable><mtr><mtd><mn>2</mn></mrow>mtd><mtd><mrow><mo>-</mo><mn>1</mn></mrow></mtd><mtd><mrow><mo>-</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msqrt><mn>3</mn></mn>msqrt></mtd><mtd><mrow><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mtd></mtr></mtable></mfenced><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>S</mi><mi>a</mi></msub></mtd></mtr><mtr><mtd><msub><mi>S</mi><mi>b</mi></msub></mtd></mtr><mtr><mtd><msub><mi>S</mi><mi>c</mi></msub></mtd></mtr></mtable></mfenced></mrow> 其中,Sa、Sb、Sc分别为逆变器三相桥臂a、b、c上下开关管的开关状态,上桥臂导通时值为1,下桥臂导通时,值为0;Among them, S a , S b , and S c are the switching states of the upper and lower switching tubes of the inverter three-phase bridge arms a, b, and c, respectively. When the upper bridge arm is turned on, the value is 1; when the lower bridge arm is turned on, the value 0; (3)利用步骤(2)得到的iα、iβ、uα、uβ,根据以下各公式分别计算实际电磁转矩估计值Te、实际定子磁链估计值ψs、定子磁链工作扇区估计值θi(3) Using the i α , i β , u α , u β obtained in step (2), calculate the actual electromagnetic torque estimated value T e , the actual stator flux linkage estimated value ψ s , and the stator flux linkage working value respectively according to the following formulas: Sector estimate θ i : <mrow> <msub> <mi>&amp;psi;</mi> <mi>s</mi> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mo>&amp;Integral;</mo> <mo>(</mo> <msub> <mi>u</mi> <mi>&amp;alpha;</mi> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mo>)</mo> <mi>d</mi> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>&amp;Integral;</mo> <mo>(</mo> <msub> <mi>u</mi> <mi>&amp;beta;</mi> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mi>&amp;beta;</mi> </msub> <mo>)</mo> <mi>d</mi> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow><msub><mi>&amp;psi;</mi><mi>s</mi></msub><mo>=</mo><msqrt><mrow><msup><mrow><mo>(</mo><mo>&amp;Integral;</mo><mo>(</mo><msub><mi>u</mi><mi>&amp;alpha;</mi></msub><mo>-</mo><msub><mi>R</mi><mi>s</mi></msub><msub><mi>i</mi><mi>&amp;alpha;</mi></msub><mo>)</mo><mi>d</mi><mi>t</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>&amp;Integral;</mo><mo>(</mo><msub><mi>u</mi><mi>&amp;beta;</mi></msub><mo>-</mo><msub><mi>R</mi><mi>s</mi></msub><msub><mi>i</mi><mi>&amp;beta;</mi></msub><mo>)</mo><mi>d</mi><mi>t</mi><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow> <mrow> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;psi;</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>i</mi> <mi>&amp;beta;</mi> </msub> <mo>-</mo> <msub> <mi>&amp;psi;</mi> <mi>&amp;beta;</mi> </msub> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>T</mi><mi>e</mi></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>p</mi><mrow><mo>(</mo><msub><mi>&amp;psi;</mi><mi>&amp;alpha;</mi></msub><msub><mi>i</mi><mi>&amp;beta;</mi></msub><mo>-</mo><msub><mi>&amp;psi;</mi><mi>&amp;beta;</mi></msub><msub><mi>i</mi><mi>&amp;alpha;</mi></msub><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;psi;</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>&amp;beta;</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;theta;</mi><mi>i</mi></msub><mo>=</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>t</mi><mi>a</mi><mi>n</mi><mrow><mo>(</mo><mfrac><msub><mi>&amp;psi;</mi><mi>&amp;alpha;</mi></msub><msub><mi>&amp;psi;</mi><mi>&amp;beta;</mi></msub></mfrac><mo>)</mo></mrow></mrow> 其中,ψα和ψβ分别为两相静止坐标系下的定子α轴磁链和β轴磁链,Rs为电枢绕组电阻,p为电机极对数;Among them, ψ α and ψ β are the stator α-axis flux linkage and β-axis flux linkage in the two-phase stationary coordinate system, respectively, R s is the armature winding resistance, and p is the number of pole pairs of the motor; 根据以下各公式分别计算实际转速估计值n和转子位置角估计值θeAccording to the following formulas, the estimated value of the actual speed n and the estimated value of the rotor position angle θ e are respectively calculated: <mrow> <msub> <mi>&amp;theta;</mi> <mi>e</mi> </msub> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>e</mi> <mi>&amp;beta;</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mo>(</mo> <msub> <mover> <mi>i</mi> <mo>&amp;OverBar;</mo> </mover> <mi>&amp;alpha;</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mo>(</mo> <msub> <mover> <mi>i</mi> <mo>&amp;OverBar;</mo> </mover> <mi>&amp;beta;</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;theta;</mi><mi>e</mi></msub><mo>=</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>t</mi><mi>a</mi><mi>n</mi><mrow><mo>(</mo><mfrac><msub><mi>e</mi><mi>&amp;alpha;</mi></msub><msub><mi>e</mi><mi>&amp;beta;</mi></msub></mfrac><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>t</mi><mi>a</mi><mi>n</mi><mrow><mo>(</mo><mfrac><mrow><mo>(</mo><msub><mi>K</mi><mn>1</mn></msub><mi>s</mi><mi>i</mi><mi>g</mi><mi>n</mi><mo>(</mo><msub><mover><mi>i</mi><mo>&amp;OverBar;</mo></mover><mi>&amp;alpha;</mi></msub><mo>)</mo><mo>)</mo></mrow><mrow><mo>(</mo><msub><mi>K</mi><mn>1</mn></msub><mi>s</mi><mi>i</mi><mi>g</mi><mi>n</mi><mo>(</mo><msub><mover><mi>i</mi><mo>&amp;OverBar;</mo></mover><mi>&amp;beta;</mi></msub><mo>)</mo><mo>)</mo></mrow></mfrac><mo>)</mo></mrow></mrow> <mrow> <mi>n</mi> <mo>=</mo> <mfrac> <mn>30</mn> <mrow> <mi>p</mi> <mi>&amp;pi;</mi> </mrow> </mfrac> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mn>30</mn> <mrow> <mi>p</mi> <mi>&amp;pi;</mi> </mrow> </mfrac> <mfrac> <mrow> <msub> <mi>d&amp;theta;</mi> <mi>e</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>30</mn> <mrow> <mi>p</mi> <mi>&amp;pi;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>d</mi> <mi> </mi> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>e</mi> <mi>&amp;beta;</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow><mi>n</mi><mo>=</mo><mfrac><mn>30</mn><mrow><mi>p</mi><mi>&amp;pi;</mi></mrow></mfrac><msub><mi>&amp;omega;</mi><mi>e</mi></msub><mo>=</mo><mfrac><mn>30</mn><mrow><mi>p</mi><mi>&amp;pi;</mi></mrow></mfrac><mfrac><mrow><msub><mi>d&amp;theta;</mi><mi>e</mi></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mn>30</mn><mrow><mi>p</mi><mi>&amp;pi;</mi></mrow></mfrac><mfrac><mrow><mi>d</mi><mi></mi><mi>a</mi><mi>r</mi><mi>c</mi><mi>t</mi><mi>a</mi><mi>n</mi><mrow><mo>(</mo><mfrac><msub><mi>e</mi><mi>&amp;alpha;</mi></msub><msub><mi>e</mi><mi>&amp;beta;</mi></msub></mfrac><mo>)</mo></mrow></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow> 其中,K1是固定的观测增益,为定子α轴观测误差电流,为定子β轴观测误差电流,分别为α轴与β轴观测电流,sign()为符号函数,eα、eβ分别为α轴与β轴反电势,ωe为电角速度;where K1 is the fixed observation gain, is the observation error current of the stator α-axis, is the stator β-axis observation error current, are the observed currents on the α-axis and β-axis respectively, sign() is the sign function, e α and e β are the counter electromotive forces of the α-axis and β-axis respectively, and ω e is the electrical angular velocity; (4)用给定转速nref减去步骤3)估测到的转速n,将得到的转速偏差△n输入速度调节器后得到电磁转矩参考值Teref,将所述电磁转矩参考值Teref和估计转速n送入电流分配器,判断实际转速是否小于额定转速,如是,则电机运行于低速区,进入步骤5),否则,电机运行于高速区,进入步骤6);(4) Subtract the estimated rotational speed n in step 3) from the given rotational speed n ref , input the obtained rotational speed deviation Δn into the speed regulator to obtain the electromagnetic torque reference value T eref , and convert the electromagnetic torque reference value to Teref and the estimated speed n are sent to the current distributor to determine whether the actual speed is less than the rated speed, if so, the motor runs in the low speed zone, and enters step 5); otherwise, the motor runs in the high speed zone, and enters step 6); (5)判断负载转矩是否满足TL≤TN,确定定子磁链参考值ψsref和电磁转矩参考值Teref后进入步骤(7),其中TL为负载转矩、TN为额定转矩,具体如下;(5) Determine whether the load torque satisfies T L ≤ T N , determine the stator flux reference value ψ sref and the electromagnetic torque reference value T eref , and then enter step (7), where T L is the load torque and T N is the rated Torque, as follows; 当TL≤TN时,无需增磁控制,if=0,采用id=0控制,按照如下电流分配方案进行电流分配:When T L T N , there is no need for magnetization control, if if = 0, use i d = 0 control, and carry out current distribution according to the following current distribution scheme: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>p&amp;psi;</mi> <mi>m</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>f</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><msub><mi>i</mi><mrow><mi>d</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>i</mi><mrow><mi>q</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>2</mn><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub></mrow><mrow><mn>3</mn><msub><mi>p&amp;psi;</mi><mi>m</mi></msub></mrow></mfrac></mtd></mtr><mtr><mtd><mrow><msub><mi>i</mi><mrow><mi>f</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mtd></mtr></mtable></mfenced> 进而得到定子磁链参考值为Then the reference value of the stator flux linkage is obtained <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>&amp;psi;</mi> <mi>m</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>p&amp;psi;</mi> <mi>m</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow><msub><mi>&amp;psi;</mi><mrow><mi>s</mi><mi>r</mi><mi>e</mi><mi>f</mi>mi></mrow></msub><mo>=</mo><msqrt><mrow><msubsup><mi>&amp;psi;</mi><mi>m</mi><mn>2</mn></msubsup><mo>+</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><msub><mi>L</mi><mi>q</mi></msub><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub></mrow><mrow><mn>3</mn><msub><mi>p&amp;psi;</mi><mi>m</mi></msub></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow> 当TL>TN时,q轴电流已达到额定值,需进行增磁控制,因此iq=iqN,采用d轴电流id=0控制,按照如下电流分配方案进行电流分配:When T L >T N , the q-axis current has reached the rated value, and magnetization control is required, so i q =i qN , and the d-axis current i d =0 is used for control, and the current distribution is performed according to the following current distribution scheme: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>f</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <mn>3</mn> <msub> <mi>p&amp;psi;</mi> <mi>m</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>N</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>pM</mi> <mi>f</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>N</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><msub><mi>i</mi><mrow><mi>d</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>i</mi><mrow><mi>f</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>2</mn><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>-</mo><mn>3</mn><msub><mi>p&amp;psi;</mi><mi>m</mi></msub><msub><mi>i</mi><mrow><mi>q</mi><mi>N</mi></mrow></msub></mrow><mrow><mn>3</mn><msub><mi>pM</mi><mi>f</mi></msub><msub><mi>i</mi><mrow><mi>q</mi><mi>N</mi></mrow></msub></mrow></mfrac></mtd></mtr><mtr><mtd><mrow><msub><mi>i</mi><mrow><mi>q</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><msub><mi>i</mi><mrow><mi>q</mi><mi>N</mi></mrow></msub></mrow></mtd></mtr></mtable></mfenced> 进而得到定子磁链参考值为:Then the reference value of the stator flux linkage is obtained as: <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <mn>3</mn> <msub> <mi>p&amp;psi;</mi> <mi>m</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>N</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>pi</mi> <mrow> <mi>q</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>N</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow><msub><mi>&amp;psi;</mi><mrow><mi>s</mi><mi>r</mi><mi>e</mi><mi>f</mi>mi></mrow></msub><mo>=</mo><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>&amp;psi;</mo>mi><mi>m</mi></msub><mo>+</mo><mfrac><mrow><mn>2</mn><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>-</mo><mn>3</mn><msub><mi>p&amp;psi;</mi><mi>m</mi></msub><msub><mi>i</mi><mrow><mi>q</mi><mi>N</mi></mrow></msub></mrow><mrow><mn>3</mn><msub><mi>pi</mi><mrow><mi>q</mi><mi>N</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msub><mi>L</mi><mi>q</mi></msub><msub><mi>i</mi><mrow><mi>q</mi><mi>N</mi></mrow></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow> 其中,idref、iqref分别为d轴与q轴电流参考值,iqN为q轴电流的额定值;ifref为励磁电流参考值;Ld、Lq分别为d轴与q轴电感,Mf为电枢与励磁绕组之间的互感;ψm为永磁体磁链;ψd、ψq分别d轴、q轴磁链;ψs为定子磁链,ψsref为定子磁链参考值;Among them, i dref and i qref are the d-axis and q-axis current reference values respectively, i qN is the rated value of the q-axis current; i fref is the excitation current reference value; L d and L q are the d-axis and q-axis inductances respectively, M f is the mutual inductance between the armature and the field winding; ψ m is the flux linkage of the permanent magnet; ψ d , ψ q are the d-axis and q-axis flux linkages respectively; ψ s is the stator flux linkage, and ψ sref is the reference value of the stator flux linkage ; (6)首先判断给定转速是否小于弱磁基速nflux,如是,则保持d轴电流id=0,采用励磁电流if弱磁,按照如下电流分配方案进行电流分配:(6) First judge whether the given speed is less than the field-weakening base speed n flux , if so, keep the d-axis current i d = 0, adopt the field current i f to weaken the field, and carry out current distribution according to the following current distribution scheme: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>p&amp;psi;</mi> <mi>m</mi> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>f</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <msub> <mi>M</mi> <mi>f</mi> </msub> </mfrac> <mo>(</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><msub><mi>i</mi><mrow><mi>q</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>2</mn><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mrow><mrow><mn>3</mn><msub><mi>p&amp;psi;</mi><mi>m</mi></msub><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub></mrow></mfrac></mtd></mtr><mtr><mtd><mrow><msub><mi>i</mi><mrow><mi>d</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><msub><mi>i</mi><mrow><mi>f</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mfrac><msub><mi>&amp;psi;</mi><mi>m</mi></msub><msub><mi>M</mi><mi>f</mi></msub></mfrac><mo>(</mo><mfrac><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mtd></mtr></mtable></mfenced> 进而得到定子磁链参考值为:Then the reference value of the stator flux linkage is obtained as: <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mrow> <mrow> <mn>3</mn> <msub> <mi>p&amp;psi;</mi> <mi>m</mi> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow><msub><mi>&amp;psi;</mi><mrow><mi>s</mi><mi>r</mi><mi>e</mi><mi>f</mi>mi></mrow></msub><mo>=</mo><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>&amp;psi;</mo>mi><mi>m</mi></msub><mfrac><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><msub><mi>L</mi><mi>q</mi></msub><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mrow><mrow><mn>3</mn><msub><mi>p&amp;psi;</mi><mi>m</mi></msub><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow> 如给定转速达到弱磁基速nflux,则励磁电流if达到额定值,继续采用d轴电流id弱磁,按照如下电流分配方案进行电流分配:If the given speed reaches the field-weakening base speed nflux , then the excitation current if reaches the rated value, continue to use the d-axis current i d field -weakening, and carry out current distribution according to the following current distribution scheme: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <mi>p</mi> <mo>{</mo> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>f</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>N</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <msub> <mi>M</mi> <mi>f</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>N</mi> </mrow> </msub> <mo>}</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>f</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>f</mi> <mi>N</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>f</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>f</mi> <mi>N</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>i</mi><mrow><mi>q</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>2</mn><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub></mrow><mrow><mn>3</mn><mi>p</mi><mo>{</mo><msub><mi>&amp;psi;</mi><mi>m</mi></msub><mo>+</mo><mfrac><mrow><mo>(</mo><msub><mi>L</mi><mi>d</mi></msub><mo>-</mo><msub><mi>L</mi><mi>q</mi></msub><mo>)</mo></mrow><msub><mi>L</mi><mi>d</mi></msub></mfrac><mo>&amp;lsqb;</mo><mrow><mo>(</mo><mfrac><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&amp;psi;</mi><mi>m</mi></msub><mo>+</mo><msub><mi>M</mi><mi>f</mi></msub><msub><mi>I</mi><mrow><mi>r</mi><mi>N</mi></mrow></msub><mo>&amp;rsqb;</mo><mo>-</mo><msub><mi>M</mi><mi>f</mi></msub><msub><mi>I</mi><mrow><mi>r</mi><mi>N</mi></mrow></msub><mo>}</mo></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>i</mi><mrow><mi>f</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mo>-</mo><msub><mi>I</mi><mrow><mi>f</mi><mi>N</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>i</mi><mrow><mi>d</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><msub><mi>L</mi><mi>d</mi></msub></mfrac><mo>&amp;lsqb;</mo><mrow><mo>(</mo><mfrac><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&amp;psi;</mi><mi>m</mi></msub><mo>+</mo><msub><mi>M</mi><mi>f</mi></msub><msub><mi>I</mi><mrow><mi>f</mi><mi>N</mi></mrow></msub><mo>&amp;rsqb;</mo></mrow></mtd></mtr></mtable></mfenced> 定子磁链参考值Reference value of stator flux linkage <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <mi>p</mi> <mo>{</mo> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>e</mi> <mi>N</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>e</mi> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;psi;</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>f</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>f</mi> <mi>N</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <msub> <mi>M</mi> <mi>f</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>f</mi> <mi>N</mi> </mrow> </msub> <mo>}</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow><msub><mi>&amp;psi;</mi><mrow><mi>s</mi><mi>r</mi><mi>e</mi><mi>f</mi>mi></mrow></msub><mo>=</mo><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>&amp;psi;</mo>mi><mi>m</mi></msub><mfrac><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><msub><mi>L</mi><mi>q</mi></msub><msub><mi>T</mi><mrow><mi>e</mi><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub></mrow><mrow><mn>3</mn><mi>p</mi><mo>{</mo><msub><mi>&amp;psi;</mi><mi>m</mi></msub><mo>+</mo><mfrac><mrow><mo>(</mo><msub><mi>L</mi><mi>d</mi></msub><mo>-</mo><msub><mi>L</mi><mi>q</mi></msub><mo>)</mo></mrow><msub><mi>L</mi><mi>d</mi></msub></mfrac><mo>&amp;lsqb;</mo><mrow><mo>(</mo><mfrac><msub><mi>&amp;omega;</mi><mrow><mi>e</mi><mi>N</mi></mrow></msub><msub><mi>&amp;omega;</mi><mi>e</mi></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&amp;psi;</mi><mi>m</mi></msub><mo>+</mo><msub><mi>M</mi><mi>f</mi></msub><msub><mi>I</mi><mrow><mi>f</mi><mi>N</mi></mrow></msub><mo>&amp;rsqb;</mo><mo>-</mo><msub><mi>M</mi><mi>f</mi></msub><msub><mi>I</mi><mrow><mi>f</mi><mi>N</mi></mrow></msub><mo>}</mo></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow> 其中,IfN为励磁电流额定值,ωeN为额定电角速度;Among them, I fN is the rated value of excitation current, ω eN is the rated electrical angular velocity; (7)用所述定子磁链参考值ψsref减去步骤(3)中得到的实际定子磁链估计值ψs得到定子磁链偏差△ψs,用电磁转矩参考值Teref减去步骤(3)中的实际电磁转矩估计值Te得到电磁转矩偏差△Te,然后将△ψs送入滞环比较器得到转矩控制信号τ,将△Te送入滞环比较器得到磁链控制信号φ,三个控制信号τ、φ、θ经过开关表选取开关状态,驱动主功率变换器;(7) Subtract the actual stator flux estimated value ψ s obtained in step (3) from the stator flux reference value ψ sref to obtain the stator flux deviation Δψ s , and subtract the step from the electromagnetic torque reference value T eref The actual electromagnetic torque estimation value T e in (3) is used to obtain the electromagnetic torque deviation △T e , and then △ψ s is sent to the hysteresis comparator to obtain the torque control signal τ, and △T e is sent to the hysteresis comparator Get the flux linkage control signal φ, and the three control signals τ, φ, θ select the switch state through the switch table to drive the main power converter; 同时将步骤(1)中采集的励磁电流if,经信号调理与A/D转换后,与步骤(5)或(6)得到的励磁电流参考值ifref一起送入直流励磁脉冲宽度调制模块,运算输出4路脉冲宽度调制信号来驱动励磁功率变换器。At the same time, the excitation current if collected in step (1) is sent to the DC excitation pulse width modulation module together with the excitation current reference value i fref obtained in step (5) or (6) after signal conditioning and A/D conversion , the operation outputs 4 pulse width modulation signals to drive the excitation power converter. 2.根据权利要求1所述的混合励磁同步电机无位置传感器直接转矩控制方法,其特征在于,所述步骤(7)中的直流励磁脉冲宽度调制模块为空间矢量脉冲宽度调制模块。2. The position sensorless direct torque control method of a hybrid excitation synchronous motor according to claim 1, characterized in that the DC excitation pulse width modulation module in the step (7) is a space vector pulse width modulation module.
CN201510170083.3A 2015-04-10 2015-04-10 A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method Expired - Fee Related CN104767455B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510170083.3A CN104767455B (en) 2015-04-10 2015-04-10 A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510170083.3A CN104767455B (en) 2015-04-10 2015-04-10 A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method

Publications (2)

Publication Number Publication Date
CN104767455A CN104767455A (en) 2015-07-08
CN104767455B true CN104767455B (en) 2018-02-06

Family

ID=53649118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510170083.3A Expired - Fee Related CN104767455B (en) 2015-04-10 2015-04-10 A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method

Country Status (1)

Country Link
CN (1) CN104767455B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526299B (en) * 2016-10-10 2019-03-05 江苏大学 A kind of power converter current detection method based on Non-smooth surface observation technology
KR102441606B1 (en) * 2017-05-25 2022-09-07 현대모비스 주식회사 System and method for controlling motor and
CN107248830B (en) * 2017-07-24 2019-04-30 东南大学 A Synergistic Control Method for Magnetization State Selection and Field Weakening Control of Memory Motor
CN107947669B (en) * 2017-11-23 2020-06-26 西安理工大学 Nonlinear back-thrust tracking control method for hybrid excitation synchronous motor
CN108390602B (en) * 2018-02-24 2019-06-18 西安理工大学 A Direct Predictive Power Control Method for Hybrid Excitation Synchronous Motors
CN108933432B (en) * 2018-07-25 2019-12-06 江苏力信电气技术有限公司 mixed excitation synchronous motor hardware overvoltage protection circuit
CN109742992B (en) * 2019-01-22 2022-06-17 南通大学 Novel hybrid excitation synchronous motor control method without position sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088265A (en) * 2011-03-08 2011-06-08 东南大学 Method for restraining torque ripple of permanent magnet motor based on direct torque control
CN103281030A (en) * 2013-05-31 2013-09-04 东南大学 Vector control method for mixed excitation motor no-position sensor
CN103401506A (en) * 2013-08-06 2013-11-20 东南大学 Direct torque control method for non-salient pole type hybrid excitation motor for electric vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159422A (en) * 2007-10-16 2008-04-09 李平 Permanent-magnet DC motor drive control system with approximate constant power pulling motor characteristics
JP5862125B2 (en) * 2011-09-05 2016-02-16 富士電機株式会社 Control device for power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088265A (en) * 2011-03-08 2011-06-08 东南大学 Method for restraining torque ripple of permanent magnet motor based on direct torque control
CN103281030A (en) * 2013-05-31 2013-09-04 东南大学 Vector control method for mixed excitation motor no-position sensor
CN103401506A (en) * 2013-08-06 2013-11-20 东南大学 Direct torque control method for non-salient pole type hybrid excitation motor for electric vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种新型电动汽车宽速调速驱动系统设计;黄明明等;《电工技术学报》;20130430;第28卷(第4期);第228-233页 *
永磁同步电机直接转矩预测控制研究;张微微等;《科技信息》;20140515;第8-9、22页 *

Also Published As

Publication number Publication date
CN104767455A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
CN104767455B (en) A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method
CN106788081B (en) A kind of minimum Direct Torque Control of hybrid exciting synchronous motor loss
CN103501146B (en) Commutation method for suppressing torque ripple and the system of BLDCM Drive System
CN103647489B (en) An Efficiency Optimal Control Method for Hybrid Excitation Synchronous Motor
CN104378035A (en) Mixed excitation synchronous motor field weakening control method for judging field weakening moment through voltage differences
JP7413171B2 (en) Motor control devices, mechanical and electrical integrated units, generator systems, boost converter systems, and electric vehicle systems
CN103872951A (en) Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer
CN103401506B (en) A kind of direct torque control method for non-salient pole type hybrid excitation motor for electric vehicle
CN106655936B (en) It is a kind of to lack rare-earth permanent-magnet electric machine zero-sequence current inhibition control system and method
CN108390602B (en) A Direct Predictive Power Control Method for Hybrid Excitation Synchronous Motors
CN104320027B (en) The control method of the open permanent-magnet electric generator system of parallel winding
KR102273139B1 (en) Power apparatus, motor driving apparatus therein
CN101931352A (en) A dual-Y-shift 30° six-phase permanent magnet synchronous motor driven by a single inverter, a dual-motor series connection system and a control method
CN103944478B (en) A kind of AC excitation synchronous motor control device and method
CN103762923B (en) The maximum torque control method of asynchronous machine weak magnetic field operation
WO2012029715A1 (en) Electric motor drive device
CN103795316B (en) Vector control apparatus and the control device of electric motor using it, air conditioner
CN104682806B (en) Constant flux linkage control method for hybrid excitation synchronous motor
CN107863915A (en) Based on the synchronous magnetic resistance motor of power back-off without sensor direct Torque Control
WO2015056541A1 (en) Drive device for electric motor
CN110661461B (en) Compressor permanent magnet synchronous motor control method and device and air conditioner
CN108418485B (en) A kind of hidden pole type mixed excitation electric machine invariable power loss model forecast Control Algorithm
CN107947669B (en) Nonlinear back-thrust tracking control method for hybrid excitation synchronous motor
CN104617849B (en) A kind of hybrid exciting synchronous motor peak power output control method
CN103607156B (en) A kind of hybrid exciting synchronous motor power factor control method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180206

CF01 Termination of patent right due to non-payment of annual fee