[go: up one dir, main page]

CN104765372B - A kind of multi-foot robot keeps the gait planning method of linear translation - Google Patents

A kind of multi-foot robot keeps the gait planning method of linear translation Download PDF

Info

Publication number
CN104765372B
CN104765372B CN201510092738.XA CN201510092738A CN104765372B CN 104765372 B CN104765372 B CN 104765372B CN 201510092738 A CN201510092738 A CN 201510092738A CN 104765372 B CN104765372 B CN 104765372B
Authority
CN
China
Prior art keywords
mrow
robot
msup
fuselage
linear translation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510092738.XA
Other languages
Chinese (zh)
Other versions
CN104765372A (en
Inventor
李明富
龙海柱
章壮
张杉桂
李耀源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201510092738.XA priority Critical patent/CN104765372B/en
Publication of CN104765372A publication Critical patent/CN104765372A/en
Application granted granted Critical
Publication of CN104765372B publication Critical patent/CN104765372B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)

Abstract

一种多足机器人保持直线平动的步态规划方法,它主要是解决现有的步态规划易导致机身颠簸等技术问题。其技术方案要点是:机器人其中一条对角线上的两条腿向前移动距离S,该腿单次向后回转dγ,其他腿机身垂直,单次向前正转dγ,循环此过程,直至向前运动单位距离(γ=γmax)的腿变换成与机身垂直的状态(γ=0),以及与机身垂直的所有腿变换成向后运动单位距离的状态(γ=‑γmax),将旋转至‑γ角的所有腿向前运动两个单位距离(即旋转至γ角),完成一个周期运动,然后进行周期循环。它主要是用于多足机器人保持直线平动的步态规划。

The invention discloses a gait planning method for a multi-legged robot to maintain straight-line translation, which mainly solves the existing technical problems such as gait planning that easily leads to fuselage bumping. The main points of the technical solution are: two legs on one of the diagonal lines of the robot move forward by a distance S, the leg turns backward dγ once, the other legs are vertical, forward forward dγ once, and this process is repeated. Up to the forward motion unit distance (γ=γ max ) the legs are transformed into the state perpendicular to the body (γ=0), and all the legs perpendicular to the body are transformed into the state of the backward movement unit distance (γ=-γ max ), move all legs rotated to ‑γ angle forward two unit distances (that is, rotate to γ angle), complete a cycle of motion, and then perform a cycle cycle. It is mainly used for gait planning of multi-legged robots to maintain linear translation.

Description

一种多足机器人保持直线平动的步态规划方法A gait planning method for a multi-legged robot to maintain linear translation

技术领域technical field

本发明涉及一种多足机器人保持直线平动的步态规划方法。The invention relates to a gait planning method for a multi-legged robot to maintain linear translation.

背景技术Background technique

目前,机器人的行走步态决定了机器人的性能、稳定性、工作范围等。如果机器人步态规划不当,则会无法实现预期的功能。目前,多足机器人在步态规划上有许多种方法,例如仿小狗的步态、仿乌龟的步态、单步平动步态等。但是,这些步态大多存在一些问题,例如仿小狗步态的机器人,在行走过程中机身会以四足的对角线为轴发生往复旋转,导致机身颠簸;仿乌龟步态的机器人,机身会以垂直机身向上的方向为轴发生往复旋转;单步平动步态虽然不会发生旋转,但是机身会上下颠簸等等。综合上面的例子可以看出,现有的各种步态规划方法,都在机器人机身发生直线平动的时候还会产生其他附加运动,这些附加运动就会影响机器人的性能。例如,在机器人的机身装上摄像头,拍摄前面的画面,如果机器人的运动除了直线平动以外还带有其他附加运动,会导致摄像头颠簸,造成画面模糊等问题出现。综上所述,现有的多种步态,都难以解决机器人运动过程中无用附加运动对多足机器人的运动造成的影响。At present, the walking gait of the robot determines the performance, stability, and working range of the robot. If the robot's gait is not planned properly, it will not be able to achieve the intended function. At present, there are many methods for gait planning of multi-legged robots, such as dog-like gait, turtle-like gait, single-step translational gait, etc. However, most of these gaits have some problems. For example, for a robot imitating a dog’s gait, the fuselage will rotate back and forth with the quadruped diagonal as the axis during walking, causing the fuselage to bump; for a robot imitating a turtle’s gait , the fuselage will rotate back and forth on the axis perpendicular to the upward direction of the fuselage; although the single-step translational gait will not rotate, the fuselage will bump up and down and so on. Based on the above examples, it can be seen that the various existing gait planning methods will generate other additional motions when the robot fuselage undergoes linear translation, and these additional motions will affect the performance of the robot. For example, if a camera is installed on the body of the robot to capture the front view, if the movement of the robot has other additional motions in addition to linear translation, it will cause the camera to shake and cause problems such as blurred images. To sum up, the existing various gaits are difficult to solve the impact of unnecessary additional motion on the motion of multi-legged robots during the robot motion process.

发明内容Contents of the invention

本发明的目的是提供一种让多足机器人在前进过程中,机身只发生直线平动,而不会产生其他附加运动的多足机器人保持直线平动的步态规划方法。The purpose of the present invention is to provide a gait planning method for the multi-legged robot to maintain linear translational movement without other additional motions during the forward process of the multi-legged robot.

本发明解决其技术问题所采用的技术方案是:所述的步态规划方法具有周期性,在每个运动周期中机器人直线平动单位距离,具体步骤如下:The technical solution adopted by the present invention to solve the technical problem is: the gait planning method is periodic, and the robot linear translation unit distance in each motion cycle, the specific steps are as follows:

步骤一:先给定h、l0常数;其中:l0为水平面上机器人每条腿的着地点与机身中心之间的距离,h为着地点与机身间的垂直高度;Step 1: first give h, l 0 constants; where: l 0 is the distance between the landing point of each leg of the robot and the center of the fuselage on the horizontal plane, and h is the vertical height between the landing point and the fuselage;

步骤二:将机器人其中一条对角线上的两条腿向前移动单位距离S,其中,γ为投影l与l0之间的锐角夹角,l为同一只脚上a、b、c在水平面上的投影总长,a为横臂2长度,b为斜臂3长度,c为竖臂4长度,γmax为γ的最大值;Step 2: Move the two legs on one of the diagonal lines of the robot forward for a unit distance S, where γ is the acute angle between the projection l and l 0 , and l is the position of a, b, and c on the same foot. The total length of the projection on the horizontal plane, a is the length of the cross arm 2, b is the length of the oblique arm 3, c is the length of the vertical arm 4, and γ max is the maximum value of γ;

S=l0tanγmax—————————(1)S=l 0 tanγmax——————————(1)

当γ=γmax,其他两条腿与机身垂直,即γ=0,同时保证每条腿的着地点与机身的垂直高度为常量h和水平面上机器人每条腿的着地点与机身中心之间的距离为常量l0,即每个时刻有如下关系:When γ=γ max , the other two legs are perpendicular to the fuselage, that is, γ=0, while ensuring that the vertical height between the landing point of each leg and the fuselage is constant h and the landing point of each leg of the robot on the horizontal plane and the fuselage The distance between the centers is a constant l 0 , that is, each moment has the following relationship:

bsinα+csin(α+β)=h—————(2)bsinα+csin(α+β)=h—————(2)

bcosα+ccos(α+β)=lc—————(3)bcosα+ccos(α+β)=l c —————(3)

其中,lc为一只脚上斜臂与竖臂在水平面上的投影,即lc=l-a;β为斜臂延长线与竖臂的夹角,α为横臂延长线与斜臂的夹角;Among them, l c is the projection of the upper oblique arm and the vertical arm on the horizontal plane, that is, l c = la; β is the angle between the extension line of the oblique arm and the vertical arm, and α is the angle between the extension line of the oblique arm and the oblique arm horn;

步骤三:机器人开始直线平动,步骤二中向前迈出γ角度的腿单次向后回转dγ,同时步骤二中与机身垂直的所有腿单次向前正转dγ,循环此过程,直至步骤二中向前运动单位距离S,即γ=γmax的腿变换成与机身垂直的状态,即γ=0,以及步骤二中与机身垂直的所有腿变换成向后运动单位距离的状态,即γ=-γmax,在此过程中随自变量γi的变化获得其他两个关节的角度:Step 3: The robot starts to move in a straight line. In step 2, the leg that steps forward at an angle of γ rotates backward dγ for a single time. At the same time, all legs perpendicular to the fuselage in step 2 rotate forward dγ for a single time. This process is repeated. Until the forward movement unit distance S in step 2, that is, the leg with γ=γ max is transformed into a state perpendicular to the fuselage, that is, γ=0, and all legs perpendicular to the fuselage in step 2 are transformed into a backward movement unit distance The state of , that is, γ=-γ max , in the process, the angles of the other two joints are obtained with the change of the independent variable γ i :

将每个时刻的瞬时值γi、βi、αi进行误差判断,将超过最大误差允许范围的数据组剔除,并将符合要求的数据组输入给对应的关节;Perform error judgment on the instantaneous values γ i , β i , and α i at each moment, remove the data groups that exceed the allowable range of the maximum error, and input the data groups that meet the requirements to the corresponding joints;

步骤四:将步骤三中旋转至-γ角的所有腿向前运动两个单位距离S,即即旋转至γ角;Step 4: Move all the legs rotated to -γ angle in step 3 forward by two unit distance S, that is, rotate to γ angle;

步骤五:单次循环完整,进入下一个周期。Step 5: Complete the single cycle and enter the next cycle.

在以上机器人步态规划过程中的任意时刻有以下关系存在:At any moment in the above robot gait planning process, the following relationship exists:

γrf=γlb;γlf=γrb=γmaxlf———————(6)γ rf = γ lb ; γ lf = γ rb = γ maxlf ———————(6)

机器人直线平动轨迹:Linear translational trajectory of the robot:

其中,γlf:机器人左前方脚对应的γ角;γrf:机器人右前方脚对应的γ角;Among them, γ lf : the γ angle corresponding to the left front foot of the robot; γ rf : the γ angle corresponding to the right front foot of the robot;

γlb:机器人左后方脚对应的γ角;γrb:机器人右后方脚对应的γ角;γ lb : the γ angle corresponding to the left rear foot of the robot; γ rb : the γ angle corresponding to the right rear foot of the robot;

综上所述,在单次直线平动过程中由式(6)(7)得到γrf,γlb,γlf,γrb,再由式(4)(5)确定每条腿的α、β,并由误差分析剔除超出误差范围的数据组,由此得到该时刻,保持机身直线平动所需要的所有关节的转动角度。To sum up, γ rf , γ lb , γ lf , γ rb are obtained from formula (6)(7) in the process of single linear translation, and then the α, β, and the data group beyond the error range is eliminated by error analysis, so as to obtain the rotation angles of all joints required to maintain the linear translation of the fuselage at this moment.

根据多足机器人直线平动运动的判据来判断得到的步态轨迹数据是否在实际误差允许以内,并将超出误差范围的数据剔除,其中,以垂直机身向上为Z轴方向,以水平面上垂直机器人前进方向向右为X轴方向,Z轴与X轴方向允许误差分别为εz、εxAccording to the criterion of the linear translational motion of the multi-legged robot, it is judged whether the obtained gait trajectory data is within the actual error tolerance, and the data exceeding the error range is eliminated. The forward direction of the vertical robot is the X-axis direction to the right, and the allowable errors in the Z-axis and X-axis directions are ε z and ε x respectively;

所述误差判断依据为:任意机器人运动的时刻,机身除直线平动方向以外的其它方向的位移偏移量为零,由此获得Z轴与X轴当前数据下的误差:The basis for judging the error is: at any moment when the robot moves, the displacement offset of the fuselage in other directions other than the linear translation direction is zero, thus obtaining the error under the current data of the Z-axis and the X-axis:

zzmp=bsiα+csin(β+α)-n—————(8)z zmp = bsiα+csin(β+α)-n—————(8)

xzmp=(bcosα+ccos(β+α)+a)cosγ-l0——(9)x zmp =(bcosα+ccos(β+α)+a)cosγ-l 0 ——(9)

如果|Zzmp|≤εz且|Xzmp|≤εx则所得数据在误差允许范围内,并将其输入到机器人中,完成相应步态调整;如果|Zzmp|≤εz、|Xzmp|≤εx有任意一个不成立则获得数据超过误差范围,并将其剔除以确保步态平稳。If |Z zmp |≤ε z and |X zmp |≤ε x , the obtained data is within the allowable range of error, and input it into the robot to complete the corresponding gait adjustment; if |Z zmp |≤ε z , |X If any one of zmp |≤ε x is not established, the obtained data exceeds the error range, and it will be eliminated to ensure a stable gait.

本发明的有益效果是:保证机身只发生直线平动运动,最大限度消除其他方向附带运动,避免机身颠簸。The invention has the beneficial effects of ensuring only linear translational motion of the fuselage, eliminating incidental motion in other directions to the greatest extent, and avoiding bumping of the fuselage.

附图说明Description of drawings

图1是每腿三自由度的四足机器人的结构示意图。Figure 1 is a schematic diagram of the structure of a quadruped robot with three degrees of freedom per leg.

图2是图1的主视图。Fig. 2 is a front view of Fig. 1 .

图3是图1的俯视图。FIG. 3 is a top view of FIG. 1 .

图4是图1的侧视图。FIG. 4 is a side view of FIG. 1 .

图5是机器人运动规划中的主要参数示意图。Fig. 5 is a schematic diagram of main parameters in robot motion planning.

具体实施方式detailed description

下面结合附图和实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.

本发明由于涉及到所有腿的数量为2n(n=2,3,4…)的机器人,以下实施方案以常见的每腿三自由度的四足机器人为例进行描述。其他符合要求的机器人均可按照本方案实施。Since the present invention involves a robot with 2n (n=2, 3, 4 . . . ) legs, the following implementations will be described by taking a common quadruped robot with three degrees of freedom per leg as an example. Other robots that meet the requirements can be implemented according to this plan.

这种多足机器人包括机身、四条机械腿,每条腿包括横臂2、斜臂3、竖臂4。在图1中,机身1与每条腿的横臂2相连,横臂2水平放置,可绕以竖直向上方向为轴转动;每条腿横臂2另一端与斜臂3的一端相连,可绕以两臂形成的平面的垂直方向为轴转动;每条腿的斜臂3另一端与竖臂4的上端相连,可绕以两臂形成平面的垂直方向为轴转动;竖臂4的下端接触地面,横臂2、斜臂3、竖臂4分别由其对应的关节电池驱动。This multi-legged robot includes a fuselage, four mechanical legs, and each leg includes a cross arm 2, an oblique arm 3, and a vertical arm 4. In Fig. 1, the fuselage 1 is connected with the cross arm 2 of each leg, and the cross arm 2 is placed horizontally and can rotate around the axis in the vertical upward direction; the other end of the cross arm 2 of each leg is connected with one end of the oblique arm 3 , can rotate around the vertical direction of the plane formed by the two arms; the other end of the oblique arm 3 of each leg is connected with the upper end of the vertical arm 4, and can rotate around the vertical direction of the plane formed by the two arms; the vertical arm 4 The lower end of the joint touches the ground, and the cross arm 2, the oblique arm 3 and the vertical arm 4 are respectively driven by their corresponding joint batteries.

该步态规划以上述机器人模型为基础实现。The gait planning is realized based on the above robot model.

由图1、图5所示,涉及到的变量有:As shown in Figure 1 and Figure 5, the variables involved are:

a:横臂;b:斜臂;c:竖臂;a: horizontal arm; b: oblique arm; c: vertical arm;

l:同一只脚上a、b、c在水平面上的投影总长;l: total projection length of a, b, c on the same foot on the horizontal plane;

l0:投影l的最短总长(此时l0与机身垂直);l 0 : the shortest total length of the projection l (at this time l 0 is perpendicular to the fuselage);

S:机器人单次平动的距离;S: the distance of a single translation of the robot;

lc:一只脚上斜臂b与竖臂c在水平面上的投影,即lc=l-a;l c : the projection of the upper oblique arm b and the vertical arm c on the horizontal plane, that is, l c = la;

Δl:投影l的最长投影与l0之差;Δl: the difference between the longest projection of projection l and l 0 ;

h:腿着地点与机身见得高度,即横臂a、斜臂b、竖臂c在垂直方向的总高度(横臂的垂直高度为零);h: The visible height between the leg landing point and the fuselage, that is, the total height of the cross arm a, oblique arm b, and vertical arm c in the vertical direction (the vertical height of the cross arm is zero);

β:斜臂延长线与竖臂的夹角;β: Angle between the extension line of the oblique arm and the vertical arm;

α:横臂延长线与斜臂的夹角;α: Angle between the extension line of the cross arm and the oblique arm;

γ:投影与L最短投影l0之间的锐角夹角;γ: the acute angle between the projection and the shortest projection l 0 of L;

γlf:机器人左前方脚对应的γ角;γ lf : the γ angle corresponding to the left front foot of the robot;

γrf:机器人右前方脚对应的γ角;γ rf : the γ angle corresponding to the right front foot of the robot;

γlb:机器人左后方脚对应的γ角;γ lb : the γ angle corresponding to the left rear foot of the robot;

γrb:机器人右后方脚对应的γ角;γ rb : the γ angle corresponding to the right rear foot of the robot;

γmax:γ最大值。γ max : γ maximum value.

一、运行过程1. Operation process

一种保持直线平动的多足机器人步态规划方法所述的步态规划方法具有周期性,在每隔运动周期中机器人直线平动单位距离,具体步骤如下:A multi-legged robot gait planning method that maintains linear translation The gait planning method described has periodicity, and the robot linear translation unit distance in every motion cycle, the specific steps are as follows:

(1).机器人每条腿的着地点与机身的垂直距离l0,以及着地点与机身间的垂直高度h是常数。因此先给定h、l0常数。(1). The vertical distance l 0 between the landing point of each leg of the robot and the fuselage, and the vertical height h between the landing point and the fuselage are constant. Therefore, h, l 0 constants are given first.

(2).将机器人其中一条对角线上的两条腿向前移动单位距离(2). Move the two legs on one of the diagonal lines of the robot forward for a unit distance

S=l0tanγmax—————————(1)S=l 0 tanγ max ——————————(1)

当γ=γmax,其他两条腿与机身垂直,即γ=0,同时保证每条腿的着地点与机身的垂直高度为常量h和水平面上机器人每条腿的着地点与机身中心之间的距离为常量l0。即每个时刻有如下关系:When γ=γ max , the other two legs are perpendicular to the fuselage, that is, γ=0, while ensuring that the vertical height between the landing point of each leg and the fuselage is constant h and the landing point of each leg of the robot on the horizontal plane and the fuselage The distance between the centers is constant l 0 . That is, each moment has the following relationship:

bsinα+csin(α+β)=h—————(2)bsinα+csin(α+β)=h—————(2)

bcosα+ccos(α+β)=lc—————(3)bcosα+ccos(α+β)=l c —————(3)

(3).机器人开始直线平动,(2)中向前迈出γ角度的腿单次向后回转dγ,同时(2)中向与机身垂直的所有腿单次向前正转dγ。循环此过程,直至(2)中向前运动单位距离,即γ=γmax的腿变换成与机身垂直的状态,即γ=0,以及(2)中与机身垂直的所有腿变换成向后运动单位距离的状态即γ=-γmax。在此过程中随自变量γi的变化获得其他两个关节的角度:(3). The robot starts to move in a straight line, and the leg that steps forward at an angle of γ in (2) turns backward dγ once, and at the same time, all legs perpendicular to the fuselage in (2) turn forward forward dγ once. This process is repeated until the unit distance of forward movement in (2), that is, the leg of γ=γ max is transformed into a state perpendicular to the fuselage, that is, γ=0, and all legs perpendicular to the fuselage in (2) are transformed into The state of backward movement unit distance is γ=-γ max . In this process, the angles of the other two joints are obtained with the change of the independent variable γ i :

将每个时刻的瞬时值γi、βi、αi进行误差判断,将超过最大误差允许范围的数据组剔除,并将符合要求的数据组输入给对应的关节;Perform error judgment on the instantaneous values γ i , β i , and α i at each moment, remove the data groups that exceed the allowable range of the maximum error, and input the data groups that meet the requirements to the corresponding joints;

(4).将(3)中旋转至-γ角的所有腿向前运动两个单位距离S,即旋转至γ角;(4). Move all the legs rotated to the -γ angle in (3) forward by two unit distance S, that is, rotate to the γ angle;

(5).单次循环完整,进入下一个周期。(5). The single cycle is complete and enters the next cycle.

在以上机器人步态规划过程中的任意时刻有以下关系存在:At any moment in the above robot gait planning process, the following relationship exists:

γrf=γlb;γlf=γrb=γmaxlf———————(6)γ rf = γ lb ; γ lf = γ rb = γ maxlf ———————(6)

机器人直线平动轨迹:Linear translational trajectory of the robot:

综上所述,在单次直线平动过程中由式(6)(7)得到γrf,γlb,γlf,γrb。再由式(4)(5)确定每条腿的α、β,并由误差分析剔除超出误差范围的数据组。由此得到该时刻,保持机身直线平动所需要的所有关节的转动角度。To sum up, γ rf , γ lb , γ lf , γ rb are obtained from equations (6) (7) during a single linear translation. Then determine the α and β of each leg by formula (4) (5), and eliminate the data group beyond the error range by error analysis. Thus, at this moment, the rotation angles of all joints required to maintain the linear translation of the fuselage are obtained.

二、误差判断2. Error judgment

根据多足机器人直线平动运动的判据来判断得到的步态轨迹数据是否在实际误差允许以内,并将超出误差范围的数据剔除。(以垂直机身向上为Z轴方向,以水平面上垂直机器人前进方向向右为X轴方向,Z轴与X轴方向允许误差分别为εz、εx)。According to the criterion of the linear translational motion of the multi-legged robot, it is judged whether the obtained gait trajectory data is within the allowable actual error, and the data exceeding the error range are eliminated. (The direction of the Z-axis is defined as the upward direction of the vertical fuselage, and the direction of the X-axis is defined as the forward direction of the vertical robot on the horizontal plane. The allowable errors of the directions of the Z-axis and the X-axis are ε z and ε x respectively).

所述误差判断依据为:任意机器人运动的时刻,机身除直线平动方向以外的其它方向的位移偏移量为零。由此获得Z轴与X轴当前数据下的误差:The error judgment basis is: at any moment when the robot moves, the displacement offset of the fuselage in other directions except the linear translation direction is zero. Thus, the error under the current data of the Z-axis and the X-axis is obtained:

zzmp=bsinα+csin(β+α)-h—————(8)z zmp = bsinα+csin(β+α)-h—————(8)

xzmp=(bcosα+ccos(β+α)+a)cosγ-l0——(9)x zmp =(bcosα+ccos(β+α)+a)cosγ-l 0 ——(9)

如果|Zzmp|≤εz且|Xzmp|≤εx则所得数据在误差允许范围内,并将其输入到机器人中,完成相应步态调整;如果|Zzmp|≤εz、|Xzmp|≤εx有任意一个不成立则获得数据超过误差范围,并将其剔除以确保步态平稳。If |Z zmp |≤ε z and |X zmp |≤ε x , the obtained data is within the allowable range of error, and input it into the robot to complete the corresponding gait adjustment; if |Z zmp |≤ε z , |X If any one of zmp |≤ε x is not established, the obtained data exceeds the error range, and it will be eliminated to ensure a stable gait.

Claims (3)

1. a kind of multi-foot robot keeps the gait planning method of linear translation, it is characterized in that:Described gait planning method tool Have periodically, robot linear translation unit distance, is comprised the following steps that in each period of motion:
Step 1:First give h, l0Constant;Wherein:l0Between touchdown point and fuselage center for every leg of robot on horizontal plane Distance, vertical heights of the h between touchdown point and fuselage;
Step 2:Two legs of the robot wherein on a diagonal are moved forward into unit distance S, wherein, γ for projection l with l0Between acute angle, l is the projection overall length of a, b, c in the horizontal plane on same pin, and a be transverse arm length, and b is oblique arm length Degree, c are vertical arm length, γmaxFor γ maximum;
S=l0tanγmax—————————(1)
As γ=γmax, other two legs are vertical with fuselage, i.e. γ=0, while ensure the every touchdown point of leg and hanging down for fuselage Straight height is that the distance between the touchdown point of every leg of robot and fuselage center are constant l on constant h and horizontal plane0, i.e., it is every There is following relation at the individual moment:
Bsin α+csin (alpha+beta)=h --- --- (2)
Bcos α+ccos (alpha+beta)=lc—————(3)
Wherein, lcFor oblique arm b on a pin and the projections of vertical arm c in the horizontal plane, i.e. lc=l-a;β is oblique arm extended line with erecting The angle of arm, α are the angle of transverse arm extended line and oblique arm;
Step 3:Robot starts linear translation, and the leg single for stepping γ angles in step 2 forward turns round d γ backward, simultaneously All leg singles vertical with fuselage rotate forward forward d γ in step 2, circulate this process, until the unit that travelled forward in step 2 Distance S, i.e. γ=γmaxLeg be transformed into the state vertical with fuselage, i.e., the institute vertical with fuselage in γ=0, and step 2 There are the state that leg is transformed into motor unit distance backward, i.e. γ=- γmax, in the process with independent variable γiChange obtain The angle in other two joints:
<mrow> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>b</mi> <mi>c</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mi>h</mi> <mrow> <mi>l</mi> <mo>-</mo> <mi>a</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>b</mi> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
By the instantaneous value γ at each momenti、βi、αiError judgment is carried out, the data group more than worst error allowed band is picked Remove, and satisfactory data group is inputed into corresponding joint;
Step 4:Rotation in step 3 to all legs at-γ angles is travelled forward two unit distance S, that is, rotated to γ angles;
Step 5:Single cycle is complete, into next cycle.
2. multi-foot robot according to claim 1 keeps the gait planning method of linear translation, it is characterized in that:In the above Any time in robot gait planning process is with the presence of following relation:
γrflb;γlfrbmaxlf———————(6)
Robot linear translation track:
<mrow> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>&amp;gamma;</mi> <mi>max</mi> </msub> </msubsup> <mi>l</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;gamma;</mi> <mi>d</mi> <mi>&amp;gamma;</mi> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>S</mi> </msubsup> <mi>d</mi> <mi>S</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Wherein, γlf:γ angles corresponding to robot left front pin;γrf:γ angles corresponding to robot right front pin;
γlb:γ angles corresponding to robot left back pin;γrb:γ angles corresponding to robot right back pin;
In summary, γ is obtained by formula (6) (7) during single linear translationrf, γlb, γlf, γrb, then by formula (4) (5) α, β of every leg are determined, and the data group beyond error range is rejected by error analysis, thus obtains current time holding fuselage The articulate rotational angle of institute required for linear translation.
3. multi-foot robot according to claim 1 or 2 keeps the gait planning method of linear translation, it is characterized in that:Root Obtained gait track data is judged whether within actual error permission according to the criterion of multi-foot robot linear translation motion, And by the data rejecting beyond error range, wherein, with vertical fuselage upwards for Z-direction, with crossmachine people on horizontal plane Direction of advance is X-direction to the right, and Z axis and X-direction allowable error are respectively εz、εx
The foundation of the error judgment is:At the time of any robot motion, other sides of the fuselage in addition to linear translation direction To shift offset be zero, the error being derived under Z axis and X-axis current data:
zzmp=bsin α+csin (β+α)-h --- --- (8)
xzmp=(bcos α+ccos (β+α)+a) cos γ-l0——(9)
If | Zzmp|≤εzAnd | Xzmp|≤εxThen the data obtained is in error allowed band, and is entered into robot, complete Into corresponding gait adjustment;If | Zzmp|≤εz、|Xzmp|≤εxThere is any one invalid data that then obtain to exceed error range, And rejected to ensure that gait is steady.
CN201510092738.XA 2015-03-02 2015-03-02 A kind of multi-foot robot keeps the gait planning method of linear translation Expired - Fee Related CN104765372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510092738.XA CN104765372B (en) 2015-03-02 2015-03-02 A kind of multi-foot robot keeps the gait planning method of linear translation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510092738.XA CN104765372B (en) 2015-03-02 2015-03-02 A kind of multi-foot robot keeps the gait planning method of linear translation

Publications (2)

Publication Number Publication Date
CN104765372A CN104765372A (en) 2015-07-08
CN104765372B true CN104765372B (en) 2017-11-10

Family

ID=53647278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510092738.XA Expired - Fee Related CN104765372B (en) 2015-03-02 2015-03-02 A kind of multi-foot robot keeps the gait planning method of linear translation

Country Status (1)

Country Link
CN (1) CN104765372B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112158273B (en) * 2020-09-25 2021-12-17 东南大学 A kind of step adaptive walking method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475192A1 (en) * 2001-12-28 2004-11-10 Honda Giken Kogyo Kabushiki Kaisha Gait producing device for leg type movable robot
CN1649698A (en) * 2002-03-18 2005-08-03 索尼株式会社 Robot device, legged locomotion robot operation control device and operation control method, legged locomotion robot sensor system, and locomotion device
CN101531006A (en) * 2009-03-31 2009-09-16 清华大学 Power type walking method for biped robot
CN102749919A (en) * 2012-06-15 2012-10-24 华中科技大学 Balance control method of multi-leg robot
JP2013116528A (en) * 2011-12-02 2013-06-13 Honda Motor Co Ltd Gait generator of legged mobile robot
CN103955217A (en) * 2014-04-25 2014-07-30 中科宇博(北京)文化有限公司 Planning method for opposite angle trotting gait of large quadruped robot
CN104192221A (en) * 2014-09-26 2014-12-10 哈尔滨工业大学 Motion control system and method for electrically-driven hexapod robot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475192A1 (en) * 2001-12-28 2004-11-10 Honda Giken Kogyo Kabushiki Kaisha Gait producing device for leg type movable robot
CN1649698A (en) * 2002-03-18 2005-08-03 索尼株式会社 Robot device, legged locomotion robot operation control device and operation control method, legged locomotion robot sensor system, and locomotion device
CN101531006A (en) * 2009-03-31 2009-09-16 清华大学 Power type walking method for biped robot
JP2013116528A (en) * 2011-12-02 2013-06-13 Honda Motor Co Ltd Gait generator of legged mobile robot
CN102749919A (en) * 2012-06-15 2012-10-24 华中科技大学 Balance control method of multi-leg robot
CN103955217A (en) * 2014-04-25 2014-07-30 中科宇博(北京)文化有限公司 Planning method for opposite angle trotting gait of large quadruped robot
CN104192221A (en) * 2014-09-26 2014-12-10 哈尔滨工业大学 Motion control system and method for electrically-driven hexapod robot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于足端轨迹规划算法的液压四足机器人步态控制策略;王立鹏 等;《机械工程学报》;20130131;第49卷(第1期);第39-44页 *

Also Published As

Publication number Publication date
CN104765372A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
CN111913490B (en) Four-foot robot dynamic gait stability control method and system based on foot falling adjustment
CN110815180B (en) Motion Analysis Modeling and Fast Solution Method of Six Degrees of Freedom Parallel Robot
WO2017092463A1 (en) Method of controlling walking posture of biped robot and device
CN100410030C (en) A Path Planning Method for Robot Obstacle Avoidance Based on Virtual Scene
CN106681341B (en) Multi-foot robot gait optimization control method based on various dimensions working space coupling algorithm
CN109333534B (en) Preplanned real-time gait control algorithm
WO2017181976A1 (en) Gait planning method for improving walking stability of six-legged robot
CN110039544A (en) Apery Soccer robot gait planning based on cubic spline interpolation
CN104331081A (en) Gait planning method for walking of biped robot along slope
CN112847354B (en) Transformer substation foot type robot posture adjusting method, controller, system and robot
CN104986241B (en) The gait planning method of quadruped robot
CN111290272B (en) Attitude stationarity adjusting method based on multi-legged robot
CN110286679A (en) Robot Gait Planning Method Based on Linear Inverted Pendulum Model
CN104192221A (en) Motion control system and method for electrically-driven hexapod robot
CN103085069A (en) Novel robot kinematics modeling method
CN109807901A (en) A hexapod robot and its foot end trajectory planning method
CN103770111A (en) Gait planning and synthetic method for humanoid robot
CN114442649A (en) Hybrid dynamics modeling and motion planning method for biped robot
CN104765372B (en) A kind of multi-foot robot keeps the gait planning method of linear translation
CN110032207B (en) Establishment method of fuselage equivalent link model and multi-leg coordination control method
CN107214698A (en) Hexapod Robot joint angles scaling method based on body nodal point displacement correction
CN108089583A (en) A kind of method and apparatus of multi-foot robot movement transitions
CN102799184A (en) Stability control method for rbiomimetic obosaur crawling
CN102975785B (en) Tripod robot
CN112697149B (en) Planning method for rhythm gait foot end track of hexapod robot

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171110

Termination date: 20200302

CF01 Termination of patent right due to non-payment of annual fee